
Simultaneous PQ-Ordering

with Applications to Constrained Embedding Problems∗

Thomas Bläsius†, Ignaz Rutter†

Abstract

In this paper, we define and study the new problem
Simultaneous PQ-Ordering. Its input consists of a
set of PQ-trees, which represent sets of circular orders of
their leaves, together with a set of child-parent relations
between these PQ-trees, such that the leaves of the child
form a subset of the leaves of the parent. Simultane-
ous PQ-Ordering asks whether orders of the leaves of
each of the trees can be chosen simultaneously, that is,
for every child-parent relation the order chosen for the
parent is an extension of the order chosen for the child.
We show that Simultaneous PQ-Ordering is NP-
complete in general and we identify a family of instances
that can be solved efficiently, the 2-fixed instances. We
show that this result serves as a framework for several
other problems that can be formulated as instances of
Simultaneous PQ-Ordering.

In particular, we give linear-time algorithms for
recognizing simultaneous interval graphs and extend-
ing partial interval representations. Moreover, we
obtain a linear-time algorithm for Partially PQ-
Constrained Planarity for biconnected graphs,
which asks for a planar embedding in the presence of
PQ-trees that restrict the possible orderings of edges
around vertices, and a quadratic-time algorithm for Si-
multaneous Embedding with Fixed Edges for bi-
connected graphs with a connected intersection. Both
results can be extended to the case where the input
graphs are not necessarily biconnected but have the
property that each cutvertex is contained in at most
two non-trivial blocks. This includes for example the
case where both graphs have maximum degree 5.

1 Introduction

Ordering objects in a specific way is a fundamental con-
cept behind many applications. Probably the most ba-
sic ordering problem is sorting a totally ordered set.
However, there may be less restrictive requirements on
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an order of elements in a set than a total order. Exam-
ples for such requirements are partially ordered sets or
the requirement that subsets of elements have to appear
consecutively. Such requirements yield sets of possible
(circular or linear) orders and in the two mentioned ex-
amples these sets admit compact representations (i.e.,
polynomial in the number of elements although the set
of orderings may be exponentially large). More pre-
cisely, the possible orders for a partially ordered set may
be represented by a directed acyclic graph (DAG) and
all orders in which some specific subsets of elements ap-
pear consecutively can be represented by a PQ-tree [7].
A PQ-tree represents orders of its leaves by allowing
edges around inner nodes to be either ordered arbitrar-
ily (P-nodes) or by fixing this order up to reversal (Q-
nodes); see Fig. 1a. Similarly, a matching on a set of
vertices describes a set of possible orders, namely all or-
ders where no pair of matched vertices alternates. In
this work we do not consider the case where the order
of elements of a single set is restricted in a specific way
but we introduce the concept of simultaneous orders for
a family of sets. Namely, given sets of orders L1, . . . ,Ln
on element sets L1, . . . , Ln, we seek orderings Oi ∈ Li
such that the common elements are ordered consistently.
Note that this is generally NP-hard if the sets of orders
Li are given as compact representations, as it contains
the NP-hard problem Cyclic Ordering [14].

Nevertheless, many special cases with interesting
applications admit polynomial-time algorithms. For
example Klav́ık et al. [25] essentially find a simultaneous
ordering of a partially ordered set and a superset
constrained by a PQ-tree to extend partial interval
representations of graphs (an interval representation
assigns an interval to each vertex such that intervals
intersect if and only if the corresponding vertices are
adjacent). Haeupler et al. [17] solve a special case of
the simultaneous embedding problem SEFE, which asks
for planar drawings of two graphs such that common
parts are drawn the same (see Fig. 1b), by repeatedly
finding simultaneous orders for two PQ-trees. Angelini
et al. [2] show that a more general case of SEFE is
equivalent to finding simultaneous orderings for a PQ-
tree and two matchings. To find simultaneous interval
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representations of two graphs (where common vertices
are represented by the same intervals) Jampani and
Lubiw [22] seek compatible clique orderings represented
by a pair of PQ-trees. Angelini et al. [1] and Gutwenger
et al. [16] find planar embeddings subject to constraints
on orderings of edges around vertices. The problem
Partially PQ-Constrained Planarity combines
these problems by restricting the orders of subsets of
edges using PQ-trees. Such constrained embedding
problems also fall into the domain of simultaneous
ordering problems for the following reason. Planar
embeddings of graphs are determined by circular orders
of edges around vertices, and thus for each vertex there
is a set of possible orders. However, to obtain a planar
embedding by choosing an ordering for each vertex,
extensive compatability conditions need to be satisfied,
yielding a simultaneous ordering problem.

In this paper we make a first step to unify simulta-
neous ordering problems within a common framework.
We consider the case where orders are represented by
PQ-trees leading to the problem Simultaneous PQ-
Ordering that is defined as follows. Let D = (N,A)
be a DAG with nodes N = {T1, . . . , Tk}, where Ti is
an unrooted PQ-tree representing a set Li of circular
orderings of its leaves Li. Each arc a ∈ A consists of a
source Ti, a target Tj and an injective map ϕ : Lj → Li,
and it is denoted by (Ti, Tj ;ϕ). Simultaneous PQ-
Ordering asks whether there are orders O1, . . . , Ok
with Oi ∈ Li such that an arc (Ti, Tj ;ϕ) ∈ A implies
that ϕ(Oj) is a suborder of Oi. Note that this strictly
generalizes the above simultaneous ordering problem
for PQ-trees; consistent orderings of common elements
can be enforced by introducing a common child, using
ϕ = id. On the other hand, the injective maps can
express more general relations between elements.

Contribution and Outline We show that Si-
multaneous PQ-Ordering is NP-hard in general
and identify a large class of instances, the so-called 2-
fixed instances, that can be solved efficiently; see Sec-
tion 3.2 for a formal definition. This result serves as a
framework for several applications. In particular, we ob-
tain algorithms for several problems mentioned above.
The algorithms obtained in this way either solve more
general cases that were not known to be efficiently solv-
able or significantly improve over the previously best
running times.

We first define basic notation and preliminaries in
Section 2. In Section 3, which is the main part of
this paper, we show how to solve Simultaneous PQ-
Ordering for 2-fixed instances in quadratic time. We
present several applications in Section 4, where we show
how to formulate various problems as 2-fixed instances
in the framework of Simultaneous PQ-Ordering.

In particular, we give a linear-time algorithm for
recognizing simultaneous interval graphs, improving
upon the previously best algorithm with running time
O(n2 log n) [22] and an O(n+m) algorithm for extend-
ing partial interval representations, improving upon the
previously best algorithm with running time O(n2) [25].
Moreover, we obtain a linear-time algorithm for Par-
tially PQ-Constrained Planarity of biconnected
graphs and a quadratic-time algorithm for SEFE for
biconnected graphs with connected intersection. Both
algorithms generalize to input graphs having the prop-
erty that each cutvertex is contained in at most two non-
trivial blocks. This significantly extends the results re-
quiring that the common graph is biconnected [17, 2] for
the following reason. If the intersection G of two graphs
G 1 and G 2 is biconnected, it is completely contained
in a single maximal biconnected component of G 1 and
G 2 , respectively. Thus, testing SEFE for G 1 and G 2 is
equivalent to testing it for these two biconnected compo-
nents since all remaining biconnected components can
be attached if and only if they are planar.

