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matching is a set of disjoint pairs of mutually acceptable agents. If any two agents
mutually prefer each other to their partner, then they block the matching, otherwise,
the matching is said to be stable. We investigate the complexity of finding a solution
satisfying additional constraints on restricted pairs of agents. Restricted pairs can

MSC- be either forced or forbidden. A stable solution must contain all of the forced pairs,
05C70 while it must contain none of the forbidden pairs.

68W40 Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a
05C85 solution exists in the presence of restricted edges. If the answer is no, one might

look for a solution close to optimal. Since optimality in this context means that the
matching is stable and satisfies all constraints on restricted pairs, there are two ways
of relaxing the constraints by permitting a solution to: (1) be blocked by as few as
possible pairs, or (2) violate as few as possible constraints n restricted pairs.

Our main theorems prove that for the (bipartite) Stable Marriage problem, case
(1) leads to NP-hardness and inapproximability results, whilst case (2) can be solved
in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields
an NP-hard but (under some cardinality assumptions) 2-approximable problem. In
the case of NP-hard problems, we also discuss polynomially solvable special cases,
arising from restrictions on the lengths of the preference lists, or upper bounds on
the numbers of restricted pairs.
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1. Introduction

In the classical Stable Marriage problem (sm) [1], a bipartite graph is given, where one colour class
symbolises a set of men U and the other colour class stands for a set of women W. Man v and woman w
are connected by edge uw if they find one another mutually acceptable. Each participant provides a strictly
ordered preference list of the acceptable agents of the opposite gender. An edge uw blocks matching M if it
is not in M, but each of u and w is either unmatched or prefers the other to their partner. A stable matching
is a matching not blocked by any edge. From the seminal paper of Gale and Shapley [1], we know that the
existence of such a stable solution is guaranteed and one can be found in linear time. Moreover, the solutions
form a distributive lattice [2]. The two extreme points of this lattice are called the man- and woman-optimal
stable matchings [1]. These assign each man/woman their best partner reachable in any stable matching.
Another interesting and useful property of stable solutions is the so-called Rural Hospitals Theorem. Part
of this theorem states that if an agent is unmatched in one stable matching, then all stable solutions leave
him unmatched [3].

One of the most widely studied extensions of sM is the Stable Roommates problem (SR) [1,4], defined
on general graphs instead of bipartite graphs. The notion of a blocking edge is as defined above (except
that it can now involve any two agents in general), but several results do not carry over to this setting.
For instance, the existence of a stable solution is not guaranteed any more. On the other hand, there is a
linear-time algorithm to find a stable matching or report that none exists [4]. Moreover, the corresponding
variant of the Rural Hospitals Theorem holds in the roommates case as well: the set of matched agents is
the same for all stable solutions [5]. We summarise this observation as follows:

Theorem 1.1 (Gusfield and Irving [5]). Given an instance of SR, the same set of agents is matched in all
stable matchings.

Both sMm and SR are widely used in various applications. In markets where the goal is to maximise social
welfare instead of profit, the notion of stability is especially suitable as an optimality criterion [6]. For sM, the
oldest and most common area of applications is employer allocation markets [7]. On one side, job applicants
are represented, while the job openings form the other side. Each application corresponds to an edge in the
bipartite graph. The employers rank all applicants to a specific job offer and similarly, each applicant sets up
a preference list of jobs. Given a proposed matching M of applicants to jobs, if an employer—applicant pair
exists such that the position is not filled or a worse applicant is assigned to it, and the applicant received no
contract or a worse contract, then this pair blocks M. In this case the employer and applicant find it mutually
beneficial to enter into a contract outside of M, undermining its integrity. If no such blocking pair exists,
then M is stable. Stability as an underlying concept is also used to allocate graduating medical students to
hospitals in many countries [8]. SR on the other hand has applications in the area of P2P networks [9].

Forced and forbidden edges in sSM and SR open the way to formulate various special requirements on
the sought solution. Such edges now form part of the extended problem instance: if an edge is forced, it
must belong to a constructed stable matching, whilst if an edge is forbidden, it must not. In certain market
situations, a contract is for some reason particularly important, or to the contrary, not wished by the majority
of the community or by the central authority in control. In such cases, forcing or forbidding the edge and
then seeking a stable solution ensures that the wishes on these specific contracts are fulfilled while stability
is guaranteed. Henceforth, the term restricted edge will be used to refer either to a forbidden edge or a forced
edge. The remaining edges of the graph are referred as unrestricted edges.

