
16

Simultaneous PQ-Ordering with Applications to Constrained
Embedding Problems

THOMAS BLÄSIUS and IGNAZ RUTTER, Karlsruhe Institute of Technology (KIT)

In this article, we define and study the new problem of SIMULTANEOUS PQ-ORDERING. Its input consists of a
set of PQ-trees, which represent sets of circular orders of their leaves, together with a set of child-parent
relations between these PQ-trees, such that the leaves of the child form a subset of the leaves of the
parent. SIMULTANEOUS PQ-ORDERING asks whether orders of the leaves of each of the trees can be chosen
simultaneously; that is, for every child-parent relation, the order chosen for the parent is an extension of
the order chosen for the child. We show that SIMULTANEOUS PQ-ORDERING is NP-complete in general, and
we identify a family of instances that can be solved efficiently, the 2-fixed instances. We show that this
result serves as a framework for several other problems that can be formulated as instances of SIMULTANEOUS

PQ-ORDERING. In particular, we give linear-time algorithms for recognizing simultaneous interval graphs
and extending partial interval representations. Moreover, we obtain a linear-time algorithm for PARTIALLY

PQ-CONSTRAINED PLANARITY for biconnected graphs, which asks for a planar embedding in the presence of
PQ-trees that restrict the possible orderings of edges around vertices, and a quadratic-time algorithm for
SIMULTANEOUS EMBEDDING WITH FIXED EDGES for biconnected graphs with a connected intersection. Both results
can be extended to the case where the input graphs are not necessarily biconnected but have the property
that each cutvertex is contained in at most two nontrivial blocks. This includes, for example, the case where
both graphs have a maximum degree of 5.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.1 [Discrete Mathematics]: Combinatorics; G.2.2 [Discrete Math-
ematics]: Graph Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Ordering problem, PQ-trees, planar embeddings, simultaneous embed-
ding, interval graphs

ACM Reference Format:
Thomas Bläsius and Ignaz Rutter. 2015. Simultaneous PQ-ordering with applications to constrained embed-
ding problems. ACM Trans. Algorithms 12, 2, Article 16 (December 2015), 46 pages.
DOI: http://dx.doi.org/10.1145/2738054

1. INTRODUCTION

Ordering objects in a specific way is a fundamental concept behind many applications.
Probably the most basic ordering problem is sorting a totally ordered set. However,
there may be less restrictive requirements on an order of elements in a set than a total
order. Examples for such requirements are partially ordered sets or the requirement

Part of this work was done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003.
A preliminary version of this article appeared as T. Bläsius, I. Rutter. Simultaneous PQ-Ordering with
Applications to Constrained Embedding Problems. In Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’13), pages 1030–1043, 2013.
Authors’ addresses: T. Bläsius, Prof.-Dr.-Helmert-Straße 2-3, Room A 1.4, 14482 Potsdam; email:
thomas.blaesius@hpi.de; I. Rutter, Am Fasanengarten 5, Room 319, 76131 Karlsruhe; email: rutter@kit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1549-6325/2015/12-ART16 $15.00
DOI: http://dx.doi.org/10.1145/2738054

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.

http://dx.doi.org/10.1145/2738054
http://dx.doi.org/10.1145/2738054


16:2 T. Bläsius and I. Rutter

Fig. 1. (a) A PQ-tree with leaves {a, . . . , �} where P- and Q-nodes are depicted as circles and boxes, re-
spectively. For example, the degree-5 Q-node at the top enforces the leaves a, b, c, h to occur in this or its
reversed order. Furthermore, the two P-nodes on the left enforce the leaves i, j, k, � to appear consecutively.
(b) Drawings of two graphs G©1 and G©2 on the common node set {1, . . . , 8}. Although some of the vertices are
drawn to similar positions in both drawings, it is hard to identify the differences and similarities between
the two graphs. This is much easier in the SEFE on the right.

that subsets of elements have to appear consecutively. Such requirements yield sets
of possible (circular or linear) orders, and, in the two mentioned examples, these sets
admit compact representations (i.e., polynomial in the number of elements although
the set of orderings may be exponentially large). More precisely, the possible orders
for a partially ordered set may be represented by a Directed Acyclic Graph (DAG),
and all orders in which some specific subsets of elements appear consecutively can be
represented by a PQ-tree [Booth and Lueker 1976]. A PQ-tree represents orders of its
leaves by allowing edges around inner nodes to be either ordered arbitrarily (P-nodes)
or by fixing this order up to reversal (Q-nodes); see Figure 1(a). Similarly, a matching
on a set of vertices describes a set of possible orders; namely, all orders where no pair of
matched vertices alternates. In this work, we do not consider the case where the order
of elements of a single set is restricted in a specific way, but we introduce the concept
of simultaneous orders for a family of sets. Namely, given sets of orders L1, . . . ,Ln on
element sets L1, . . . , Ln, we seek orderings Oi ∈ Li such that the common elements
are ordered consistently. Note that this is generally NP-hard if the sets of orders Li
are given as compact representations because it contains the NP-hard problem CYCLIC

ORDERING [Galil and Megiddo 1977].
Nevertheless, many special cases with interesting applications admit polynomial-

time algorithms. For example, Klavı́k et al. [2011] essentially find a simultaneous
ordering of a partially ordered set and a superset constrained by a PQ-tree to extend
partial interval representations of graphs (an interval representation assigns an inter-
val to each vertex such that intervals intersect if and only if the corresponding vertices
are adjacent). Haeupler et al. [2010] solve a special case of the simultaneous embed-
ding problem SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE), which asks for planar
drawings of two graphs G©1 and G©2 such that their intersection G is drawn the same
in both drawings (see Figure 1(b)) by repeatedly finding simultaneous orders for two
PQ-trees. Angelini et al. [2012] show that a more general case of SEFE is equivalent to
finding simultaneous orderings for a PQ-tree and two matchings. To find simultaneous
interval representations of two graphs (where common vertices are represented by the
same intervals), Jampani and Lubiw [2010] seek compatible clique orderings repre-
sented by a pair of PQ-trees. Angelini et al. [2010] and Gutwenger et al. [2008] find
planar embeddings subject to constraints on orderings of edges around vertices. The
problem PARTIALLY PQ-CONSTRAINED PLANARITY combines these problems by restricting
the orders of subsets of edges using PQ-trees. Such constrained embedding problems
also fall into the domain of simultaneous ordering problems for the following reason.
Planar embeddings of graphs are determined by circular orderings of edges around
vertices; thus, for each vertex, there is a set of possible orders. However, to obtain

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:3

a planar embedding by choosing an ordering for each vertex, extensive compatibility
conditions need to be satisfied, yielding a simultaneous ordering problem.

In this article, we make a first step to unify simultaneous ordering problems within
a common framework. We consider the case where all orders are represented by PQ-
trees leading to the problem SIMULTANEOUS PQ-ORDERING that is defined as follows. Let
D = (N, A) be a DAG with nodes N = {T1, . . . , Tk}, where Ti is an unrooted PQ-tree
representing a set Li of circular orderings of its leaves Li. Each arc a ∈ A consists of a
source Ti, a target Tj, and an injective map ϕ : Lj → Li, and it is denoted by (Ti, Tj ; ϕ).
SIMULTANEOUS PQ-ORDERING asks whether there are orders O1, . . . , Ok with Oi ∈ Li such
that an arc (Ti, Tj ; ϕ) ∈ A implies that ϕ(Oj) is a suborder of Oi. Note that this strictly
generalizes the just described simultaneous ordering problem for PQ-trees; consistent
orderings of common elements can be enforced by introducing common children for all
pairs of trees sharing elements, using ϕ = id. On the other hand, the injective maps
can express more general relations between elements.

1.1. Related Work

Since this work touches on several different topics, we consider related work on con-
strained embedding problems, simultaneous embedding problems, PQ-trees and inter-
val graphs separately.

PQ-Trees. PQ-Trees were originally introduced by Booth and Lueker [1976]. They
were designed to decide whether a set L has the CONSECUTIVE ONES property with re-
spect to a family S = {S1, . . . , Sk} of subsets Si ⊆ L. The set L has this property if a
linear order of its elements can be found such that the elements in each subset Si ∈ S
appear consecutively. Booth and Lueker showed how to solve CONSECUTIVE ONES in lin-
ear time. Furthermore, they showed that all linear orders of the elements in L in which
each subset Si ∈ S appears consecutively can be represented by a PQ-tree having the
elements in L as leaves. In addition to testing planarity in linear time, they also showed
how to decide in linear time whether a given graph is an interval graph. In the original
approach by Booth and Lueker, the PQ-trees were rooted, representing linear orders
of their leaves. However, Tucker [1971, Theorem 1] showed that CONSECUTIVE ONES or-
derings can also be used to represent circular orderings with a circular CONSECUTIVE

ONES property. By considering PQ-trees to be unrooted, Haeupler and Tarjan [2008]
give a corresponding interpretation of PQ-trees as a representation of circular orders.
Unrooted PQ-trees are sometimes also called PC-trees [Hsu 2001; Hsu and McConnell
2001, 2003]. In most cases, we will use unrooted PQ-trees representing circular or-
ders. However, the same results can be achieved for rooted PQ-trees representing
linear orders by simply adding a single leaf to each tree (see Section 2.3 for further
details).

Interval Graphs. Fulkerson and Gross [1965] gave a characterization of interval
graphs in terms of the CONSECUTIVE ONES property, enabling Booth and Lueker [1976]
to recognize them in linear time using PQ-trees. More recently, Klavı́k et al. [2011] give
an O(n2) time algorithm testing whether a given interval representation of a subgraph
can be extended to an interval representation of the whole graph. Note that interval
graphs are a special kind of intersection graphs in which vertices are represented by
geometric objects such that vertices are adjacent if and only if their corresponding
objects intersect. Jampani and Lubiw [2009] introduce a notion of simultaneous rep-
resentations for any class of intersection graphs; namely, intersection representations
where common vertices are represented by the same objects. They study the recognition
problem for several graph classes. In a companion paper [Jampani and Lubiw 2010],
they give an O(n2 log n)-time algorithm for recognizing simultaneous interval graphs.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:4 T. Bläsius and I. Rutter

Constrained Embedding. Constrained embedding problems in general ask for a given
planar graph and whether it can be drawn without crossings in the plane satisfying
some additional constraints. Pach and Wenger [1998] show that every planar graph can
be drawn crossing-free even if the vertex positions are prespecified by the application.
Unfortunately, such a drawing may require linearly many bends per edge. Kaufmann
and Wiese [2002] prove that two bends per edge are sufficient if only the set of points in
the plane is given, whereas the mapping of the vertices to these points can be chosen.
Another constrained embedding problem is PARTIALLY EMBEDDED PLANARITY, which asks
whether a planar drawing of a subgraph can be extended to a planar drawing of the
whole graph. Angelini et al. [2010] give a linear-time algorithm for testing PARTIALLY

EMBEDDED PLANARITY, and Jelı́nek et al. [2011] give a characterization by forbidden sub-
structures similar to Kuratowski’s theorem. The problem PQ-CONSTRAINED PLANARITY

has as input a planar graph G and a PQ-tree T (v) for every vertex v of G, such that
the leaves of T (v) are exactly the edges incident to v. PQ-CONSTRAINED PLANARITY asks
whether G has a planar drawing such that the order of incident edges around every
vertex v is represented by the PQ-tree T (v). Gutwenger et al. [2008] show that PQ-
CONSTRAINED PLANARITY can be solved in linear time by simply replacing every vertex
by a gadget and testing the planarity of the resulting graph (their main result is a
solution for OPTIMAL EDGE INSERTION with these constraints). Furthermore, they show
how to deal with PQ-CONSTRAINED PLANARITY if, additionally, the orientations of some
Q-nodes are fixed.

Simultaneous Embedding. In addition to SEFE, there are other simultaneous embed-
ding problems, such as SIMULTANEOUS EMBEDDING, only requiring the common vertices
to be drawn at the same position, and SIMULTANEOUS GEOMETRIC EMBEDDING, requiring
the edges to be straight-line segments [Erten and Kobourov 2005]. For an extensive
survey on simultaneous embeddings of planar graphs see Bläsius et al. [2013]. We only
consider SEFE, and we focus on the computational complexity of this problem. Gassner
et al. [2006] show that it is NP-complete to decide whether three or more graphs have
an SEFE. Fowler et al. [2009] show how to solve SEFE efficiently if G©1 and G have
at most two and one cycles, respectively. Haeupler et al. [2010] solve SEFE in linear
time for the case that the common graph is biconnected. Angelini et al. [2012] obtain
the same result with a completely different approach. They additionally solve the case
where the common graph is a star.

All these approaches (and also the approach we present in this article) only consider
orderings of edges around vertices. However, if the common graph G is disconnected,
one additionally has to ensure that the relative positions of connected components to
each other are the same with respect to the embeddings of G©1 and G©2. Bläsius and
Rutter [2015] assume the other extreme, ignoring edge orderings and only considering
relative positions. They show that SEFE can be solved in O(n) time if G is a set of
disjoint cycles and in O(n2) time if the embedding of each connected component of
G is fixed. In a recent paper [Bläsius et al. 2014], this result is combined with the
techniques by Angelini et al. [2012] and with the techniques presented in this article to
solve cases of SEFE where one has to deal with relative positions and edge orderings
at the same time. Schaefer [2013] introduces a completely different algebraic approach
to SEFE based on the independent odd crossing number. This approach also leads to a
polynomial time algorithm for different cases where the graph G has several non-trivial
connected components.

1.2. Contribution and Outline

We first define basic notation and present known results, which we use throughout
this article, in Section 2. In Section 3, we first give a precise problem definition for

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:5

SIMULTANEOUS PQ-ORDERING and show that it is NP-complete in general; see Section 3.1.
In the remainder of that section, which forms the main part of this article, we charac-
terize a subset of “simple” instances, the so-called 2-fixed instances, for which a solution
can be computed efficiently; namely, in quadratic time. We present several applications
in Section 4, where we show how to formulate various problems as 2-fixed instances
within the framework of SIMULTANEOUS PQ-ORDERING, thus yielding efficient algorithms
to solve them. The algorithms obtained in this way either solve problems that were
not known to be efficiently solvable or significantly improve over the previously best
running times.

In particular, we show that PARTIALLY PQ-CONSTRAINED PLANARITY can be solved in
linear time for biconnected graphs; see Section 4.2. Note that this problem can be
seen as a common generalization of the constrained embedding problems PARTIALLY

EMBEDDED PLANARITY [Angelini et al. 2010; Jelı́nek et al. 2011] and PQ-CONSTRAINED

PLANARITY [Gutwenger et al. 2008]. The former completely fixes the order of some edges
around a vertex; the latter partially fixes the order of all edges around a vertex. PAR-
TIALLY PQ-CONSTRAINED PLANARITY partially fixes the order of some edges. Similar to the
work of Gutwenger et al., we can also handle the case where some Q-nodes have a
fixed orientation. In addition to that, SEFE can be formulated as a 2-fixed instance of
SIMULTANEOUS PQ-ORDERING if both graphs are biconnected and the common graph is
connected, thus yielding a quadratic-time algorithm for this case; see Section 4.3. This
strictly extends the results requiring that the common graph is biconnected [Haeupler
et al. 2010; Angelini et al. 2012] for the following reason. If the intersection G of two
graphs G©1 and G©2 is biconnected, it is completely contained in a single maximal bi-
connected component of G©1 and G©2, respectively. Thus, testing SEFE for G©1 and G©2 is
equivalent to testing it for these two biconnected components since all remaining bicon-
nected components can be attached if and only if they are planar. Moreover, we improve
the previously best algorithms for recognizing simultaneous interval graphs [Jampani
and Lubiw 2010] from O(n2 log n) to linear (Section 4.4) and for extending partial inter-
val representations [Klavı́k et al. 2011] from O(n2) to O(n + m) (Section 4.5). We show
that the results for PARTIALLY PQ-CONSTRAINED PLANARITY and SEFE still hold if the input
graphs have the property that each cutvertex is contained in at most two nontrivial
blocks in Section 4.6. We conclude with some prospects for future work and some open
question in Section 5.

We emphasize that all applications follow easily from the main results in Section 3.
The formulations as instances of SIMULTANEOUS PQ-ORDERING we use are straightforward
and can easily be verified to be 2-fixed, at which point the machinery developed in the
main part of this article takes over.

2. PRELIMINARIES

In this section, we define the notation and provide some basic tools we use in this work.
Section 2.1 deals with graphs and their connectivity, planar graphs and embeddings
of planar graphs, directed acyclic graphs and trees. Linear and circular orders and
how permutations act on them are considered in Section 2.2. PQ-trees are defined
in Section 2.3. Furthermore, the relation between rooted and unrooted PQ-trees is
described and operations that can be applied to them are defined. In Section 2.4, we
give a short introduction to SPQR-trees, which are used to represent all embeddings of
biconnected planar graphs. In Section 2.5, we describe the relation between PQ-trees
and SPQR-trees.

2.1. Graphs, Planar Graphs, DAGs and Trees

A graph G = (V, E) is connected if there is a path from u to v for every pair of ver-
tices u, v ∈ V . A separating k-set is a set of k vertices whose removal disconnects G.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:6 T. Bläsius and I. Rutter

Separating 1-sets and 2-sets are called cutvertices and separation pairs, respectively.
A graph is biconnected if it is connected and does not have a cutvertex, and it is tri-
connected if it additionally does not have a separation pair. The maximal connected
subgraphs (with respect to inclusion) of G are called connected components, and the
maximal biconnected subgraphs are called blocks. A complete subgraph of G is called
a clique. A clique is maximal if it is not contained in a larger clique. Sometimes we
also use the term node instead of vertex to emphasize that it represents a larger
object.

A drawing of a graph G is a mapping of every vertex v to a point (xv, yv) in the
plane and a mapping of every edge {u, v} to a Jordan curve having (xu, yu) and (xv, yv)
as endpoints. A drawing of G is planar if edges do not intersect except at common
endpoints. The graph G is planar if a planar drawing of G exists. Consider G to be
a connected planar graph. Every planar drawing of G splits the plane into several
connected regions, called the faces of the drawing. Exactly one of these faces, called
the outer face, is unbounded. The boundary of each face is a directed cycle in G (with
the face to its right), and two faces in different drawings are said to be the same if
they have the same boundary. Additionally, every planar drawing of G induces for
every vertex an order of incident edges around it, and two drawings inducing the
same order for every vertex are called combinatorially equivalent. It is clear that two
combinatorially equivalent drawings have the same faces, which implies that they have
the same topology since G is connected. Note that being combinatorially equivalent is an
equivalence relation, and the equivalence classes are called combinatorial embeddings
of G. A combinatorial embedding together with the choice of an outer face is a planar
embedding. In most cases, we do not care about which face is the outer face, thus we
mean a combinatorial embedding by simply saying embedding.

In a directed graph, we call the edges arcs and an arc from the source u to the target v
is denoted by (u, v). A directed graph G without directed cycles is called directed acyclic
graph (DAG). Let u and v be vertices of a DAG G such that there exists a directed path
from u to v. Then u is called an ancestor of v and v a descendant of u. If the arc (u, v)
is contained in G, then u is a parent of v and v is a child of u. A vertex v in a DAG G
is called source (sink) if it does not have parents (children). Note that this overloads
the term “source,” but it will be clear from the context which meaning is intended. A
topological ordering of a DAG G is an ordering of its vertices such that u occurs before
v if G contains the arc (u, v). By saying that a DAG is processed top-down (bottom-up),
we mean a traversal of its vertices according to a (reversed) topological ordering. Let G
be a DAG and let v be a vertex. The level of v, denoted by level(v), is the length of the
shortest directed path from a source to v. The depth of v, denoted by depth(v), is the
length of the longest directed path from a source to v. Note that the level and the depth
have in a sense contrary properties. Let v be a vertex in G and let u be a parent of v.
Then the depth of u is strictly smaller than the depth of v, whereas the level decreases
by at most 1: depth(u) < depth(v); level(u) ≥ level(v) − 1. By the level and the depth of
the DAG G itself, we mean the largest level and the largest depth of any vertex in G,
respectively.