We emphasize that all applications follow directly
from the main results in Section 3. The formulations
as instances of Simultaneous PQ-Ordering we use
are straightforward and can easily be verified to be 2-
fixed, at which point the machinery developed in the
main part of this paper takes over.

Due to space constraints, we omit several proofs
from this extended abstract. For detailed proofs, we
refer the reader to the full version of this paper [5].

2 Preliminaries

Orders and Permutations Let L be a finite set
and S ⊆ L. A linear order (circular order) O of L
induces a unique linear order (circular order) O′ on S.
We say that O′ is a suborder of O and that O is an
extension of O′. Sometimes we do not have S ⊆ L but
an injective map ϕ : S → L. We then use the terms
suborder and extension if ϕ(O′) is a suborder of O,
where ϕ(O′) is the order obtained from O′ by applying ϕ
to each element.

Given a circular order O of a set L, a permutation ϕ
of L is order preserving (order reversing) with respect
to O, if ϕ(O) coincides with O (is the reverse of O).
It is order preserving (order reversing) if it is order
preserving (order reversing) with respect to some order.
Note that this definition allows a permutation to be
order preserving and order reversing at the same time
(with respect to different orders). We will use the
following lemma.

Lemma 2.1. A permutation ϕ is a) order preserving
and b) order reversing if and only if

a) all its permutation cycles have the same length
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Figure 1: (a) A PQ-tree; P- and Q-nodes are depicted as circles and boxes, respectively. (b) Two graphs on a
common node set. The SEFE on the right makes differences and similarities visible.

b) all its permutation cycles have length 2, except for
at most two cycles with length 1.

Checking these conditions and constructing correspond-
ing orders can be done in linear time.

PQ-Trees PQ-Trees were originally introduced by
Booth and Lueker [7]. They were designed to decide
whether a set L has the Consecutive Ones property
with respect to a family S = {S1, . . . , Sk} of subsets
Si ⊆ L. The set L has this property if a linear order of
its elements can be found, such that the elements in each
subset Si ∈ S appear consecutively. Booth and Lueker
showed how to solve Consecutive Ones in linear time
and that all possible orders can be represented by a
PQ-tree having the elements in L as leaves. PQ-trees
are used for testing planarity in linear time and for
recognizing interval graphs [7]. Unrooted PQ-trees are
also called PC-trees [19, 20, 21]. There is an equivalence
between PQ- and PC-trees [18], and we thus do not
make this distinction.

Given an unrooted tree T with leaves L having a
fixed circular order of edges around every vertex, the
circular order of the leaves is also fixed. In an unrooted
PQ-tree for some inner nodes, the Q-nodes, the circular
order of incident edges is fixed up to reversal, for the
other nodes, the P-nodes, this order can be chosen
arbitrarily. Hence, an unrooted PQ-tree represents a set
of circular orders of its leaves. Formally, the empty set,
saying that no order is possible, is represented by the
null tree, whereas the empty tree has the empty set as
leaves and represents the set containing only the empty
order. Analogously, one can define rooted PQ-trees
representing linear orders. Haeupler and Tarjan [18]
show that there is a correspondence between rooted and
unrooted PQ-trees. Their construction adds a special
leaf on top of the root of a rooted PQ-tree and then
unroots it, leading to an unrooted PQ-tree representing
essentially the same orders. PQ-trees were originally
introduced in the rooted case by Booth and Lueker [7].
Unless stated otherwise, we refer to circular orders and
unrooted PQ-trees if we write orders and PQ-trees,
respectively.

Let T be a PQ-tree with leaves L representing the
set of orders L and let S ⊆ L. There exists a PQ-
tree T |S that represents exactly the orders of S that
are suborders of some O ∈ L, called the projection of T

so S. Let T1 and T2 be two PQ-trees with the same
leaf set L representing orders L1 and L2, respectively.
There exists a PQ-tree T1 ∩ T2 representing L1 ∩ L2,
called the intersection of T1 and T2. Projections and
intersections can be computed in linear time [8, 7]. The
projection of a PQ-tree T to a subset S of the leaves L
can be computed as follows. First, remove all leaves
in L \ S, then iteratively remove former inner nodes
with degree 1 and replace degree-2 nodes by single edges
connecting their neighbors. Clearly, every inner node µ′

of T |S stems from a distinct inner node µ of T , and
every edge ε′ incident to µ′ stems from a distinct edge
ε incident to µ. Fixing an order for T |S thus partially
fixes T . In particular, if µ′ is a Q-node of T |S , then
the node µ of T it stems from, which is also a Q-node,
is completely determined; we call it fixed. A Q-node
is free if it is not fixed. Similarly, a P-node µ′ of T |S
with incident edges ε′1, . . . , ε

′
k, determines the order of

the edges ε1, . . . , εk around µ. We say that these edges
are fixed, the remaining edges incident to µ are free. A
P-node is fixed if any of its incident edges is fixed, it
is free otherwise. A representative of an edge ε with
respect to µ is a leaf of T whose path to µ contains ε.
Note that a node is fixed if and only if at least three
incident edges have representatives in S.

Let T and T ′ be two PQ-trees with leaves L and L′

and let ϕ : L′ → L be an injective map. To simplify
notation, we consider L′ as a subset of L via ϕ in
the following. We seek simultaneous orders for T
and T ′, i.e., orders O and O′ represented by T and T ′,
respectively, such that O extends O′. Orders of T ′

that cannot be extended to T can be eliminated by
replacing T ′ by T ′ ∩ T |L′ . Therefore, without loss of
generality we assume that all orders represented by T ′

can be extended to an order represented by T . Fixing an
order for T ′, completely determines the order of T |L′ ,
and thus the notions of free and fixed edges/nodes can
be extended to this case. Since T ′ is more restricted
than T |L′ , a Q-node of T ′ may fix several nodes of T .
However, the orientation of every fixed Q-node µ in T
is determined by exactly one Q-node of T ′, called the
representative of µ, denoted by rep(µ). Conversely, a
P-node of T may be fixed by several nodes of T ′, but
each P-node of T ′ fixes exactly one P-node of T .
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3 Simultaneous PQ-Ordering

Recall that the problem Simultaneous PQ-Ordering
has a set N of PQ-trees T1, . . . , Tk with leaf sets
L1, . . . , Lk as input, together with a DAG D = (N,A)
specifying several child–parent relations between them.
Two orders Oi and Oj represented by the PQ-trees Ti
and Tj , respectively, satisfy the arc (Ti, Tj ;ϕ) with the
associated injective mapping ϕ : Lj → Li if Oi extends
ϕ(Oj). We seek simultaneous orders O1, . . . , Ok, such
that Ti represents Oi and all arcs are satisfied. In
most cases it is not important to consider the map ϕ
explicitly, hence we often simply write (Ti, Tj) instead of
(Ti, Tj ;ϕ). An instance D = (N,A) of Simultaneous
PQ-Ordering is normalized, if an arc (Ti, Tj) ∈ A
implies that Li contains an order Oi extending Oj for
every order Oj ∈ Lj , i.e., the child does not represent
orders that cannot be extended at all. It is easy to see
that every instance of Simultaneous PQ-Ordering
can be normalized by traversing D in top-down fashion
and replacing Tj for each arc (Ti, Tj) by Ti|Lj

∩ Tj ,
consuming quadratic time. From now on, all instances
of Simultaneous PQ-Ordering are assumed to be
normalized. The size of a node of D = (N,A) is the
number of vertices of the corresponding PQ-tree, which
is linear in its number of leaves since it does not contain
degree-2 vertices. For every arc (Ti, Tj ;ϕ) ∈ A we need
to store the injective map ϕ from the leaves of Tj to the
leaves of Ti, which takes space O(|Tj |). The size of D,
denoted by |D|, is the total size of all nodes plus the
sizes of all arcs.