Note that simply deleting forbidden edges or fixing forced edges and searching for a stable matching on
the remaining instance does not solve the problem of finding a stable matching with restricted edges. Deleted
edges (corresponding to forbidden edges, or those adjacent to forced edges) can block that matching. There-
fore, to meet both requirements on restricted edges and stability, more sophisticated methods are needed.
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The attention of the community was drawn very early to the characterisation of stable matchings that
must contain a prescribed set of edges. In the seminal book of Knuth [2], forced edges first appeared under
the term arranged marriages. Knuth presented an algorithm that finds a stable matching with a given set of
forced edges or reports that none exists, given an instance of sM. This method runs in O(n?) time, where n
denotes the number of vertices in the graph. Gusfield and Irving [5] provided an algorithm for sM based on
rotations that terminates in O(|Q|?) time, following O(n?*) pre-processing time, where @Q is the set of forced
edges. This latter method is favoured over Knuth’s if multiple forced sets of small cardinality are proposed.

Forbidden edges appeared only in 2003 in the literature, and were first studied by Dias et al. [10]. In their
paper, complete bipartite graphs were considered, but the methods can easily be extended to incomplete
preference lists. Their main result was the following (in the following theorem, and henceforth, m is the total
number of edges in the graph).

Theorem 1.2 (Dias et al. [10]). The problem of finding a stable matching in an SM instance with forced and
forbidden edges or reporting that none exists is solvable in O(m) time.

While Knuth’s method relies on basic combinatorial properties of stable matchings, the other two
algorithms make use of rotations. We refer the reader to [5] for background on these. The problem of
finding a stable matching with forced and forbidden edges in an SM instance can easily be formulated as
a weighted stable matching problem (that is, we seek a stable matching with minimum weight, where the
weight of a matching M is the sum of the weights of the edges in M). Let us assign all forced edges weight —1,
all forbidden edges weight 1, and all remaining edges weight 0. A stable matching satisfying all constraints
on restricted edges exists if and only if there is a stable matching of weight —|@| in the weighted instance,
where @ is the set of forced edges. With the help of rotations, minimum weight stable matchings can be
found in polynomial time [11-14] (see the final paragraph of Section 2 for more details on the role played
by each of these references).

Since finding a weight-minimal stable matching in SR instances is an NP-hard task [12], it follows that
solving the problem with forced and forbidden edges requires different methods from the aforementioned
weighted transformation. Fleiner et al. [15] showed that any SR instance with forbidden edges can be
converted into another stable matching problem involving ties that can be solved in O(m) time [16] and the
transformation has the same time complexity as well. Forced edges can easily be eliminated by forbidding
all edges adjacent to them, therefore we can state the following result.

Theorem 1.3 (Fleiner et al. [15]). The problem of finding a stable matching in an SR instance with forced
and forbidden edges or reporting that none exists is solvable in O(m) time.

As we have seen so far, answering the question as to whether a stable solution containing all forced
and avoiding all forbidden edges exists can be solved efficiently in the case of both smM and SrR. We thus
concentrate on cases where the answer to this question is no. What kind of approximate solutions exist then
and how can we find them?

Our contribution. Since optimality is defined by two criteria, it is straightforward to define approximation
from those two points of view. In case BP, all constraints on restricted edges must be satisfied, and we seek a
matching with the minimum number of blocking edges. In case CV, we seek a stable matching that violates
the fewest constraints on restricted edges. The optimisation problems that arise from each of these cases are
defined formally in Section 2.

In Section 3, we consider case BP: that is, all constraints on restricted edges must be fulfilled, while the
number of blocking edges is minimised. We show that in the SM case, this problem is computationally hard
and not approximable within n!~¢ for any £ > 0, unless P = NP. We also discuss special cases for which this
problem becomes tractable. This occurs if the maximum degree of the graph is at most 2 or if the number of



A. Cseh, D.F. Manlove / Discrete Optimization 20 (2016) 62-89 65

Table 1
Summary of results.
Stable Marriage Stable Roommates
Case BP: min # blocking edges NP-hard to approximate within n'~¢ NP-hard to approximate within n'~¢
Case CV: min # violated restricted Solvable in polynomial time NP-hard; 2-approximable if |Q] is large
edge constraints or 0

blocking edges in the optimal solution is a constant. We point out a striking difference in the complexity of
the two cases with only forbidden and only forced edges: the problem is polynomially solvable if the number
of forbidden edges is a constant, but by contrast it is NP-hard even if the instance contains a single forced
edge. We also prove that when the restricted edges are either all forced or all forbidden, the optimisation
problem remains NP-hard even on very sparse instances, where the maximum degree of a vertex is 3.

