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ABSTRACT
With the prevalence of social networks, it has become in-
creasingly important to understand their features and limi-
tations. It has been observed that information spreads ex-
tremely fast in social networks. We study the performance of
randomized rumor spreading protocols on graphs in the pref-
erential attachment model. The well-known random phone
call model of Karp et al. (FOCS 2000) is a push-pull strategy
where in each round, each vertex chooses a random neighbor
and exchanges information with it. We prove the following.

• The push-pull strategy delivers a message to all nodes
within Θ(logn) rounds with high probability. The best
known bound so far was O(log2 n).

• If we slightly modify the protocol so that contacts are
chosen uniformly from all neighbors but the one con-
tacted in the previous round, then this time reduces to
Θ(logn/ log logn), which is the diameter of the graph.
This is the first time that a sublogarithmic broadcast
time is proven for a natural setting. Also, this is the
first time that avoiding double-contacts reduces the
run-time to a smaller order of magnitude.

Categories and Subject Descriptors
F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity

General Terms
Algorithms, Measurement, Theory

1. INTRODUCTION
The first picture [23] of US Airways Flight 1549’s crash

landing on the Hudson River became known to a broad audi-
ence through Twitter so quickly that people were wondering
if Twitter will replace traditional news media in the near fu-
ture. Even with traditional means of communication, all of
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us have witnessed how news spread remarkably fast among
our friends, colleagues and other social networks.

Not least because of the emergence of huge online so-
cial networks like Facebook with currently 600 Million mem-
bers [7] is the subject of information dissemination on social
networks relevant from an algorithmic point of view.

In this paper, we study a natural rumor spreading protocol
and prove that it spreads a rumor in sublogarithmic time in
a classic graph theoretic model for social networks.

As graph model we use the preferential attachment (PA)
model originally introduced by Barabási and Albert [1]. It
builds on the paradigm that new vertices attach to already
present vertices with a probability proportional to their de-
gree. Rigorous studies [2–6, 11, 17] show that this model
indeed enjoys many properties observed in social networks,
e.g., a power law distribution of the vertex degrees, a small
diameter and a small average degree. The precise definition
of the PA-model can be found in Section 2.

To model the rumor spreading process, we always assume
a discrete time line. The rumor first appears at an arbitrary
vertex in round 0. We are interested in the number of rounds
necessary until all vertices are informed.

A simple way to model the rumor spreading process is
to assume that in each round, each vertex that knows the
rumor, forwards it to a randomly chosen neighbor. This is
known as the push strategy. For many network topologies,
this strategy is a very efficient way to spread a rumor. Let
n denote the number of vertices of a graph. Then the push
model with high probability (i.e., with probability 1− o(1))
sends the rumor to all vertices in time Θ(log n), if the graph
is a complete graph [19, 26], a hypercube [16], an Erdős-
Rényi random graph Gn,p with p ≥ (1+ε) log(n)/n [16, 20],
a random regular graph [18], or an expander graph [18, 27].
In contrast to this, Chierichetti, Lattanzi, and Panconesi [8]
showed that the push model with non-vanishing probability
needs Ω(nα) rounds on PA-graphs for some α > 0.

Opposite to the push strategy is the pull strategy : each
vertex in each round contacts a random neighbor and learns
the rumor if its contact knows the rumor already. There is
a symmetry between the two models. This was observed for
a quasirandom version of the two models in [13], but similar
arguments also hold for the two random models discussed
so far. Thus, the above results also hold for the pull model.

Karp, Schindelhauer, Shenker, and Vöcking [22] pointed
out that for complete graphs, the pull strategy is inferior to
the push strategy until roughly n/2 vertices are informed,
and then the pull strategy becomes more effective. This mo-
tivates to combine both approaches. In this so-called push-
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pull strategy each vertex contacts another vertex chosen uni-
formly at random among its neighbors. It pushes the rumor
in case it has the rumor, and pulls the rumor in case the
neighbor has the rumor. For complete graphs this protocol
also needs Θ(log n) rounds, though with better implicit con-
stants [12, 14, 22]. Elsässer [14] also proved a lower bound of
Ω(logn) rounds for Erdős-Rényi random graphs Gn,p with
p ≥ polylog(n)/n. For preferential attachment graphs, how-
ever, the push-pull strategy is much better than push or pull
alone. Chierichetti et al. [8] showed that with this strategy,
O(log2 n) rounds suffice with high probability.

So far it has been open how sharp this bound is. The
recent works on graphs with high conductance only show
that for graphs with conductance Φ the broadcast time is
bounded by O(Φ−1 log2(Φ−1) logn) [9]. Unfortunately, the
conductance of the preferential attachment model seems not
known. Several power law graphs have a conductance of
Φ = Ω(log−1 n) [10, 21] and this has also been observed em-
pirically for real social networks [24]. Mihail, Papadimitriou,
and Saberi [25] showed that certain graphs that are similar
to PA-graphs have constant conductance. If this was true
also for the PA-model, a bound of O(logn) would follow.

Our results: We prove that the push-pull protocol in-
deed with high probability spreads the rumor to all nodes in
a PA-graph in time Θ(logn). If we assume a slightly more
clever process, namely that contacts are chosen uniformly at
random among all neighbors except the one that was cho-
sen just in the round before, then O(logn/ log logn) rounds
suffice (cf. Theorem 3.1). This is asymptotically optimal as
the diameter of a PA-graph is Θ(log n/ log logn) [6]. This
result can be seen as an explanation why rumor spreading
in actual social networks is extremely fast.

We should note that the idea of excluding previously con-
tacted nodes is not new. Elsässer and Sauerwald [15] used
the exclusion of the previous three contacts to design proto-
cols that reduce the number of messages sent, an aspect im-
portant when using such protocols to disseminate informa-
tion in networks, e.g., to maintain distributed databases [12].
However, excluding previous contacts so far did not yield a
faster rumor spreading. In fact, Elsässer and Sauerwald [15]
have shown that the Ω(logn) lower bound for rumor spread-
ing in Erdős-Rényi random graphs Gn,p, p > polylog(n)/n,
remains true if arbitrary exclusion schemes are used.

2. PRECISE MODEL AND
PRELIMINARIES

Preferential attachment graphs were first introduced by
Barabási and Albert [1]. In this work, we follow the formal
definition of Bollobás et al. [5, 6]. Let G be an undirected
graph. We denote by degG(v) the degree of a vertex v in G.

Definition 2.1 (Preferential attachment graph).
Let m ≥ 2 be a fixed parameter. The random graph Gnm
is an undirected graph on the vertex set V := {1, . . . , n}
inductively defined as follows.

• G1
m consists of a single vertex with m self-loops.

• For all n > 1, Gnm is built from Gn−1
m by adding the new

node n together with m edges e1
n = {n, v1}, . . . , emn =

{n, vm} inserted one after the other in this order. Let
Gnm,i−1 denote the graph right before the edge ein is
added. Let Mi =

∑
v∈V degGn

m,i−1
(v) be the sum of

the degrees of all the nodes in Gnm,i−1. The endpoint vi

is selected randomly such that vi = u with probability
degGn

m,i−1
(u)/(Mi + 1), except for n that is selected

with probability (degGn
m,i−1

(n) + 1)/(Mi + 1).