An (unrooted) tree T is a connected graph without cycles. The degree-1 vertices of
T are called leaves, and the others are inner vertices. A tree T together with a special
vertex r, called the root of T , is a rooted tree. A rooted tree can be seen as DAG by
directing all edges towards the leaves of the tree. Then the terms top-down, bottom-up,
ancestor, descendant, child, and parent can be defined as for DAGs. Note that a tree
with n vertices has m = n−1 edges. However, in general, the ratio between the number
of vertices (or edges) and the number of leaves is unbound (consider a tree consisting of
a single path). We use the following lemma, which for trees that do not contain degree-2
vertices bounds the tree size in terms of the number of leaves.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:7

Fig. 2. (a) The interpretation of the linear and circular order dcbae as simple path and simple cycle,
respectively. (b) The permutation ϕ = (aec) ◦ (bf d) on the left can be seen as as a clockwise rotation by 2 of
the circular order abcdef , and thus is order preserving, whereas the permutation ϕ = (af ) ◦ (be) ◦ (cd) in the
middle is order reversing. However, ϕ = (af ) ◦ (be) ◦ (cd) is not only order reversing but also order preserving
(rotation by 3) with respect to the order abcf ed as shown on the right. The permutations ϕ are depicted as
thin arrows with empty arrowheads, and the different permutation cycles are distinguished by solid, dashed,
and dotted lines.

LEMMA 2.1. A tree with n1 leaves and without degree-2 vertices has at most n1 − 2
inner vertices and at most 2n1 − 3 edges.

PROOF. Let T be a tree with n1 leaves and the maximum number of edges possi-
ble. Then every inner vertex in T has degree 3, because a vertex with four incident
edges e1, . . . , e4 could be split into two vertices with incident edges e1, e2 and e3, e4, re-
spectively, plus an additional edge connecting them. Clearly, T has also the maximum
number of inner vertices for the fixed number of leaves n1. Let now n and m denote
the total number of vertices and edges of T , respectively, and let n3 denote the number
of vertices of degree 3 in T . Since every vertex of T has either degree 3 or is a leaf,
we have n = n1 + n3. Since T is a tree, we have m = n − 1, and, by counting the edge
incidences, we get 2m = n1 + 3n3. Together, these three equations imply n3 = n1 − 2,
and therefore m = 2n1 − 3.

2.2. Linear and Circular Orders and Permutations

Let L be a finite set (all sets we consider are finite). A sequence O of all elements in
L specifies a relation “≤” on L in the way that �1 ≤ �2 for �1 	= �2 ∈ L if and only if �2
occurs behind �1 in O. Such a relation is called linear order (or also total order) and is
identified with the sequence O specifying it. Let O1 and O2 be two linear orders on L
and let � ∈ L be an arbitrary element. Let further O′

i (for i = 1, 2) be the order that
is obtained from Oi by concatenating the smallest suffix containing � with the largest
prefix not containing �. We call O1 and O2 circularly equivalent if O′

1 and O′
2 are the

same linear order. Note that this is an equivalence relation that is independent from
the chosen element �. The equivalence classes are called circular orders. For example,
for L = {a, . . . , e} the orders O1 = baedc and O2 = dcbae are circularly equivalent and
thus define the same circular order since O′

1 = O′
2 = aedcb, if we choose � = a. In most

cases, we consider circular orders. Unless stated otherwise, we refer to circular orders
by simply writing “orders.” Note that a linear order can be seen as a graph with vertex
set L consisting of a simple directed path, whereas a circular order corresponds to a
graph consisting of a simple directed cycle containing L as vertices; see Figure 2(a) for
an example. Let L be a set and let O be a circular order of its elements. Let further
S ⊆ L be a subset, and let O′ be the circular order on S that is induced by O. Then O′
is a suborder of O and O is an extension of O′. Note that S does not really need to be
a subset of L. Instead, it can also be an arbitrary set together with an injective map
ϕ : S → L. We overload the terms “suborder” and “extension” for this case by calling

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:8 T. Bläsius and I. Rutter

an order O′ of S a suborder of O and O an extension of O′ if ϕ(O′) is a suborder of O,
where ϕ(O′) denotes the order obtained from O′ by applying ϕ to each element.

In the following, we consider permutations on the set L and provide some basic
properties on how these permutations act on circular orders of L. Let L be a set and
let ϕ : L → L be a permutation. The permutation ϕ can be decomposed into r dis-
joint permutation cycles ϕ = (�1ϕ(�1) . . . ϕk1 (�1)) ◦ · · · ◦ (�rϕ(�r) . . . ϕkr (�r)). We call ki the
length of the cycle (�iϕ(�i) . . . ϕki (�i)). Fixpoints, for example, form a permutation cycle
of length 1. We can compute this decomposition by starting with an arbitrary element
� and applying ϕ iteratively until we reach � again. Then we continue with an element
not contained in any permutation cycle so far to obtain the next cycle. Now consider
a circular order O of the elements in L. The permutation ϕ is called order preserving
with respect to O if ϕ(O) = O. It is called order reversing with respect to O if ϕ(O) is
obtained by reversing O. Note that, for a fixed order O, the order preserving and order
reversing permutations are exactly the rotations and reflections of the dihedral group,
respectively (the dihedral group is the group of rotations and reflections on a regular
k-gon). If we interpret O as a graph as described earlier (i.e., a graph with vertex set
L consisting of a simple directed cycle), we obtain that ϕ is order preserving with re-
spect to O if it is a graph isomorphism on this cycle, whereas the cycle is reversed if
ϕ is order reversing with respect to O; Figure 2(b) depicts this interpretation for an
example. We say that ϕ is order preserving or order reversing if it is order preserving
or order reversing with respect to at least one order O. In this setting, the order is not
fixed, and we want to characterize for a given permutation if it is order preserving or
order reversing. Additionally, we want to find an order that is preserved or reversed,
respectively. Note that not fixing the order has the effect, for example, that the same
permutation ϕ can be a rotation with respect to one order and a reflection with respect
to another, which means that it can be order preserving and order reversing at the
same time.

LEMMA 2.2. A permutation ϕ on the set L is order preserving if and only if all its
permutation cycles have the same length.

PROOF. Assume ϕ consists of r permutation cycles of length k, let �i be an element
in the ith permutation cycle. Then ϕ is order preserving with respect to the following
circular order.

�1 . . . �r ϕ(�1) . . . ϕ(�r) . . . ϕk(�1) . . . ϕk(�k).

Assume we have a circular order O = �1 . . . �n such that ϕ(O) = O. We show that the
permutation cycles of two consecutive elements �i and �i+1 have the same size. This
claim holds if �i and �i+1 are contained in the same permutation cycle. Assume they
are in different permutation cycles with lengths ki and ki+1, respectively, such that
ki < ki+1. Then ϕki (�i+1) 	= �i+1 is not the successor of ϕki (�i) = �i in O. Thus, ϕki (O)
cannot be the same circular order O and hence ϕ is not order preserving, which is a
contradiction.

LEMMA 2.3. A permutation ϕ on the set L is order reversing if and only if all its
permutation cycles have length 2, except for at most two cycles with length 1.

PROOF. Assume we have ϕ = (�1�
′
1) ◦ · · · ◦ (�r�

′
r), ϕ = (�) ◦ (�1�

′
1) ◦ · · · ◦ (�r�

′
r) or ϕ =

(�) ◦ (�′) ◦ (�1�
′
1) ◦ · · ·◦ (�r�

′
r). Then ϕ reverses the orders, �1 . . . �r�

′
r . . . �′

1, �1 . . . �r��
′
r . . . �′

1
and �1 . . . �r��

′
r . . . �′

1�
′, respectively.

Now assume we have an order O such that ϕ is order reversing with respect to O; that
is, it is a reflection in the dihedral group defined by O. Thus, ϕ2 is the identity yielding
that ϕ cannot contain a permutation cycle of length greater than 2. Furthermore, a
reflection has at most two fixpoints.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:9

Fig. 3. (a) An unrooted PQ-tree T with leaves L = {a, . . . , f }, where P- and Q-nodes are drawn as circles
and boxes, respectively. By choosing an order for a, b, f and concatenating it with cde or edc, we obtain all
circular orders in L. (b) Choosing a as the special leaf yields the rooted PQ-tree T ′ with leaves L′ = {b, . . . , f }.
By choosing an arbitrary order for b,�, f where � represents either cde or edc, we obtain all orders in L′.
Note that this simply means to break the cyclic orders in L at the special leaf a.

It is clear that the characterizations given in Lemma 2.2 and Lemma 2.3 can be
easily checked in linear time. Additionally, from the proofs of both lemmas, it is clear
how to construct an order that is preserved or reversed if the given permutation is
order preserving or order reversing, respectively.

2.3. PQ-Trees

Given an unrooted tree T with leaves L having a fixed circular order of edges around
every vertex (i.e., having a fixed combinatorial embedding), the circular order of the
leaves (as they occur along the outer face of the embedding) is also fixed. In an unrooted
PQ-tree, for some inner nodes—the Q-nodes—the circular order of incident edges is fixed
up to reversal; for the other nodes—the P-nodes—this order can be chosen arbitrarily.
Hence, an unrooted PQ-tree represents a set of circular orders of its leaves. Given a
set L, a set of circular orders L of L is called PQ-representable if there is an unrooted
PQ-tree with leaves L representing it. Formally, the empty set, saying that no order
is possible, is represented by the null tree, whereas the empty tree has the empty set
as leaves and represents the set containing only the empty order. A simple example
for an unrooted PQ-tree is shown in Figure 3(a). Note that not every set of orders is
PQ-representable; for example, every PQ-representable set of orderings must be closed
under reversal.

In the same way, we can define a rooted PQ-tree representing sets of linear orders
by replacing circular by linear and additionally choosing an inner node of the PQ-
tree as root. Haeupler and Tarjan [2008] show that there is an equivalence between
unrooted and rooted PQ-trees; for completeness, we repeat their construction. Let T
be an unrooted PQ-tree with leaves L representing the set of circular orders L. If we
choose one leaf � ∈ L to be the special leaf , every circular order in L can be seen as
a linear order of L′ := L − � by breaking the cycle at �. Since every circular order in
L yields a different linear order, we obtain a bijection to a set of linear orders L′. We
can construct a rooted PQ-tree T ′ with the leaves L′ representing L′ as follows. First,
we choose the special leaf � to be the root of T . Then, for every Q-node, we obtain a
linear order from the given circular order by breaking the cycle at the (unique) parent.
Finally, we remove � and choose its (unique) child as the new root. Hence, given an
unrooted PQ-tree, we can work with its rooted equivalent instead by choosing one leaf
to be the special leaf; see Figure 3 for an example. Conversely, rooted PQ-trees can be
represented by unrooted ones by inserting a single leaf adjacent to the root. In most
cases, we will work with unrooted PQ-trees representing sets of circular orders. Unless
stated otherwise, we thus refer to circular orders and unrooted PQ-trees if we write
orders and PQ-trees, respectively.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:10 T. Bläsius and I. Rutter

PQ-trees were introduced by Booth and Lueker [1976] in the rooted version. Let L
be a finite set and let S = {S1, . . . , Sk} be a family of subsets Si ⊆ L. Booth and Lueker
showed that the set L containing all linear orders in which the elements in each set Si
appear consecutively is PQ-representable. Note that L is the empty set if in no order
all subsets Si appear consecutively. In this case, L is represented by the null tree. This
result can be easily extended to unrooted PQ-trees and circular orders in which the
subsets S appear consecutively, which will become clearer in a moment.

As mentioned earlier, not every set of orders L is PQ-representable, but we will see
three operations on sets of orders that preserve the property of being PQ-representable.
Given a subset S ⊆ L, the projection of L to S is the set of orders of S achieved by
restricting every order in L to S. The reduction with S is the subset of L containing
the orders where the elements of S appear consecutively. Given two sets of orders
L1 and L2 on the same set L, their intersection is simply L1 ∩ L2. That projection,
reduction, and intersection preserve the property of being PQ-representable can be
shown constructively. But first we introduce the following notation, making our life a
bit easier. Let T be a PQ-tree with leaf set L, representing L, and let μ be an inner
node with incident edges ε1, . . . , εk. Removing εi splits T into two components. We say
that the leaves contained in the component not containing μ belong to εi with respect
to μ, and we denote the set of these leaves by Lεi ,μ. In most cases, it is clear which node
μ we refer to, so we simply write Lεi . Note that the sets Lεi form a partition of L.

Projection. Let T be a PQ-Tree with leaves L, representing the set of orders L. The
projection to S ⊆ L is represented by the PQ-tree T ′ that is obtained form T by
removing all leaves not contained in S and simplifying the result. Simplifying
means that former inner nodes now having degree 1 are removed iteratively and
that degree-2 nodes together with both incident edges are iteratively replaced by
single edges. We denote the tree resulting from the projection of T to S by T |S ,
and we often call T |S itself the projection of T to S.

Reduction. Recall that the reduction with a set S reduces a set of orders to those
orders in which all elements in S appear consecutively. The reduction can be seen
as the operation for which PQ-trees were designed by Booth and Lueker [1976].
They showed for a rooted PQ-tree T representing the linear orders L that the
reduction to S is again PQ-representable, and the PQ-tree representing it can be
computed in O(|L|) time. For an unrooted PQ-tree T , we can consider the rooted
PQ-tree T ′ instead by choosing � ∈ L as special leaf. Since the reductions with L
and S\L are equivalent, we may assume without loss of generality that � /∈ S, and
we obtain the reduction of T by reducing T ′ with S, reinserting �, and unrooting T ′
again. This shows for a family of subsets S = {S1, . . . , Sk} that the set containing
all circular orders in which each subset Si ⊆ L appears consecutively can be
represented by an unrooted PQ-tree T . Thus, applying a reduction with S to a
given PQ-tree T can be seen as adding the subset S to S. Therefore, we denote
the result of the reduction of T with S by T + S, and we often call T + S itself
the reduction of T with S.

Intersection. For an inner node μ, all leaves Lε belonging to an incident edge ε
appear consecutively in every order contained in L. Furthermore, if μ is a Q-
node with two consecutive incident edges ε and ε′, all leaves in Lε ∪ Lε′ need to
appear consecutively. On the other hand, if we have an order of L satisfying these
conditions for every inner node, it is contained in L. Hence, T can be seen as a
sequence of reductions applied to the set of all orders, which is represented by the
star with a P-node as center. Now, given two unrooted PQ-trees T1 and T2 with the
same leaves, we obtain their intersection by applying the sequence of reductions
given by T1 to T2. Note that the size of all these reductions can be quadratic in

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:11

the size of T1. However, Booth [1975] showed how they can be applied consuming
time linear in the size of T1 and T2. We denote the intersection of T1 and T2 by
T1 ∩ T2.

Let T |S be the projection of T to S ⊆ L. The extension of an order of S represented
by T |S to an order of L represented by T is straightforward. An inner node in T is
either contained in T |S or it was removed in the simplification step. If a Q-node in
T is also contained in T |S, its orientation is determined by the orientation chosen
in T |S , and we call it fixed; otherwise, its orientation can be chosen arbitrarily and
we call it free. For a P-node not contained in T |S, the order of incident edges can be
chosen arbitrarily. If a P-node is contained in T |S, every incident edge is either also
contained, was removed, or replaced (and the replacement was not removed). The order
of the contained and replaced edges is fixed, and the removed edges can be inserted
arbitrarily. We call the removed edges (and the edges incident to removed P-nodes) free
and all other edges fixed.

Let T + S be the reduction of a PQ-tree T with leaves L with the subset S ⊆ L.
Choosing an order in the reduction T + S of course determines an order of the whole
leaf set L. Hence, it determines the order of incident edges for every inner node in T .
For every Q-node μ in T , there exists exactly one Q-node in T + S determining its
orientation; we call it the representative of μ with respect to the reduction with S and
denote it by repS(μ), where the subscript is omitted if it is clear from the context. Note
that one Q-node in T + S can be the representative of several Q-nodes in T . For a
P-node μ, we cannot find such a representative in T + S since it may depend on several
nodes in T + S. However, if we consider a P-node μ′ in T + S, there is exactly one
P-node μ in T that depends on μ′. We say that μ′ stems from this P-node μ.

The considerations concerning a PQ-tree T with leaves L together with another
PQ-tree T ′ with leaves L′ ⊆ L that is a projection or a reduction of T can, of course,
be extended to the case where T ′ is obtained from T by a projection followed by a
sequence of reductions. This can be further generalized to the case where T and T ′ are
arbitrary PQ-trees with leaves L and L′ with an injective map ϕ : L′ → L. Note that
the injective map ensures that L′ can be treated as a subset of L. In this case, we call
T ′ a child of T and T a parent of T ′. Choosing an order for the leaves L of T induces
an order for the leaves L′ of T ′, whereas an order of L′ only partially determines an
order of L. Now we are interested in all the orders of the leaves L that are represented
by T and, additionally, induce an order for the leaves L′ that is represented by T ′.
Informally spoken, we want to find orders represented by T ′ and T simultaneously,
fitting to one another. It is clear that T ′ can be replaced by T ′ ∩ T |L′ without changing
the possible orders since each possible order of the leaves L′ is, of course, represented
by the projection T |L′ of T to L′. Hence, this general case reduces to the case where
T ′ is obtained from T by applying a projection and a sequence of reductions. We can
extend the notion of free and fixed nodes to this situation as follows. An edge incident
to a P-node in the parent T is free with respect to the child T ′ if and only if it is free
with respect to the projection T |L′ . If all edges are free, the whole P-node is called free.
Similarly, a Q-node is free with respect to T ′ if and only if it is free with respect to
T |L′ . Again, every fixed Q-node μ has a representative rep(μ) in T ′ (which is also a
Q-node). Figure 4 shows an example PQ-tree together with a projection and a sequence
of reductions applied to it.

2.4. SPQR-Trees

Consider a biconnected planar graph G and a split pair {s, t} such that G−s− t consists
of two connected components. Let H1 and H2 be the two connected subgraphs of G such
that H1 ∪ H2 = G and H1 ∩ H2 = {s, t}. Consider the following tree containing the two

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:12 T. Bläsius and I. Rutter

Fig. 4. We start with the PQ-tree T1 on the left and project it to L \ {b, f, g, k} yielding T2. There is one
Q-node and one edge incident to a P-node, both drawn dashed, that do not appear in T2 and hence are free.
The trees T3 and T4 are obtained by applying reductions with {�, j} and {c, d} to T2. Note that the arrows
(and even their transitive closure) can be interpreted as child-parent relations between the PQ-trees. Every
fixed Q-node has a representative depicted by gray lines, whereas it is not possible to find something similar
for the P-nodes.

nodes μ1 and μ2 associated with the graphs H1 + {s, t} and H2 + {s, t}, respectively.
These graphs are called skeletons of the nodes μi, denoted by skel(μi), and the special
edge {s, t} is said to be a virtual edge. The two nodes μ1 and μ2 are connected by an edge,
or more precisely, the occurrence of the virtual edges {s, t} in both skeletons are linked
by this edge. Now a combinatorial embedding of G uniquely induces a combinatorial
embedding of skel(μ1) and skel(μ2). Furthermore, arbitrary and independently chosen
embeddings for the two skeletons determine an embedding of G; thus, the resulting
tree can be used to represent all embeddings of G by the combination of all embeddings
of two smaller planar graphs. This kind of replacement can, of course, be applied
iteratively to the skeletons yielding a tree with more nodes but smaller skeletons
associated with the nodes. Applying such a decomposition in a systematic way yields
the SPQR-tree as introduced by Di Battista and Tamassia [1996a, 1996b]. The SPQR-
tree T of a biconnected planar graph G contains four types of nodes. First, the P-
nodes having a bundle of at least three parallel edges as skeleton and a combinatorial
embedding given by any order of these edges. Second, the skeleton of an R-node is
triconnected, having exactly two embeddings; and third, S-nodes have a simple cycle
as skeleton without any choice for the embedding. Finally, every edge in a skeleton
representing only a single edge in the original graph G is formally also considered to be
a virtual edge linked to a Q-node in T representing this single edge. Note that all leaves
of the SPQR-tree T are Q-nodes. In addition to from being a nice way to represent all
embeddings of a biconnected planar graph, the SPQR-tree has only linear size, and
Gutwenger and Mutzel [2001] showed how to compute it in linear time. Figure 5(a)
shows a biconnected planar graph together with its SPQR-tree.