Case CV, where the number of violated constraints on restricted edges is minimised while stability is
preserved, is studied in Section 4. It is a rather straightforward observation that in SM, the setting can be
modelled and efficiently solved with the help of edge weights. Here we show that on non-bipartite graphs,
the problem becomes NP-hard, but 2-approximable if the number of forced edges is sufficiently large or
zero. As in case BP, we also discuss the complexity of degree-constrained restrictions and establish that
the NP-hardness results remain intact even for graphs with degree at most 3, while the case with degree at
most 2 is polynomially solvable.

A structured overview of our results for general SM and SR instances is contained in Table 1.

2. Preliminaries and techniques

In this section, we introduce the notation used in the remainder of the paper and also define the key
problems that we investigate later. An instance Z = (G, O) of the Stable Marriage problem (SM) consists
of a bipartite graph G = (U U W, E) with n vertices and m edges, and a set O: the set of strictly ordered,
but not necessarily complete preference lists. These lists are provided on the set of adjacent vertices at each
vertex. The Stable Roommates problem (sR) differs from SM in one sense: the underlying graph G need not
be bipartite. In both sM and SR, a matching M in G is sought, assigning each agent to at most one partner.
If a vertex v € V(G) is matched in M, we denote by M (v) the partner of v in M. An edge vw € E\ M
blocks M, or forms a blocking pair of M if either u is unmatched or prefers w to M(u), and either w is
unmatched or prefers u to M (w). A matching that is not blocked by any edge is called stable.

As already mentioned in the Introduction, an SR instance need not admit a stable solution. The number
of blocking edges is a characteristic property of every matching. The set of edges blocking M is denoted
by bp(M). A natural goal is to find a matching minimising |bp(M)|; following the consensus in the literature,
such a matching is called almost stable. This approach has a broad literature: almost stable matchings have
been investigated in sM [17-19] and SR [20,21] instances.

All problems investigated in this paper deal with at least one set of restricted edges. The set of forbidden
edges is denoted by P, while @) stands for the set of forced edges. We assume throughout the paper that
PN Q@ =0. A matching M satisfies all constraints on restricted edges if M N P =) and Q C M.

In Fig. 1, a sample SM instance on four men and four women can be seen. The preference ordering is shown
on the edges. For instance, vertex us ranks w; best, then wy, and ws last. The set of forbidden edges P =
{ugws, ugws} is marked by dotted grey edges. The unique stable matching M = {ujw1, ugws, uzws, ugwy }
contains both forbidden edges. Later on, we will return to this sample instance to demonstrate approximation
concepts on it.

The first approximation concept (case BP described in Section 1) is to seek a matching M that satisfies
all constraints on restricted edges, but among these matchings, it admits the minimum number of blocking
edges. This leads to the following problem definition.
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Fig. 1. A sample stable marriage instance with forbidden edges.

Problem 2.1 (MIN BP SR RESTRICTED). Input: Z = (G, O, P, Q) comprising an SR instance (G, O), a set of
forbidden edges P and a set of forced edges Q.

Output: A matching M such that M NP =0, @ € M and |bp(M)| < |bp(M")| for every matching M’
in G satisfying M' NP =0,Q C M'.

Special attention is given to two special cases of MIN BP SR RESTRICTED: in MIN BP SR FORBIDDEN,
@ = 0, while in MIN BP SR FORCED, P = (). Note that an instance of MIN BP SR FORCED or MIN BP SR
RESTRICTED can always be transformed into an instance of MIN BP SR FORBIDDEN by forbidding all edges
that are adjacent to a forced edge. This transformation does not affect the number of blocking edges.

According to the other intuitive approximation concept (case CV described in Section 1), stability
constraints need to be fulfilled, while some of the constraints on restricted edges are relaxed. The goal
is to find a stable matching that violates as few constraints on restricted edges as possible.

Problem 2.2 (SR MIN RESTRICTED VIOLATIONS). Input: Z = (G, O, P, @) comprising an SR instance (G, O),
a set of forbidden edges P and a set of forced edges Q.