This definition implies that when ein is inserted, the ver-
tex vi is chosen with probability proportional to its degree
(except for vi = n). Since many real-world social networks
are conjectured to evolve using similar principles, the PA-
model can serve as a model for social networks. Another
property observed in many real-world networks has been
formally proven for preferential attachment graphs, namely
that the degree distribution follows a power-law [6].

It can be easily seen that for m = 1 the graph is dis-
connected with high probability; so we focus on the case
m ≥ 2. Under this assumption, Bollobás and Riordan [5]
showed that the diameter is only Θ(log(n)/ log logn) with
high probability.

With a slight abuse of notation we write (u, v) ∈ E or
(v, u) ∈ E both to denote {u, v} ∈ E. Note that the defini-
tion of Gnm can lead to multiple edges and self-loops, though
they typically make up only a vanishing fraction of the edges.

We examine the following broadcasting protocol.

Definition 2.2 (Push-pull strategy with memory).
Let M ≥ 0 be a fixed parameter. Assume that every vertex
can store M vertices. The protocol runs as follows:

• In each round t ≥ 1, every vertex u chooses uniformly
at random a neighbor v which it has not contacted in
the last min{deg(u) − 1,M} rounds. If u knows the
rumor, it sends the rumor to v (“push”). If v knows
the rumor, it sends the rumor to u (“pull”).

Note that for M = 0, this is the classic push-pull strategy.
We denote by log n the natural logarithm to the base e.

3. STATEMENT OF RESULTS
Our main result is that preferential attachment graphs

allow sublogarithmic time rumor spreading.

Theorem 3.1. With probability 1 − o(1), the push-pull
protocol with memory M ≥ 1 broadcasts a rumor from any
node of Gnm to all other nodes in O(logn/ log log n) rounds.

Our proof uses several arguments of Bollobás and Riordan
[5] who showed that preferential attachment graphs have
a diameter of Θ(log(n)/ log logn). In particular, we heav-
ily use the equivalent non-recursive definition of preferential
attachment graphs (see Section 5.1 for details). Of course,
some additional work is needed to show that the process in-
deed only needs a time of order of the diameter. Recall that
the diameter is only a lower bound for the rumor spreading
process. As the complete graph with diameter one and ru-
mor spreading time Ω(logn) demonstrates, there can be a
substantial gap between the two quantities.

The proof of Theorem 3.1 consists of three main steps.
In Section 5.3, we analyze the time needed until the rumor
reaches a so-called useful node. Roughly speaking, a node is
useful if its degree is at least polylogarithmic (see Section 5.2
for details). We give a simple proof that for M ≥ 2, a useful
node is reached in only O(log logn) rounds. The more in-

volved proof that for M = 1, a time of O(log3/4(n) log logn)
rounds suffices, will appear in the full version of the paper.
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The core of the proof (see Section 5.4) consists of show-
ing that once a useful node u has been informed, within
O(log(n)/ log log n) time steps the rumor is propagated to
node 1. To this aim, we show that there is a path from u to
1 such that every second node (i) has degree exactly m and
(ii) has the property that once one of its neighbors becomes
informed, it pulls the rumor from there and pushes it to all
other neighbors in exactly m rounds. Thus, the nodes of
constant degree seem to be a key to fast rumor spreading
on social networks. This observation has a similar flavor as
the structural property proven by Chierichetti et al. [8] that
social networks have a connected subgraph of linear size and
diameter O(logn) in which every node has degree O(logn).
Using this property, the authors showed a running time of
O(log2 n) for the push-pull protocol without memory.

Finally, in Section 5.5, we use a symmetry property of the
process to show that also in O(log(n)/ log logn) time steps
the rumor is sent from node 1 to all other nodes.

For the classic push-pull strategy we show in Section 5.3
that it reaches a useful node in O(logn) rounds. As the sec-
ond and third part of the above proof also holds in this case,
this gives the following matching upper and lower bounds.

Theorem 3.2. With probability 1−o(1), the classic push-
pull protocol broadcasts a rumor from any node of Gnm to all
other nodes in O(logn) rounds.

Theorem 3.3. With prob. 1− o(1), the classic push-pull
protocol needs Ω(logn) rounds to inform all nodes of Gnm.

To see why a single memory slot can lead to an asymptotic
speed-up, it is instructional to prove the lower bound first.

4. LOWER BOUND OF CLASSIC PUSH-
PULL

We use the following result by Bollobás et al. [6]. Let
#n
m(d) be the number of nodes of indegree d in Gnm.

Theorem 4.1 (Bollobás et al. [6]). Let m ≥ 1 be
fixed. Let

αm(d) :=
2m (m+ 1)

(d+m) (d+m+ 1) (d+m+ 2)
,

and let ε > 0 be fixed. Then, with probability 1 − o(1), we
have

(1− ε)αm(d) ≤ #n
m(d)

n
≤ (1 + ε)αm(d),

for every d in the range 0 ≤ d ≤ n1/5.

The proof strategy is as follows. We first show that with
high probability there are Ω(n) edges whose incident nodes
are of constant degree. Both nodes of such an edge remain
uninformed with constant probability in each round. It is
then easy to show that at least for one edge the incident
nodes remain uninformed after Ω(log n) rounds.

Proof of Theorem 3.3. Let Xc denote the total degrees of
all nodes of indegree at most c for some constant c > 0. By

Theorem 4.1, we have with probability 1− o(1),

Xc ≥ (1− ε)
c∑
d=0

(d+m)nαm(d)

= (1− ε) 2m (m+ 1)n

c+m∑
d=m

1

(d+ 1)(d+ 2)

= (1− ε) 2m (m+ 1)n
(

1
m+1

− 1
c+m+2

)
= (1− ε) 2mn

(
1− m+1

c+m+2

)
.

Note that each edge that connects two nodes each of de-
gree at most c is counted twice in Xc, whereas each edge
that connects one node of degree at most c with a node of
degree larger than c is counted only once. Hence, Xc −mn
is a lower bound on the number of edges that connect two
nodes of degree at most c. So with probability 1− o(1), we
have at least (1− ε) 2mn

(
1− m+1

c+m+2
− 1

2(1−ε)

)
such edges.

Thus, for sufficiently large constant c, we have Ω(n) such
edges and therefore also Ω(n) such pairs of nodes each of
degree at most c+m that are connected to each other.

Consider such a pair nodes (u, v). Assume that both nodes
are uninformed. Then, they remain uninformed after one
round if in this round (i) both nodes contact each other and
(ii) none of the other neighboring nodes contacts u or v.
Since these two events are independent, the probability that
u and v remain uninformed after one round is at least(

1
m+c

)2 (
1− 1

m

)2(m+c)
=: δ.

Note that δ ∈ Ω(1). The probability that (u, v) remains un-
informed after α logn rounds for α = 1/(2 ln δ−1) is there-

fore at least n−1/2. The probability that none of the Ω(n)
pairs remains uninformed after α lnn rounds is at most

(1− n−1/2)Ω(n) ≤ e−Ω(n1/2).

Note that this proof fails when nodes do not contact the
same neighbor twice in a row. For a similar argument to
work in that case, one would need to show that there exists
a polynomial number of triangles that consist of small degree
nodes. In Lemma 5.3, we prove that this is not the case.