2.5. Relation Between PQ- and SPQR-Trees

Given the SPQR-tree of a biconnected graph, it is easy to see that the set of all possible
orders of edges around a vertex is PQ-representable. For a vertex v and a P-node in
the SPQR-tree containing v in its skeleton, every virtual edge represents a set of edges
incident to v that need to appear consecutively around v; the order of the sets can be
chosen arbitrarily. For an R-node in the SPQR-tree containing v, again, every virtual
edge represents a set of edges that needs to appear consecutively; additionally, the
order of the virtual edges is fixed up to reversal in this case. Hence, there is a bijection
between the P- and R-nodes of the SPQR-tree containing v and the P- and Q-nodes

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:13

Fig. 5. (a) A biconnected planar graph on the left and its SPQR-tree on the right. The Q-nodes are depicted
as single letters, whereas μ1, μ3, and μ5 are P-nodes; μ2 is an R-node, and μ4 is an S-node. The embeddings
chosen for the skeletons yield the embedding shown for the graph on the left. (b) The embedding trees of the
five vertices, where the inner nodes are named according to the nodes in the SPQR-tree that they stem from.

of the PQ-tree representing the possible orders of edges around v, respectively. Note
that the occurrence of v in the skeleton of an S-node enforces the edges belonging to
one of the two virtual edges incident to v to appear consecutively around v. But since
this would introduce a degree-2 node yielding no new constraints, we can ignore the S-
nodes. We call the resulting PQ-tree representing the possible circular orders of edges
around a vertex v the embedding tree of v and denote it by T (v). Figure 5 depicts a
planar graph together with its SPQR-tree and the resulting embedding trees.

For every planar embedding of G, the circular order of edges around every vertex v
is represented by the embedding tree T (v). Conversely, for every order represented by
T (v), there exists a planar embedding realizing this order. However, we cannot choose
orders for the embedding trees independently. Consider, for example, the case that
the order of edges around v1 in Figure 5(b) is already chosen. Since the embedding
tree T (v1) contains nodes stemming from the P-nodes μ1 and μ3 and the Q-node μ2 in
the SPQR-tree, the embedding of the skeletons in these nodes is already fixed. Since
every other embedding tree except for T (v5) contains nodes stemming from one of these
three nodes, the order of the incident edges around v2, v3, and v4 is at least partially
determined. In general, every P-node μ contains two vertices v1 and v2 in its skeleton;
thus, there are two embedding trees T (v1) and T (v2) containing the P-nodes μ1 and μ2
stemming from μ. The order of virtual edges in skel(μ) around v1 is the opposite of the
order of virtual edges around v2 for any planar embedding of skel(μ). Hence, in every
planar embedding of G, the edges around μ1 in T (v1) are ordered oppositely to the order
of edges around μ2 in T (v2). Similarly, all Q-nodes in the embedding trees stemming
from the same R-node in the SPQR-tree need to be oriented the same, if we choose
the orders induced by one of the two embeddings of the skeleton as reference orders of
the Q-nodes. On the other hand, if every two P-nodes stemming from the same P-node
are ordered oppositely, and all Q-nodes stemming from the same R-node are oriented
the same, we can simply use these orders and orientations to obtain embeddings for the
skeleton of every node in the SPQR-tree, thus yielding a planar embedding of G. Hence,

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:14 T. Bläsius and I. Rutter

all planar embeddings of G can be expressed in terms of the PQ-trees T (v1), . . . , T (vn),
if we respect the additional constraints between nodes stemming from the same node
in the SPQR-tree.

3. SIMULTANEOUS PQ-ORDERING

As we have seen, all planar embeddings of a biconnected planar graph G can be ex-
pressed in terms of PQ-trees T (v1), . . . , T (vn), called the “embedding trees” and de-
scribing the orders of incident edges around every vertex, if we respect some additional
constraints between the nodes of the embedding trees stemming from the same node
of the SPQR-tree. In this section, we show how to get completely rid of the SPQR-tree
by providing a way to express these additional constraints also in terms of PQ-trees.

The problem SIMULTANEOUS PQ-ORDERING is defined as follows. Let D = (N, A) be
a DAG with nodes N = {T1, . . . , Tk}, where Ti is a PQ-tree representing the set of
orders Li on its leaves Li. Every arc a ∈ A consists of a source Ti, a target Tj, and an
injective map ϕ : Lj → Li, and it is denoted by (Ti, Tj ; ϕ). SIMULTANEOUS PQ-ORDERING

asks whether there are orders O1, . . . , Ok with Oi ∈ Li such that an arc (Ti, Tj ; ϕ) ∈ A
implies that ϕ(Oj) is a suborder of Oi. If this is the case, we say that the orders Oi
and Oj satisfy the arc (Ti, Tj ; ϕ). Normally, we want every arc to represent a projection
followed by a sequence of reductions, which is not ensured by this definition. Hence,
we say that an instance D = (N, A) of SIMULTANEOUS PQ-ORDERING is normalized, if
an arc (Ti, Tj ; ϕ) ∈ A implies that Li contains an order Oi extending ϕ(Oj) for every
order Oj ∈ L j . It is easy to see that every instance of SIMULTANEOUS PQ-ORDERING can
be normalized. If there is an order Oj ∈ L j such that Li does not contain an extension
of ϕ(Oj), then Oj cannot be contained in any solution. Hence, we do not lose solutions
by applying the reductions given by Ti, to Tj . Applying these reductions for every arc
in A top-down yields an equivalent normalized instance. From now on, all instances of
SIMULTANEOUS PQ-ORDERING we consider are assumed to be normalized. In most cases, it
is not important to consider the map ϕ explicitly; hence, we often simply write (Ti, Tj)
instead of (Ti, Tj ; ϕ) and say that Oi is an extension of Oj instead of ϕ(Oj).

Note that we cannot measure the size of an instance D of SIMULTANEOUS PQ-ORDERING

by the number of vertices plus the number of arcs, as is possible for simple graphs,
since the nodes and arcs in D are not of constant size in our setting. The size of every
node in D consisting of a PQ-tree T is linear in the number of nodes in T or even linear
in the number of leaves by Lemma 2.1. For every arc (Ti, Tj ; ϕ) ∈ A, we need to store
the injective map ϕ from the leaves of Tj to the leaves of Ti. Thus, the size of this arc
is linear in the number of leaves in Tj . Finally, the size of D, denoted by |D|, can be
measured by the size of all nodes plus the sizes of all arcs.

To come back to the embedding trees introduced in Section 2.5, we can now create
a PQ-tree consisting of a single Q-node as a common child of all embedding trees
containing a Q-node stemming from the same R-node in the SPQR-tree. With the right
injective maps, this additional PQ-tree ensures that all these Q-nodes are oriented the
same. Similarly, we can ensure that two P-nodes stemming from the same P-node of
the SPQR-tree are ordered the same, but what we really want is that the two P-nodes
are ordered oppositely. Therefore, we also need reversing arcs, not ensuring that an
order is enforced to be the extension of the order provided by the child, but requiring
that it is an extension of the reversal of this order. To improve readability, we do not
consider reversing arcs for now. We will come back to this in Section 3.5, showing the
possible changes if we allow reversing arcs.

Since SIMULTANEOUS PQ-ORDERING is N P-hard, which will be shown in Section 3.1,
we will not solve it in general, but we will give a class of instances that we can solve
efficiently. In Section 3.2, we figure out the main problems in general instances and
provide an approach to solve SIMULTANEOUS PQ-ORDERING for “simple” instances. In

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:15

Fig. 6. The instance D(L, �) of SIMULTANEOUS PQ-ORDERING corresponding to the instance (L,�) of CYCLIC

ORDERING with L = {�1, . . . , �n} and � = {(�1
1, �1

2, �1
3), . . . , (�d

1, �d
2, �d

3)}.

Section 3.3, we make precise which instances we can solve and show how to solve them.
In Section 3.4, we give a detailed analysis of the running time, and, in Section 3.5, we
show that the results on SIMULTANEOUS PQ-ORDERING can be extended to the case where
we allow reversing arcs (i.e., arcs ensuring that the order of the source is an extension
of the reversed order of the target).

3.1. NP-Completeness of Simultaneous PQ-Ordering

Let L = {�1, . . . , �n} be a set of elements and let � = {(�1
1, �

1
2, �

1
3), . . . , (�d

1, �
d
2, �

d
3)} be a

set of triples such that each triple (�i
1, �

i
2, �

i
3) specifies a circular order for these three

elements. The problem CYCLIC ORDERING is to decide whether there is a circular order
of all elements in L respecting the circular order specified for every triple in �. Galil
and Megiddo [1977] proved that CYCLIC ORDERING is NP-complete.

THEOREM 3.1. SIMULTANEOUS PQ-ORDERING is NP-complete.

PROOF. It is clear that SIMULTANEOUS PQ-ORDERING is in NP, since it can be tested
in polynomial time whether the conditions provided by the arcs are satisfied by given
circular orders. We show NP-hardness by reducing CYCLIC ORDERING to SIMULTANEOUS

PQ-ORDERING. Let (L,�) be an instance of CYCLIC ORDERING. We define the corresponding
instance D(L,�) of SIMULTANEOUS PQ-ORDERING as follows. We create one PQ-tree T
consisting of a single P-node with leaves L. For every triple (�i

1, �
i
2, �

i
3), we create a

PQ-tree T (�i
1, �

i
2, �

i
3) consisting of a single node (it does not matter if P- or Q-node) with

leaves {�i
1, �

i
2, �

i
3} and with an incoming arc (T , T (�i

1, �
i
2, �

i
3); id), where id is the identity

map. With this construction, it is still possible to choose an arbitrary order for each of
the triples. To ensure that they are all ordered the same, we introduce an additional
PQ-tree T × consisting of a single node with three leaves (1, 2, and 3) and an incoming
arc (T (�i

1, �
i
2, �

i
3), T ×; ϕ) with ϕ( j) = �i

j for every triple (�i
1, �

i
2, �

i
3). Figure 6 illustrates

this construction. It is clear that the size of D(L,�) is linear in the size of (L,�) and
that it can be computed in linear time. It remains to show that the instance (L,�) of
CYCLIC ORDERING and the instance D(L,�) of SIMULTANEOUS PQ-ORDERING are equivalent.

Assume we have a solution of (L,�); that is, we have a circular order O of L such
that every triple (�i

1, �
i
2, �

i
3) ∈ � has the circular order �i

1�
i
2�

i
3. The PQ-tree T in D(L,�)

has the leaves L; thus, we can choose O as the order of the leaves of T . For every triple
(�i

1, �
i
2, �

i
3), there is an incoming arc from T to T (�i

1, �
i
2, �

i
3) inducing the circular order

�i
1�

i
2�

i
3 on its leaves. Furthermore, there is an outgoing arc to T × inducing the order

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:16 T. Bläsius and I. Rutter

123. Since all of these arcs having T × as target induce the same circular order 123,
these orders are a solution of the instance D(L,�) of SIMULTANEOUS PQ-ORDERING.

Conversely, assume that we have a solution for D(L,�). If the order of leaves in T × is
132, we obtain another solution by reversing all orders. Thus, we can assume without
loss of generality that the leaves of T × have the order 123. Hence, the leaves of the tree
T (�i

1, �
i
2, �

i
3) are ordered �i

1�
i
2�

i
3 for every triple (�i

1, �
i
2, �

i
3), implying that the order on

the leaves L of T , which is an extension of all these orders, is a solution of the instance
(L,�) of CYCLIC ORDERING.

3.2. Critical Triples and the Expansion Graph

Although SIMULTANEOUS PQ-ORDERING is NP-complete in general, we give in this section
a strategy for how to solve it for special instances. Later, in Section 3.3, we show that this
strategy indeed leads to a polynomial-time algorithm for a certain class of instances.
Let D = (N, A) be an instance of SIMULTANEOUS PQ-ORDERING and let (T , T1) ∈ A be an
arc. By choosing an order O1 ∈ L1 and extending O1 to an order O ∈ L, we ensure
that the constraint given by the arc (T , T1) is satisfied. Hence, our strategy will be to
choose orders bottom-up, which can always be done for a single arc since our instances
are normalized. However, T can have several children T1, . . . , T�, and orders Oi ∈ Li
represented by Ti for i = 1, . . . , � cannot always be simultaneously extended to an order
O ∈ L represented by T . We derive necessary and sufficient conditions for the orders
Oi to be simultaneously extendable to an order O ∈ L under the additional assumption
that every P-node in T is fixed with respect to at most two children. We consider the
Q- and P-nodes in T separately.

Let μ be a Q-node in T . If μ is fixed with respect to Ti, there is a unique Q-node
rep(μ) in Ti determining its orientation. By introducing a boolean variable xη for every
Q-node η, which is TRUE if η is oriented the same as a fixed reference orientation and
FALSE otherwise, we can express the condition that μ is oriented as determined by
its representative by xμ = xrep(μ) or xμ 	= xrep(μ). Haeupler et al. [2010] use a similar
technique to enforce consistent orientations of Q-nodes over several PQ-trees. For every
Q-node in T that is fixed with respect to a child Ti, we obtain such an (in)equality, and
we call the resulting set of (in)equalities the Q-constraints.

It is obvious that the Q-constraints are necessary. On the other hand, if the Q-
constraints are satisfied, all children of T fixing the orientation of μ fix it in the
same way. Note that the Q-constraints form an instance of 2-SAT that has linear size
in the number of Q-nodes, which can be solved in polynomial [Krom 1967] and even
linear [Even et al. 1976; Aspvall et al. 1979] time. It is furthermore clear that we can
now easily fix the orientation of some Q-nodes by adding corresponding clauses. Hence,
we only need to deal with the P-nodes, which is not as simple.

Let μ be a P-node in T . If μ is fixed with respect to only one child Ti, we can simply
order the fixed edges incident to μ as given by Oi and add the free edges arbitrarily. If μ
is additionally fixed with respect to Tj , it is, of course, necessary that the orders Oi and
Oj induce the same order for the edges incident to μ that are fixed with respect to both
Ti and Tj . We call such a triple (μ, Ti, Tj), where μ is a P-node in T fixed with respect
to the children Ti and Tj, a critical triple. We say that the critical triple (μ, Ti, Tj)
is satisfied if the orders Oi and Oj induce the same order for the edges incident to μ
commonly fixed with respect to Ti and Tj . If we allow multiple arcs, we can also have
a critical triple (μ, T ′, T ′) for two parallel arcs (T , T ′; ϕ1) and (T , T ′; ϕ2). Clearly, all
critical triples need to be satisfied by the orders chosen for the children to be able to
extend them simultaneously. Note that this condition is not sufficient if μ is contained
in more than one critical triple, which is one of the main difficulties of SIMULTANEOUS PQ-
ORDERING for general instances. However, the following lemma shows that satisfying
all critical triples is not only necessary but also sufficient if every P-node is contained

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:17

Fig. 7. (a) We can find an order for the P-node μ extending the orders O1 and O2 if and only if the commonly
fixed edges a, b, and g are ordered the same. (b) Although for every pair {Oi, Oj} of orders out of the three
orders O1, O2, and O3 the commonly fixed edges are ordered the same, we cannot extend all three orders
simultaneously.

in at most one critical triple; that is, it is fixed with respect to at most two children of
T . See Figure 7 for two simple examples illustrating that satisfying critical triples is
sufficient if every P-node is contained in at most one critical triple, whereas the general
case is not as simple.

LEMMA 3.2. Let T be a PQ-tree with children T1, . . . , T�, such that every P-node in T
is contained in at most one critical triple, and let O1, . . . , O� be orders represented by
T1, . . . , T�. An order O that is represented by T and simultaneously extends the orders
O1, . . . , O� exists if and only if the Q-constraints and all critical triples are satisfied.

PROOF. The only-if part is clear, since an order O represented by T extending the
orders O1, . . . , O� yields an assignment of TRUE and FALSE to the variables xη satisfying
the Q-constraints. Additionally, for every critical triple (μ, Ti, Tj), the common fixed
edges are ordered the same in O as in Oi and in Oj and hence (μ, Ti, Tj) is satisfied.

Now, assume that we have orders O1, . . . , O� satisfying the Q-constraints and every
critical triple. We show how to construct an order O represented by T , extending all
orders O1, . . . , O� simultaneously. The variable assignments for the variables stemming
from Q-nodes in each of the children T1, . . . , T� imply an assignment of every variable
stemming from a fixed Q-node in T and hence an orientation of this Q-node. Since the
Q-constraints are satisfied, all children fixing a Q-node in T imply the same orientation.
The orientation of free Q-nodes can be chosen arbitrarily. For a P-node μ in T that is
fixed with respect to at most one child of T , we can simply choose the order of fixed edges
incident to μ as determined by the child and add the free edges arbitrarily. Otherwise,
μ is contained in exactly one critical triple (μ, Ti, Tj). We first choose the order of edges
incident to μ that are fixed with respect to Ti as determined by Oi. From the point of
view of Tj , some of the fixed edges incident to μ are already ordered, but this order is
consistent with the order induced by Oj , since (μ, Ti, Tj) is satisfied. Additionally, some
edges that are free with respect to Tj are already ordered. Of course, the remaining
edges incident to μ that are fixed with respect to Tj can be added as determined by Oj ,
and the remaining free edges can be added arbitrarily.

Since testing whether the Q-constraints are satisfiable is easy, we concentrate on
satisfying the critical triples. Let μ be a P-node in a PQ-tree T such that μ is fixed with
respect to two children T1 and T2; that is, (μ, T1, T2) is a critical triple. By projecting T1
and T2 to representatives of the common fixed edges incident to μ and intersecting the
result, we obtain a new PQ-tree T (μ, T1, T2). There are natural injective maps from
the leaves of T (μ, T1, T2) to the leaves of T1 and T2; hence, we can add T (μ, T1, T2)

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:18 T. Bläsius and I. Rutter

Fig. 8. The P-node μ in the PQ-tree T is fixed with respect to the children T1 and T2. We first project T1 and
T2 to representatives of the common fixed edges incident to μ and intersect the result to obtain T (μ, T1, T2).
Note that the gray shaded projections only illustrate an intermediate step; they are not inserted.

Fig. 9. Consider the instance of SIMULTANEOUS PQ-ORDERING on the left, where every PQ-tree consists of a
single P-node with degree 3. The DAG in the middle shows the result after expanding three times. The so
far processed part is shaded gray, and, for the remaining part, we are in the same situation as before; hence,
iterated expansion would yield an infinite DAG. To prevent infinite expansion, we apply finalizing steps
resulting in the DAG on the right.

together with incoming arcs from T1 and T2 to our instance D of SIMULTANEOUS PQ-
ORDERING. This procedure of creating T (μ, T1, T2) is called expansion step with respect
to the critical triple (μ, T1, T2), and the resulting new PQ-tree T (μ, T1, T2) is called the
expansion tree with respect to that triple; see Figure 8 for an example of the expansion
step. We say that the P-node μ in T is responsible for the expansion tree T (μ, T1, T2).
Note that every expansion tree has two incoming and no outgoing arcs at the time it is
created.

We introduce the expansion tree for the following reason. If we find orders O1 and
O2 represented by T1 and T2 that both extend the same order represented by the
expansion tree T (μ, T1, T2), we ensure that the edges incident to μ fixed with respect
to both T1 and T2 are ordered the same in O1 and O2. In other words, we ensure that
O1 and O2 satisfy the critical triple (μ, T1, T2). By Lemma 3.2, we know that satisfying
the critical triple is necessary; thus, we do not lose solutions by adding expansion
trees to an instance of SIMULTANEOUS PQ-ORDERING. Furthermore, it is also sufficient if
every P-node is contained in at most one critical triple (if we forget about the Q-nodes
for a moment). Hence, given an instance D of SIMULTANEOUS PQ-ORDERING, we would
like to expand D iteratively until no unprocessed critical triples are left and then find
simultaneous orders bottom-up. Unfortunately, it can happen that the expansion does
not terminate and thus yields an infinite graph; see Figure 9 for an example. Thus,
we need to define a special case where we do not expand further. Let μ be a P-node of

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:19

T with outgoing arcs (T , T1; ϕ1) and (T , T2; ϕ2) such that (μ, T1, T2) is a critical triple.
Denote the leaves of T1 and T2 by L1 and L2, respectively. If Ti (for i = 1, 2) consists
only of a single P-node, the image of ϕi is a set of representatives of the edges incident
to μ that are fixed with respect to Ti. Hence, ϕi is a bijection between Li and the fixed
edges incident to μ. If, additionally, the fixed edges with respect to both T1 and T2
are the same, we obtain a bijection ϕ : L1 → L2. Assume without loss of generality
that there is no directed path from T2 to T1 in the current DAG. If there is neither a
directed path from T1 to T2 nor from T2 to T1, we achieve uniqueness by assuming that
T1 comes before T2 with respect to some fixed order of the nodes in D. Instead of an
expansion step, we apply a finalizing step by simply creating the arc (T1, T2; ϕ). This
new arc ensures that the critical triple (μ, T1, T2) is satisfied if we have orders for the
leaves L1 and L2 respecting (T1, T2; ϕ). Since no new node is inserted, we do not run
into the situation where we create the same PQ-tree over and over again.