Not surprisingly, Simultaneous PQ-Ordering
turns out to beNP-complete. The proof is by reduction
from Cyclic Ordering, which is known to be NP-
complete [14].

Theorem 3.1. Simultaneous PQ-Ordering is
NP-complete.

In the following we identify a class of instances that
can be solved efficiently, the 2-fixed instances.

3.1 Critical Triples and the Expansion Graph
Let D = (N,A) be an instance of Simultaneous PQ-
Ordering and let (T, T1) ∈ A be an arc. By choosing
an order O1 ∈ L1 represented by T1 and extending
O1 to an order O ∈ L, we ensure that the constraint
given by (T, T1) is satisfied. Hence, our strategy will
be to choose orders bottom-up, which can always be
done for a single arc since our instances are normalized.
However, T can have several children T1, . . . , T`, and
orders Oi ∈ Li for i = 1, . . . , ` cannot always be
extended simultaneously to an order O ∈ L. We derive
necessary and sufficient conditions for the orders Oi
to be simultaneously extendable under the additional

assumption that every P-node in T is fixed with respect
to at most two children. We consider the Q- and P-
nodes separately.

Let µ be a Q-node in T . If µ is fixed with respect
to Ti, there is a unique Q-node rep(µ) in Ti determining
its orientation. By introducing a boolean variable xη for
every Q-node η, which is true if η is oriented the same
as a fixed reference orientation and false otherwise,
we can express the condition that µ is oriented as
determined by its representative by xµ = xrep(µ) or xµ 6=
xrep(µ). Haeupler et al. [17] use a similar technique to
enforce consistent orientations of Q-nodes over several
PQ-trees. For every Q-node in T that is fixed with
respect to a child Ti we obtain such an (in)equality
and we call the resulting set of (in)equalities the Q-
constraints. It is obvious that the Q-constraints are
necessary. On the other hand, if the Q-constraints are
satisfied, all children of T fixing the orientation of µ fix
it in the same way. Note that the Q-constraints form
an instance of 2-Sat that has linear size in the number
of Q-nodes, which can be solved in polynomial [26] and
even linear [11, 3] time. Hence, we only need to deal
with the P-nodes, which is not as simple.

Let µ be a P-node in T . If µ is fixed with respect
to only one child Ti, we can simply choose the order
given by Oi. If µ is additionally fixed with respect
to Tj , it is of course necessary that the orders Oi and
Oj induce the same order for the edges incident to µ
that are fixed with respect to both, Ti and Tj . We call
such a triple (µ, Ti, Tj), where µ is a P-node in T fixed
with respect to the children Ti and Tj a critical triple.
We say that the critical triple (µ, Ti, Tj) is satisfied if
the orders Oi and Oj induce the same order for the
edges incident to µ commonly fixed with respect to Ti
and Tj . If we allow multiple arcs, we can also have a
critical triple (µ, T ′, T ′) for two parallel arcs (T, T ′;ϕ1)
and (T, T ′;ϕ2). Clearly, all critical triples need to be
satisfied by the orders chosen for the children to be
able to extend them simultaneously. The following
lemma shows that satisfying all critical triples is not
only necessary but also sufficient if every P-node is
contained in at most one critical triple, that is, it is
fixed with respect to at most two children of T . Note
that the lemma does not hold in general if a P-node in
T is fixed by three or more children.

Lemma 3.1. Let T be a PQ-tree with children
T1, . . . , T`, such that every P-node in T is contained
in at most one critical triple, and let O1, . . . , O` be
orders represented by T1, . . . , T`. An order O that is
represented by T and simultaneously extends the orders
O1, . . . , O` exists if and only if the Q-constraints and all
critical triples are satisfied.

Proof. The only if part is clear. Conversely, assume that
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we have orders O1, . . . , O` satisfying the Q-constraints
and every critical triple. We show how to construct
an order O represented by T , extending all orders
O1, . . . , O` simultaneously. We find O by choosing
orders for the internal nodes of T separately. For the
Q-nodes the variable assignments of the Q-constraints
imply consistent orientations. For a P-node µ in T that
is fixed with respect to at most one child, we choose
the order of fixed edges incident to µ as determined by
the child and add the free edges arbitrarily. Otherwise,
µ is contained in exactly one critical triple (µ, Ti, Tj).
We first choose the order of edges incident to µ that are
fixed with respect to Ti as determined by Oi. From the
point of view of Tj , some of the fixed edges incident to
µ are already ordered, but this order is consistent with
the order induced by Oj , since (µ, Ti, Tj) is satisfied.
The remaining edges incident to µ that are fixed with
respect to Tj can be added as determined by Oj , and
the free edges can be added arbitrarily. �

Since testing whether the Q-constraints are satis-
fiable is easy, we concentrate on satisfying the critical
triples. Let µ be a P-node in a PQ-tree T such that
µ is fixed with respect to two children T1 and T2, that
is, (µ, T1, T2) is a critical triple. By projecting T1 and
T2 to representatives of the common fixed edges inci-
dent to µ and intersecting the results, we obtain a new
PQ-tree T (µ, T1, T2). There are natural injective maps
from the leaves of T (µ, T1, T2) to the leaves of T1 and T2,
hence we can add T (µ, T1, T2) together with incoming
arcs from T1 and T2 to our instance D of Simultaneous
PQ-Ordering. This procedure of creating T (µ, T1, T2)
is called expansion step with respect to the critical triple
(µ, T1, T2), and the resulting new PQ-tree T (µ, T1, T2)
is called the expansion tree with respect to that triple;
see Fig. 2 for an example of the expansion step.