5. UPPER BOUND

5.1 Alternative model
In the random process generating Gnm the random de-

cisions made at each step depend heavily on the previous
random decisions. To circumvent this problem, Bollobás
and Riordan [5] suggested an alternative way of generating
Gnm that is more accessible. We first describe the model for
m = 1 and then generalize it to arbitrary m. We refer the
reader to [5] for a proof that both models are equivalent.

Let (xi, yi) for i ∈ [n] := {1, 2, . . . , n} be n independently
and uniformly chosen pairs from [0, 1] × [0, 1]. With prob-
ability one, all these numbers are distinct. By reordering
within each pair, we assume that xi < yi for every i ∈ [n].
Suppose that after relabeling, y1 < y2 < · · · < yn. We set
W0 := 0 and Wi := yi for i ∈ [n]. The graph Gn1 is now de-
fined by having an edge (i, j) if and only if Wj−1 < xi < Wj .
Define wj := Wj −Wj−1.

Similarly, for Gnm, we sample mn pairs (xi,j , yi,j) indepen-
dently and uniformly from [0, 1] × [0, 1] with xi,j < yi,j for
i ∈ [n] and j ∈ [m]. We relabel the variables such that yi,j
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is increasing in lexicographic order:

y1,1 < y1,2 < · · · < y1,m < y2,1 < · · · < yn,1 < · · · < yn,m.

We set W0 := 0 and Wi := yi,m for i ∈ [n]. The graph is
now defined by having an edge (i, j) for each k ∈ [m] such
that Wj−1 < xi,k < Wj . As before, define wj = Wj−Wj−1.
We write `i,k for the node j such that Wj−1 < xi,k < Wj .

Note that given y1,1, . . . , yn,m, the random variables
x1,1, . . . , xn,m are independent with xik being chosen uni-
formly from [0, yi,k]. For a better readability, we instead
assume that if y1,1, . . . , yn,m are given, then each xi,k is cho-
sen independently and uniformly from [0,Wi]. By this slight
modification, we can work with the values of the Wi’s and
ignore the values of the yi,j ’s. Note that this modification
only increases the probability of a loop at i. It is straight-
forward to check that each step of our proof remains valid if
the probability of a loop is not increased. Thus, the validity
of our proof is not affected.

We give a few properties of the alternative model, that
hold with high probability and are useful in the analysis.
Let s = 2a be the smallest power of 2 larger than log7 n,
and let 2b be the largest power of 2 smaller than 2n/3. Let
It = [2t + 1, 2t+1].

Lemma 5.1 (Bollobás and Riordan [5]). Let m ≥
2 be fixed. Using the definitions above, each of the following
five events holds with probability 1− o(1).

• E1 :=
{
|Wi −

√
i/n| ≤ 1

10

√
i/n for all i ∈ [s, n]

• E2 :=
{
|{i ∈ It | wi ≥ 1/(10

√
in)}| ≥

2t−1 for all t ∈ [a, b)}

• E3 := {w1 ≥ 4
log(n)

√
n
}

• E4 := {wi ≥ log2(n)/n for all i < n1/5}

• E5 := {wi < log2(n)/n for all i ≥ n/2}.

Note that the event E5 is slightly adjusted for our purposes.
In the original paper, the authors show that for i ≥ n/ log5 n,

we have wi < n−4/5. It is easy to check that (essentially)
the same proof holds for the above version.

Instead of working directly with the alternative model
where the Wi’s are random variables, we use the follow-
ing typical social network model where we assume the Wi’s
to be fixed numbers that satisfy the properties E1, . . . , E5.
Since by Lemma 5.1, these properties hold with high prob-
ability, all results proven for a typical social network model
carry over to Gnm with high probability. More precisely,
Let 0 < W1 < · · · < Wn < 1 be distinct real numbers
and let wi = Wi − Wi−1. Assume that W1, . . . ,Wn sat-
isfy the properties E1, . . . , E5. A typical social network
Gm(W1, . . . ,Wn) is obtained by connecting each node i with
the nodes `i,1, . . . , `i,m, where each `i,k is a node chosen ran-
domly with P[`i,k = j] = wj/Wi for all j ≤ i.

In the following, we always assume to have a typical social
network Gm(W1, . . . ,Wn). We write G := Gm(W1, . . . ,Wn)
to denote a (random) typical social network.

5.2 Useful nodes
We use the notion of a useful node that was introduced

by Bollobás and Riordan [5]. A node i is useful if wi ≥

log2(n)/n. Note that we are slightly relaxing the original
definition in [5] where the authors also assumed that i ≤
n/ log5(n). For our purposes, we have by E5 that i < n/2

for all useful nodes. Furthermore by E4, every i < n1/5 is
useful. We now prove several properties of non-useful nodes.

Lemma 5.2. With prob. 1−o(1), the following event holds

• E6 := {degG(v) ≤ 5m log2 n for all non-useful v}.

Proof. Let i be a fixed non-useful node. So wi < log2(n)/n

and by E4, i ≥ n1/5. Consider any node j > i. By E1,
we have Wj ≥ 1

2

√
j/n. Moreover, for any k ∈ {1, . . . ,m},

P[`j,k = i] = wi/Wj ≤ 2 log2 n

n
√
j/n

. Denote by deg+
G(i) the

number of edges (j, i) ∈ E with j > i. Then degG(i) ≤
2m+ deg+

G(i), where the first term is due to the at most m
self-loops at i. We have

E[deg+
G(i)] =

∑
j>i

m∑
k=1

P[`j,k = i]

≤ 2m log2(n)n−1/2
n∑
j>i

j−1/2

≤ 2m log2(n)n−1/2

∫ n

j>i−1

j−1/2 dj ≤ 4m log2(n).

By Chernoff’s bound, we have P[deg+
G(i) ≥ 4.5m log2 n] ≤

e−m log2(n)/48 = n−Ω(logn). By a union bound, we conclude
that with probability 1−n−Ω(logn) all non-useful nodes have
degree at most 2m+ 4.5m log2 n ≤ 5m log2 n.

We call a cycle and a path non-useful if they consist only
of non-useful nodes.

Lemma 5.3. With prob. 1−o(1), the following event holds

• E7 := {G contains (logn)O(log3/4 n) non-useful cycles

of length at most log3/4 n}.

Proof. Let ` ∈ [n]. We first bound the number of non-useful
cycles of length `. For simplicity, we assume that ` is even.
The case when ` is odd is similar. Let i1 < i2 < · · · < i` be `
distinct non-useful nodes. We set i`+1 := i1. For simplicity,

we write w̃j := wij and W̃j := Wij . The probability that
i1, . . . , i`, i`+1 = i1 form a cycle in G in this order is

P
[∧̀
j=1

(ij , ij+1) ∈ E
]
≤
∏̀
j=1

(
mmax

{ w̃j+1

W̃j

,
w̃j

W̃j+1

})

≤ m`
∏̀
j=1

( log2 n

n
max{W̃−1

j , W̃−1
j+1}

)
(E1)

≤ m`
∏̀
j=1

(10 log2 n

9
√
n

max
{
i
−1/2
j , i

−1/2
j+1

})

≤ m`

`/2∏
j=1

((10 log2 n

9
√
n

)2 1

ij

)
≤ m`

(10 log2 n

9
√
n

)` `/2∏
j=1

1

ij
.

