
String Extension Learning Using Lattices

Anna Kasprzik1, Timo Kötzing2

1 FB IV � Abteilung Informatik, Universität Trier, 54286 Trier, Germany
kasprzik@informatik.uni-trier.de

2 Department 1: Algorithms and Complexity, Max-Planck-Institut für Informatik,
66123 Saarbrücken, Germany koetzing@mpi-inf.mpg.de

Abstract. The class of regular languages is not identi�able from posi-
tive data in Gold's language learning model. Many attempts have been
made to de�ne interesting classes that are learnable in this model, prefer-
ably with the associated learner having certain advantageous proper-
ties. Heinz '09 presents a set of language classes called String Extension
(Learning) Classes, and shows it to have several desirable properties.
In the present paper, we extend the notion of String Extension Classes
by basing it on lattices and formally establish further useful proper-
ties resulting from this extension. Using lattices enables us to cover a
larger range of language classes including the pattern languages, as well
as to give various ways of characterizing String Extension Classes and
its learners. We believe this paper to show that String Extension Classes
are learnable in a very natural way , and thus worthy of further study.

1 Introduction

In this paper, we are mostly concerned with learning as de�ned by Gold [Gol67]
which is sometimes called learning in the limit from positive data.

Formally, for a class of (computably enumerable) languages L and an algo-
rithmic learning function h, we say that h TxtEx-learns L [Gol67, JORS99] i�,
for each L ∈ L, for every function T enumerating (or presenting) all and only
the elements of L, as h is fed the succession of values T (0), T (1), . . ., it outputs a
corresponding succession of programs p(0), p(1), . . . from some hypothesis space,
and, for some i0, for all i ≥ i0, p(i) is a correct program for L, and p(i+1) = p(i).
The function T is called a text or presentation for L.

There are two main viewpoints in research on language learning: Inductive
Inference (II) and Grammatical Inference (GI). The area of Inductive Inference
is mainly concerned with the question if a certain target concept, which in our
case usually represents a formal language class, can be identi�ed in the limit, i.e.,
after any �nite number of steps. The area of Grammatical Inference is mainly
concerned with the concrete algorithms solving that task and with their e�-
ciency, i.e., with the question if the number of steps needed can be bounded by
some polynomial with respect to a relevant measure such as the input size or
the number of queries asked, if admissible. As a result, research on GI is more
involved with the task of inferring a speci�c description of a formal language

(e.g., a grammar or an automaton) than just the language as an abstract item
as the inference strategy of any concrete learning algorithm is intrinsically linked
to the description it yields as output (for an overview of GI, see [dlH10]). In this
paper, we have tried to include results of importance from both perspectives.

Gold [Gol67] already showed that the class of regular languages is not TxtEx-
learnable. Several papers, for example [Fer03, Hei09], are concerned with �nd-
ing interesting classes of languages that are TxtEx-learnable. Furthermore, fre-
quently it is desirable for a learner to have additional properties, and one wants
to �nd interesting classes learnable by a learner having these properties.

In this paper, we extend and analyze the notion of String Extension Learning
as given in [Hei09]. We do this by applying Birkho�-style lattice theory and
require all conjectures a learner makes to be drawn from a lattice. Section 2
makes String Extension Learning precise. Importantly, in Theorem 6 we show
the resulting learners to have a long list of advantageous properties.

Many simple, but also several more complex languages classes are learnable
this way. Some examples are given in [Hei09]; we show in Section 3 how Pattern
Languages can be learned as a subclass of a String Extension Language Class.
Furthermore, Section 3 discusses in what respect Distinction Languages [Fer03]
are String Extension Languages as well.

Section 4 analyzes String Extension Learners (SELs) and String Extension
Classes (SECs) further. We give two insightful characterization of SELs in The-
orem 14, and three characterizations of SECs in Theorem 15. This establishes
the SECs as very naturally arising learnable language classes.