We introduce the expansion tree for the following
reason. If we find orders O1 and O2 represented by T1
and T2 that both extend the same order represented
by the expansion tree T (µ, T1, T2), we ensure that the
edges incident to µ fixed with respect to both, T1 and
T2, are ordered the same in O1 and O2, or in other
words, we ensure that O1 and O2 satisfy the critical
triple (µ, T1, T2). By Lemma 3.1, we know that sat-
isfying the critical triples is necessary, thus we do not
loose solutions by adding expansion trees to an instance
of Simultaneous PQ-Ordering. Furthermore, it is
also sufficient, if every P-node is contained in at most
one critical triple (if we forget about the Q-nodes for a
moment). Hence, given an instance D of Simultane-
ous PQ-Ordering, we want to expand D iteratively
until no unprocessed critical triples are left and find
simultaneous orders bottom-up. Unfortunately, it can
happen that the expansion does not terminate and thus

yields an infinite graph. Thus, we define a special case
where we do not expand further. Let µ be a P-node of T
with outgoing arcs (T, T1;ϕ1) and (T, T2;ϕ2) such that
(µ, T1, T2) is a critical triple. If Ti (for i = 1, 2) consists
only of a single P-node, the image of ϕi is a set of repre-
sentatives of the edges incident to µ that are fixed with
respect to Ti. Hence ϕi is a bijection between Li and
the fixed edges incident to µ. If additionally the fixed
edges with respect to both, T1 and T2, are the same, we
obtain a bijection ϕ : L2 → L1 as ϕ = ϕ−11 ◦ ϕ2. As-
sume without loss of generality that there is no directed
path from T2 to T1 in the current DAG. If there is nei-
ther a directed path from T1 to T2 nor from T2 to T1, we
achieve uniqueness by assuming that T1 comes before T2
with respect to some fixed order of the nodes in D. In-
stead of an expansion step we apply a finalizing step by
simply creating the arc (T1, T2;ϕ). This new arc ensures
that the critical triple (µ, T1, T2) is satisfied if we have
orders for the leaves L1 and L2 respecting (T1, T2;ϕ).
It can be shown that infinite expansion results from re-
peated creation of trees consisting of a single P-node;
the finalizing step prevents this.

For the case that (µ, T ′, T ′) is a critical triple re-
sulting from two parallel arcs (T, T ′;ϕ1) and (T, T ′;ϕ2),
we can apply the expansion step as described above.
However, the finalizing step would introduce a loop. In
this case, we omit the loop and mark (T, T ′;ϕ1) and
(T, T ′;ϕ2) as a critical double arc. When choosing or-
ders bottom-up in the DAG, we have to explicitly ensure
that all critical triples stemming from critical double
arcs are satisfied. To simplify this, we ensure that all
targets of critical double arcs are sinks in the expan-
sion graph. This follows from the construction, except
for the case when the critical double arc is already con-
tained in the input instance. In this case, we apply one
additional expansion step, which essentially clones the
double arc.

To sum up, we start with an instance D of Simul-
taneous PQ-Ordering. As long as D contains unpro-
cessed critical triples (µ, T1, T2) we apply expansion and
finalizing steps. The resulting graph is called the expan-
sion graph of D and is denoted by Dexp. Note that Dexp

is also an instance of Simultaneous PQ-Ordering.
The finalizing step ensures finiteness of Dexp, and more-
over, it is obtained by adding necessary conditions, and
hence is equivalent to the original instance D.

Lemma 3.2. The expansion graph Dexp of D is unique
and finite.

Lemma 3.3. The instances D and Dexp of Simultane-
ous PQ-Ordering are equivalent.

For now, we know that we can consider the ex-
pansion graph instead of the original instance to solve
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Figure 2: The P-node µ in the PQ-tree T is fixed with respect to the children T1 and T2. We first project T1 and
T2 to representatives of the common fixed edges incident to µ and intersect the result to obtain T (µ, T1, T2); the
gray shaded projections only illustrate an intermediate step.

Simultaneous PQ-Ordering. Lemma 3.1 motivates
that we can solve the instance given by the expansion
graph by simply choosing orders bottom-up, if the Q-
constraints and the critical double arcs are satisfied.
However, this only works for “simple” instances where
P-nodes in the expansion graph are fixed with respect to
at most two children; we call such instances 1-critical.
To make this approach useful, we need to somehow
bound the size of the expansion graph.

3.2 1-Critical and 2-Fixed Instances In this sec-
tion we consider the expansion graph Dexp for 1-critical
instances D and show that in this case, the size of Dexp

is polynomial in the size of D, which is not true for gen-
eral instances. We make use of the following lemma.
Afterwards, we show how to solve 1-critical instances
efficiently.

Lemma 3.4. For every 1-critical instance D, targets of
critical double arcs in Dexp are sinks.

Lemma 3.5. A 1-critical instance D can be solved in
time polynomial in |Dexp|.

Proof. Due to Lemma 3.3, we can solve the instance
Dexp of Simultaneous PQ-Ordering instead of D
itself. Of course we cannot find simultaneous PQ-orders
for the PQ-trees in Dexp if any of these PQ-trees is the
null tree. Additionally, Lemma 3.1 states that D admits
a solution if and only if we can satisfy the Q-constraints
and all critical triples. The Q-constraints can be checked
in linear time [11, 3]. The critical triples, except for the
ones defined by critical double arcs, are enforced by the
expansion graph Dexp when choosing orders bottom-up.
It remains to deal with the critical double arcs, whose
targets are sinks by Lemma 3.4.

Let (T, T ′;ϕ1) together with (T, T ′;ϕ2) be a critical
double arc. By construction, T ′ consists of a single P-
node fixing the same edges incident to a single P-node
µ in T with respect to both arcs. To satisfy the critical
triple (µ, T ′, T ′), we need to find an order O′ of L′ such
that ϕ1(O′) = ϕ2(O′). This is equivalent to finding an

order O′ for which ϕ = ϕ−12 ◦ ϕ1 is order-preserving,
which can be tested with Lemma 2.1a. If such orders
can be found for all critical double arcs, we simply
choose the remaining orders bottom-up, which is always
possible if the Q-constraints are satisfied and Dexp does
not contain the null-tree. �

Our next step is to bound the size of the expansion
graph. It can be exponential in the size of the original
instance. However, for 1-critical instances, it turns out
to be polynomially bounded.

Lemma 3.6. Let D be a 1-critical instance of Simulta-
neous PQ-Ordering. The size of its expansion graph
Dexp is quadratic in |D|.

Lemma 3.5 and 3.6 together imply a polynomial-time
algorithm for Simultaneous PQ-Ordering for 1-
critical instances. A detailed analysis of the running
time gives the following.

Theorem 3.2. 1-critical instances of Simultaneous
PQ-Ordering can be solved in quadratic time.

Note that 1-criticality is not only important to en-
sure that the expansion graph has polynomial size
(Lemma 3.6) but also to be able to solve the instance at
all (Lemma 3.5). This comes from the fact that satisfy-
ing critical triples is not sufficient to be able to extend
several orders simultaneously if a P-node is contained
in more than one critical triple; see Lemma 3.1.

Actually, Theorem 3.2 tells us how to solve 1-critical
instances, which was the main goal of this section.
However, the characterization of the 1-critical instances
is not really satisfying, since we need to know the
expansion graph, which may be exponentially large for
instances that are not 1-critical, to check whether an
instance is 1-critical or not. In the following we present
a simple sufficient criterion for 1-criticality, which does
not involve the expansion graph.

Let D be an instance of Simultaneous PQ-
Ordering. We define the fixedness fixed(µ) of a P-
node µ in a PQ-tree of D as follows. For a P-node µ
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belonging to a tree T that is a source in D, we define
fixed(µ) to be the number of children fixing it. Now
let µ be a P-node of some internal PQ-tree T of D
with parents T1, . . . , T`. Each of the trees Ti contains
exactly one P-node µi that is fixed by µ. Addition-
ally, let k′ be the number of children fixing µ. We
set fixed(µ) = k′ +

∑
(fixed(µi) − 1). We say that an

instance D is k-fixed for some integer k, if fixed(µ) ≤ k
holds for all P-nodes µ of all PQ-trees in D. The motiva-
tion for this definition is that a P-node with fixedness k
in D is fixed with respect to at most k children in the ex-
pansion graph Dexp. We obtain the following theorem
providing sufficient conditions for D to be a 1-critical
instance.