Note that the same upper bound holds for every permutation
of i1, i2, . . . , i`. Thus we can bound the expected number of

cycles consisting of these nodes by `!m`
(

10 log2 n
9
√
n

)`∏`/2
j=1

1
ij

.
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In consequence, the expected number of non-useful cycles of
length ` is bounded by

∑
i1<···<i`

`!m`
(10 log2 n

9
√
n

)` `/2∏
j=1

1

ij

≤ `!m`
(10 log2 n

9
√
n

)` ∑
i`/2+1<···<i`

∑
i1<···<i`/2

`/2∏
j=1

1

ij

≤ `!m`
(10 log2 n

9
√
n

)`
n`/2

( n∑
i=1

1
i

)`/2
≤ `!m` ( 10

9
)` (logn)2` (log(n) + 1)`/2

≤ `!m` (logn)3`,

where the last inequality holds for sufficiently large n.
By Markov’s inequality, we conclude that with probability

at most 1/ logn, there are more than `!m`(logn)3`+1 non-
useful cycles of length `. By a simple union bound, it fol-
lows that with probability at least 1− (logn)−1/4, there are

at most (log3/4 n)1+log3/4 nmlog3/4 n (logn)3 log3/4(n)+1 =

(logn)O(log3/4 n) non-useful cycles of length at most

log3/4 n.

Lemma 5.4. Assume that E6 holds and let K =
logn

(log logn)2
. With probability 1 − n−1/5+o(1), the following

event holds

• E8 := {for all non-useful v, there exists at most one
cycle whose nodes are all connected to v via non-useful
paths of length at most K}.

In order to prove Lemma 5.4, we show a few auxiliary
results. We first bound the probability that two fixed non-
useful nodes (not necessarily distinct) are neighbors.

Lemma 5.5. Let v, v′ be two fixed non-useful nodes. Then
the probability that (v, v′) ∈ E is at most n−3/5+o(1).

Proof. W.l.o.g. assume that v ≥ v′. Since v′ is not useful,
we have wv′ < log2(n)/n. Using E1 and the fact that v ≥
v′ ≥ n1/5, we obtain Wv ≥Wdn1/5e ≥

1
2
n−2/5 and thus

P[(v, v′) ∈ E] ≤ mwv′/Wv ≤ n−3/5+o(1). (5.1)

Lemma 5.6 (Bollobás and Riordan [5]). Let v be a
fixed non-useful node. Then for all k ∈ [m], the probability
that `v,k is a useful node is at least log−3 n. This event
is independent from all other random decisions `v′,k′ with
(v′, k′) 6= (v′, k′).

Note that in the original lemma, the authors only state a
bound on the probability that `v,1 is a useful node. However,
the same proof yields the above version. Also, Lemma 5.5
and Lemma 5.6 remain valid if we condition on E6.

For the next lemma, we need some notation. Let v be a
non-useful node. Let L0 = {v} and for k ≥ 1, we define

Lk := {w ∈ [n] | w is not useful ∧ w /∈ L1, . . . , Lk−1

∧∃w′ ∈ Lk−1 : (w′, w) ∈ E}.

We define L≤k :=
⋃k
i=0 L

i. Let nk = |Lk|. We say that

level Li causes a collision if there exist two nodes j, j′ ∈ Li

(not necessarily distinct) that are either neighbors or share
a common neighbor in Li+1, or if there exists a node j ∈ Li
that is connected to a node in Li+1 by two links, i.e., j is
incident to a multi-edge. Note that each collision caused by
Li corresponds to a cycle that is connected to v via a path
consisting only of nodes in L≤i+1 and vice versa, every such
cycle corresponds to one collision in some Lj where j ≤ i+1.
Hence, the number of collisions in L≤k is exactly the number
of cycles in L≤k+1.

Lemma 5.7. Assume that E6 holds. Let k ≤ logn
(log logn)2

and c > 0 be a constant. We have

P
[
Lk causes c collisions | L1, . . . , Lk

]
≤ n−3c/5+o(1).

Proof. In the following all probabilities are conditioned on
L1, . . . , L

k. Since all Li contain only non-useful nodes, by
E6, we have |Lk| ≤ (5m log2 n)k. For any two fixed nodes
j, j′ ∈ Lk (not necessarily distinct), we have

P
[
j, j′ cause a collision

]
≤ P

[
(j, j′) ∈ E

]
+ P[∃j′′ /∈ L≤k : (j, j′′) ∈ E ∧ (j′, j′′) ∈ E]

≤ n−3/5+o(1) + 5m log2(n)n−3/5+o(1) by (5.1)

= n−3/5+o(1).

Similarly, for any fixed node j ∈ Lk, we have

P
[
∃j′ /∈ L≤k : j and j′ are connected by two edges

]
≤ 5m log2(n)n−3/5+o(1) = n−3/5+o(1).

Thus, we have

P
[
Lk causes c collisions

]
≤ (|Lk|2 + |Lk|)cn−3c/5+o(1)

= n−3c/5+o(1).

Proof of Lemma 5.4. Let v be a fixed non-useful node.
By Lemma 5.7, the probability that there exists a single
level that causes two collisions is at most Kn−6/5+o(1) =
n−6/5+o(1). Similarly, the probability that there exist two
levels that cause a collision each is at most K2n−6/5+o(1) =
n−6/5+o(1). The result follows from a simple union bound
over all non-useful nodes.

5.3 Informing the first useful node
Let G = Gm(W1, . . . ,Wn) be a typical social network.

Assume that also E6, E7, and E8 hold. In this section, all
probabilities are taken over the product space of the random
graph G and the random decisions of the rumor spreading
process.

For simplicity, we start with the push-pull strategy with
memory M ≥ 2 and show that with high probability the
rumor reaches a useful node within O(log log n) rounds.

Lemma 5.8. Let u be a fixed node. In the push-pull strat-
egy with M ≥ 2, the rumor initiated by u reaches a useful
node in O(log log n) rounds with probability 1− n−Ω(logn).

Proof. We make some assumptions that simplify the analysis
while only slowing down the protocol. First, we assume that
all nodes perform only push operations. Second, we consider
phases of three rounds. In the first phase only u is active.
In every subsequent phase we assume that only the nodes

25



that were informed in the previous phase are active. In other
words, we assume that nodes that are informed in one phase
are delayed till the beginning of the next phase and remain
active only for that phase.

Let Dk be the set of all nodes that are active in phase k
and nk = |Dk|. Let K = 14 log log n. Assume that there
is no useful vertex in any Dk for k < K. Then by E8, we
encounter at most one cycle consisting solely of nodes in
D1 ∪ · · · ∪DK (including self-loops or cycles due to multiple
edges). We first assume that there is no such cycle. Then
since M ≥ 2, a node of degree at least 3 contacts three dis-
tinct neighbors in three rounds. Thus, such a node in Dk
informs at least two new nodes in Dk+1 (excluding its neigh-
bor in Dk−1). Since both neighbors of a node of degree 2
must have degree at least 3, we conclude that nk+2 ≥ 2nk
for all k ≤ K. So, we have nK ≥ Ω(2K/2) ≥ Ω(log7 n). It
is easy to see that a single cycle reduces nK by at most a
factor of 2. Hence, we still have nK ≥ Ω(log5 n).