For the case that (μ, T ′, T ′) is a critical triple resulting from two parallel arcs
(T , T ′; ϕ1) and (T , T ′; ϕ2), we can apply the expansion step as described earlier. If
the conditions for a finalizing step are given (i.e., T ′ consists of a single P-node and
both maps ϕ1 and ϕ2 fix the same edges incident to μ), a finalizing step would introduce
a self-loop with the permutation ϕ associated with it. In this case, we omit the loop and
mark (T , T ′; ϕ1) and (T , T ′; ϕ2) as a critical double arc with the associated permutation
ϕ. When choosing orders bottom-up in the DAG, we have to explicitly ensure that all
critical triples stemming from critical double arcs are satisfied. To simplify this, we
ensure that all targets of critical double arcs are sinks in the expansion graph. This
follows from the construction, except for the case when the critical double arc is already
contained in the input instance. In this case, we apply one additional expansion step,
which essentially clones the double arc. We thus distinguish between the two cases that
T ′ is an expansion tree and that it was already contained in D. If it is an expansion
tree, we do nothing and mark the critical triple as processed. Otherwise, we apply an
expansion step having the effect that the resulting expansion tree again satisfies the
conditions to apply a finalizing step and additionally is an expansion tree. Since we
want to apply Lemma 3.2 by choosing orders bottom-up, it is a problem that the criti-
cal triples belonging to critical double arcs are not satisfied automatically. However, if
every P-node is contained in at most one critical triple, our construction ensures that
the target T ′ of a critical double arc is a sink, and no further expansion or finalizing
steps can change that. Hence, we are free to choose any order for the leaves of T ′
(which, by construction, consists of a single P-node), and we will use Lemma 2.2 (about
order-preserving permutations) to choose it in a way satisfying the critical triple or
decide that this is impossible.

To sum up, we start with an instance D of SIMULTANEOUS PQ-ORDERING. As long as D
contains unprocessed critical triples (μ, T1, T2), we apply expansion steps (or finalizing
steps if T1 and T2 are essentially the same) and mark (μ, T1, T2) as processed. The
resulting graph is called the expansion graph of D and is denoted by Dexp. Note that
Dexp is also an instance of SIMULTANEOUS PQ-ORDERING. Before showing in Lemma 3.5
that D and Dexp are equivalent, we need to show that Dexp is well-defined (i.e., it
is unique and finite). Lemma 3.3 essentially states that the P-nodes become smaller
at least every second expansion step. We will use this result in Lemma 3.4 to show
finiteness.

LEMMA 3.3. Let D be an instance of SIMULTANEOUS PQ-ORDERING and let Dexp be its
expansion graph. Furthermore, let T be a PQ-tree in Dexp containing a P-node μ. If μ
is responsible for an expansion tree T ′ containing a P-node μ′ with deg(μ′) = deg(μ),
then μ′ itself is not responsible for an expansion tree T ′′ containing a P-node μ′′ with
deg(μ′′) = deg(μ′) = deg(μ).

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:20 T. Bläsius and I. Rutter

PROOF. Since T ′ is created by first projecting a child of T to representatives of edges
incident to μ, it can contain at most deg(μ) leaves. Thus, if T ′ contains a P-node μ′ with
deg(μ′) = deg(μ), it contains no other inner node. Now assume that μ′ is responsible
for another expansion tree T ′′ containing a P-node μ′′ with deg(μ′′) = deg(μ′) = deg(μ)
and let (μ′, T1, T2) be the corresponding critical triple. Again, T ′′ consists only of the
single P-node μ′′. Since T1 and T2 lie on a directed path from T ′ to T ′′, they also need
to consist of single P-nodes with deg(μ′) incident edges. Thus, T1 and T2 both consist
of a single P-node having the same degree, and they fix the same—namely all—edges
incident to μ′. Hence, we would have applied a finalizing step instead of creating the
expansion tree T ′′; a contradiction.

LEMMA 3.4. The expansion graph Dexp of an instance D = (N, A) of SIMULTANEOUS

PQ-ORDERING is unique and finite.

PROOF. If we apply an expansion or a finalizing step due to a critical triple (μ, T1, T2),
where μ is a P-node of the PQ-tree T , the result only depends on the trees T , T1, and
T2 and the arcs (T , T1) and (T , T2). By applying other expansion or finalizing steps, we
of course do not change these trees or arcs, thus it does not matter in which order we
expand and finalize a given DAG D. Hence, Dexp is unique, and we can talk about the
expansion graph Dexp of an instance D of SIMULTANEOUS PQ-ORDERING.

To prove that Dexp is finite, we show that level(Dexp) ≤ level(D) + 4 · (pmax + 1), where
pmax is the degree of the largest P-node in D. To simplify the notation, denote pmax + 1
by p+

max. Recall that the level of a node in D was defined as the shortest directed path
from a sink to this node, and level(D) is the largest level occurring in D. Note that all
sources in Dexp are already contained in D since every expansion tree has two incoming
arcs. Showing that the level of Dexp is finite is sufficient since there are only finitely
many sources in Dexp, and no node has infinite degree. Assume we have a PQ-tree
T1 in Dexp with level(T1) > level(D) + 4 · p+

max. Then T1 is, of course, an expansion
tree and there is a unique P-node μ2 that is responsible for T1. Denote the PQ-tree
containing μ2 by T2. Since there is a directed path of length 2 from T2 to T1, we have
level(T2) ≥ level(T1)−2 > level(D) + 4 · p+

max −2. Due to its level, T2 itself needs to be an
expansion tree, and we can continue, obtaining a sequence T1, . . . , T2·p+

max
of expansion

trees containing P-nodes μi, such that μi is responsible for Ti−1. Due to Lemma 3.3, the
degree of μi is strictly larger than the degree of μi−2; hence, deg(μ2·p+

max
) ≥ p+

max > pmax,
which is a contradiction to the assumption that the largest P-node in D has degree
pmax.

Now that we know that the expansion graph Dexp of a given instance D of SIMULTA-
NEOUS PQ-ORDERING is well-defined, we can show what we already mentioned earlier:
namely, that D and Dexp are equivalent.

LEMMA 3.5. An instance D of SIMULTANEOUS PQ-ORDERING admits simultaneous PQ-
orders if and only if its expansion graph Dexp does.

PROOF. It is clear that D is a subgraph of Dexp. Hence, if we have simultaneous
orders for the expansion graph Dexp, we of course also have simultaneous orders for
the original instance D.

It remains to show that we do not lose solutions by applying expansion or finalizing
steps. Assume we have simultaneous orders for the original instance D. Since every
expansion tree is a descendant of a PQ-tree in D, for which the order is already fixed,
there is no choice left for the expansion trees. Thus, we only need to show that, for every
expansion tree, all parents induce the same order on its leaves and that this order is
represented by the expansion tree. We first show this for the expansion graph without

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:21

the arcs inserted due to finalizing steps. Afterward, we show that adding these arcs
preserves valid solutions.

Consider an expansion tree T (μ, T1, T2) introduced due to the critical triple
(μ, T1, T2) such that T1, T2, and the tree T containing μ are not expansion trees.
By construction T (μ, T1, T2) represents the edges incident to μ fixed with respect to
T1 and T2. Since the orders chosen for T1, T2, and T are valid simultaneous orders, T1
and T2 induce the same order for the leaves of T (μ, T1, T2). Since T (μ, T1, T2) has no
other incoming arcs, we do not need to consider other parents. The induced order is of
course represented by the projection of T1 and T2 to the commonly fixed edges incident
to μ, and hence it is of course also represented by their intersection T (μ, T1, T2). For
the case that T , T1, or T2 are expansion trees, we can assume by induction that the
orders chosen for T , T1, and T2 are valid simultaneous orders, yielding the same result
that T1 and T2 induce the same order represented by T (μ, T1, T2).

It remains to show that the arcs introduced by a finalizing step respect the chosen
orders. Let T (μ, T1, T2) be a critical triple such that T1 and T2 consist of single P-nodes,
both fixing the same edges in μ. It is clear that the order chosen for μ induces the same
order for T1 and T2 with respect to the canonical bijection ϕ between the leaves of T1
and T2. Hence, adding an arc (T1, T2; ϕ) preserves simultaneous PQ-orders.

For now, we know that we can consider the expansion graph instead of the original
instance to solve SIMULTANEOUS PQ-ORDERING. Lemma 3.2 motivates that we can solve
the instance given by the expansion graph by simply choosing orders bottom-up, if
additionally the Q-constraints are satisfiable. However, this only works for “simple”
instances since satisfying critical triples is no longer sufficient for a P-node that is
fixed with respect to more than two children. Moreover, the expansion graph may
become exponentially large in general. In the following section, we define precisely
what “simple” means and additionally address the second problem by showing that the
expansion graph has polynomial size for these instances.

3.3. 1-Critical and 2-Fixed Instances

The expansion graph was introduced to satisfy the critical triples simply by choosing
orders bottom-up, which can then be used to apply Lemma 3.2 if the additional condition
that every P-node is contained in at most one critical triple is satisfied. Let D be an
instance of SIMULTANEOUS PQ-ORDERING and let Dexp be its expansion graph. We say that
D is a 1-critical instance if, in its expansion graph Dexp, every P-node is contained in
at most one critical triple. We will first prove a lemma helping us to deal with critical
double arcs. Afterwards, we show how to solve 1-critical instances efficiently.

LEMMA 3.6. Let D be a 1-critical instance of SIMULTANEOUS PQ-ORDERING with expan-
sion graph Dexp. Furthermore, let (T , T ′; ϕ1) and (T , T ′; ϕ2) be a critical double arc. Then
T ′ is a sink in Dexp.

PROOF. Recall that, as a target of a critical double arc, T ′ consists of a single P-node.
Hence, there is exactly one P-node μ in T that is fixed with respect to T ′. Due to the
double arc, μ is contained in the critical triple (μ, T ′, T ′). The tree T ′ is an expansion
tree by construction; hence, at the time T ′ is created, it has only the two incoming
arcs (T , T ′; ϕ1) and (T , T ′; ϕ2) and no outgoing arc. Assume that we can introduce an
outgoing arc to T ′ by applying an expansion or finalizing step. Then T ′ needs to be
contained in another critical triple than (μ, T ′, T ′), and since T is its only parent and
μ is the only P-node in T that is fixed with respect to T ′, this critical triple must
also contain μ. But then μ is contained in more than one critical triple, which is a
contradiction to the assumption that D is 1-critical.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:22 T. Bläsius and I. Rutter

LEMMA 3.7. Let D be a 1-critical instance of SIMULTANEOUS PQ-ORDERING with expan-
sion graph Dexp. In time polynomial in |Dexp|, we can compute simultaneous PQ-orders
or decide that no such orders exist.

PROOF. Due to Lemma 3.5, we can solve the instance Dexp of SIMULTANEOUS PQ-
ORDERING instead of D itself. Of course, we cannot find simultaneous PQ-orders for the
PQ-trees in Dexp if any of these PQ-trees is the null tree. Additionally, Lemma 3.2
states that the Q-constraints are necessary. We can check in linear time whether there
exists an assignment of TRUE and FALSE to the variables xμ, where μ is a Q-node, thus
satisfying the Q-constraints by solving a linear size instance of 2-SAT [Even et al. 1976;
Aspvall et al. 1979]. Hence, if Dexp contains the null tree or the Q-constraints are not
satisfiable, we know that there are no simultaneous PQ-orders. Additionally, we need
to deal with the critical double arcs. Let (T , T ′; ϕ1) together with (T , T ′; ϕ2) be a critical
double arc. By construction, the target T ′ consists of a single P-node fixing the same
edges incident to a single P-node μ in T with respect to both edges. Thus, ϕ1 and ϕ2
can be seen as bijections between the leaves L′ of T ′ and the fixed edges incident to μ;
hence, they define a permutation ϕ on L′ with ϕ = ϕ−1

2 ◦ ϕ1. To satisfy the critical triple
(μ, T ′, T ′), we need to find an order O′ of L′ such that ϕ1(O′) = ϕ2(O′). This equation is
equivalent to ϕ1 ◦ ϕ(O′) = ϕ2 ◦ ϕ(O′), and hence also to ϕ(O′) = O′. Thus, the critical
triple (μ, T ′, T ′) is satisfied if and only if ϕ is order preserving with respect to O′.
Whether ϕ is order preserving with respect to any order can be tested in O(|L′|) time
by applying Lemma 2.2. Now assume we have a variable assignment satisfying the
Q-constraints, no PQ-tree is the null tree, and every permutation ϕ corresponding to
a critical double arc is order preserving. We show how to find simultaneous PQ-orders
for all PQ-trees in Dexp.

For each sink T in Dexp, we choose a circular ordering as follows. If T is the target of
a critical double arc, it is a single P-node and its corresponding permutation ϕ is order
preserving by assumption. Hence, we can use Lemma 2.2 to choose an order that is
preserved by ϕ. Otherwise, orient every Q-node μ in T as determined by the variable
xμ representing it. Additionally, choose an arbitrary order for every P-node in T . After-
ward, mark T as processed. We consider the remaining PQ-trees in a bottom-up order.
Let T be a PQ-tree in Dexp for which all of its children T1, . . . , T� are already processed.
Since T1, . . . , T� are processed, orders O1, . . . , O� for their leaves were already chosen.
Consider a P-node μ in T contained in a critical triple (μ, Ti, Tj). If there is the expan-
sion tree T (μ, Ti, Tj), it guarantees that the edges incident to μ fixed with respect to
Ti and Tj are ordered the same in Oi and Oj , and hence the critical triple is satisfied.
If we had to apply a finalizing step due to the critical triple (μ, Ti, Tj), we have an arc
from Ti to Tj (or in the other direction), again ensuring that Oi and Oj induce the same
order on the fixed edges incident to μ. In the special case that (μ, Ti, Tj) corresponds
to a critical double arc, we know due to Lemma 3.6 that Ti = Tj is a sink. Then the
critical triple is also satisfied since we chose an order that is preserved by the permu-
tation ϕ corresponding to the critical double arc. Thus, all critical triples containing
P-nodes in T are satisfied. Additionally, the Q-constraints are satisfied, and, since D
is 1-critical, every P-node μ in T is contained in at most one critical triple. Hence, we
can apply Lemma 3.2 to extend the orders O1, . . . , O� simultaneously to an order O
represented by T . This extension can clearly be computed in polynomial time; hence,
Dexp can be traversed bottom-up, choosing an order for every PQ-tree in polynomial
time in the size of Dexp.

As mentioned earlier, the expansion graph can be exponentially large for instances
that are not 1-critical, which can be seen as follows. Assume a P-node μ in the PQ-tree T
is fixed with respect to three children T1, T2, and T3. Then, this P-node is responsible

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:23

for the three expansion trees T (μ, T1, T2), T (μ, T1, T3), and T (μ, T2, T3). So, every
layer can be three times larger than the layer above; hence, the expansion graph may
be exponentially large even if there are only linearly many layers. But if we can ensure
that μ is fixed with respect to at most two children of T (i.e., it is contained in at most
one critical triple), it is responsible for only one expansion tree. Of course, the resulting
expansion tree can itself contain several P-nodes that can again be responsible for new
expansion trees. We first prove a technical lemma followed by a lemma stating that the
size of the expansion graph remains quadratic in the size of D for 1-critical instances.

LEMMA 3.8. If μ is a P-node responsible for an expansion tree T containing the P-nodes
μ1, . . . , μk, the following inequality holds.

k∑

i=1

deg(μi) ≤ deg(μ) + 2k − 2.

PROOF. Let η1, . . . , η� be the Q-nodes contained in T , and let n1 be the number of
leaves in T . Furthermore, let n and m denote the number of vertices and edges in T ,
respectively. We obtain the following equation by double counting.

n1 +
k∑

i=1

deg(μi) +
�∑

i=1

deg(ηi) = 2m. (1)

Since T is a tree, we can replace m by n − 1, and, due to the fact that every node in T
is either a leaf, a P-node or a Q-node, we can replace n further by n1 + k+ �. With some
additional rearrangement, we obtain the following from Equation (1):

k∑

i=1

deg(μi) = n1 + 2k − 2 + 2� −
�∑

i=1

deg(ηi). (2)

The tree T has at most deg(μ) leaves since it is obtained by projecting some PQ-tree
to representatives of the edges incident to μ, yielding the inequality n1 ≤ deg(μ).
Additionally, we have the inequality 2� − ∑

deg(ηi) ≤ 0 since deg(ηi) ≥ 3. Plugging
these two inequalities into Equation (2) yields the claim.

LEMMA 3.9. Let D be a 1-critical instance of SIMULTANEOUS PQ-ORDERING. The size of
its expansion graph Dexp is quadratic in |D|.

PROOF. We first show that the total size of all expansion trees is in O(|D|2). Afterward,
we show that the size of all arcs that are contained in Dexp but not in D is linear in the
total size of all expansion trees in Dexp.

Every expansion tree T in Dexp has a P-node that is responsible for it. If this P-node
is itself contained in an expansion tree, we can again find another responsible P-node
some layers above. Thus, we finally find a P-node μ that was already contained in D,
which is transitively responsible for the expansion tree T . Every PQ-tree for which μ is
transitively responsible can have at most deg(μ) leaves; thus, its size is linear in deg(μ)
due to Lemma 2.1. Furthermore, we show that μ can only be transitively responsible
for O(deg(μ)) expansion trees and thus for expansion trees of total size O(deg(μ)2).
With this estimation, it is clear that the size of all expansion trees is quadratic in the
size of D. To make this more precise, denote the number of PQ-trees μ is transitively
responsible for by resp(μ). We show by induction over deg(μ) that resp(μ) ≤ 3 deg(μ)−8.

A P-node μ with deg(μ) = 3 can be responsible for at most one PQ-tree; thus,
resp(μ) ≤ 3 deg(μ) − 8 is satisfied. If μ has deg(μ) > 3 incident edges, it is directly re-
sponsible for at most one expansion tree T , since our instance is 1-critical. In the special

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:24 T. Bläsius and I. Rutter

case that T consists of a single P-node μ′ with deg(μ′) = deg(μ), the PQ-tree for which
μ′ is responsible cannot again contain a P-node of degree deg(μ) due to Lemma 3.3.
Otherwise, T contains k P-nodes μ1, . . . , μk with deg(μi) < deg(μ). In the special case,
resp(μ) = resp(μ′) + 1 holds, and we show the inequality resp(μ) ≤ 3 deg(μ) − 8 for
both cases by showing resp(μ) ≤ 3 deg(μ) − 9 for the second case. In the second case,
μ is transitively responsible for T and for all the PQ-trees for which μ1, . . . , μk are
responsible, yielding the following equation:

resp(μ) = 1 +
k∑

i=1

resp(μi).

Plugging in the induction hypothesis resp(μi) ≤ 3 deg(μi) − 8 yields the following
inequality:

resp(μ) ≤ 1 + 3
k∑

i=1

deg(μi) − 8k.

If k = 1, this inequality directly yields the claim resp(μ) ≤ 3 deg(μ) − 9 since deg(μ1) ≤
deg(μ) − 1. Otherwise, we can use Lemma 3.8 to obtain resp(μ) ≤ 3 deg(μ) − 5 − 2k.
This again yields the claim resp(μ) ≤ 3 deg(μ)−9 since k > 1. Finally, we have that the
induction hypothesis holds for μ, and hence every P-node μ is transitively responsible
for O(deg(μ)) expansion trees of size O(deg(μ)).