Theorem 3.3. Every 2-fixed instance of Simultane-
ous PQ-Ordering is 1-critical.

Theorem 3.2 and 3.3 together provide a framework
for solving problems that can be formulated as instances
of Simultaneous PQ-Ordering. For some applica-
tions it will be useful to allow so-called reversing arcs,
not enforcing an order to be an extension of the order
provided by the child, but requiring that it is an exten-
sion of the reversal of this order.

In the following we briefly sketch why all results
still hold when we also allow reversing arcs. First of all,
for the case that every P-node of a parent is fixed by
at most two children, it is readily seen that orders for
children can be simultaneously extended if and only if
the Q-constraints and the critical triples are satisfied,
i.e., Lemma 3.1 still holds in the presence of reversing
arcs. Moreover, the construction of the expansion
graph can be naturally extended to instances containing
reversing arcs with the only exception that arcs created
due to reversing arcs in an expansion step are also
reversing, and similarly for the finalizing step. Hence,
the expansion graph of an instance with reversing arcs
can be obtained by taking the usual expansion graph,
ignoring that some arcs are reversing, and then suitably
replacing some of the normal arcs by reversing arcs.
This shows that all structural results on the expansion
graph still hold. The equivalence of an instance with
its expansion graph can be proved literally. The only
difference is when choosing orders for the targets of
critical double arcs containing exactly one reversing arc.
In this case we need to ensure that the corresponding
permutation (see Lemma 3.5) is order-reversing, instead
of order-preserving, and we use case b) of Lemma 2.1.
Hence, Theorems 3.2 and 3.3 also hold in the presence
of reversing arcs, and in the following we allow reversing
arcs without further notice.

4 Applications

In this section we present several applications. In par-
ticular, we give an optimal linear-time algorithm for
recognizing simultaneous interval graphs and apply it
to the problem of extending partial interval representa-
tions. Moreover, we present a novel representations of
all planar embeddings of biconnected graphs in terms of
simultaneous PQ-orders, leading to efficient algorithms
for the problems Partially PQ-Constrained Pla-
narity for biconnected graphs and SEFE for bicon-
nected graphs with a connected intersection.

4.1 Simultaneous and Partial Interval Graph
Representations An interval representation of a
graph G represents every vertex as an interval such that
two vertices are adjacent if and only if their intervals
intersect; G is then called an interval graph. Fulker-
son and Gross [13] characterize interval graphs in terms
of orderings of maximal cliques. A linear order of sets
is v-consecutive if the sets containing v appear consecu-
tively. A clique ordering is a linear order of the maximal
cliques of a graph. It is valid if it is v-consecutive for
every vertex v. The first algorithm recognizing interval
graphs in linear time was given by Booth and Lueker [7]
and was based on the characterization by Fulkerson and
Gross [13], stating that a graph is an interval graph if
and only if it admits a valid clique ordering. Rooted
PQ-trees were originally designed to model exactly such
constraints.

Theorem 4.1. (Fulkerson and Gross [13]) A
graph G is an interval graph if and only if there is
a linear order of all maximal cliques of G that is
v-consecutive with respect to every vertex v.

Jampani and Lubiw [22] introduce simultaneous in-
terval graphs, which are graphs G 1 and G 2 sharing
a common subgraph admitting interval representations
such that the common vertices are represented by the
same intervals. They give anO(n2 log n)-time algorithm
for the corresponding recognition problem Simultane-
ous Interval Representation. Our algorithm is
based on a novel characterization of simultaneous in-
terval graphs in terms of the orderings of the union of
the maximal cliques of G 1 and G 2 .

Theorem 4.2. Two graphs G 1 and G 2 are simultane-
ous interval graphs if and only if there exists a linear
order of the union of their maximal cliques that is v-
consecutive with respect to every common vertex v, and
whose restrictions to the maximal cliques of G 1 and G 2

yield valid clique orderings.

Proof. Assume G 1 and G 2 are simultaneous interval
graphs and let for every vertex v be I(v) the interval
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representing v. Assume C 1 = {C 1

1 , . . . , C
1

k } and C 2 =

{C 2

1 , . . . , C
2

` } are the maximal cliques in G 1 and G 2

respectively. When considering G 1 for itself, we again
obtain for every maximal clique C 1 = {v1, . . . , vr} a
position x such that x is contained in I(vi) for every
vi ∈ C 1 but in no other interval representing a vertex
in G 1 . The same can be done for the maximal cliques
of G 2 , yielding a linear order O of all maximal cliques
C = C 1 ∪C 2 . It is clear that the projection of this order
to the cliques in G 1 is v-consecutive for every vertex
v in G 1 due to Theorem 4.1 and the same holds for
G 2 . It remains to show that O is v-consecutive for each
common vertex v. Assume O is not v-consecutive for
some common vertex v. Then there need to be three
cliques Ci, Cj and Ck, no matter if they are maximal
cliques in G 1 or in G 2 , with positions xi, xj and xk such
that xi < xj < xk and v ∈ Ci, Ck but v /∈ Cj . However,
since the interval I(v) contains xi and xk it also contains
xj , which is a contradiction to the construction of the
position xj for the clique Cj since v is a common vertex.
Note that this is the same argument as used in the proof
of Theorem 4.1.

Conversely, we need to show how to construct an
interval representation from a given linear order of all
maximal cliques. Assume we have a linear order O
of all maximal cliques satisfying the conditions of the
theorem. Rename the cliques such that C1 . . . Ck+` is
this order, neglecting for a moment from which graph
the cliques stem. Let v be a vertex in G 1 or G 2 and
let Ci and Cj be the leftmost and rightmost clique in
O containing v. Then we define the interval I(v) to
be [i, j], as in the case of a single graph. Our claim is
that this yields a simultaneous interval representation
of G 1 and G 2 . Again, it is easy to see that a non-
integer position x is only contained in intervals also
containing dxe and bxc. Thus we only need to consider
the positions 1, . . . , k + `, let i be such an integral
position. Assume without loss of generality that Ci =
{v1, . . . , vr} is a clique of G 1 . Then i is contained
in all the intervals I(v1), . . . , I(vr) by definition. The
position i may be additionally contained in the interval
I(u) for a vertex that is exclusively contained in G 2

but this does not create an edge between vertices in
G 1 . However, there is no vertex u /∈ Ci contained in
G 1 such that i is contained in I(u) since this would
violate the u-consecutiveness either of the whole order
or of the projection to the cliques in G 1 . Since the same
argument works for cliques in G 2 , all edges in maximal
cliques of G 1 and G 2 are represented by the defined
interval representation and at the integer positions
no edges not contained are represented. Hence, this
definition yields a simultaneous interval representation
of G 1 and G 2 . �

With this characterization it is straightforward to
formulate the problem of recognizing simultaneous in-
terval graphs as an instance of Simultaneous PQ-
Ordering. Let C 1 and C 2 denote the sets of maximal
cliques of G 1 and G 2 , respectively. We create a rooted
PQ-tree T representing all orders of C 1 ∪ C 2 that are
v-consecutive for all common vertices of G 1 and G 2 . As
children of T we add the rooted PQ-trees representing
the valid clique orderings of G 1 and G 2 , respectively.
Note that by adding a special leaf to each of the three
trees, we obtain an unrooted instance representing the
same orderings. Again, this instance obviously models
exactly the necessary conditions. Moreover, it is 2-fixed
and a special analysis shows that the running time is
actually linear.