Output: A stable matching M such that |M NP|+|Q\ M| < |[M'NP|+|Q\ M’| for every stable matching
M’ in G.

Just as in the previous approximation concept (referred to as case BP in Section 1), we separate the two
subcases with only forbidden and only forced edges. If Q = (), SR MIN RESTRICTED VIOLATIONS is referred as
SR MIN FORBIDDEN, while if P = (), the problem becomes SR MAX FORCED. If P = () or Q = (), then that set
is omitted from an instance of MIN BP SR RESTRICTED or SR MIN RESTRICTED VIOLATIONS as appropriate.

When considering the decision versions of the problems defined in this section, we append DEC to the
problem name and add a positive integer K to the problem instance. The problem is then to decide whether
a feasible solution exists with measure at most K. For example, in the case of the optimisation problem
MIN BP SR FORBIDDEN, an instance of the decision problem MIN BP SR FORBIDDEN DEC comprises a tuple
(G,0, P, K), where (G, O, P) is as per the definition of MIN BP SR FORBIDDEN and K is a positive integer.
The question is whether there is a matching M such that |M N P| =0 and |bp(M)| < K.

In all discussed problems, n is the number of vertices and m is the number of edges in the graph underlying
the particular problem instance. When considering the restriction of any of the above problems to the case
of a bipartite graph SR is replaced by SM in the problem name.

In case BP, the subcase with only forced edges can be transformed into the other subcase, simply by
forbidding edges adjacent to forced edges. This straightforward transformation is not valid for case CV.
Suppose a forced edge was replaced by an unrestricted edge, but all of its adjacent edges were forbidden. A
solution that does not contain the original forced edge might contain two of the forbidden edges, violating
more constraints than the original solution. Yet most of our proofs are presented for the problem with only
forbidden edges, and they require only slight modifications for the case with forced edges.



A. Cseh, D.F. Manlove / Discrete Optimization 20 (2016) 62-89 67

A powerful tool used in several proofs in our paper is to convert some of these problems into a weighted
SM or SR problem, where the goal is to find a stable matching with the lowest total edge weight, taken over all
stable matchings. Irving et al. [11] were the first to show that weighted sM can be solved in polynomial time,
giving an O(n*logn) algorithm if the weight function is monotone in the preference ordering, non-negative
and integral. Feder [12,14] showed a method to drop the monotonicity requirement. He also presented the
best known bound for the running time of an algorithm for finding a minimum weight stable matching in sm:
O(n?log(£+42)-min{n, VK}), where K is the weight of an optimal solution. Redesigning the weight function
to avoid the monotonicity requirement using Feder’s method can radically increase K. Fortunately, linear
programming techniques allow the conditions to be dropped while retaining polynomial-time solvability. A
simple and elegant formulation of the sM polytope is known [13] and using this, a minimum weight stable
matching can be computed for all real-valued weight functions in polynomial time via linear programming.
For weighted SR, finding an optimal matching is NP-hard, but 2-approximable with combinatorial methods,
under the assumption of monotone, non-negative and integral weights [12]. With the help of LP methods, a
2-approximation can be found for every non-negative weight function [22,23].

3. Almost stable matchings with restricted edges

In this section, constraints on restricted edges must be fulfilled strictly, while the number of blocking edges
is minimised. Our results are presented in three subsections, and most of the results are given for MIN BP
SM RESTRICTED. Firstly, in Section 3.1, basic complexity results are discussed. In particular, we prove that
the studied problem MIN BP SM RESTRICTED is in general NP-hard and very difficult to approximate. Thus,
restricted cases are analysed in Section 3.2. First we assume that the number of forbidden, forced or blocking
edges can be considered as a constant. Due to this assumption, two of the three problems that naturally
follow from imposing these restrictions become tractable, but surprisingly, not all of them. Then, degree-
constrained cases are discussed. We show that the NP-hardness result for MIN BP SM RESTRICTED holds
even for instances where each preference list is of length at most 3, while on graphs with maximum degree 2,
the problem becomes tractable. Finally, in Section 3.3 we consider the problem MIN BP SR RESTRICTED and
briefly elaborate on whether the results established for the bipartite case carry over to the SR case.