For an arc that is contained in Dexp but not in D, consider the critical triple (μ, T1, T2)
that is responsible for it. Since μ is not contained in another critical triple, it is only
responsible for the arcs (T1, T (μ, T1, T2)) and (T2, T (μ, T1, T2)) or (T1, T2) in the case of
a finalizing step. The size of these arcs is in O(deg(μ)) since the expansion tree contains
at most deg(μ) leaves and, if the finalizing step is applied, T1 and T2 are single P-nodes
of degree at most deg(μ). Hence, the size of newly created arcs in Dexp is linear in the
size of all PQ-trees in Dexp, which concludes the proof.

Putting Lemma 3.7 and Lemma 3.9 together directly yields the following theorem.
For a detailed runtime analysis, see Section 3.4, showing that quadratic time is suffi-
cient, which is not as obvious as it seems to be.

THEOREM 3.10. SIMULTANEOUS PQ-ORDERING can be solved in polynomial time for 1-
critical instances.

Actually, Theorem 3.10 tells us how to solve 1-critical instances, which was the main
goal of this section. However, the characterization of 1-critical instances is not really
satisfying, since we need to know the expansion graph, which may be exponentially
large, to check whether an instance is 1-critical or not. For our applications, we can
ensure that all instances are 1-critical, and hence we do not need to test it algorithmi-
cally. But to prove for an application that all instances are 1-critical, it would be much
nicer to have conditions for 1-criticality of an instance that are defined for the instance
itself and not for some other structure derived from it. In the remaining part of this
section, we provide sufficient conditions for an instance to be 1-critical that do not rely
on the expansion graph.

Let D = (N, A) be an instance of SIMULTANEOUS PQ-ORDERING. Furthermore, let T be
a PQ-tree with a parent T ′ and let μ be a P-node in T . Recall that there is exactly
one P-node μ′ in T ′ that it stems from; that is, μ′ is fixed with respect to μ and no
other P-node in T ′ is fixed with respect to μ. Note that there may be several P-nodes
in T stemming from μ′. Consider a P-node μ in the PQ-tree T ∈ N such that T is a
source in D. We define the fixedness fixed(μ) of μ to be the number of children fixing it.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:25

Now let μ be a P-node of some internal PQ-tree T of D with parents T1, . . . , T�. Each
of the trees Ti contains exactly one P-node μi that is fixed by μ. Additionally, let k′ be
the number of children fixing μ. We set fixed(μ) = k′ + ∑

(fixed(μi) − 1). We say that
a P-node μ is k-fixed, if fixed(μ) ≤ k and an instance D is k-fixed for some integer k
if all its P-nodes are k-fixed. The motivation for this definition is that a P-node with
fixedness k in D is fixed with respect to at most k children in the expansion graph Dexp.
We obtain the following theorem providing sufficient conditions for D to be a 1-critical
instance.

THEOREM 3.11. Every 2-fixed instance of SIMULTANEOUS PQ-ORDERING is 1-critical.

PROOF. Let D be a 2-fixed instance of SIMULTANEOUS PQ-ORDERING and let Dexp be its
expansion graph. We need to show for every P-node μ in Dexp that it is contained in at
most one critical triple; that is, it is fixed with respect to at most two children. We will
show that separately for the cases where the tree T containing μ is already contained
in D and where T is an expansion tree.

Assume that T is already contained in D. It is clear that μ is fixed with respect to
at most two children in D since it is at most 2-fixed, but it may happen that T has
additional children in Dexp. We show by induction over the depth of the node T in Dexp
that μ has at most fixed(μ) children fixing it in Dexp. Recall that the depth of a node
in a DAG is defined as the length of the longest directed path from a source to this
node. For sources in D, it is clear that the number of children fixing a P-node does not
increase by expanding D, which shows the base case. For the general case, let T1, . . . , T�

be the parents of T and let μ1, . . . , μ� be the corresponding P-nodes that μ stems from.
Furthermore, letμ be fixed with respect to k′ children of T in D. By the definition of
fixedness, we have fixed(μ) = k′ + ∑

(fixed(μi) − 1). Note that fixed(μi) ≥ 1 for every
i = 1, . . . , � since μi is at least fixed with respect to T and note further that Ti has,
by induction, at most fixed(μi) children fixing μi. Thus, μi can be contained in at most
fixed(μi) − 1 critical triples also containing T , which means that μi can be responsible
for at most fixed(μi) − 1 children of T in Dexp. Hence, T can have in Dexp at most
k′ + ∑

(fixed(μi) − 1) = fixed(μ) children fixing μ. By the assumption that fixed(μ) ≤ 2,
we obtain that μ is contained in at most one critical triple in Dexp.

Now consider the case where T is an expansion tree with P-node μ. At the time T is
created, it has two incoming and no outgoing arcs (denote the parents by T1 and T2),
and the P-nodes μ stems from by μ1 and μ2, respectively. Again we show by induction
over the depth of T in Dexp that T has at most two children fixing μ. In the base case,
T1 and T2 are both already contained in D. As shown earlier, μ1 and μ2 can each be
contained in at most one critical triple; hence, expansion can introduce at most two
children fixing μ. In the general case, a parent Ti for i = 1, 2 is either contained in D or
an expansion graph. In the first case, it again can introduce at most one child fixing μ.
In the second case, we can apply the induction hypothesis with the same result. Note
that, in a finalizing step for one of the trees, a new incoming arc is created instead of an
outgoing arc. But this incoming arc can itself, of course, be responsible for at most one
outgoing arc; hence the number of children fixing a P-node cannot become larger than
two. Finally, we have that every P-node in every PQ-tree in Dexp is fixed with respect
to at most two children; hence, D is 1-critical.

Theorem 3.10 and Theorem 3.11 together provide a framework for solving problems
that can be formulated as instances of SIMULTANEOUS PQ-ORDERING. We can use Theo-
rem 3.11 to prove that the instances our application produces are 1-critical, whereas
Theorem 3.10 tells us that we can solve these instances in polynomial time. Note that,
since the Q-constraints are expressed as a 2-SAT formula, the algorithm still works if
the orientation of some Q-nodes is given with the input.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:26 T. Bläsius and I. Rutter

3.4. Implementation Details

To solve an instance of SIMULTANEOUS PQ-ORDERING, we first normalize the instance,
then compute the expansion graph and finally choose orders bottom-up. As shown in
Lemma 3.9, the size of the expansion graph is quadratic in the size of D. All other steps
that need to be applied are simple, such as projection, intersection, or the extension
of an order. All these steps run in linear time, but, unfortunately, linear in the size
of the parent. For example, in the normalization step, the projection of a tree T to
the leaves of its child T ′ must be computed, consuming linear time in |T |. Since T
can be a large PQ-tree with many small children, we need quadratic time. A similar
problem arises when computing an expansion tree due to a critical triple (μ, T1, T2). To
compute T (μ, T1, T2), the trees T1 and T2 need to be projected to representatives of the
commonly fixed edges incident to μ, consuming O(|T1| + |T2|) time. Since the resulting
expansion tree T (μ, T1, T2) can be arbitrarily small, these costs cannot be expressed in
terms of |T (μ, T1, T2)|. But since T1 and T2 can have linearly as many expansion trees
as children, we potentially need quadratic time for each PQ-tree in Dexp to compute the
expansion graph, yielding an O(|D|4) time algorithm. Another problem is the extension
of orders bottom-up. If a PQ-tree T has one child T ′ with chosen order, it is easy
to extend this order to T in |T | time. However, T can have linearly many children,
yielding an algorithm consuming quadratic time per PQ-tree and thus, overall, again
O(|D|4) time. However, if additionally the projection T |L′ of T to the leaves L′ of T ′ is
known, the order chosen for T ′ can be extended in O(|T ′|) time to T |L′ . Furthermore,
the extension of orders from several projections of T to T can be done in time linear
in the size of all projections if some additional projection information are stored. In
this section, we show how to compute the normalization in quadratic time, which is
straightforward. Afterward, we give a more detailed estimation for the size of the
expansion graph of 1-critical instances. Then, we show that computing the expansion
graph for 1-critical instances actually runs in quadratic time. Furthermore, we show for
the normalization and the expansion that, for every arc, the projection of the parent to
the leaves of the child together with additional projection information can be computed
and stored without consuming additional time. This information can then be used to
choose orders bottom-up in linear time in the size of the expansion graph. Altogether,
this yields a quadratic time algorithm to solve 1-critical instances of SIMULTANEOUS

PQ-ORDERING.
In the remainder of this section, let D = (N, A) be a 1-critical instance of SIMULTANEOUS

PQ-ORDERING with the expansion graph Dexp = (Nexp, Aexp). Furthermore, let |D|, |N|,
|A|, |Dexp|, |Nexp|, and |Aexp| denote the size of D, N, A, Dexp, Nexp, and Aexp, respectively.
Recall that the size of a node is linear in the size of the contained PQ-tree, and the size
of an arc is linear in the size of its target, which is due to the injective map that needs
to be stored for every arc. Furthermore, let pmax be the degree of the largest P-node in
D, and let #N denote the number of nodes in D.

Normalization. As mentioned earlier, we want to compute and store some additional
information in addition to computing the normalization. In detail, let (T , T ′) be an
arc and let L′ be the leaves of T ′. For every node in the projection T |L′ of T to the
leaves of T ′, there is a node in T that it stems from, and, for every edge incident to a
P-node in the projection, there is an edge incident to the corresponding P-node in T
that it stems from. We say that the arc (T , T ′) has additional projection information
if T |L′ with a pointer from every node and edge to the node and edge in T it stems
from is known. Note that the arc (T , T ′) does not become asymptotically larger due
to additional projection information. In the following, being a normalized instance of
SIMULTANEOUS PQ-ORDERING includes that every arc has additional projection informa-
tion. The following lemma is not really surprising.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:27

LEMMA 3.12. An instance D = (N, A) of SIMULTANEOUS PQ-ORDERING can be normalized
in O(#N · |N|) time.

PROOF. To normalize an instance D of SIMULTANEOUS PQ-ORDERING, we need to project
T to the leaves of T ′ and intersect the result with T ′ for every arc (T , T ′) in D. The
projection can be done inO(|T |) time while the intersection consumes O(|T ′|) time. Note
that the additional projection information can be simply stored directly after computing
the projection. Since T may have #N children, all these projections consume O(#N · |T |)
time. Summing over all PQ-trees yields O(#N · |N|) for the normalization of D.

Size of the Expansion Graph. In Lemma 3.9, we already showed that the expansion
graph of a 1-critical instance has quadratic size. However, this can be done more
precisely.

LEMMA 3.13. Let D be a 1-critical instance of SIMULTANEOUS PQ-ORDERING with the
expansion graph Dexp. Then |Dexp| ∈ O(pmax · |N| + |A|), where pmax is the degree of the
largest P-node in D.

PROOF. The proof of Lemma 3.9 shows that every P-node μ can be transitively
responsible for at most 3 deg(μ)−8 expansion trees, where each of these expansion trees
has size O(deg(μ)). Thus, μ is responsible for expansion trees of total size O(deg(μ)2). To
compute the total size of all expansion trees, we need to sum over all P-nodes μ1, . . . , μ�

that are already contained in D. The following estimations show the claimed size of
O(pmax · |N|):

�∑

i=1

deg(μi)2 ≤ pmax ·
�∑

i=1

deg(μi) ≤ pmax · |N|.

As mentioned in the proof of Lemma 3.9, the size of all newly created arcs in Dexp is
linear in the size of all nodes in Dexp. Thus, we obtain |Dexp| ∈ O(pmax · |N| + |A|) for the
whole expansion graph.

Computing the Expansion Graph. When computing the expansion tree T (μ, T1, T2)
due to the critical triple (μ, T1, T2), we need to project T1 and T2 to the representatives
of the commonly fixed edges incident to μ. Let T denote the tree containing μ, and let
L1 and L2 be the leaves of T1 and T2, respectively. First, we need to find the commonly
fixed edges and a representative for each. Assume that the projections T |L1

and T |L2

are stored as ensured by the normalization. Then, for every edge incident to μ, it can be
easily tested in constant time whether it is contained in both projections. This consumes
O(deg(μ)) time overall. With a simple traversal of T |Li

(for i = 1, 2), representatives of
these commonly fixed edges can be found inO(|Ti|) time, and the projection of Ti to these
representatives can also be done in O(|Ti|) time. The intersection of the two projections
yields T (μ, T1, T2) in O(|T (μ, T1, T2)|) time, which can be neglected. For the two newly
created arcs (T1, T (μ, T1, T2)) and (T2, T (μ, T1, T2)), we again need to ensure that
the additional projection information is stored. However, this projection was already
computed and can simply be stored without additional running time. Hence, the total
running time for computing the expansion tree T (μ, T1, T2) is in O(deg(μ)+|T1|+|T2|).
Thus, a superficial analysis yields quadratic running time in the size of the expansion
graph. However, we can do better, as shown in the following lemma.

LEMMA 3.14. The expansion graph Dexp of a 1-critical instance D = (N, A) of SIMUL-
TANEOUS PQ-ORDERING can be computed in O(|N|2) time.

PROOF. As mentioned earlier, computing the expansion tree T (μ, T1, T2) consumes
O(deg(μ) + |T1| + |T2|) time. We consider this time as cost and show how to assign it to

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:28 T. Bläsius and I. Rutter

Fig. 10. Nodes in the original graph are shaded dark gray and expansion trees white. Light gray is used
where it does not matter. (a) The case where T1 is contained in the original graph. (b) The case where T1 is
an expansion graph but T containing μ is not. (c) The case where neither T1 nor T are expansion graphs.

different parts of D by defining them to be responsible for this cost. The cost O(deg(μ))
can be simply assigned to μ. Since every P-node μ is contained in at most one critical
triple, this can happen at most once, yielding cost O(|N|) in total. Assume without loss
of generality that |T1| ≥ |T2|. In this case, we only need to assign the cost O(|T1|). To
do that, we consider three cases.

If T1 ∈ N (i.e., T1 is not an expansion tree), then we assign the cost O(|T1|) to T1.
This can happen at most as many times as T1 occurs in a critical triple. In each of these
critical triples, there necessarily is a P-node that is contained in a PQ-tree in a parent
of T1. There can be O(|N|) of these P-nodes, and, since every P-node is contained in at
most one critical triple, the total cost assigned to T1 is in O(|N| · |T1|). Note that no
expansion tree is responsible for any cost; thus, by summing over all PQ-trees in Dexp,
we obtain that the total cost is in O(|N|2). Figure 10(a) illustrates this case.

If T1 �∈ N but μ ∈ T ∈ N (i.e., T1 is an expansion tree, but the P-node μ is contained
in the original graph D). Then, T1 has exactly two parents, like every other expansion
tree, and of course one of them is the tree T containing the P-node μ. Furthermore,
there is a P-node μ1 responsible for T1; let T ′

1 be the PQ-tree containing μ1. Thus, T1
was created due to a critical triple containing μ1 and T , and T ′

1 containing μ1 needs to
be a parent of T as depicted in Figure 10(b). In this case, we assign the cost O(|T1|) to T ′

1
or, more precisely, to μ1. Since T was already contained in the original graph, we also
have T ′

1 ∈ N; thus, again, only PQ-trees from the original graphs are responsible for
any costs. Since T1 is obtained by projecting T and its other parent to representatives
of edges incident to μ1, we have that |T1| ∈ O(deg(μ1)). Due to the fact that μ1 is
contained in at most one critical triple, it is overall responsible for O(deg(μ1)) cost, and
hence we obtain only linear cost by summing over all P-nodes in all PQ-trees in D.

If T1 �∈ N and μ ∈ T �∈ N (i.e., T1 is an expansion tree and μ is contained in an
expansion tree). In other words, we are somehow “far away” from the original graph.
With the same argument as before, we can find a P-node μ′ in a PQ-tree T ′ that is
responsible for the PQ-tree T containing μ, and this PQ-tree needs to be a parent of
the PQ-tree T ′

1; see Figure 10(c). If T ′ again is an expansion tree, we can find a P-node
responsible for it and so on, until we reach a P-node μ′′ in the PQ-tree T ′′ that is
transitively responsible for T and T ′, such that T ′′ is already contained in the graph
D. Then, we assign the cost O(|T1|) to T ′′, or more precisely, to μ′′. Since T1 is a child
of T , its size must be linear in |T |. Furthermore, since μ′′ is transitively responsible
for T , we have |T | ∈ O(deg(μ′′)). Thus, we assign cost linear in deg(μ′′) to μ′′. As shown
in the proof of Lemma 3.9, μ′′ can be transitively responsible for at most 3 deg(μ′′) − 8
expansion trees, thus it is overall responsible for O(deg(μ′′)2) cost. Note that, again,

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:29

only PQ-trees in D are responsible for any costs. Thus, by summing over all P-nodes in
all PQ-trees, we obtain O(pmax · |N|).

To sum up, the costs from the first case are dominating; hence, we obtain a running
time of O(|N|2) for computing the expansion graph Dexp of a 1-critical instance D =
(N, A) of SIMULTANEOUS PQ-ORDERING.

Extending Orders. As shown in Lemma 3.7, SIMULTANEOUS PQ-ORDERING can be solved
for 1-critical instances in time polynomial in the size of the expansion graph. There are
three things to do: First, the Q-constraints need to be satisfied, which can be checked
in linear time. Second, the critical double arcs need to be satisfied, which again can be
done in linear time if possible. And finally, orders for the edges around P-nodes need
to be chosen bottom-up. This is not obviously possible in linear time. However, the
additional projection information that is stored for every arc makes it possible. This is
shown in the following lemma.

LEMMA 3.15. Let D be a 1-critical instance of SIMULTANEOUS PQ-ORDERING with expan-
sion graph Dexp. In O(|Dexp|) time, we can compute simultaneous PQ-orders or decide
that no such orders exist.

PROOF. The major work for this lemma was already done in the proof of Lemma 3.7. It
remains to show how orders for the P-nodes can be chosen bottom-up in the expansion
graph in linear time.

Consider a PQ-tree T in the expansion graph Dexp having the PQ-trees T1, . . . , T� as
children. Assume further that orders O1, . . . , O� are already chosen for the children.
The obvious approach to extend these orders simultaneously to an order represented
by T would take O(� · |T |) time, yielding a worst-case quadratic running time per PQ-
tree in the expansion tree. However, it can also be done in O(|T | + |T1| + · · · + |T�|)
time, which can be seen as follows. Let Ti be one of the children of T and let T ′

i be the
projection of T to the leaves of Ti, which was stored for the arc (T , Ti) while normalizing
and expanding. Since T ′

i has as many leaves as Ti, we can apply the order Oi to T ′
i in

O(|Ti|) time, inducing an order of incident edges around every P-node of T ′
i . Now let μi

be a P-node of T ′
i and let μ be the P-node in T that it stems from. Recall that we can

find μ in constant time, and, furthermore, for an edge incident to μi, we can find the
edge incident to μ that it stems from in constant time. Thus, we can simply take the
order of incident edges around μi and replace each edge by the edge incident to μ that
it stems from. This order is then stored for μ. Note that μ may store up to two orders
in this way, since it is fixed with respect to at most two children. It is clear that this
can be done in O(deg(μi)) time, thus processing all nodes in Ti takes O(|Ti|) time.

Now assume we have processed all children of T . Then, for every P-node μ in T for
up to two subsets of edges incident to μ, orders are stored. If we have two orders, these
orders need to be merged, which can clearly be done in linear time. Thus, we can assume
to have only one order on a subset of edges. All remaining free edges can be simply
added arbitrarily. This takes overall O(deg(μ)) time. Hence, we need, for each node
in T , linear time in its degree and hence O(|T |) time for the whole tree. All together,
we obtain the claimed O(|T | + |T1| + · · · + |T�|) running time for extending the orders
O1, . . . , O� to an order O represented by T . Recall that |Ti| is linear in the size of the arc
(T , Ti). Thus, extending orders bottom-up in the expansion graph Dexp = (Nexp, Aexp)
takes O(|Nexp| + |Aexp|) = O(|Dexp|) time.