Theorem 4.3. Simultaneous Interval Represen-
tation can be solved in linear time.

Proof. Let C 1 = {C 1

1 , . . . , C
1

k } and C 2 = {C 2

1 , . . . , C
2

` }
be the maximal cliques of G 1 and G 2 respectively and
let C = C 1 ∪ C 2 be the set of all maximal cliques.
We define three PQ-trees T , T 1 and T 2 having C, C 1

and C 2 as leaves, respectively. The tree T is defined
such that it represents all linear orders of C that are v-
consecutive with respect to all common vertices v. The
trees T 1 and T 2 are defined to represent all linear orders
of C 1 and C 2 that are v-consecutive with respect to all
vertices v in G 1 and G 2 , respectively. Note that T 1

and T 2 are the PQ-trees that would be used to test
whether G 1 and G 2 themselves are interval graphs. By
the characterization in Theorem 4.2 it is clear that G 1

and G 2 are simultaneous interval graphs if and only if
we can find an order represented by T extending orders
represented by T 1 and T 2 . Hence G 1 and G 2 are
simultaneous interval graphs if and only if the instance
D of Simultaneous PQ-Ordering consisting of the
nodes T , T 1 and T 2 and the arcs (T, T 1 ) and (T, T 2 )
has a solution. This can be checked in quadratic
time using Theorem 3.2 since D is obviously 1-critical.
Furthermore, normalization can of course be done in
linear time and the expansion tree of linear size can
be computed in linear time since expansion stops after
a single expansion step. Hence the instance D of
Simultaneous PQ-Ordering can be solved in linear
time, which concludes the proof. �

Klav́ık et al. [25] consider the problem Partial In-
terval Graph Extension asking, whether there ex-
ists an interval representation of the input graph G such
that certain vertices are represented by prescribed inter-
vals. More precisely, let G be a graph, H = (V,E) be
a subgraph of G and let I be an interval representation
of H. The problem Partial Interval Graph Ex-
tension asks, whether there exists an interval graph
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Figure 3: Prescribed intervals corresponding to vertices v1, . . . , v4 and additional intervals fixing this representa-
tion. The resulting graph G′ with the new vertices is shown on the right.

representation I ′ of G such that for all v ∈ V we have
that I ′(v) = I(v). We call an instance (G,H, I) of Par-
tial Interval Graph Extension a partial interval
graph. Klav́ık et al. [25] show that Partial Interval
Graph Extension can be solved in time O(n2). We
show that Partial Interval Graph Extension can
be reduced in O(n + m) time to an instance of Simul-
taneous Interval Representation. It then follows
from Theorem 4.3 that the partial interval graph exten-
sion problem can be solved in O(n+m) time.

Without loss of generality, we assume that the
endpoints of all intervals I(v), v ∈ V (H) are distinct.
For v ∈ V (H) let `(v) and r(v) denote the left and
right endpoint of I(v), respectively. Further let S(I)
denote the sequence of these endpoints in increasing
order of coordinate. We call this order the signature
of I. We say that two interval representations I
and I ′ of the same graph H are equivalent if they
have the same signature. Klav́ık et al. [25] show
that Partial Interval Graph Extension for a
partial interval graph (G,H, I) is equivalent to deciding
whether there exists an interval representation I ′ of G
whose restriction to H is equivalent to I. In the
following we construct an interval graph G′ containing
H as an induced subgraph such that every interval
representation of G′ induces an interval representation
of H that is equivalent to I.

Let p1, . . . , p2n denote the interval endpoints of I
in increasing order. We now add several intervals to
the representation. Namely, for each point pi we put
three intervals of length ε. The interval `i is to the
left of pi, interval ri is to the right of pi and mi con-
tains pi and intersects both `i and ri. We choose ε small
enough so that no two intervals of distinct points pi
and pj intersect. We call these intervals markers. Fi-
nally, we add 2n−1 connectors, where the connector ci,
for i = 1, . . . , 2n − 1 lies strictly between pi and pi+1,
and intersects ri and `i+1; see Figure 3 for an exam-
ple. Now consider the graph G′ given by this interval
representation containing H as induced subgraph and
the new vertices Li,Mi, Ri and Ci corresponding to the
intervals `i,mi, ri and ci. Then (G,G′) defines an in-
stance of Simultaneous Interval Representation
corresponding to the instance (G,H, I) of Partial In-

terval Graph Extension and we obtain the follow-
ing theorem by showing their equivalence.

Theorem 4.4. Partial Interval Graph Exten-
sion can be solved O(n+m) time.

Proof. Let (G,H, I) be an instance of Partial Inter-
val Graph Extension and let (G,G′) be the corre-
sponding instance of Simultaneous Interval Rep-
resentation as defined above. We need to show that
these two instances are equivalent and that (G,G′) has
size linear in the size of (G,H, I).

Obviously G′ contains H as an induced sub-
graph. We claim that in any interval repre-
sentation I ′ of G′ the subrepresentation I ′|H is
equivalent to I. First, note that the sequence
L1,M1, R1, C1, . . . , C2n−1, L2n,M2n, R2n is an induced
path in G′. Hence, in every representation of G′ the
starting points of their intervals occur either in this or
in the reverse order. In particular, the marker inter-
vals I ′(Mi) are pairwise disjoint and sorted. Let vi de-
note the vertex whose interval has pi as an endpoint.
Since Mi is adjacent to Li and Ri, exactly one of which
is adjacent vi, it follows that I ′(Mi) contains an end-
point of I ′(vi). Since this holds for each marker Mi, the
claim follows.

With this result the equivalence of the instance
(G,H, I) and (G,G′) is easy to see. If (G,H, I) ad-
mits an interval representation of G, then the above
construction shows how to construct a corresponding
simultaneous representation of (G,G′). On the other
hand, if G and G′ admit a simultaneous interval rep-
resentation, then the endpoints of the intervals corre-
sponding to vertices of H must occur in the same order
as in I, and hence the interval representation of G ex-
tends I.

It remains to show that G′ has size linear in the
size of H. To this end, we revisit the construction of G′

from H. Let H ′ be the subgraph of G′ obtained by
removing the vertices corresponding to connectors. We
first show that the size of H ′ is linear in the size of H.

Clearly, H ′ contains exactly six additional vertices
for each vertex of H (three for each endpoint of an
interval representing a vertex of H), and thus |V (H ′)| =
7n. Now consider the edges of H ′. We denote by I(p)
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the set of vertices whose intervals contain p in the
interior. Let again p1, . . . , p2n denote the endpoints
of the intervals in the interval representation I of H.
Recall that for each such endpoint we add three vertices,
which are represented by the intervals `i,mi and ri,
respectively. Note that the endpoints pi−1 and pi+1

(if they exist) lie to the left of `i and to the right
of ri, respectively, and hence do not intersect with these
intervals. The neighbors of Li,Mi and Ri belonging
to H are contained in I(pi) ∪ {vi}. This implies that
the degree of Li, Mi and Ri is linear in the degree of vi
in H, and hence the total number of edges in H ′ is linear
in |E(H)|.