8.1. General complexity and approximability results

When minimising the number of blocking edges, one might think that removing the forbidden edges
temporarily and then searching for a stable solution in the remaining instance leads to an optimal solution.
Such a matching can only be blocked by forbidden edges, but as the upcoming example demonstrates,
optimal solutions are sometimes blocked by unrestricted edges exclusively. In some instances, all almost
stable solutions admit only non-forbidden blocking edges. Moreover, a man- or woman-optimal almost stable
matching with forbidden edges does not always exist.

Let us recall the sMm instance in Fig. 1. In the graph with edge set E(G) \ P, a unique stable matching
exists: M = {ujwi, uqwys}. Matching M is blocked by both forbidden edges in the original instance. On the
other hand, matching M; = {ujw;, uswy, ugws} is blocked by exactly one edge: bp(M;) = uqwy. Similarly,
matching My = {ujws, ugwi, ugwys } is blocked only by wjw;. Therefore, M; and My are both solutions to
MIN BP SM FORBIDDEN on this instance. One can easily check that M; and Ms are the only matchings with
the minimum number of blocking edges. They both are blocked only by unrestricted edges. Moreover, M;
is better for uy,w; and ws, whereas Ms is preferred by ug, us and wy.

In Theorems 3.1 and 3.5 we present two results demonstrating the NP-hardness and inapproximability of
special cases of MIN BP SM RESTRICTED.
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Theorem 3.1. MIN BP SM FORBIDDEN DEC and MIN BP SM FORCED DEC are NP-complete. The result holds
even if all preference lists are complete.

Proof. Clearly both problems belong to NP. We show the NP-hardness of both problems by giving a reduction
from the following problem:

Problem 3.2 (MIN BP PsMmI DEC). Input: Z = (G, 0, K) comprising an SM instance (G,O) and a positive
integer K.

Output: A perfect matching M such that [bp(M)| < K.

MIN BP PSMI denotes the minimisation version of MIN BP PSMI DEC, in which we seek a perfect matching
with the minimum number of blocking pairs, taken over all perfect matchings in G. MIN BP PSMI-DEC is
NP-complete, and unless P = NP, MIN BP PSMI is not approximable within a factor of n! =%, for any ¢ > 0 [19].

We firstly show NP-hardness of MIN BP SM FORBIDDEN DEC and then indicate how to adapt the proof
to show a similar result for MIN BP SM FORCED DEC. We reduce from MIN BP PSMI DEC as mentioned
above. Given an instance Z = (G, O, K) of this problem we define an instance Z' = (G',0’, P, K) of MIN
BP SM FORBIDDEN DEC as follows. Let G = (V, E) where U and W are the two colour classes of G. Let
n = |V[; then |U| = [W| = n/2. Let U = {u1,uz,...,uy/o} and let W = {wi,wy,...,w,/2}. Add the
vertices in V to G’. In addition, K + 1 new vertices representing women are added to G’. They are denoted
by Y = {y1,92,...,yx+1}. Similarly, K + 1 new men X = {x1,22,...,2x 1} are added to G'. Thus, each
colour class of G’ consists of n/2 + K + 1 vertices.

In O’ the preference lists of vertices already in V(G) are structured in three blocks. Each man w; in the
original instance Z keeps his preference list in O at the top of his new list in O’. After these vertices, the
entire set of newly-introduced women in Y follows, in arbitrary order. Finally, the rest of the women in W,
not already in wu;’s list follow, in arbitrary order. A similar ordering is used when defining the preference list
of each w;. The original list in O is followed by the vertices in X, and then the rest of the men in U follow.

The added newly-added vertices in X UY have different preference orderings. Man z;’s list consists of the
women in W in arbitrary order, followed by y;, and then the women in Y\ {y;} in arbitrary order. Similarly
y; ranks all men in U first in arbitrary order, followed by z;, and then the men in X \ {z;} in arbitrary
order. The preference lists of the vertices in Z’ are shown in Fig. 2.

Having described G’ and O’ completely, all that remains is to specify the set of forbidden edges P. Each
man u; has K +1 forbidden edges adjacent to him, namely, all edges to the newly-introduced y1, y2, . . ., Yr+1
vertices. Similarly, edges between every w; and all 1,2, ..., 2k 41 vertices are also forbidden. In total, Z’
has n(K + 1) forbidden edges.

Claim 3.3. If M is a perfect matching in I admitting at most K blocking edges, then there is a matching
M' in I' with M' 0 P = 0 admitting also at most K blocking edges.