For each i ∈ DK except for at most one node, only one
of the nodes `i,1 and `i,2 can be informed (otherwise there
would be a cycle). Let `i denote any of the nodes `i,1 and
`i,2 that is not informed. Given the sequence D1, . . . , DM ,
the nodes `i, where i ∈ DK , are mutually independent. Con-
ditioned on `i /∈ D1, . . . , DK , the probability that `i is use-
ful can only increase since D1, . . . , DK only contain non-
useful nodes. So by Lemma 5.6, for any i ∈ DK , we have
P[`i is useful] ≥ log−3 n. Also, for any i ∈ DK , the probabil-
ity that i contacts `i in one time step is at least 1/ deg(i) ≥
1/(5m log2 n) due to E6. Since both events are indepen-
dent, the probability that no node in DK informs a useful
node in one time step is at most (1 − 1/(5m log5 n))nK ≤
exp(−nK/(5m log5 n)) ≤ n−Ω(logn).

For the classic push-pull protocol (M = 0), the proof idea
is similar. The main difference is that now we can not as-
sume that a node of degree at least 3 always contacts three
distinct neighbors in one phase. However, in expectation,
it only takes O(1) rounds until it does so. To get a high
probability statement, we need O(logn) rounds.

Lemma 5.9. In the classic push-pull protocol, the rumor
initiated by any node reaches a useful node in O(logn)
rounds with probability 1− o(n−2).

Proof. Again, we consider phases and active nodes. As be-
fore, Dk denotes the set of active nodes in phase k and
nk = |Dk|. Let K = 210 log logn. By E7, there is at most
one cycle in D1 ∪ · · · ∪DK . For simplicity, we first assume
that there is no cycle in D1 ∪ · · · ∪DK .

We distinguish two stages. In the first stage, we do not
fix the length of each phase: a phase will last for a constant
number of rounds in expectation. Active nodes of degree
2 remain active until they contact two distinct neighbors;
those of higher degree remain active until they contact three
distinct neighbors. A phase lasts until all active nodes stop.
Then, a new phase starts in which all nodes become active
that have been informed in the previous phase. In the first
phase, only the initially informed node u is active.

In the second stage, each phase will last for exactly five
rounds. The second stage starts at the earliest phaseK′ such
that nK′ ≥ C logn nodes for some constant C > 0. Note
that K′ = O(log log n) and N :=

∑
1≤k≤K′ nk ≤ 2C logn.

We now bound the length of the first stage. Let Xi denote
the number of rounds needed until an active node i con-

tacts two or three distinct neighbors depending on whether
it has degree 2 or more. We can then bound from above the
length the first stage by X =

∑
1≤k<K′

∑
i∈Dk

Xi. Note
that for all i, Xi − 1 is stochastically dominated by the
sum of two geometric random variables Yi,1 + Yi,2 with pa-
rameter p = 1

3
. Let Y =

∑
1≤k<K′

∑
i∈Dk

(Yi,1 + Yi,2).

Let X =
∑

1≤i≤24C lognXi denote the sum of 24C logn

i.i.d. indicator random variables with P[Xi = 1] = p. Thus,
E[X] = 24pC logn = 8C logn ≥ 4N . By Chernoff’s bound,
we get

P
[
Y > 24C logn] = P[X < 2N ] ≤ P[X ≤ 1

2
E[X]]

≤ exp
(
− 1

8
E[X]

)
= n−C .

We conclude that the first stage lasts for at most 24C logn
iterations with probability 1−O(n−C).

For the second stage, remember that both neighbors of a
node of degree 2 must have degree at least 3. Furthermore,
the probability that a node of degree 2 contacts two dis-
tinct nodes in five rounds is 1− 2−4 = 15

16
and similarly, the

probability that a node of degree at least 3 contacts three
distinct nodes in five rounds is at least 1 − 3( 2

3
)5 ≥ 0.6.

Assume that we are given D1, . . . , Dk and nk ≥ C logn.
Let i ∈ Dk. If node i has degree at least 3, then let Xi
be the indicator variable for the event that it contacts two
distinct nodes in Dk+1 which in turn contact one node in
Dk+2, respectively. By the previous discussion, we have

P[Xi = 1] ≥ 0.6
(

15
16

)2 ≥ 0.527. Similarly, if node i has
degree 2, let Xi be the indicator variable for the event
that it contacts one node (of degree at least 3) in Dk+1

which in turn contacts two nodes in Dk+2. Here, we have
P[Xi = 1] ≥ 15

16
0.6 ≥ 0.527. Let X =

∑
i∈Dk

Xk. Note that
all Xi are independent from each other and nk+2 ≥ 2X.
Thus, we have E[nk+2 | nk] ≥ 1.054nk. By Chernoff’s
bound, we further get

P[X ≤ 1.05nk] ≤ exp
(
− Ω(1)nk

)
≤ n−3, (5.2)

where the last inequality follows from nk ≥ C logn by choos-
ing C sufficiently large, but constant. Thus, with probabil-
ity 1 − o(n−2), we have nK ≥ Ω(1.05K) ≥ Ω((logn)10).
Although so far we have ignored the possibility of encoun-
tering a cycle, it is clear that a single cycle does not affect
this bound. Thus, by the same argument as for Lemma 5.6,
once phase K = 210 log logn is active, either a useful node
was already informed or the probability that a useful node
is informed in one round is 1− o(n−2).

When M ≥ 2, it was easy to see that, with probability
one, a significant progress is made after a constant number
of rounds. In contrast, when M = 1, a bad situation occurs
when the informed nodes form a (small) non-useful cycle.
In that case, with non-negligible probability, no progress is
made, since each informed node could alternatively contact
one of its two neighbors on the cycle. By E7, however, we
know that such a bad situation occurs only rarely. Thus,
we distinguish between the case when the starting node lies
in such a non-useful cycle or not. For each case, a similar
argument as before, then yields the following lemma.

Lemma 5.10. Let u be any node. In the push-pull protocol
with M = 1, the probability pu that the rumor initiated by
u does not reach any useful node in O(log3/4(n) log logn)
time steps, satisfies pu = o(1). Moreover, the sum

∑
u∈V pu

of all these failure probabilities is also o(1).
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5.4 Informing node 1
What ultimately makes rumor spreading by push-pull pro-

tocols in preferential attachment graphs fast, are vertices of
small (constant) degree. Each of them, with constant prob-
ability, has the beautiful property that, once a neighbor be-
comes informed, it pulls the rumor from such a neighbor and
pushes it to all other neighbors in a total number of rounds
equal to its degree.

As we will see in this section, this property alone suffices to
spread the rumor among all useful nodes. Since this property
is satisfied by all push-pull protocols considered in this paper
(i.e., memory M ≥ 0), the results in this section are valid for
all of them. In fact, they might be of independent interest
for other protocols that satisfy this property.

More specifically, we show that between any two useful
nodes there is a path of length O(logn/ log logn) such that
every second node on the path has this property. Since these
nodes (by definition with probability one) propagate the ru-
mor in constant time, we see that the rumor is propagated
along such a path in time O(logn/ log log n).

Consider a fixed graph G and a run of our rumor spreading
protocol started with the rumor in some node u. Let v 6= u
be a node of degree exactly m. Let t be the first time that
some neighbor of v is informed. We say that v is fast (in
this run of the protocol) if the following is true. (i) In round
t+ 1, v performs a pull action on the smallest neighbor that
is informed at that time (such a neighbor exists by choice of
t). (ii) In rounds t + 2, . . . , t + m, v performs push actions
aimed at all other neighbors without repetition.