Overall Running Time. For applications producing instances of SIMULTANEOUS PQ-
ORDERING it may be possible that reconsidering the runtime analysis containing nor-
malization, size, computation time of the expansion graph, and order extension yields
a better running time then O(|N|2). However, for the general case, we obtain the

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:30 T. Bläsius and I. Rutter

following theorem by putting Lemmas 3.12, 3.13, 3.14, and 3.15 together. Note that the
running time is dominated by the computation of the expansion graph.

THEOREM 3.16. SIMULTANEOUS PQ-ORDERING can be solved in O(|N|2) time for a 1-
critical instance D = (N, A).

3.5. Simultaneous PQ-Ordering with Reversing Arcs

As mentioned in Section 2.5, we can express all embeddings of a biconnected planar
graph in terms of PQ-trees by considering the embedding tree T (v) describing all
possible orders of incident edges around v, if we additionally ensure that Q-nodes
stemming from the same R-node in the SPQR-tree T are oriented the same, and pairs
of P-nodes stemming from the same P-node in T are ordered oppositely. Forcing edges
to be ordered the same can be easily achieved with an instance of SIMULTANEOUS PQ-
ORDERING by inserting a common child. However, we want to enforce edges around
P-nodes to be ordered oppositely and not the same. Note that this cannot be achieved
by simply choosing an appropriate injective mapping from the leaves of the child to the
leaves of the parent since it depends on the order whether such a map reverses it.

To solve this problem, we introduce SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS,
which is an extension of the problem SIMULTANEOUS PQ-ORDERING. Again, we have a
DAG D = (N, A) with nodes N = {T1, . . . , Tk}, such that every node Ti is a PQ-tree, and
every arc consists of a source Ti, a target Tj, and an injective map ϕ : Lj → Li, where
Li and Lj are the leaves of Ti and Tj , respectively. In addition to that, every arc can
be a reversing arc. Reversing arcs are denoted by (Ti,−Tj ; ϕ), whereas normal arcs are
denoted by (Ti, Tj ; ϕ) as before. SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS asks
whether there exist orders O1, . . . , Ok such that every normal arc (Ti, Tj ; ϕ) ∈ A implies
that ϕ(Oj) is a suborder of Oi, whereas every reversing arc (Ti,−Tj ; ϕ) ∈ A implies that
the reversal of ϕ(Oj) is a suborder of Oi. As for SIMULTANEOUS PQ-ORDERING, we define
an instance of SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS to be normalized if a
normal arc (Ti, Tj ; ϕ) implies that Li contains an order Oi extending ϕ(Oj) for every
order Oj ∈ Li and a reversing arc (Ti,−Tj ; ϕ) implies that Li contains an order Oi
extending the reversal of ϕ(Oj) for every order Oj ∈ L j , where Li and L j are the sets
of orders represented by Ti and Tj , respectively. Since Li is represented by a PQ-tree,
it is closed with respect to reversing orders. Thus, if Li contains an order extending
ϕ(Oj), it also contains an order extending the reverse order of ϕ(Oj). Hence, we can
normalize an instance of SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS in the same
way we normalize an instance of SIMULTANEOUS PQ-ORDERING by ignoring that some of
the arcs are reversing.

In the following, we show how to adapt the solution for SIMULTANEOUS PQ-ORDERING

presented in the previous sections to solve SIMULTANEOUS PQ-ORDERING WITH REVERSING

ARCS. We first give a rough overview. The definitions of the Q-constraints and the crit-
ical triples can be modified in a straightforward manner such that Lemma 3.2, stating
that satisfying the Q-constraints and the critical triples is necessary and sufficient to be
able to extend orders chosen for several PQ-trees to an order of a common parent, still
holds. By declaring some of the created arcs to be reversing, the definitions of expan-
sion and finalizing step can be easily adapted such that the resulting expansion trees
and the newly created arcs ensure that the responsible critical triples are satisfied.
Thus, again, the only critical triples that are not automatically satisfied by choosing
orders bottom-up correspond to critical double arcs. Lemmas 3.3, 3.4, and 3.5 showing
that the expansion graph is well-defined and equivalent to the original instance work
in exactly the same way. For the definition of 1-critical instances, there is no need to
change anything. Lemma 3.6, stating that critical double arcs have a sink as target,
works as before. In Lemma 3.7, we showed how to solve 1-critical instances by testing

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:31

whether the Q-constraints are satisfiable and whether we can choose orders for the
critical double arcs satisfying the corresponding critical triple. If this was the case, we
simply chose orders bottom-up. Testing the Q-constraints can be done in the same way
as before. For the critical double arcs, we can do the same as before if both arcs are
normal or both are reversing. If one of them is normal and the other is reversing, we
need to check if the corresponding permutation is order reversing instead of order pre-
serving, hence we use Lemma 2.3 instead of Lemma 2.2. Afterward, it is again ensured
that every critical triple is satisfied; hence, we can choose orders bottom-up as before.
Lemma 3.9 stating that the expansion graph has quadratic size for 1-critical instances
works as before since the only change in the definition of the expansion graph is that
some arcs are reversing arcs instead of normal arcs, which of course does not change
the size of the graph. Finally, we can put Lemma 3.7 and Lemma 3.9 together yielding
that SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS can be solved in polynomial time
for 1-critical instances as stated before in Theorem 3.10 for SIMULTANEOUS PQ-ORDERING.
Theorem 3.11 provides an easy criterion that an instance that is 1-critical works exactly
the same as before.

In the following, we highlight some important details. Let us start with the Q-
constraints. Let μ be a Q-node in T that is fixed with respect to the child T ′ of T and
let rep(μ) be its representative in T ′. To ensure that μ is ordered as determined by
rep(μ), we introduced either the constraint xμ = xrep(μ) or xμ 	= xrep(μ). Now, if the arc
(T , T ′) is reversing, we simply negate this constraint, thus ensuring that μ is orientated
oppositely to the orientation determined by rep(μ). Let μ be a P-node in the PQ-tree T
that is fixed with respect to two children T1 and T2 of T . Then, μ, T1, and T2 together
form again a critical triple. If both arcs (T , T1) and (T , T2) are normal arcs, we denote
this critical triple by (μ, T1, T2) as before. If (T ,−Ti) is a reversing arc, we symbolize
that by a minus sign in the critical triple. For example, if we have the arcs (T , T1) and
(T ,−T2), we denote the critical triple by (μ, T1,−T2). Assume we have orders O1 and
O2 represented by T1 and T2, respectively. In the case that both arcs are normal or both
are reversing, we say that the critical triple is satisfied if the edges incident to μ fixed
with respect to T1 and T2 are ordered the same in both orders O1 and O2, which is the
same definition as before. In the case that one of the arcs is normal and the other is
reversing, we define a critical triple to be satisfied if the order O1 induces the opposite
order from O2 for the commonly fixed edges incident to μ. With these straightforwardly
adapted definitions, it is clear that the proof of Lemma 3.2 works exactly as before. To
improve readability, we cite this lemma here.

LEMMA 3.17. Let T be a PQ-tree with children T1, . . . , T�, such that every P-node in
T is contained in at most one critical triple, and let O1, . . . , O� be orders represented by
T1, . . . , T�. An order O that is represented by T and simultaneously extends the orders
O1, . . . , O� exists if and only if the Q-constraints and all critical triples are satisfied.

This lemma implies that we can choose orders bottom-up if we ensure that the Q-
constraints and the critical triples are satisfied. This leads us to the definition of the
expansion graph. If we have a critical triple (μ, (−)T1, (−)T2), in general, we apply
an expansion step as before; that is, we project T1 and T2 to representatives of the
commonly fixed edges incident to μ and intersect the result to obtain the expansion tree
T (μ, (−)T1, (−)T2). Additionally, we add arcs from T1 and T2 to the expansion tree. The
only thing we need to change is that the arc from Ti (for i = 1, 2) to T (μ, (−)T1, (−)T2)
is reversing if the arc (T ,−Ti) is reversing. Consider, for example, the critical triple
(μ,−T1, T2). Then we have the reversing arcs (T ,−T1) and (T1,−T (μ,−T1, T2)) and
the normal arcs (T , T2) and (T2, T (μ,−T1, T2)). If we choose an order for the leaves of
T (μ,−T1, T2) representing the common fixed edges incident to μ, this order is reversed
when it is extended to an order O1 represented by T1, and it remains the same by

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:32 T. Bläsius and I. Rutter

extension to an order O2 represented by T2. Hence, the edges incident to μ fixed with
respect to T1 and T2 are ordered oppositely in O1 and O2, implying that the critical
triple (μ,−T1, T2) is satisfied. In other words, by extending an order represented by
T (μ,−T1, T2) to an order of T containing μ, it is reversed twice over the path containing
T1, thus yielding the same order as an extension over the path containing T2 not
reversing it at all. The other three configurations work analogously.

The finalizing step can be handled similarly. If, for a critical triple (μ, (−)T1, (−)T2),
both PQ-trees T1 and T2 consist of a single P-node fixing the same edges incident to
μ, we obtain a bijection ϕ between the leaves of T1 and the leaves of T2. As before, we
create an arc from T2 to T1 with the map ϕ. This new arc is a normal arc if both arcs
(T , (−)T1) and (T , (−)T2) are normal or if both are reversing. If one is reversing and one
is normal, the new arc (T1,−T2; ϕ) is reversing. Again, this new arc ensures that the
critical triple (μ, (−)T1, (−)T2) is satisfied if we choose orders bottom-up. Note that we
need to consider the special case where we have a critical triple (μ, (−)T ′, (−)T ′) due to
a double arc. As before, we apply expansion steps as if the children were different, thus
ensuring that the critical triple is satisfied. Again, a finalizing step would introduce a
self-loop; thus, we simply prune expansion here (if T ′ is an expansion tree, otherwise
we apply one more expansion step), introducing an unsatisfied double arc. The only
difference to the unsatisfied double arcs we had before is that the arcs may be reversing.

For an instance D of SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS, we obtain the
expansion graph Dexp by iteratively applying expansion and finalizing steps. Denote
the expansion graph that we would obtain from D if we assume that all arcs are normal
by D′

exp. It is clear that the only difference between Dexp and D′
exp is that some arcs

in Dexp are reversing arcs. Hence, all structural results on the expansion graph of an
instance of SIMULTANEOUS PQ-ORDERING still hold if we allow reversing arcs. Particularly,
we have that the expansion graph is well-defined (Lemmas 3.3 and 3.4), that the target
of every unsatisfied double arc is a sink if D is 1-critical (Lemma 3.6), that |Dexp| is
polynomial in |D| if D is 1-critical (Lemma 3.9), and that D is 1-critical if it is at
most 2-fixed (Theorem 3.11). Furthermore, all the implementation details provided in
Section 3.4 still work. Note that we say that an instance D is 1-critical if every P-node
in every PQ-tree in Dexp is contained in at most one critical triple, which is exactly the
same definition as before.

It remains to show, that the instances D and Dexp are still equivalent (Lemma 3.5)
and that we can solve Dexp by checking the Q-constraints, dealing with the unsatisfied
double arcs and finally choosing orders bottom-up if D is 1-critical (Lemma 3.7). In the
proof of Lemma 3.5, we had to show that simultaneous PQ-orders for all PQ-trees in
D induce simultaneous PQ-orders for Dexp. That can be done analogously for the case
where we allow reversing arcs. Most parts of the proof for Lemma 3.7 can be adapted
straightforwardly, since Lemma 3.2 still holds if we allow reversing arcs. The only
difference is that the arcs in an unsatisfied double arc can be reversing. Consider an
unsatisfied double arc (T , (−)T ′; ϕ1) and (T , (−)T ′; ϕ2) together with the corresponding
permutation ϕ on the leaves of T ′. If both arcs are normal or both are reversing,
we need to check if ϕ is order preserving and choose an order that is preserved by
ϕ, which can be done due to Lemma 2.2. If, however, one of the arcs is normal and
the other is reversing, we need to check if ϕ is order reversing and then choose an
order that is reversed. This is something we have not done before, but it can be easily
done by applying Lemma 2.3 instead of Lemma 2.2. Finally, Lemma 3.7 also works
if we allow reversing arcs and hence we obtain the following theorem analogously to
Theorem 3.16.

THEOREM 3.18. SIMULTANEOUS PQ-ORDERING WITH REVERSING ARCS can be solved in
O(|N|2) time for a 1-critical instances D = (N, A).

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:33

Now that we know that 1-critical instances of SIMULTANEOUS PQ-ORDERING WITH

REVERSING ARCS can be solved essentially in the same way as 1-critical instances of
SIMULTANEOUS PQ-ORDERING, we no longer distinguish between these two problems.
Thus, if we create 1-critical instances of SIMULTANEOUS PQ-ORDERING in our applica-
tions, we implicitly allow them to contain reversing arcs.

4. APPLICATIONS

As mentioned in Section 2.5 and again in Section 3.5, to motivate why reversing arcs
are necessary, we want to express all combinatorial embeddings of a biconnected planar
graph in terms of PQ-trees or, more precisely, in terms of an instance of SIMULTANEOUS

PQ-ORDERING. A detailed description of this instance is given in Section 4.1. This rep-
resentation is then used to solve PARTIALLY PQ-CONSTRAINED PLANARITY for biconnected
graphs (Section 4.2) and SEFE for biconnected graphs with a connected intersection
(Section 4.3). Furthermore, we show in Sections 4.4 and 4.5 how SIMULTANEOUS PQ-
ORDERING can be used to recognize simultaneous interval graphs and extend partial
interval representations in linear time. Finally, in Section 4.6, we reconsider the em-
bedding representation and relax the biconnectivity requirement of the input graph.
This results in efficient algorithms for PARTIALLY PQ-CONSTRAINED PLANARITY and SEFE
for a larger class of graphs, including, for example, maxdeg-5 graphs.

4.1. PQ-Embedding Representation

Let G = (V, E) be a planar biconnected graph and let T be its SPQR-tree. We want to de-
fine an instance D(G) = (N, A) of SIMULTANEOUS PQ-ORDERING called the PQ-embedding
representation containing the embedding trees representing the circular order of edges
around every vertex, as defined in Section 2.5, such that it is ensured that every set of
simultaneous PQ-orders corresponds to an embedding of G and vice versa. For every R-
node η in T , we define the PQ-tree Q(η) consisting of a single Q-node with three edges,
and, for every P-node μ in T with k virtual edges in skel(μ), we define the PQ-tree P(μ)
consisting of a single P-node of degree k. The trees Q(η) and P(μ) will ensure that em-
bedding trees of different vertices sharing R- or P-nodes in the SPQR-tree are ordered
consistently; thus, we call them consistency trees. The node set N of the PQ-embedding
representation contains the consistency trees Q(η) and P(μ) and the embedding trees
T (v) for v ∈ V . If we consider an R-node η in the SPQR-tree T , then there are several
Q-nodes in different embedding trees stemming from it, and we need to ensure that all
these Q-nodes are oriented the same. Or, in other words, we need to ensure that they
are all oriented the same as Q(η), which can be done by simply adding arcs from the
embedding trees to Q(η) with suitable injective maps. Similarly, the skeleton of every
P-node μ in T contains two vertices, v1 and v2. Thus, the embedding trees T (v1) and
T (v2) contain P-nodes μ1 and μ2 stemming from μ, and every incident edge corresponds
to a virtual edge in skel(μ). We need to ensure that the order of incident edges around
μ1 is the reversal of the order of edges around μ2. In other words, we need to ensure
that the order for μ1 is the same and the order for μ2 is the opposite to any order
chosen for P(μ), which can be ensured by a normal arc (T (v1), P(μ)) and a reversing
arc (T (v2),−P(μ)).

When we solve the PQ-embedding representation D(G) as an instance of SIMULTA-
NEOUS PQ-ORDERING, we choose orders bottom-up. Thus, we first choose orders for the
trees P(μ) and Q(μ), which corresponds to choosing orders for the P-nodes and orien-
tations for the R-nodes in the SPQR-tree. For the embedding trees, there is no choice
left, since all nodes are fixed by some children, which is not surprising since the pla-
nar embedding is already chosen. Hence, extending the chosen orders to orders of the
embedding trees can be seen as computing the circular orders of edges around every
vertex for given embeddings of the skeletons of every node in T . Figure 11 depicts the

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:34 T. Bläsius and I. Rutter

Fig. 11. A biconnected planar graph and its SPQR-tree on the top and the corresponding PQ-embedding
representation on the bottom. The injective maps on the edges are not explicitly depicted, but the starting
points of the arcs suggest which maps are suitable.

PQ-embedding representation for the example we had before in Figure 5(b). Note that
the size of the PQ-embedding representation D(G) is obviously linear in the size of the
SPQR-tree T of G and thus linear in the size of the planar graph G itself.

The PQ-embedding representation is obviously less elegant than the SPQR-tree also
representing all embeddings of a biconnected planar graph. At least for a human, the
planar embeddings of a graph are easy to understand by looking at the SPQR-tree,
whereas the PQ-embedding representation does not really help. However, with the PQ-
embedding representation, it is easier to formulate constraints concerning the order
of incident edges around a vertex since these orders are explicitly expressed by the
embedding trees.

4.2. Partially PQ-Constrained Planarity

Let G = (V, E) be a planar graph and let C = {T ′(v1), . . . , T ′(vn)} be a set of PQ-trees
such that, for every vertex vi ∈ V , the leaves of T (vi) are a subset E′(vi) ⊆ E(vi) of edges
incident to vi. We call T ′(vi) the constraint tree of the vertex vi. The problem PARTIALLY

PQ-CONSTRAINED PLANARITY asks whether a planar embedding of G exists such that the
order of incident edges E(vi) around every vertex vi induces an order on E′(vi) that is
represented by the constraint tree T ′(vi).

Given an instance (G, C) of PARTIALLY PQ-CONSTRAINED PLANARITY with G biconnected,
it is straightforward to formulate it as an instance of SIMULTANEOUS PQ-ORDERING. Sim-
ply take the PQ-embedding representation D(G) of G and add the constraint trees
together with an arc (T (v), T ′(v); id) from the embedding tree to the corresponding con-
straint tree. Denote the resulting instance of SIMULTANEOUS PQ-ORDERING by D(G, C).
Figure 12 depicts an example instance of PARTIALLY PQ-CONSTRAINED PLANARITY formu-
lated as an instance of SIMULTANEOUS PQ-ORDERING. Note that we can leave the orders of
edges around a vertex unconstrained by choosing the empty PQ-tree as its constraint
tree. To obtain the following theorem, we need to show that (G, C) and D(G, C) are

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:35

Fig. 12. The PQ-embedding representation from Figure 11 together with the constraint trees provided by
an instance of PARTIALLY PQ-CONSTRAINED PLANARITY.

equivalent, which is quite obvious, and that D(G, C) is an at most 2-fixed instance of
SIMULTANEOUS PQ-ORDERING.

THEOREM 4.1. PARTIALLY PQ-CONSTRAINED PLANARITY can be solved in quadratic time
for biconnected graphs.

PROOF. Consider (G, C) to be an instance of PARTIALLY PQ-CONSTRAINED PLANARITY

where G is a biconnected planar graph and C the set of constraint trees. Furthermore,
let D(G, C) be the corresponding instance of SIMULTANEOUS PQ-ORDERING. Since D(G, C)
contains the PQ-embedding representation D(G), every solution of D(G, C) yields a
planar embedding of G. Additionally, this planar embedding respects the constraint
trees, since the order of edges around every vertex is an extension of an order of the
leaves in the corresponding constraint tree. On the other hand, it is clear that a planar
embedding of G respecting the constraint trees yields simultaneous orders for all trees
in D(G, C). Since the size of D(G, C) is linear in the size of (G, C), we can solve (G, C)
in quadratic time using Theorem 3.16 if D(G, C) is 1-critical. We will show that the
instance D(G, C) is at most 2-fixed, and hence, due to Theorem 3.11, also 1-critical.