The construction of M’ begins with copying M to G’. Since M is a perfect matching, all vertices in
V(G) are matched to vertices in V(G) and thus, no forbidden edge can be in M’. The remaining vertices
T1,%2,-.-,Tx+1 and y1,¥2, ..., Y11 are paired with each other: each z;y; is added to M’.

M’ is a perfect matching in G’, not containing any of the forbidden edges. Next, we show that no edge
in E(G')\ M’ blocks M’ that did not block M already. First of all, the forbidden edges do not block M’,
because the preference lists of the vertices already in V(G) were constructed in such a way that the vertices
on preference lists in O are better than the vertices in X UY, and all u;, w; vertices were matched in the



A. Cseh, D.F. Manlove / Discrete Optimization 20 (2016) 62-89 69

u;: uy’s list in O Y1, Y2, Yx+1 Trest of women in W (1 <i<n/2)
wi: wy'slistin O @q,29,..., 241 rest of men in U (1<j<n/2)
Tt W, Way e, Wyyja Y women in Y\{y;} (1<i<K+1)
Yj 1 Ui, Uz, Upje T men in X\{z,} (1<j<K+1)

Fig. 2. Preference lists in the constructed instance of MIN BP SM FORBIDDEN DEC.

perfect matching M. The first n/2 choices of any newly-added vertex in X UY are thus not blocking edges.
At the same time, all these new vertices are matched to their first-choice partners among the newly-added
vertices. Therefore no edge incident to them can block M’. All that remains is to observe that u;w; edges
blocking M’ in 7’ already blocked M in Z, because M is the restriction of M’ to G. Therefore, the edges
blocking M and M’ are identical.

Claim 3.4. If M’ is a matching in Z' with M'NP = () admitting at most K blocking edges, then its restriction
to G is a perfect matching M in T admitting at most K blocking edges.

First, we discuss some essential structural properties of M’. The forbidden edges are not in M’, and at
most K of them can block it. Suppose that there is a man u; not married to any woman w; in matching
M. Since w; ranks exactly K + 1 forbidden edges after its listed partners in G, and forbidden edges are the
first n/2 choices of their other end vertex, all K + 1 of them block M’, regardless of the remaining edges
in M’. Having derived a contradiction to our assumption that at most K edges block M’ in total, we can
state that each man w; is matched in M’ to a vertex w; in O. Thus, the restriction of M’ to G is a perfect
matching with at most K blocking edges.

NP-hardness can be obtained for MIN BP SM FORCED DEC by simply forcing all edges of the form x;y; in
the above reduction. O

We now strengthen Theorem 3.1 by giving strong lower bounds for the approximability of MIN BP SM
FORBIDDEN and MIN BP SM FORCED. The reduction given in the proof of the next theorem builds on the
reduction given in the proof of Theorem 3.1.

Theorem 3.5. Fach of MIN BP SM FORBIDDEN and MIN BP SM FORCED is not approzimable within a factor
of n'~¢, for any € >0, unless P = NP. The result holds even if all preference lists are complete.

Proof. We will give a reduction from the following NP-complete problem:

Problem 3.6 (EXACT MAXIMAL MATCHING). Input: Z = (G, K) comprising a bipartite graph G and a positive
integer K.

Question: Is there a maximal matching M in G such that |[M| = K?

EXACT MAXIMAL MATCHING is NP-complete even for graphs where all vertices representing men have
degree two, while all vertices of the other colour class have degree three [24]. We show that if there were a
polynomial approximation algorithm within a factor of n!~¢ to MIN BP SM FORBIDDEN, then it would also
find an exact maximal matching in Z.

In our proof, every instance Z = (G, K) of EXACT MAXIMAL MATCHING is transformed into an instance
7" = (G',0', P) of MIN BP SM FORBIDDEN. We later show how to adapt the proof for MIN BP SM FORCED.
Let n; and no denote the size of each colour class in Z, such that m = 2n; = 3ns.

We show that if there were a polynomial approximation algorithm with a performance guarantee of n'—¢

for MIN BP SM FORBIDDEN (where n is the number of vertices in G'), then it would solve EXACT MAXIMAL
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wi: wg’s list in O Y1,Y2, .-, yc  rest of women in W (1 <14 < |UJ|)
w;: w;’s list in O Z1,%a,...,Tc rest of men in U (I1<y<|w))
x;:  all women in Wy women in Y'\{y;} (1<i<0O)
y;: all menin U T men in X\{z;} (1<j<0)

Fig. 3. Preference lists in the constructed instance of MIN BP SM RESTRICTED.