The event that some node v is fast is independent from
the random decisions of all other nodes in the protocol. For
this reason, the following lemma is the key to our analysis
(to be continued with Corollary 5.15).

Lemma 5.11. Let W1, . . . ,Wn be such that properties
E1, . . . , E5 are satisfied. Consider the random graph G =
Gm(W1, . . . ,Wn). Let p ∈ [0, 1] be a constant. Mark each
node v ∈

[
2
3
n, n

]
independently with probability p.

Let v ∈ [n], be a useful node. Then with probability
1 − o(n−1) in the product space of random graph and ran-
dom marks, there exists a path of length O(logn/ log log n)
between v and 1 such that every second node is marked.

We start by showing that with high probability, the ran-
dom graph regarded contains a linear number of marked
nodes. Of course, the main ingredient for this statement is
the fact that there is a linear number of nodes i ∈

[
2
3
n, n

]
that have a degree equal to m. If not explicitly stated,
all probabilities in this section are taken over the product
space of the random graph Gm(W1, . . . ,Wn) and the ran-
dom marks, where W1, . . . ,Wn are given numbers that sat-
isfy properties E1, . . . , E5.

Lemma 5.12. Let εm := 1
8
pe−3m. With probability 1 −

e−Ω(n), there are at least εmn marked nodes.

Proof. Since
∑n
i=1 wi = 1, at least half of the i ∈

[
2
3
n, n

]
:=

C have wi ≤ 6/n. Let i ∈ C be such that wi ≤ 6/n. Note
that i has degree equal to m if and only if no node j > i is a
neighbor of i. Even conditioning arbitrarily on the degrees of
all nodes in C \ {i}, we have for all k ∈ {1, . . . ,m}, P[`j,k =

i] ≤ wi/(Wj −
∑j

r= 2
3
n
wr) ≤ (6/n)/W 2

3
n ≤ (6/n)/(0.9 ·√

2/3) ≤ 9/n, using the lower bound on W 2
3
n from property

E1. Thus, the degree of i equals m with probability at least
(1− 9/n)(1/3)nm ≥ (1− o(1)) exp(− 9nm

3n
) = (1− o(1))e−3m.

Thus, the expected number of nodes in C having degree m
is at least (1 − o(1)) 1

6
e−3mn. Since we allowed arbitrary

conditioning on other degrees in C, we may apply Chernoff
bounds and see that with probability 1 − e−Ω(n), at least
1
7
e−3mn of the nodes in C have degree equal to m.
Each of these nodes was marked independently with prob-

ability p. The expected number of marked nodes is at least
1
7
e−3mpn, and with probability 1−e−Ω(n), at least 1

8
e−3mpn

of the nodes in C have degree m and are marked.

We construct a path from a useful node u to node 1 that
has each second node marked. We say a node i is good if

i ∈ [s+ 1, 2b] and wi ≥ 1/(10
√
in), (5.3)

where, as before, s = 2a is the smallest power of 2 larger
than log7 n and 2b is the largest power of 2 smaller than 2

3
n.

We consider sets Γk and Γ′k defined recursively as follows.
We set Γ0 = {u}. Given Γk, Γ′k is defined to be the set of all
marked nodes i ≥ 2

3
n that have a neighbor in Γk and have

not been included in any Γ′` with ` ≤ k− 1. Similarly, Γk is
defined as the set of all good nodes that have a neighbor in
Γ′k−1 and have not been included in any Γ` with ` ≤ k − 1.
Note that for all k ≥ 0, Γk only contains nodes i < 2

3
n, while

Γ′k only contains nodes i ≥ 2
3
n. This is true for Γ0 since u

is useful and by E5, all useful nodes are smaller than n/2.
We define the weight of a set Γk by

fk :=

{
wu if k = 0∑
i∈Γk

1√
in

if k ≥ 1.
(5.4)

Since for k ≥ 1, Γk only contains good nodes, and by defi-
nition, wu = f0, we have for k ≥ 0,∑

i∈Γk

wi ≥ fk/10. (5.5)

We denote by Nk = Γ0 ∪ Γ1 ∪ · · · ∪ Γk (note that the Γ′i
are not included). Let C0 ⊆

[
2
3
n, n

]
be the set of marked

nodes and for k ≥ 1, let Ck = C0 \ {Γ′0, . . . ,Γ′k−1} be the
set of marked nodes excluding nodes in Γ′0,Γ

′
1, . . . ,Γ

′
k−1. By

Lemma 5.12, we have C0 ≥ εmn with probability 1−e−Ω(n).
We also need the following technical lemma.

Lemma 5.13 (Bollobás and Riordan [5]). Let ε >
0, and K := (1/2 + ε) (log(n)/ log log(n))− 1. Let f0, f1, . . .
be a sequence of real numbers with f0 ≥ log2(n)/n and

fk+1 ≥ min{2 log2(εmfkn/ logn)− 29, b− a}εmfk/3564
(5.6)

for all k ≥ 0. Then, for n sufficiently large, ` = min{k : fk ≥
log3(n)/

√
n} exists and is at most K.

Note that in the original paper the authors assume fk+1 ≥
min{2 log2(fkn/ logn) − 32, b − a}fk/1000 and obtain that
` = min{k : fk ≥ log2(n)/

√
n} is at most K. It is easy

to check that the same proof holds for the above version.
Remember that It := [2t + 1, 2t+1] for t ∈ [a, b).

Lemma 5.14. Let k ≥ 0 be such that fk ≥ log2(n)/n and
|Ck| ≥ εmn/2. Then given Ck and Γ0,Γ

′
0,Γ1,Γ

′
1, . . . ,Γk,

with prob. 1−O(n−6/5), one of the following is satisfied:

• |Nk+1 ∩ It| ≥ 2t−2, for some t ∈ [a, b), or
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• fk+1 ≥ min{2 log2(εm
fkn
logn

)− 29, b− a}εmfk/3564.

Proof. All probabilities are conditioned on the assumptions
in the lemma. We first show that |Γ′k| = Ω(nfk) holds with
high probability. Let j ∈ Ck. We have

P[`j,1 ∈ Γk] =
(∑
i∈Γk

wi
)
/
(
Wj −

∑
i∈Γ0∪Γ′0∪Γ1∪···∪Γk−1

wi

−
∑

i : i∈Ck, i≤j

wi
)
≥
(∑
i∈Γk

wi
)
/Wj ≥ fk/10,

where the last inequality follows from (5.5). Hence, E[|Γ′k|] ≥
|Ck|fk/10 ≥ εmnfk/20. By Chernoff’s bound, we obtain

P[|Γ′k| ≤ εmnfk/21] ≤ exp(−Ω(εmnfk)) ≤ n−Ω(logn),
(5.7)

where the last inequality follows from fk ≥ log2(n)/n. In
the following, we assume

|Γ′k| ≥ εmnfk/21. (5.8)

We now show that either |Nk+1 ∩ It| ≥ 2t−2 for some
t ∈ [a, b), or with high probability, for sufficiently many t ∈
[a, b), we have |Γk+1∩It| = Ω

(
|Γ′k|

√
2t/n

)
. Let t ∈ [a, b). By

E2, It contains at least 2t−1 good nodes. Let S be initially
the set of good nodes in It \Nk. So |S| ≥ 2t−1 − |Nk ∩ It|.
We consider the elements of Γ′k one by one in any order. Let

Γ̃ be an initially empty set. Whenever we encounter some
node i ∈ Γ′k that is connected to some node j ∈ S via its
second link (i.e., `i,2 = j), we remove j from S and include

it into Γ̃. Note that Γ̃ ⊆ Γk+1 throughout this process.
Moreover, `i,2 has not been revealed before i is considered
(`i,1 is independent from `i,2 given all Wj values). Hence,
as long as |S| ≥ 2t−2, we have for every node i ∈ Γ′k,

P[`i,2 ∈ S] ≥ 2t−2

10Wi

√
2t+1n

≥
√

2t

60
√
n
.