To compute the fixedness of every P-node in every PQ-tree in D(G, C), we distinguish
between three kinds of trees, the embedding trees, the consistency trees, and the
constraint trees. If we consider a P-node μ in an embedding tree T (v), this P-node is
fixed with respect to exactly one consistency tree; namely, the tree that represents the
P-node in the SPQR-tree μ stems from. In addition to the consistency trees, T (v) has
the constraint tree T ′(v) as child; thus, μ can be fixed with respect to T ′(v). Since T (v)
has no parents and no other children, μ is at most 2-fixed (i.e., fixed(μ) ≤ 2). Consider
a P-node μ′ in a constraint tree T ′(v). Since T ′(v) has no children and its only parent is
T (v) containing the P-node μ that is fixed by μ′, we have by the definition of fixedness
that fixed(μ′) = fixed(μ) − 1. Since μ is a P-node in an embedding tree, we obtain
fixed(μ′) ≤ 1. We have two kinds of consistency trees, some stem from P- and some
from R-nodes in the SPQR-tree. We need to consider only trees P(μ) stemming from P-
nodes since the consistency trees stemming from R-nodes only contain a single Q-node.
Denote the single P-node in P(μ) also by μ and let μ1 and μ2 be the two P-nodes in the

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:36 T. Bläsius and I. Rutter

embedding trees T (v1) and T (v2) that are fixed with respect to P(μ). Since P(μ) has no
child and only these two parents, we obtain fixed(μ) = (fixed(μ1) − 1) + (fixed(μ2) − 1).
Since μ1 and μ2 are P-nodes in embedding trees, this yields fixed(μ) ≤ 2. Hence, all
P-nodes in all PQ-trees in D(G, C) are at most 2-fixed; thus, D(G, C) itself is 2-fixed.
Finally, we can apply Theorem 3.11 yielding that D(G, C) is 1-critical and thus can be
solved quadratic time due to Theorem 3.16.

Since D(G, C) is a special instance of SIMULTANEOUS PQ-ORDERING, which seems to
be quite simple, it is worth making a more detailed runtime analysis, yielding the
following theorem.

THEOREM 4.2. PARTIALLY PQ-CONSTRAINED PLANARITY can be solved in linear time for
biconnected graphs.

PROOF. As described in Section 3.4 about the implementation details, there are four
major parts influencing the running time. First, a given instance needs to be normalized
consuming quadratic time (Lemma 3.12), the expansion graph has quadratic size in
worst case (Lemma 3.13), its computation consumes quadratic time (Lemma 3.14), and,
finally, choosing borders bottom-up needs linear time in the size of the expansion graph
(Lemma 3.15).

In an instance D(G, C) of SIMULTANEOUS PQ-ORDERING stemming from an instance
(G, C) of PARTIALLY PQ-CONSTRAINED PLANARITY, there are two kinds of arcs: First, arcs
from embedding trees to consistency trees, and, second, arcs from embedding trees to
constraint trees. When normalizing an arc from an embedding tree to a consistency
tree, there is nothing to do since there is a bijection between the consistency tree and
an inner node of the embedding tree. The arcs from embedding trees to constraint trees
can be normalized as usual by consuming only linear time since each embedding tree
has only one consistency tree as child. Hence, normalization can be done in linear time.
When computing the expansion graph, the fixedness of the nodes is important. As seen
in the proof of Theorem 4.1, the P-nodes in embedding and consistency trees are at most
2-fixed, whereas the P-nodes in constraint trees are at most 1-fixed. Note that every
critical triple (μ, T1, T2) in D(G, C) is of the kind that μ is contained in an embedding
tree, T1 is a constraint tree , and T2 is a consistency tree. Thus, the expansion tree
T (μ, T1, T2) created due to such a triple has two parents, where one of them is at most
1-fixed and the other at most 2-fixed. Hence, by the definition of fixedness, T (μ, T1, T2)
itself is at most 1-fixed. After creating these expansion trees, all newly created critical
triple must contain a P-node μ in a consistency tree and two expansion trees. By
creating expansion trees for these critical triples, no new critical triple are created,
and, hence, the expansion stops. It is clear that the resulting expansion graph has only
linear size and can be computed in linear time. Choosing orders bottom-up takes linear
time in the size of the expansion graph as before. Hence, we obtain the claimed linear
running time.

4.3. Simultaneous Embedding with Fixed Edges

Let G©1 = (V ©1, E©1) and G©2 = (V ©2, E©2) be two planar graphs sharing a common sub-
graph G = (V, E) with V = V ©1 ∩ V ©2 and E = E©1 ∩ E©2. SEFE asks, whether there
exist planar drawings of G©1 and G©2 such that their intersection G is drawn the same in
both. Jünger and Schulz [2009, Theorem 4] show that this is equivalent to the question
whether combinatorial embeddings of G©1 and G©2 inducing the same combinatorial
embedding for their intersection G exist.

Assume that G©1 and G©2 are biconnected and G is connected. Then, the order of
incident edges around every vertex determines the combinatorial embedding, which
is not the case for disconnected graphs. Thus, we can reformulate the problem as

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:37

follows. Can we find planar embeddings of G©1 and G©2 inducing, for every common
vertex v ∈ V , the same order of common incident edges E(v) around v? Since both
graphs are biconnected, they both have a PQ-embedding representation, and it is
straightforward to formulate an instance (G©1, G©2) of SEFE as an instance D(G©1, G©2)
of SIMULTANEOUS PQ-ORDERING. The instance D(G©1, G©2) contains the PQ-embedding
representations D(G©1) and D(G©2) of G©1 and G©2, respectively. Every common vertex
v ∈ V occurs as v©1 in V ©1 and as v©2 in V ©2; thus, we have the two embedding trees T (v©1)
and T (v©2). By projecting these two embedding trees to the common edges incident to
v and intersecting the result, we obtain a new tree T (v) called the common embedding
tree of v. If we add the arcs (T (v©1), T (v)), and (T (v©2), T (v)) to the instance D(G©1, G©2)
of SIMULTANEOUS PQ-ORDERING, we ensure that the common edges incident to v are
ordered the same in both graphs. Note that this representation is quite similar to the
representation of an instance of PARTIALLY PQ-CONSTRAINED PLANARITY. Every common
embedding tree can be seen as a constraint tree for both graphs simultaneously. To
obtain the following theorem, we need to show that the instances (G©1, G©2) of SEFE
and the instance D(G©1, G©2) of SIMULTANEOUS PQ-ORDERING are equivalent and that
D(G©1, G©2) is at most 2-fixed.

THEOREM 4.3. SEFE can be solved in quadratic time if both graphs are biconnected
and the common graph is connected.

PROOF. Let (G©1, G©2) be an instance of SEFE with the common graph G such that G©1
and G©2 are biconnected and G is connected. Furthermore, let D(G©1, G©2) be the corre-
sponding instance of SIMULTANEOUS PQ-ORDERING as defined earlier. Since D(G©1, G©2) con-
tains the PQ-embedding representations D(G©1) and D(G©2), every solution of D(G©1, G©2)
yields planar embeddings of G©1 and G©2. Furthermore, the common edges incident to a
common vertex v ∈ V are ordered the same in the two embedding trees T (v©1) and T (v©2)
since both orders extend the same order of common edges represented by the common
embedding tree T (v). Thus, the embeddings for G©1 and G©2 induced by a solution of
D(G©1, G©2) induce the same embedding on the common graph and hence are a solution
of (G©1, G©2). On the other hand, if we have a SEFE of G©1 and G©2, these embeddings
induce orders for the leaves of all PQ-trees in D(G©1, G©2) and, since the common edges
around every common vertex are ordered the same in both embeddings, all constraints
given by arcs in D(G©1, G©2) are satisfied.

To compute the fixedness of every P-node in every PQ-tree in D(G©1, G©2), we dis-
tinguish between three kinds of trees: the embedding trees, the consistency trees and
the common embedding trees. The proof that fixed(μ) ≤ 2 for every P-node μ in every
embedding and consistency tree works as in the proof of Theorem 4.1. For a P-node μ in
a common embedding tree T (v), we have two P-nodes μ©1 and μ©2 in the parents T (v©1)
and T (v©2) of T (v) that it stems from. Since T (v) has no other parents and no children,
we obtain fixed(μ) = (fixed(μ©1)−1) + (fixed(μ©2)−1) by the definition of fixedness. Since
μ©1 and μ©2 are P-nodes in embedding trees, we know that their fixedness is at most 2.
Thus, we have fixed(μ) ≤ 2. Hence, all P-nodes in all PQ-trees in D(G©1, G©2) are at most
2-fixed, thus D(G©1, G©2) itself is 2-fixed. At this point, we can apply Theorems 3.11 and
3.16 to obtain a solution in quadratic time.

4.4. Simultaneous Interval Graphs

A graph G is an interval graph if each vertex v can be represented as an interval I(v) ⊂ R

such that two vertices u and v are adjacent if and only if their intervals intersect; that
is, I(u) ∩ I(v) 	= ∅. Such a representation is called interval representation of G; see
Figure 13(a) for two examples. Two graphs G©1 and G©2 sharing a common subgraph are
simultaneous interval graphs if G©1 and G©2 have interval representations such that the

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:38 T. Bläsius and I. Rutter

Fig. 13. (a) Two interval graphs G©1 and G©2 with interval representations. The maximal cliques are
C©1

1 , C©1
2 , C©1

3 and C©2
1 , C©2

2 , C©2
3 , respectively. (b) Interval representations of G©1 and G©2 such that common ver-

tices are represented by the same interval in both representations; in other words, a simultaneous interval
representation of G©1 and G©2.

common vertices are represented by the same intervals in both representations; see
Figure 13(b) for an example. The problem to decide whether a pair (G©1, G©2) of graphs
are simultaneous interval graphs is called SIMULTANEOUS INTERVAL REPRESENTATION.

The first algorithm recognizing interval graphs in linear time was given by Booth
and Lueker [1976] and was based on a characterization by Fulkerson and Gross [1965].
This characterization says that G is an interval graph if and only if there is a linear
order of all its maximal cliques such that, for each vertex v, all cliques containing v
appear consecutively. It is easy to see that an interval graph can have only linearly
many maximal cliques. Thus, it is clear how to recognize interval graphs in linear
time by using PQ-trees. The problem SIMULTANEOUS INTERVAL REPRESENTATION was first
considered by Jampani and Lubiw [2010], who show how to solve it in O(n2 log n) time.

In Theorem 4.4, we give a proof of the characterization by Fulkerson and Gross
that can then be extended to a characterization of simultaneous interval graphs in
Theorem 4.5. With this characterization, it is straightforward to formulate an instance
of SIMULTANEOUS PQ-ORDERING that can be used to test whether a pair of graphs are
simultaneous interval graphs in linear time, improving the so far known result. The
following definition simplifies the notation. Let C1, . . . , C� be sets (for example, maximal
cliques) and let v be an element contained in some of these sets. We say that a linear
order of these sets is v-consecutive if the sets containing v appear consecutively.

THEOREM 4.4 ([FULKERSON AND GROSS 1965]). A graph G is an interval graph if and
only if there is a linear order of all maximal cliques of G that is v-consecutive with
respect to every vertex v.

PROOF. Assume G is an interval graph with a fixed interval representation. Let
C = {v1, . . . , vk} be a maximal clique in G. It is clear that there must be a position x
such that x is contained in the intervals I(v1), . . . , I(vk). Additionally, x is not contained
in any interval represented by another vertex since the clique C is maximal. By fixing
such positions x1, . . . , x� for each of the maximal cliques C1, . . . , C� in G, we define a
linear order on all maximal cliques. Assume this order is not v-consecutive for some
vertex v. Then, there are cliques Ci, C j, Ck with xi < xj < xk such that v ∈ Ci, Ck but
v /∈ Cj . However, since v is in Ci and Ck, its interval I(v) necessarily contains xi and xk,
and, hence, also xj . This is a contradiction to the construction of the position xj . Hence,
the defined linear order of all maximal cliques is v-consecutive with respect to every
vertex v.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:39

Now assume O = C1 . . . C� is a linear order of all maximal cliques of G that is v-
consecutive for every vertex v. Let v be a vertex and let Ci and Cj be the leftmost and
rightmost cliques containing v, respectively. Then define I(v) = [i, j] to be the interval
representing v. With this representation, we obtain all edges contained in the maximal
cliques C1, . . . , C� at the natural numbers 1, . . . , �, since, for each clique Ci = {v1, . . . , vk},
the position i is contained in all the intervals I(v1), . . . , I(vk). Furthermore, there is no
vertex u /∈ Ci such that I(u) also contains i because such a vertex would need to be
contained in a clique on the left and in a clique on the right to Ci, which is a contradiction
since the order O is u-consecutive. Thus, at the integer positions 1, . . . , � all edges in
G are represented and no edges not in G. Furthermore, all intervals I(v) containing a
noninteger position 1 < x < � contain also �x� and �x�, yielding that no edge is defined
due to position x that is not already defined due to an integer position. Hence, this
definition of intervals is an interval representation of G showing that G is an interval
graph.

We can extend this characterization of interval graphs to a characterization of si-
multaneous interval graphs by using the same arguments as follows.

THEOREM 4.5. Two graphs G©1 and G©2 are simultaneous interval graphs if and only
if there are linear orders of the maximal cliques of G©1 and G©2 that are v-consecutive
with respect to every vertex v in G©1 and G©2, respectively, such that they can be extended
to an order of the union of maximal cliques that is v-consecutive with respect to every
common vertex v.

PROOF. Assume G©1 and G©2 are simultaneous interval graphs and let, for every vertex
v, I(v) be the interval representing v. Assume C©1 = {C©1

1 , . . . , C©1
k } and C©2 = {C©2

1 , . . . , C©2
� }

are the maximal cliques in G©1 and G©2, respectively. When considering G©1 for itself,
we again obtain for every maximal clique C©1 = {v1, . . . , vr} a position x such that x is
contained in I(vi) for every vi ∈ C©1 but in no other interval representing a vertex in G©1.
The same can be done for the maximal cliques of G©2, yielding a linear order O of all
maximal cliques C = C©1 ∪ C©2. It is clear that the projection of this order to the cliques
in G©1 is v-consecutive for every vertex v in G©1 due to Theorem 4.4, and the same holds
for G©2. It remains to show that O is v-consecutive for each common vertex v. Assume
O is not v-consecutive for some common vertex v. Then there need to be three cliques
Ci, C j, and Ck, no matter if they are maximal cliques in G©1 or in G©2, with positions xi,
xj, and xk such that xi < xj < xk and v ∈ Ci, Ck but v /∈ C j . However, since the interval
I(v) contains xi and xk, it also contains xj . This is a contradiction to the construction of
the position xj for the clique Cj since v is a common vertex. Note that this is the same
argument as used in the proof of Theorem 4.4.

Conversely, we need to show how to construct an interval representation from a
given linear order of all maximal cliques. Assume we have a linear order O of all
maximal cliques satisfying the conditions of the theorem. Rename the cliques such that
C1 . . . Ck+� is this order, neglecting for a moment from which graph the cliques stem.
Let v be a vertex in G©1 or G©2 and let Ci and C j be the leftmost and rightmost clique
in O containing v. Then we define the interval I(v) to be [i, j], as in the case of a single
graph. Our claim is that this yields a simultaneous interval representation of G©1 and
G©2. Again, it is easy to see that a noninteger position x is only contained in intervals also
containing �x� and �x�. Thus, we only need to consider the positions 1, . . . , k+�. Let i be
such an integral position and assume, without loss of generality, that Ci = {v1, . . . , vr}
is a clique of G©1. Then i is contained in all the intervals I(v1), . . . , I(vr) by definition.
The position i may be additionally contained in the interval I(u) for a vertex that is
exclusively contained in G©2 , but this does not create an edge between vertices in G©1.
However, there is no vertex u /∈ Ci contained in G©1 such that i is contained in I(u) since

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:40 T. Bläsius and I. Rutter

this would violate the u-consecutiveness either of the whole order or of the projection
to the cliques in G©1. Since the same argument works for cliques in G©2, all edges in
maximal cliques of G©1 and G©2 are represented by the defined interval representation,
and, at the integer positions, no edges not contained in the graph are represented.
Hence, this definition of intervals is a simultaneous interval representation of G©1 and
G©2.

With this characterization, it is straightforward to formulate the problem of rec-
ognizing simultaneous interval graphs as an instance of SIMULTANEOUS PQ-ORDERING.
Furthermore, the resulting instance is so simple that it can be solved in linear time.
Since we want to represent linear orders instead of circular orders, we need to use
rooted PQ-trees instead of unrooted ones. This can be achieved as mentioned in the
preliminaries about PQ-trees (Section 2.3). Consider an instance of SIMULTANEOUS PQ-
ORDERING having rooted PQ-trees as nodes. By introducing for every PQ-tree a new
leaf �, the special leaf, on top of the root, unrooting the PQ-tree and setting ϕ(�) = �
for every arc (T , T ′; ϕ), we obtain an equivalent instance of SIMULTANEOUS PQ-ORDERING

having unrooted PQ-trees as nodes. Thus, solving SIMULTANEOUS PQ-ORDERING for the
case that the PQ-trees are rooted reduces to the case where the PQ-trees are unrooted.
Note that the other direction does not work as simply since we cannot necessarily find
a single leaf � contained in every PQ-tree. The PQ-trees mentioned in the remaining
part of this section are assumed to be rooted, representing linear orders.

THEOREM 4.6. SIMULTANEOUS INTERVAL REPRESENTATION can be solved in linear time.

PROOF. Let C©1 = {C©1
1 , . . . , C©1

k } and C©2 = {C©2
1 , . . . , C©2

� } be the maximal cliques of G©1

and G©2, respectively, and let C = C©1 ∪ C©2 be the set of all maximal cliques. We define
three PQ-trees T , T ©1, and T ©2 having C, C©1, and C©2 as leaves, respectively. The tree
T is defined such that it represents all linear orders of C that are v-consecutive with
respect to all common vertices v. The trees T ©1 and T ©2 are defined to represent all
linear orders of C©1 and C©2 that are v-consecutive with respect to all vertices v in G©1
and G©2, respectively. Note that T ©1 and T ©2 are the PQ-trees that would be used to
test whether G©1 and G©2 themselves are interval graphs. By the characterization in
Theorem 4.5, it is clear that G©1 and G©2 are simultaneous interval graphs if and only
if we can find an order represented by T extending orders represented by T ©1 and T ©2.
Hence, G©1 and G©2 are simultaneous interval graphs if and only if the instance D of
SIMULTANEOUS PQ-ORDERING consisting of the nodes T , T ©1, and T ©2 and the arcs (T , T ©1)
and (T , T ©2) has a solution. This can be checked in quadratic time using Theorem 3.16
since D is obviously 1-critical. Furthermore, normalization can of course be done in
linear time, and the expansion tree of linear size can be computed in linear time since
expansion stops after a single expansion step. Hence, the instance D of SIMULTANEOUS

PQ-ORDERING can be solved in linear time, which concludes the proof.

4.5. Extending Partial Interval Representations

Let G be a graph, let H = (V, E) be a subgraph of G, and let I be an interval rep-
resentation of H. The problem PARTIAL INTERVAL GRAPH EXTENSION asks whether there
exists an interval graph representation I′ of G such that, for all v ∈ V , we have that
I′(v) = I(v). We call an instance (G, H, I) of PARTIAL INTERVAL GRAPH EXTENSION a partial
interval graph.

Klavı́k et al. [2011] show that PARTIAL INTERVAL GRAPH EXTENSION can be solved in
time O(n2), where n = |V (G)|. We show that PARTIAL INTERVAL GRAPH EXTENSION can be
reduced in O(n + m) time to an instance of SIMULTANEOUS INTERVAL REPRESENTATION. It
then follows from Theorem 4.6 that the partial interval graph extension problem can
be solved in O(n + m) time, where m = |E(G)|.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:41

Fig. 14. An example graph H containing the vertices v1, . . . , v4 with prescribed interval representation I
together with the markers �i, mi, ri and the connectors ci on the top. The resulting graph G′ with the new
vertices Li, Mi, Ri, and Ci on the bottom.

Without loss of generality, we assume that the endpoints of all intervals I(v), v ∈
V (H) are distinct. For v ∈ V (H), let �(v) and r(v) denote the left and right endpoints
of I(v), respectively. Further, let S(I) denote the sequence of these endpoints in increas-
ing order of coordinate. We call this order the signature of I. We say that two interval
representations I and I′ of the same graph H are equivalent if they have the same
signature. Klavı́k et al. [2011] show that PARTIAL INTERVAL GRAPH EXTENSION for a par-
tial interval graph (G, H, I) is equivalent to deciding whether there exists an interval
representation I′ of G whose restriction to H is equivalent to I. In the following, we
construct an interval graph G′ containing H as an induced subgraph such that every
interval representation of G′ induces an interval representation of H that is equivalent
to I.