For the step from H ′ to G′, we add the connectors.
Consider the ith connector Ci, which is adjacent to Ri
and Li+1. Since no other intervals start or end in
between, the vertex corresponding to the connector Ci is
adjacent to the same vertices as Ri and Li+1. Thus, the
size of G′ is linear in the size of H ′ and the claim follows.
Moreover, it is clear that, assuming the intervals of I
are given in sorted order, G′ can be constructed from G
in O(n+m) time. �

4.2 Constrained Embedding Problems Con-
strained embedding problems ask for a planar graph
whether it can be drawn without crossings in the plane,
satisfying some additional constraints. Angelini et al. [1]
and Jeĺınek et al. [23] study the problem of finding
embeddings of graphs for which the embedding of a
subgraph is fixed. The case that the order of every
edge around every vertex is constrained by a PQ-tree
has been studied by Gutwenger et al. [16]. None of
their approaches can be applied to Partially PQ-
Constrained Planarity; either a subgraph is com-
pletely fixed, or the whole graph is constrained by PQ-
trees, whereas we also allow a subgraph to be PQ-
constrained.

Concerning the simultaneous embedding problem
SEFE, the most prevalent open question is the com-
putational complexity for two graphs. It is known that
the problem is NP-complete for three graphs [15] and
for two graphs the problem is linear-time solvable if one
of the graphs has at most one cycle [12], if the inter-
section graph is biconnected [2, 17], and if the common
graph consists of a set of cycles [6]. Schaefer [27] gives
an efficient testing algorithm for the cases that (1) the
common graph consists of disjoint biconnected compo-
nents and isolated vertices, (2) the common graph has
maximum degree 3, and (3) the first graph is a disjoint
union of triconnected graphs. Bläsius et al. [4] give an
extensive survey. Jünger and Schulz [24] show that two
graphs admit a SEFE if and only if they have planar
embeddings that coincide on the intersection graph.

To address these problems we introduce the PQ-
embedding representation, a 1-fixed instance of Simul-
taneous PQ-Ordering representing all planar em-
beddings of a biconnected graph. We then show that
the additional constraints of the two problems can be
added to obtain a 2-fixed instance, which can then be
solved efficiently as shown by our main result.

A New Embedding Representation Recall
that a graph is biconnected if it is connected and does
not contain a vertex whose removal disconnects the
graph. A separation pair in a biconnected graph is a
pair of vertices whose removal disconnects the graph.
A biconnected graph without separation pairs is tricon-
nected. A split pair is either a separation pair or an edge.
The SPQR-tree T of a biconnected planar graph G is
a tree representing a recursive decomposition along its
split pairs [9, 10]. The SPQR-tree provides a succinct
description of all planar embeddings of G. Its inter-
nal nodes are either S-, P- or R-nodes, each of them is
associated with a skeleton, which is a multigraph on a
subset of the vertices of G. The embedding choices are
1) flips for the R-nodes (whose skeleton is triconnected
and thus has a unique embedding up to a flip) and 2)
circular orders for P-nodes (whose skeleton consists of
parallel edges between two nodes). These choices are in
bijection with the embeddings of G.

It follows from the SPQR-tree that the possible cir-
cular orders around every vertex v in a planar embed-
ding can be represented by a PQ-tree T (v), the em-
bedding tree. In particular, T (v) has a P-node for every
P-node in the SPQR-tree whose skeleton contains v and
a Q-node (which is fixed up to a flip) for every R-node
whose skeleton contains v. We say that the nodes of
the PQ-tree stem from the corresponding node of the
SPQR-tree. Choosing orders for all embedding trees
independently does generally not give a planar embed-
ding. To obtain an embedding, we need to ensure that
all nodes of the embedding trees stemming from the
same node in the SPQR-tree are ordered consistently,
i.e., 1) they fix the same flip for R-nodes and 2) they fix
opposite orders for P-nodes.

We formulate these conditions as an instance D(G)
of Simultaneous PQ-Ordering by introducing com-
mon children to the embedding trees. To ensure 1), we
create for each R-node η in the SPQR-tree T a tree Q(η)
consisting of a single Q-node and add it as a common
child of all embedding trees that contain a Q-node stem-
ming from η with suitable injective maps. For 2) we
add for each P-node µ in the SPQR-tree whose skeleton
contains u and v and k parallel edges between them,
a common child P (µ) of T (u) and T (v) consisting of
a single P-node with k leaves. Exactly one of the arcs
is reversing to ensure that the orders are chosen oppo-
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Figure 4: A biconnected planar graph and its SPQR-tree on the top and the corresponding PQ-embedding
representation on the bottom. The injective maps on the edges are not explicitly depicted, but the starting points
of the arcs suggests which maps are suitable.

sitely. It is not hard to see that the planar embeddings
of G are in bijection with the simultaneous orderings
of D(G), and that the size of D(G) is linear in the size
of G. Moreover, D(G) is 1-fixed by construction. We
call this instance the PQ-embedding representation of
G; see Figure 4 for an example. As D(G) contains the
embedding trees of all vertices, it has the advantage that
we can now easily add additional constraints concerning
the orders of edges.

Partially PQ-Constrained Embedding With
the PQ-embedding representation it is easy to solve
Partially PQ-Constrained Planarity for a bicon-
nected graph G = (V,E) with constraint trees T ′(v)
for v ∈ V , each describing a set of circular orders of a
subset of the edges incident to v. We simply take the
PQ-embedding representation of G and for each ver-
tex v ∈ V we add the tree T ′(v) and an arc (T (v), T ′(v)).
Clearly, we have added exactly the necessary conditions
for Partially PQ-Constrained Planarity. It is
not hard to verify that the instance is 2-fixed, and can
therefore be solved in polynomial time. A separate anal-
ysis shows that the running time is actually linear for
this special case.

Theorem 4.5. Partially PQ-Constrained Pla-
narity can be solved in O(n2) time for biconnected
graphs.

Proof. Consider (G,C) to be an instance of Partially
PQ-Constrained Planarity where G is a bicon-

nected planar graph and C the set of constraint trees.
Let furtherD(G,C) be the corresponding instance of Si-
multaneous PQ-Ordering. Since D(G,C) contains
the PQ-embedding representation D(G), every solution
of D(G,C) yields a planar embedding of G. Addition-
ally, this planar embedding respects the constraint trees
since the order of edges around every vertex is an exten-
sion of an order of the leaves in the corresponding con-
straint tree. On the other hand, it is clear that a planar
embedding of G respecting the constraint trees yields
simultaneous orders for all trees in D(G,C). Since the
size of D(G,C) is linear in the size of (G,C), we can
solve (G,C) in quadratic time using Theorem 3.2, if
D(G,C) is 1-critical. We will show that the instance
D(G,C) is at most 2-fixed, and hence, due to Theo-
rem 3.3 also 1-critical.