MATCHING in polynomial time. To do so, another transformation is used, involving Z’, an instance of MIN
BP PSMI In [19], an instance Z' = (G, O) of MIN BP PSMI is created from Z with special properties. One
of them is that if G has a maximal matching of cardinality K, then Z’ has a perfect matching admitting
exactly ni +ns blocking edges. Otherwise, if G has no maximal matching of cardinality K, then any perfect
matching in Z’ is blocked by at least n1 + ny + C edges, where C' is a huge number. To be more precise, let
B =[2] and C = (ny 4+ n2)P*! +1 (in [19], the value of B was the same to that used here, but the value
of C' was slightly different). The number of vertices in each colour class of 7’ is 3ny + 2mC + 4ns — K.
Now we describe how Z’ is transformed into Z”. Note that this method is very similar to the one we used
in the proof of Theorem 3.1. Denote by U and W the set of men and women in Z’, and let w; and w; denote
an arbitrary man and woman in Z’ respectively. Add these vertices to Z"/ and then introduce C' new men,
namely X = {21, 9,...,2¢}, and C new women, namely Y = {y1, 92, ..., yc }. Then each colour class in Z”
consists of 3ny + 2mC + 4no — K + C vertices. The preference lists of the vertices in Z” are shown in Fig. 3.

The set of forbidden edges comprises all edges of the form w;x; or w;y;. For MIN BP SM FORCED, the
set of forced edges consists of all edges of the form z;y;. Due to this construction, and as in the proof of
Theorem 3.1, if M is a matching in Z” in which there is a man u; not matched to a woman in O, then M
is blocked by at least C' edges.

It follows that if G has a maximal matching of size at most K, then Z” has a matching with at most ni+no
blocking pairs. On the other hand if G has no maximal matching of size at most K, then any matching in Z"
has at least C' > (nj + n2)PT! blocking pairs. Hence an (n; + ng)P-approximation algorithm for MIN BP SM
RESTRICTED or MIN BP SM FORCED could be used to solve EXACT MAXIMAL MATCHING in polynomial time.

To complete the proof it remains to show that if n is the number of vertices in Z”, then n'=¢ < (ny +no)5.
Using Inequalities (1)-(7) we give an upper bound for n, whilst with Inequalities (8)-(10) we establish a lower
bound. Then, combining these two in Inequalities (11)(14), we derive that n'=¢ < (n; +n2)?. Explanations
for the steps are given as necessary after each of the three sets of inequalities.

n=2(3n1 +2mC +4ny — K + C)
=6ny +8n1C + 8ny — 2K + 2C
< 6n1 +8n1((ny +n2)BH +1) 4+ 8ny — 2K + 2(ng +ny) P 42
< 14ng + (ny 4+ n2)2TH(8ny +2) + 8ny + 2
< 14ng + 14ny + (ng + n2) BT (14ng + 14n,)
< (n1 +n2)P2 4 14(ny + no) BT
= 15(ny + ng) B2 (7

Ut

A~ N N /S /S A/
D e~
—_ T N N —

In (2) we use that m = 2nq, whilst in (3) we use that C = (ny +ny)?+! + 1 by definition. To obtain (4) we
omit —2K whilst in (5) we assume that ny > 1 and increase all coefficients to the highest coefficient of 14.
In (6) we assume that n; > 1, since B > 3.

n =6ny +8n1C + 9ny — 2K + 2C (8)
> (nq +ng) BT 9)
> 155, (10)
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In (8) we keep only C from the right-hand side of the equality above and use the fact that C' > (n; 4+mnq)B+1,
whilst in (10) we assume without loss of generality that ny > 6 so ny; > 9 (recall that 2n; = 3ns).

C > (711 + ’llQ)B (11)
> 15" Brap B (12)
> pl =B (13)
>n'"c (14)

Here (12) follows by (1)-(7); (13) follows by (8)-(10) and (14) uses the fact that B > 2. [

8.2. Bounded parameters

Our results presented so far show that MIN BP SM RESTRICTED is computationally hard even if P = () or
Q = (). Yet if certain parameters of the instance or the solution can be considered as a constant, the problem
can be solved in polynomial time. Theorem 3.7 firstly shows that this is true for MIN BP SM FORBIDDEN.