If |S| < 2t−2 at some point, then |Nk+1 ∩ It| ≥ 2t−2 and we
are finished. Otherwise

E[|Γk+1 ∩ It|] ≥ E[|Γ̃|] ≥ |Γ′k|
√

2t

60
√
n

=: µt. (5.9)

Let Y =
∑

1≤i≤|Γ′
k
| Yi where Y1, . . . , Y|Γ′

k
| are mutually inde-

pendent 0/1-random variables with P[Yi = 1] =
√

2t

60
√
n

, where

1 ≤ i ≤ |Γ′k|. Note that |Γk+1 ∩ It| stochastically dominates
Y , i.e., P[|Γk+1 ∩ It| > t] ≥ P[Y > t]. Now, if µt ≥ 10 logn,

we have by Chernoff’s bound P[Y ≤ µt/2] ≤ n−5/4, and

thus P[|Γk+1∩ It| ≤ µt/2] ≤ P[Y ≤ µt/2] ≤ n−5/4. Taking a
union bound over all indices t ∈ [a, b) with µt ≥ 10 logn, we

conclude that with probability at least 1− log2(n) ·n−5/4 =

1−O(n−6/5), we have for all these t ∈ [a, b),∑
i∈Γk+1∩It

1√
in
≥ µt

2
· 1√

2t+1n
=

|Γ′k|
120n

√
2
≥ εmfk

3564
,

where the last inequality follows from (5.8). Let T be the set
of indices t ∈ [a, b) with µt ≥ 10 logn. Since 2b ≥ n/3, we
have |T | ≥ min{2 log2(εmfkn/ logn)− 29, b− a}. Therefore
fk+1 ≥ min{2 log2(εmfkn/ logn)−29, b−a}εmfk/3564. The

failure probability is n−Ω(logn) +O(n−6/5) = O(n−6/5).

Proof of Lemma 5.11. We apply Lemma 5.14 consecutively
for k = 0, . . . ,K, where K = (1/2 + ε) log(n)/ log logn.

The probability that the event considered in Lemma 5.14
holds for all k = 0, . . . ,K is at least 1 − O(K n−6/5) =

1−O(n−7/6). In the following we assume this is the case.
Note that for k = 0, fk = wu ≥ log2(n)/n holds since

u is useful. Also, by Lemma 5.12, we have |C0| ≥ εmn/2

with probability 1 − e−Ω(n). Assume that this is the
case. Hence, we can apply Lemma 5.14 for k = 0. Since
min{2 log2(εmfkn/ logn) − 29, b − a}εmfk/3564 ≥ fk (for
large enough n), the only way we fail to apply Lemma 5.14
for some k′, where 0 < k′ < K, is when |Ck′ | < εmn/2 or
|Nk′ ∩ It| ≥ 2t−2 for some t ∈ [a, b).

If |Ck′ | < εmn/2, then there must be a k′′, 0 ≤ k′′ ≤ k′,

with |Γ′k′′ | ≥
εmn/2
K

≥ n
logn

for n sufficiently large. We

stop the sequence at Γ′k′′ as soon as we encounter such a
k′′. Given the sequence Γ0,Γ

′
0,Γ1, . . . ,Γ

′
k′′ , the second links

of the nodes in Γ′k′′ are mutually independent random vari-
ables. So the probability that no node in Γ′k′′ connects to 1
via its second link is at most

(1− w1)|Γ
′
k′′ | ≤

(
1− 4

log(n)
√
n

)n/ logn

≤ exp
(
−4
√
n/ log2 n

)
= n−Ω(

√
n/ log3 n),

where the first inequality follows from E3. We can hence
assume that |Ck| ≥ εmn/2 for all k = 0, . . . ,K − 1.

Similarly, if |Nk′ ∩ It| ≥ 2t−2 for some t ∈ [a, b), there
must be a k′′ where 0 < k′′ ≤ k′, with |Γk′′ ∩ It| ≥ 2t−2/K.
We stop the construction of the sequence Γ0,Γ

′
0,Γ1, . . . at

Γ′k′′ . By (5.7) we have with probability 1− n−Ω(logn),

|Γ′k′′ | ≥ εmnfk′′/21 ≥ εmn|Γk′′ ∩ It|/(21
√

2t+1n)

≥ εmn2t−2/(21K
√

2t+1n) ≥ εm2t/2
√
n/ logn

≥ εm log5/2(n)
√
n,

where the last inequality follows from 2t ≥ log7 n. So given
Γ′0,Γ1, . . . ,Γ

′
k′′ , the probability that no node in Γ′k′′ connects

to 1 by its second link is at most

(1− w1)|Γ
′
k′′ | ≤

(
1− 4

log(n)
√
n

)εm log5/2(n)
√
n

≤ exp
(
−4εm log3/2 n

)
≤ n−Ω(

√
logn),

where the last inequality holds since εm is a constant.
So assume now that |Ck| ≥ εmn/2 and fk+1 ≥

min{2 log2(εmfkn/ logn) − 29, b − a}εmfk/3564 ≥ fk, for
all k, 0 ≤ k < K, where K =

(
1
2

+ ε
)

logn
log logn

. Then,

by Lemma 5.13, we have f` ≥ log3(n)/
√
n, for some

` ≤ K. Again, by (5.7), we have |Γ′`| ≥ εmnf`/21 ≥
εm
√
n log3(n)/21 with probability 1 − n−Ω(logn). Further-

more, given Γ0,Γ
′
0,Γ1, . . . ,Γ

′
`, the probability that no node

in Γ′` connects to 1 by its second link is at most

(1− w1)|Γ
′
`| ≤

(
1− 4

log(n)
√
n

)εm√n log3(n)/21

≤ exp
(
− 4εm

21
log2 n

)
≤ n−Ω(logn).

The total failure probability is O(n−7/6) + e−Ω(n) +

n−Ω(
√
n/ log3 n) + n−Ω(logn) + n−Ω(

√
logn) + n−Ω(logn) =

O(n−7/6).

We can now use Lemma 5.11 to show that the rumor quickly
proceeds from a useful node to node 1.

Corollary 5.15. Let W1, . . . ,Wn be s.t. E1, . . . , E5 are
satisfied. Let G be a random graph from Gm(W1, . . . ,Wn).
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Let v ∈ [n] be a useful node. With probability 1 − o(n−1),
using the push-pull protocol with memory M ≥ 0, a rumor
present at v reaches node 1 in O(logn/ log logn) steps.