To compute the fixedness of every P-node in every
PQ-tree in D(G,C), we distinguish between three kinds
of trees, the embedding trees, the consistency trees
and the constraint trees. If we consider a P-node µ
in an embedding tree T (v), this P-node is fixed with
respect to exactly one consistency tree, namely the
tree that represents the P-node in the SPQR-tree µ
stems from. In addition to the consistency trees, T (v)
has the constraint tree T ′(v) as child, thus µ can be
fixed with respect to T ′(v). Since T (v) has no parents
and no other children, µ is at most 2-fixed, that is
fixed(µ) ≤ 2. Consider a P-node µ′ in a constraint tree
T ′(v). Since T ′(v) has no children and its only parent
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is T (v) containing the P-node µ that is fixed by µ′,
we have by the definition of fixedness that fixed(µ′) =
fixed(µ) − 1. Since µ is a P-node in an embedding
tree we, obtain fixed(µ′) ≤ 1. We have two kinds of
consistency trees, some stem from P- and some from
R-nodes in the SPQR-tree. We need to consider only
trees P (µ) stemming form P-nodes since the consistency
trees stemming from R-nodes only contain a single Q-
node. Denote the single P-node in P (µ) also by µ and let
µ1 and µ2 be the two P-nodes in the embedding trees
T (v1) and T (v2) that are fixed with respect to P (µ).
Since P (µ) has no child and only these two parents,
we obtain fixed(µ) = (fixed(µ1) − 1) + (fixed(µ2) − 1).
Since µ1 and µ2 are P-nodes in embedding trees this
yields fixed(µ) ≤ 2. Hence, all P-nodes in all PQ-trees
in D(G,C) are at most 2-fixed, thus D(G,C) itself is 2-
fixed. Finally, we can apply Theorem 3.3 yielding that
D(G,C) is 1-critical and thus can be solved in O(n2)
time, due to Theorem 3.2. �

A more specific analysis of the instance and its
expansion graph shows that the computation actually
can be done in linear time.

Theorem 4.6. Partially PQ-Constrained Pla-
narity can be solved in linear time for biconnected
graphs.

Simultaneous Embedding Similarly, we can
solve SEFE for two biconnected input graphs G 1 and
G 2 whose intersection graph G is connected. Jünger
and Schulz show that this is equivalent to the question
whether embeddings of G 1 and G 2 exist that induce the
same embedding for G [24, Theorem 4]. We start with
the embedding representations D(G 1 ) and D(G 2 ). For
each common vertex v we denote the embedding trees
of v in D(G 1 ) and D(G 2 ) by T (v 1 ) and T (v 2 ), respec-
tively. To force the orders to coincide on G, we add a
P-node whose leaves are the common edges incident to v
as a child of T (v 1 ) and T (v 2 ). Again this adds exactly
the necessary conditions and it can be verified that the
resulting instance is 2-fixed.

Theorem 4.7. SEFE can be solved in quadratic time,
if both graphs are biconnected and the common graph is
connected.

Proof. Let (G 1 , G 2 ) be an instance of SEFE with the
common graph G such that G 1 and G 2 are biconnected
and G is connected. Let further D(G 1 , G 2 ) be the cor-
responding instance of Simultaneous PQ-Ordering
as defined above. Since D(G 1 , G 2 ) contains the PQ-
embedding representations D(G 1 ) and D(G 2 ), every
solution of D(G 1 , G 2 ) yields planar embeddings of G 1

and G 2 . Furthermore, the common edges incident to a
common vertex v ∈ V are ordered the same in the two
embedding trees T (v 1 ) and T (v 2 ) since both orders ex-
tend the same order of common edges represented by the
common embedding tree T (v). Thus, the embeddings
for G 1 and G 2 induced by a solution of D(G 1 , G 2 ) in-
duce the same embedding on the common graph and
hence are a solution of (G 1 , G 2 ). On the other hand, if
we have a SEFE of G 1 and G 2 , these embeddings in-
duce orders for the leaves of all PQ-trees in D(G 1 , G 2 )
and since the common edges around every common ver-
tex are ordered the same in both embeddings, all con-
straints given by arcs in D(G 1 , G 2 ) are satisfied.

To compute the fixedness of every P-node in every
PQ-tree in D(G 1 , G 2 ) we distinguish between three
kinds of trees, the embedding trees, the consistency
trees and the common embedding trees. The proof that
fixed(µ) ≤ 2 for every P-node µ in every embedding and
consistency tree works as in the proof of Theorem 4.5.
For a P-node µ in a common embedding tree T (v) we
have two P-nodes µ 1 and µ 2 in the parents T (v 1 )
and T (v 2 ) of T (v) it stems from. Since T (v) has no
other parents and no children, we obtain fixed(µ) =
(fixed(µ 1 ) − 1) + (fixed(µ 2 ) − 1) by the definition of
fixedness. Since µ 1 and µ 2 are P-nodes in embedding
trees, we know that their fixedness is at most 2. Thus,
we have fixed(µ) ≤ 2. Hence, all P-nodes in all PQ-trees
in D(G 1 , G 2 ) are at most 2-fixed, thus D(G 1 , G 2 ) itself
is 2-fixed. �

We note that both results extend to not necessarily
biconnected graphs where each cutvertex belongs to at
most two non-trivial blocks (i.e., blocks not consisting
of a single edge).

5 Conclusion

In this work we introduced a new problem called Simul-
taneous PQ-Ordering. Its input consists of a set of
PQ-trees with a child-parent relation (a DAG with PQ-
trees as nodes) and the question is whether for every
PQ-tree a circular order can be chosen such that it is
an extension of the orders of all its children. This was
motivated by the possibility to represent the possible
circular orders of edges around every vertex of a bi-
connected planar graph by a PQ-tree. Unfortunately,
Simultaneous PQ-Ordering turned out to be NP-
complete in general. However, we were able to find
an algorithm solving Simultaneous PQ-Ordering in
polynomial time for “simple” instances, the 1-critical
instances. To achieve this result we showed that satis-
fying the Q-constraints and the critical triples is suffi-
cient to extend orders of several children simultaneously
to a parent, if each P-node is contained in at most one
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critical triple. We were able to ensure that a critical
triples are satisfied automatically when choosing orders
bottom-up by inserting new PQ-trees, the expansion
trees. Creating the expansion trees iteratively for every
critical triple led to the expansion graph that turned out
to have polynomial size for 1-critical instances. Hence,
we are able to solve a 1-critical instance of Simultane-
ous PQ-Ordering in polynomial time, essentially by
choosing orders bottom-up in the expansion graph. We
have shown how this framework can be applied to solve
Partially PQ-Constrained Planarity for bicon-
nected graphs and Simultaneous Embedding with
Fixed Edges for biconnected graphs with a connected
intersection in polynomial time (linear and quadratic,
respectively), which were both not known to be effi-
ciently solvable before. Furthermore, we have shown
how to solves Simultaneous Interval Representa-
tion and Partial Interval Graph Extension in
linear time, which improves over the best known algo-
rithms with running times O(n2 log n) and O(n2) algo-
rithm, respectively. We stress that all these results can
be obtained in a straightforward way from the main
result of this work, the algorithm for Simultaneous
PQ-Ordering for 2-fixed instances.
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