Theorem 3.7. MIN BP SM FORBIDDEN is solvable in O(mY*1) time, where L = |P|, which is polynomial if
L is a constant.

Proof. We firstly show how to solve MIN BP SM FORBIDDEN DEC in polynomial time. We assume that, for
the purposes of this proof, the problem definition is modified so that, given an instance Z = (G, O, P, K),
we are required to find a matching M in G such that M N P = § and |bp(M)| < K, or report that no such
matching exists.

Our first observation is that this problem is trivially solvable if the target value K satisfies K > L. In
this case, deleting the L forbidden edges from E(G) and finding a stable matching in the remaining graph
delivers a matching that is blocked in the original instance by only a subset of the removed edges (if any).
Thus, a matching M with M NP = () and |[bp(M)| < L < K always exists.

Now assume that K < L. Suppose firstly that there is a matching M with M N P = (§ and
[bp(M)| = k < K < L. If those k blocking edges are deleted from F(G), then M is a stable matching
in the remainder of GG, and M contains none of the forbidden edges. Note that we did not specify which
edges block M': they can be both forbidden and unrestricted.

Hence to solve MIN BP SM FORBIDDEN DEC we generate all subsets S of potential blocking edges, where
|S| < K. After deleting the edges in S from G, we try to find, in the remaining graph, a matching M such
that M NP = () and M is stable, or we report that no such matching exists. By Theorem 1.2, this step can
be accomplished in O(m) time. If such a matching M exists, then it admits at most K blocking edges in Z.

Thus Zfio (M) = ZiL:O () subsets are generated to determine whether the desired matching exists.

The number of rounds is thus O(m’), while each round takes O(m) time to complete. The overall running
time is O(mI+1).

We now show how to use the above approach in order to solve MIN BP SM FORBIDDEN. If we find a solution
during the course of this process, then G admits a matching M such that M NP = and |bp(M)| < L. In
order to minimise |bp(M)| it suffices to use the technique in the previous paragraph in combination with
a binary search procedure on values of K < L. This requires O(log L) invocations of the algorithm for the
decision problem, which is a constant, and hence the overall time complexity remains O(m**!). O

In sharp contrast to the previous result on polynomial solvability when the number of forbidden edges is
small, we state the following theorem for MIN BP SM FORCED DEC.
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Fig. 4. A u-gadget, a w-gadget and the special gadget.

Theorem 3.8. MIN BP SM FORCED DEC is NP-complete even if |Q| = 1.

Proof. The NP-complete problem we reduce to MIN BP SM FORCED DEC is EXACT MAXIMAL MATCHING. As
previously mentioned, this problem is NP-complete even for graphs where all vertices representing men have
degree two, while all vertices of the other side have degree three [24]. Hence suppose we are given an instance
7 = (G, K) of this restriction, where in G, Uy and Wy are the two colour classes and F is the edge set.

In this proof, we construct a MIN BP SM FORCED DEC instance Z' = (G',0’, Q, K') with a single forced
edge in such a way that there is a maximal matching of cardinality K in 7 if and only if there is a matching
containing the forced edge and admitting exactly K’ = |Up| + |Wp| blocking edges in Z’. Our construction
is based on ideas presented in [19].

All vertices in G rank their edges in an arbitrary but fixed order. We will refer to these labels when
constructing Z'. We now describe Z’. The vertex set of graph G’ in Z’ can be partitioned into seven sets:
U, V,W,Z, 5,85, X and Y, where U UV U X US; are the men and WU ZUY U Sy are the women.
Specific subgraphs of G’ are referred to as u-gadgets, w-gadgets, together with a special gadget containing
the forced edge; see Fig. 4. Aside from these, G’ also contains some extra vertices, the so-called garbage
collectors, partitioned into two sets: X and Y. Later we will see that these garbage collectors are paired to
the vertices not covered by the matching in G. To that end, | X| = |Wy| — K and |Y| = |Uy| — K. The whole
construction is illustrated in Fig. 5.

Each u-gadget replaces a vertex u € Uy in G. It is defined on five vertices: w1, us,us € U and 21,25 € Z.
Its edges and the preferences on them are shown in Fig. 4. Two interconnecting edges connect the special
gadget to us, and an interconnecting edge connects the special gadget to each of u; and us. These edges
are ranked last in the case of u; and us, and ranked as the last two edges by ws. It is described later
which vertices of the special gadget are incident to these interconnecting edges. The u-gadget also has edges
to all w-gadgets represen