Let p1, . . . , p2n denote the interval endpoints of I in increasing order. We now add
several intervals to the representation. Namely, for each point pi, we put three inter-
vals of length ε. The interval �i is to the left of pi, interval ri is to the right of pi, and mi
contains pi and intersects both �i and ri. We choose ε small enough so that no two inter-
vals of distinct points pi and pj intersect. We call these intervals markers. Finally, we
add 2n−1 connectors, where the connector ci for i = 1, . . . , 2n−1 lies strictly between pi
and pi+1 and intersects ri and �i+1; see Figure 14 for an example. Now consider the
graph G′ given by this interval representation. We denote the vertices corresponding
to the intervals �i, mi, ri, and ci by Li, Mi, Ri, and Ci, respectively. Note that removing
all these vertices from G′ yields the graph H, which is hence an induced subgraph
of G′. Now the pair (G, G′) defines an instance of SIMULTANEOUS INTERVAL REPRESENTATION

corresponding to the instance (G, H, I) of PARTIAL INTERVAL GRAPH EXTENSION and we
obtain the following theorem by showing their equivalence.

THEOREM 4.7. The problem PARTIAL INTERVAL GRAPH EXTENSION can be solved in linear
time.

PROOF. Let (G, H, I) be an instance of PARTIAL INTERVAL GRAPH EXTENSION and let
(G, G′) be the corresponding instance of SIMULTANEOUS INTERVAL REPRESENTATION as de-
fined earlier. We show that these two instances are equivalent and that (G, G′) has size
linear in the size of (G, H, I).

Obviously G′ contains H as an induced subgraph. We claim that, in any interval
representation I′ of G′, the subrepresentation I′|H is equivalent to I. First, note that
the sequence L1, M1, R1, C1, . . . , C2n−1, L2n, M2n, R2n is an induced path in G′. Hence, in
every representation of G′, the starting points (and also the endpoints) of their intervals
occur either in this or in the reverse order. In particular, the marker intervals I′(Mi)

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:42 T. Bläsius and I. Rutter

are pairwise disjoint and sorted. Let vi denote the vertex whose interval has pi as an
endpoint. Since Mi is adjacent to Li and Ri, exactly one of which is adjacent vi, it follows
that I′(Mi) contains an endpoint of I′(vi). Since this holds for each marker Mi, the claim
follows.

With this result, the equivalence of the instance (G, H, I) and (G, G′) is easy to see.
If (G, H, I) admits an interval representation of G, then the preceding construction
shows how to construct a corresponding simultaneous representation of (G, G′). On
the other hand, if G and G′ admit a simultaneous interval representation, then the
endpoints of the intervals corresponding to vertices of H must occur in the same order
as in I, and hence the interval representation of G extends I.

It remains to show that G′ has size linear in the size of H. To this end, we revisit
the construction of G′ from H. Let H′ be the subgraph of G′ obtained by removing the
vertices corresponding to connectors. We first show that the size of H′ is linear in the
size of H.

Clearly, H′ contains exactly six additional vertices for each vertex of H (three for
each endpoint of an interval representing a vertex of H), and thus |V (H′)| = 7n. Now
consider the edges of H′. We denote by I(p) the set of vertices whose intervals contain p
in the interior. Let again p1, . . . , p2n denote the endpoints of the intervals in the interval
representation I of H. Recall that, for each such endpoint, we add three vertices, which
are represented by the intervals �i, mi, and ri, respectively. Note that the endpoints pi−1
and pi+1 (if they exist) lie to the left of �i and to the right of ri, respectively, and hence
do not intersect with these intervals. The neighbors of Li, Mi, and Ri belonging to H
are contained in I(pi) ∪ {vi}. This implies that the degree of Li, Mi, and Ri is linear in
the degree of vi in H, and hence the total number of edges in H′ is linear in |E(H)|.

For the step from H′ to G′, we add the connectors. Consider the ith connector Ci,
which is adjacent to Ri and Li+1. Since no other intervals start or end in-between, the
vertex corresponding to the connector Ci is adjacent to the same vertices as Ri and Li+1.
Thus, the size of G′ is linear in the size of H′, and the claim follows. Moreover, it is clear
that, assuming the intervals of I are given in sorted order, then G′ can be constructed
from G in O(n + m) time.

4.6. Generalization to Non-Biconnected Graphs

In this section, we return to the embedding representation derived in Section 4.1 and
relax the condition that the graph must be biconnected to have such a representation.
The reason that our solutions for PARTIALLY PQ-CONSTRAINED PLANARITY and SEFE are
restricted to the case where the graphs are biconnected is that the set of possible orders
of edges around a cutvertex may not be PQ-representable. However, this is not really
necessary. Assume we have a representation of all embeddings of a planar graph as
an instance of SIMULTANEOUS PQ-ORDERING with the following two properties. First, this
instance contains a PQ-tree T (v) for every vertex v having the edges incident to v as
leaves. And, second, this instance remains 1-critical even if we introduce an additional
child to T (v). If this is the case, PARTIALLY PQ-CONSTRAINED PLANARITY can be solved
by introducing the constraint tree T ′(v) as child of T (v). Similarly, in the setting of
SEFE, common edges around a vertex v can be enforced to be ordered the same by
introducing a common embedding tree T (v) having the common edges incident to v as
leaves as child of the trees T (v©1) and T (v©2), where T (v©1) and T (v©2) have the edges
incident to v in G©1 and G©2 as leaves, respectively. We show that all embeddings can be
represented by such an instance for the special case that every cutvertex is contained
in only two blocks. Furthermore, this extends to the case where each block containing
the cutvertex v consists of a single edge except for up to two blocks.

Consider a cutvertex v in a planar graph G that is contained in two blocks B1(v)
and B2(v) and let E1(v) and E2(v) be the edges incident to v contained in B1(v) and

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:43

Fig. 15. Representation of the possible orders of edges around a cutvertex v for the special case that v is
contained in two blocks in terms of an instance of SIMULTANEOUS PQ-ORDERING.

B2(v), respectively. As before, the orders of E1(v) around v that can occur in a planar
drawing can be represented by a PQ-tree T1(v) with E1(v) as leaves; call T1(v) the
block embedding tree with respect to B1. Let T2(v) be the block embedding tree of v
with respect to the second block B2. It is clear that, in a planar drawing of the whole
graph, the edges E1(v) (and with it also E2(v)) appear consecutively around v. This
condition can be formulated independently from the PQ-trees T1(v) and T2(v) by an
other PQ-tree T (v) consisting of two P-nodes μ1 and μ2 with the edge {μ1, μ2} and
leaves E1(v) and E2(v) attached to μ1 and μ2, respectively. It is clear that the instance
of SIMULTANEOUS PQ-ORDERING consisting of the PQ-tree T (v) with T1(v) and T2(v) as
children represents all possible circular orders of edges around v in the sense that,
in every planar embedding, the order of edges around v induces a solution of this
instance and vice versa; Figure 15 depicts this instance of SIMULTANEOUS PQ-ORDERING.
We call the PQ-tree T (v) the combined embedding tree of v. Of course, the order of edges
around each vertex cannot be chosen independently, but, since the block embedding
trees are embedding trees of biconnected components, the P- and Q-nodes stem from P-
and R-nodes in the SPQR-tree. We can thus again ensure consistency by introducing
the consistency trees for each block. This yields an extension of the PQ-embedding
representation to the case that G may contain cutvertices that are contained in two
blocks. Note that the embedding tree of a vertex that is not a cutvertex can be seen as
combined and block embedding tree at the same time.

It is easy to see that this representation satisfies the conditions mentioned earlier.
First, the combined embedding tree T (v) has the edges incident to v as leaves. Second,
if an additional child is introduced to every combined embedding tree, the instance
remains 2-fixed, which can be seen as follows. The combined embedding tree has three
children, the two block embedding trees and the additional child. However, each P-
node in T (v) is fixed with respect to only one of the block embedding trees, thus it is
2-fixed. Every P-node in the block embedding trees is fixed with respect to one child,
the corresponding consistency tree, thus it is 2-fixed since it has the combined em-
bedding tree as parent. The P-nodes in consistency trees are also 2-fixed since they
have two 2-fixed parents. Hence, we obtain a 2-fixed instance if we use this extended
PQ-embedding representation to formulate PARTIALLY PQ-CONSTRAINED PLANARITY or
SEFE as an instance of SIMULTANEOUS PQ-ORDERING. Furthermore, the runtime analy-
sis yielding linear time for PARTIALLY PQ-CONSTRAINED PLANARITY in Theorem 4.2 works
analogously.

Assume now that all blocks containing v consist of a single edge except for up to two
blocks B1 and B2. A block consisting of a single edge is identified with this edge and
called a bridge. It is clear that each bridge can be attached arbitrarily to an embedding
of B1 + B2. Hence, we can modify the extension of the PQ-embedding representation de-
fined earlier by introducing a single P-node containing all edges incident to v as parent
of the combined embedding tree. This tree then represents exactly the possible order-
ings of edges around v in any planar embedding. The analysis presented previously
works analogously, yielding the following two theorems.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:44 T. Bläsius and I. Rutter

THEOREM 4.8. PARTIALLY PQ-CONSTRAINED PLANARITY can be solved in linear time if
each vertex is contained in up to two blocks not consisting of a single edge.

THEOREM 4.9. SEFE can be solved in quadratic time if, in both graphs, every vertex is
contained in at most two blocks not consisting of a single edge, and the common graph
is connected.

Note that this special case always applies if the cutvertices have degree at most 5.
In particular, for SEFE, we obtain the following corollary.

COROLLARY 4.10. SEFE can be solved in quadratic time for maxdeg-5 graphs whose
intersection is connected.

5. CONCLUSION

In this work, we introduced a new problem called SIMULTANEOUS PQ-ORDERING. Its input
consists of a set of PQ-trees with a child-parent relation (a DAG with PQ-trees as
nodes) and asks whether, for every PQ-tree, a circular order can be chosen such that it
is an extension of the orders of all its children. This was motivated by the possibility of
representing the possible circular orders of edges around every vertex of a biconnected
planar graph by a PQ-tree. Unfortunately, SIMULTANEOUS PQ-ORDERING turned out to
be NP-complete in general. However, we showed that certain “simple” instances (the
1-critical instances) can be solved in polynomial time. To achieve this result, we showed
that satisfying the Q-constraints and the critical triples is sufficient to extend orders of
several children simultaneously to a parent if each P-node is contained in at most one
critical triple. Inserting additional PQ-trees—the expansion trees—enforces that the
critical triples are satisfied when choosing orders bottom-up. Creating the expansion
trees iteratively for every critical triple led to the expansion graph that turned out
to have polynomial size for 1-critical instances. This allows us to solve a 1-critical
instance of SIMULTANEOUS PQ-ORDERING in polynomial time, essentially by choosing
orders bottom-up in the expansion graph. We showed how this framework can be
applied to solve PARTIALLY PQ-CONSTRAINED PLANARITY for biconnected graphs and SEFE
for biconnected graphs with a connected intersection in polynomial time (linear and
quadratic, respectively), which were both not known to be efficiently solvable earlier.
Furthermore, we showed how to solves SIMULTANEOUS INTERVAL REPRESENTATION and
PARTIAL INTERVAL GRAPH EXTENSION in linear time, which improves over the best known
algorithms with running times O(n2 log n) and O(n2) algorithm, respectively. We stress
that all these results can be obtained in a straightforward way from the main result of
this work, the algorithm for SIMULTANEOUS PQ-ORDERING for 2-fixed instances.

Open problems. Several questions remain open for the applications as well as for
problems related to SIMULTANEOUS PQ-ORDERING. Since the set of possible orders of
edges around a cutvertex in a planar drawing is not necessarily PQ-representable,
our solutions for PARTIALLY PQ-CONSTRAINED PLANARITY and SEFE cannot handle graphs
containing cutvertices, except for the special cases discussed in Section 4.6. We believe
that understanding edge orderings around cutvertices can lead to substantial progress
for the SEFE problem. Thus, solving the simpler problem PARTIALLY PQ-CONSTRAINED

PLANARITY for graphs containing cutvertices seems to be worthwhile.
An obvious open problem concerning SIMULTANEOUS PQ-ORDERING is whether our re-

sult can be extended to instances that are not 1-critical or generalize it in the sense
that structures different from PQ-trees are used as nodes in the DAG. Questions form-
ing the basis of such an approach could be of the following kind. Given three PQ-trees
having some leaves in common, can we find an order for each of the trees such that
the three resulting orders can be extended to a common order? Note that testing this

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems 16:45

for three fixed orders can be done efficiently. Does it make the problem easier if we
consider rooted PQ-trees representing linear orders? Can we find structures similar to
PQ-trees that represent orders of edges around cutvertices?

REFERENCES

Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vı́t Jelı́nek, Jan Kratochvı́l, Maurizio Patrignani,
and Ignaz Rutter. 2010. Testing planarity of partially embedded graphs. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). Society for Industrial and Applied
Mathematics, 202–221.

Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter. 2012. Testing
the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph.
Journal of Discrete Algorithms 14 (2012), 150–172.

Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. 1979. A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Information Processing Letters 8, 3 (1979), 121–123.

Thomas Bläsius, Annette Karrer, and Ignaz Rutter. 2014. Simultaneous embedding: Edge orderings, relative
positions, cutvertices. In Proceedings of the 21st International Symposium on Graph Drawing (GD’13)
(Lecture Notes in Computer Science), Vol. 8242. Springer, Berlin, 220–231.

Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. 2013. Handbook of Graph Drawing and Visualiza-
tion. Chapman and Hall/CRC, Chapter Simultaneous Embedding of Planar Graphs, 349–381.

Thomas Bläsius and Ignaz Rutter. 2015. Disconnectivity and relative positions in simultaneous embeddings.
Computational Geometry: Theory and Applications 48, 6 (2015), 459–478.

Kellogg S. Booth. 1975. PQ-Tree Algorithms. Ph.D. Dissertation. University of California, Berkeley.
Kellogg S. Booth and George S. Lueker. 1976. Testing for the consecutive ones property, interval graphs, and

graph planarity using PQ-Tree algorithms. Journal of Computer System Science 13 (1976), 335–379.
Issue 3.

Giuseppe Di Battista and Roberto Tamassia. 1996a. On-line maintenance of triconnected components with
SPQR-trees. Algorithmica 15, 4 (1996), 302–318.

Giuseppe Di Battista and Roberto Tamassia. 1996b. On-line planarity testing. SIAM Journal on Computing
25, 5 (1996), 956–997.

Cesim Erten and Stephen G. Kobourov. 2005. Simultaneous embedding of planar graphs with few bends. In
Proceedings of the 12th International Symposium on Graph Drawing (GD’04) (Lecture Notes in Computer
Science), Vol. 3383. Springer, Berlin, 195–205.

Shimon Even, Alon Itai, and Adi Shamir. 1976. On the complexity of timetable and multicommodity flow
problems. SIAM Journal on Computing 5, 4 (1976), 691–703.

J. Joseph Fowler, Carsten Gutwenger, Michael Jünger, Petra Mutzel, and Michael Schulz. 2009. An SPQR-
tree approach to decide special cases of simultaneous embedding with fixed edges. In Proceedings of
the 16th International Symposium on Graph Drawing (GD’08) (Lecture Notes in Computer Science),
Vol. 5417. Springer, Berlin, 157–168.

Delbert R. Fulkerson and Oliver A. Gross. 1965. Incidence matrices and interval graphs. Pacific Journal of
Mathematics 15, 3 (1965), 835–855.

Zvi Galil and Nimrod Megiddo. 1977. Cyclic ordering is NP-complete. Theoretical Computer Science 5, 2
(1977), 179–182.

Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and Michael Schulz. 2006. Simul-
taneous graph embeddings with fixed edges. In Proceedings of the 32nd Workshop on Graph-Theoretic
Concepts in Computer Science (WG’06) (Lecture Notes in Computer Science), Vol. 4271. Springer, Berlin,
325–335.

Carsten Gutwenger, Karsten Klein, and Petra Mutzel. 2008. Planarity testing and optimal edge insertion
with embedding constraints. Journal of Graph Algorithms and Applications 12, 1 (2008), 73–95.

Carsten Gutwenger and Petra Mutzel. 2001. A linear time implementation of SPQR-trees. In Proceedings
of the 8th International Symposium on Graph Drawing (GD’00) (Lecture Notes in Computer Science),
Vol. 1984. Springer, Berlin, 77–90.

Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw. 2010. Testing simultaneous planarity when
the common graph is 2-connected. In Proceedings of the 21st International Symposium on Algorithms
and Computation (ISAAC’10) (Lecture Notes in Computer Science), Vol. 6507. Springer, Berlin, 410–421.

Bernhard Haeupler and Robert E. Tarjan. 2008. Planarity algorithms via PQ-Trees (Extended abstract).
Electronic Notes in Discrete Mathematics 31 (2008), 143–149.

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.



16:46 T. Bläsius and I. Rutter

Wen-Lian Hsu. 2001. PC-trees vs. PQ-trees. In Proceedings of the 7th Annual International Conference on
Computing and Combinatorics (COCOON’01) (Lecture Notes in Computer Science). Springer, Berlin,
207–217.

Wen-Lian Hsu and Ross M. McConnell. 2001. PQ-Trees, PC-Trees, and Planar Graphs. Retrieved from
www.cs.colostate.edu/ rmm/pc2.pdf.

Wen-Lian Hsu and Ross M. McConnell. 2003. PC-trees and circular-ones arrangements. Theoretical Com-
puter Science 296, 1, 99–116.

Krishnam Raju Jampani and Anna Lubiw. 2009. The simultaneous representation problem for chordal,
comparability and permutation graphs. In Proceedings of the 11th International Symposium on Algo-
rithms and Data Structures (WADS’09) (Lecture Notes in Computer Science), Vol. 5664. Springer, Berlin,
387–398.

Krishnam Raju Jampani and Anna Lubiw. 2010. Simultaneous interval graphs. In Proceedings of the 21st
International Symposium on Algorithms and Computation (ISAAC’10) (Lecture Notes in Computer Sci-
ence), Vol. 6506. Springer, Berlin, 206–217.

Vı́t Jelı́nek, Jan Kratochvı́l, and Ignaz Rutter. 2011. A Kuratowski-type theorem for planarity of partially
embedded graphs. In Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG’11).
ACM, 107–116.

Michael Jünger and Michael Schulz. 2009. Intersection graphs in simultaneous embedding with fixed edges.
Journal of Graph Algorithms and Applications 13, 2 (2009), 205–218.

Michael Kaufmann and Roland Wiese. 2002. Embedding vertices at points: Few bends suffice for planar
graphs. Journal of Graph Algorithms and Applications 6, 1 (2002), 115–129.

Pavel Klavı́k, Jan Kratochvı́l, and Tomáš Vyskočil. 2011. Extending partial representations of interval
graphs. In Proceedings of the 8th Annual Conference on Theory and Applications of Models of Computa-
tion (TAMC’11) (Lecture Notes in Computer Science), Vol. 6648. Springer, Berlin, 276–285.

M. R. Krom. 1967. The decision problem for a class of first-order formulas in which all disjunctions are
binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 13, 1–2 (1967), 15–20.

János Pach and Rephael Wenger. 1998. Embedding planar graphs at fixed vertex locations. In Proceedings
of the 6th International Symposium on Graph Drawing (GD’98) (Lecture Notes in Computer Science),
Vol. 1547. Springer, Berlin, 263–274.

Marcus Schaefer. 2013. Toward a theory of planarity: Hanani-Tutte and planarity variants. In Proceedings
of the 20th International Symposium on Graph Drawing (GD’12) (Lecture Notes in Computer Science),
Vol. 7704. Springer, Berlin, 162–173.

Alan Tucker. 1971. Matrix characterizations of circular-arc graphs. Pacific Journal of Mathematics 39, 2
(1971), 535–545.

Received August 2013; accepted February 2015

ACM Transactions on Algorithms, Vol. 12, No. 2, Article 16, Publication date: December 2015.

http://www.cs.colostate.edu/ rmm/pc2.pdf