Proof. Consider a run of the process started with a rumor
in u. Let v ∈

[
2
3
n, n

]
=: C be a node of degree m. Note

that u 6= v, since u is useful and thus u ≤ n/2 by E5.
The probability that v is fast is exactly p := 1

m
(m −

1)!/(m − 1)m−1. This remains true if we condition arbi-
trarily on random decisions of other nodes during the run
of the process. In consequence, the set of fast nodes is a
random subset of the nodes of degree m in C with each such
node being included independently with probability p.

Applying Lemma 5.11 with fast nodes being marked, we
see that with probability 1 − o(n−1), there is a path of
length O(log(n)/ log logn) such that every second node is
fast. Even ignoring all rumor transmissions by nodes that
are not fast, the rumor is propagated along the path in
O(log(n)/ log log n) time steps.

5.5 Informing all nodes
The following lemma allows us to invert the spread of the

rumor: from node 1 to all other nodes. Note that for M = 0
the lemma has been shown in [9].

Lemma 5.16. Assume for the push-pull protocol with
memory M ≥ 0 that if the rumor starts in node u, it reaches
node v in k rounds with probability p. This implies the
reverse statement: if the rumor is initiated by v, then it
reaches u in k rounds with probability p.

Proof of Lemma 5.16. We define a snapshot of the process
to be a vector (s1, . . . , sn) where si denotes a neighbor of
i. We interpret a snapshot as the ordered set of nodes
that were contacted in one time step. Thus, we can rep-
resent a (possibly infeasible) run of the process by a (fi-
nite) vector of snapshots S = (S1, . . . , S`). Moreover, a run
S = (S1, . . . , S`) is feasible if and only if for all i > 1, k ∈ [n],
and j ∈ [1,min{deg(k)− 1,M}], we have (Si)k 6= (Si−j)k.

Let S be the set of all series S of snapshots such that if
the rumor starts in node u and the process follows S, then
node v is informed for the first time after |S| steps. Since
v is informed with probability one after finitely many steps,
S naturally defines a probability space: the probability of a
series S ∈ S is the probability that the process follows S (in-
feasible series have probability 0). Note that the probability
that node v is informed in k steps is just

∑
S∈S
|S|=k

P[S].

We give an automorphism φ : S → S s.t. for all S ∈ S,

(i) |S| = |φ(S)|,

(ii) P[S] = P[φ(S)],

(iii) if the rumor starts in node v and the process follows
φ(S), then node u is informed after |φ(S)| = |S| steps.

Thus if the rumor is initiated from node v, then the prob-
ability that node u is informed in k steps is

∑
S∈S
|S|=k

P[S].

Equality then follows by a symmetric argument.
The automorphism is defined as follows. For S =

(S1, . . . , S`), let φ(S) = (S`, S`−1, . . . , S1), i.e., φ simply in-
verts the series. It remains to check that all three properties
are indeed satisfied. Property (i) and (iii) are immediate.
For (ii), there exist real numbers ρ0, ρ1, . . . , ρM ∈ [0, 1], such
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Figure 1: Empirical comparison of the classic push-
pull strategy (corresponding to M = 0), and the
push-pull strategy with M = 1 for preferential
attachment graphs Gnm with m = 2. The ob-
served average runtimes are consistent with the
proven asymptotic bounds of Θ(logn) for M = 0 and
Θ(logn/ log logn) for M = 1.

that for all series, we have P[S] = ρ0ρ1 · · · ρM−1ρ
|S|−M
M if S

is feasible, and P[S] = 0 otherwise. Since S is feasible iff
φ(S) is feasible, (ii) follows.

Proof of Theorem 3.1. By Lemmas 5.1, 5.2, 5.3, and 5.4, as-
sumptions E1, . . . , E8 hold with probability 1− o(1). Hence
we can assume that this is the case. By Lemma 5.8 and
Lemma 5.10, with probability 1 − o(1), we have for all
nodes v that a rumor initiated by v reaches a useful node u
in O(log3/4(n) log logn) time steps. By Corollary 5.15, a
rumor starting from a useful node u reaches node 1 in
O(log(n)/ log log(n)) time steps with probability 1−o(n−1).

Corollary 5.15, Lemma 5.16, and a simple union
bound show that with probability 1 − o(1) after another
O(log(n)/ log logn) time steps, all useful nodes are in-
formed. Similarly, Lemmas 5.10 and 5.16 together with
a union bound prove that another O(log3/4(n) log logn)
rounds suffice to inform all nodes with probability 1− o(1).

The total failure probability is bounded by the sum of
the probability that anyone of E1, . . . , E8 does not hold and
the probability that a node does not get informed within
O(log(n)/ log logn) time steps conditioned on E1, . . . , E8.
Since both probabilities are o(1), the result follows.

The proof of Theorem 3.2 is equivalent except that it uses
Lemma 5.9 instead of Lemma 5.10.

6. DISCUSSION
We have shown that for preferential attachment graphs

the classic push-pull strategy needs Θ(logn) rounds to in-
form all vertices. The slightly improved version which avoids
that a vertex contacts the same neighbor twice in a row only
needs Θ(logn/ log logn) rounds, which is best possible since
the diameter is of the same order of magnitude.

In order to show that this asymptotic speed-up is visible
for preferential attachment graphs of realistic size, we have
implemented both protocols and empirically determined the
average time needed for graphs Gnm with m = 2 and n =
24, 25, . . . , 226. Figure 1 shows the averages over ≥ 1000
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runs (≥ 100, 000 runs for n ≤ 222). It is clearly visible that
the push-pull strategy with memory M = 1 is significantly
faster. More precisely, for n = 226 the classic push-pull
strategy (M = 0) needs 19.02±0.79 rounds, while the push-
pull strategy with memory M = 1 needs only 14.61 ± 0.52
rounds. Interestingly, adding more memory gains very little.
The push-pull strategy with M = 2 finishes after 14.18±0.42
rounds, the one with M = 3, 4, 5 gives 14.12± 0.34.
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[15] R. Elsässer and T. Sauerwald. On the power of memory
in randomized broadcasting. In 19th ACM-SIAM Sym-
posium on Discrete Algorithms, pages 218–227, 2008.

[16] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Ran-
domized broadcast in networks. Random Structures and
Algorithms, 1:447–460, 1990.

[17] A. D. Flaxman, A. M. Frieze, and J. Vera. Adversarial
deletion in a scale-free random graph process. Combi-
natorics, Probability & Computing, 16:261–270, 2007.

[18] N. Fountoulakis and K. Panagiotou. Rumor spreading
on random regular graphs and expanders. In 14th In-
ter. Workshop on Randomization and Comput. (RAN-
DOM), volume 6302 of LNCS, pages 560–573, 2010.

[19] A. M. Frieze and G. R. Grimmett. The shortest-path
problem for graphs with random arc-lengths. Discrete
Applied Mathematics, 10:57–77, 1985.

[20] A. M. Frieze and M. Molloy. Broadcasting in random
graphs. Discrete Applied Mathematics, 54:77–79, 1994.

[21] C. Gkantsidis, M. Mihail, and A. Saberi. Conductance
and congestion in power law graphs. In ACM Inter.
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 148–159, 2003.

[22] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöck-
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