Section 5 studies how String Extension Classes and special cases thereof are
learnable via queries [Ang87]. Complexity issues are discussed and it is shown
that String Extension Languages can be learned in a particularly straightforward
way from equivalence queries.

Familiarity with lattice theory is useful to understand this paper, but not
completely necessary. For introductions into lattice theory, the reader is referred
to the textbooks [Bir84] (a classic) and [Nat09] (available online).

We omit many proofs due to space constraints. The proof
of Theorem 6 is given below and exemplary for several of
the omitted proofs. A complete version can be found at
http://www.mpi-inf.mpg.de/~koetzing/StringExtensionLearnersTR.pdf.

2 De�nitions and Basic Properties

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained
general computability-theoretic notions are from [Rog67].

N denotes the set of natural numbers, {0, 1, 2, . . .}. We let Σ be a countable
alphabet (a non-empty countable set; we allow for � countably � in�nite alpha-
bets), and with Σ∗ we denote the set of all �nite words over Σ. A language is
any set L ⊆ Σ∗. For each k, Σk denotes the set of all words of length exactly k.
We denote the empty word with ε and the length of a word x with |x|.

2

With Seq we denote the set of �nite sequences over Σ∗ ∪ {#}, where # is a
special symbol called �pause�. We denote the empty sequence with ∅. For a non-
empty sequence σ, we let σ− be the sequence of σ without the last element of σ,
and we let last(σ) be the last element of σ. Concatenation on sequences is denoted
with �. For all σ ∈ Σ∗, we let content(σ) = {x ∈ Σ∗ | ∃i < len(σ) : σ(i) = x}.

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, super-
set and proper superset relation between sets. For sets A,B, we let A\B = {a ∈
A | a 6∈ B}, A be the complement of A and Pow(A) be the power set of A.

The quanti�er ∀∞x means �for all but �nitely many x�, the quanti�er ∃∞x
means �for in�nitely many x�. For any set A, |A| denotes the cardinality of A.

We let dom and range denote, respectively, domain and range of a given
function. We sometimes denote a function f of n > 0 arguments x1, . . . , xn in
lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with
c ∈ N, λx c is the constantly c function of one argument.

A function ψ is partial computable i� there is a deterministic, multi-tape
Turing machine computing ψ. P and R denote, respectively, the set of all partial
computable and the set of all total (partial) computable functions N → N. We
say that ψ is polytime i� ψ is computable in polynomial time. If a function f is
de�ned for x ∈ dom(f) we write f(x)↓, and we say that f on x converges.

For all p, Wp denotes the computably enumerable (ce) set dom(ϕp).
We say that a function f converges to p i� ∀∞x : f(x)↓ = p.
Whenever we consider (partial) computable functions on objects like �nite

sequences or �nite sets, we assume those objects to be e�ciently coded as natural
numbers. We also assume words to be so coded. The size of any such �nite object
is the size of its code number.

Note that, for in�nite alphabets, the size of words of length 1 is unbounded.

String Extension Learning

After these general de�nitions, we will now turn to de�nitions more speci�c to
this paper. First we introduce lattices and String Extension Spaces and then
show how we use them for learning.

De�nition 1. A pair (V,v) is a partially ordered set i�

� ∀a, b : a v b ∧ b v a⇒ a = b;
� ∀a, b : a v a;
� ∀a, b, c : a v b ∧ b v c⇒ a v c.

Let (V,v) be a partially ordered set. For any set S ⊆ V , v ∈ V is called

� an upper bound of S i� ∀a ∈ S : a v v;
� an lower bound of S i� ∀a ∈ S : v v a;
� a maximum of S i� v is upper bound of S and v ∈ S;
� a minimum of S i� v is lower bound of S and v ∈ S;
� a least upper bound or supremum of S i� v is the minimum of the set of

upper bounds of S;
� a greatest lower bound or in�mum of S i� v is the maximum of the set of

lower bounds of S;

3

Note that, for a given set, there is at most one supremum and at most one
in�mum. If V has a minimum element, we denote it by ⊥V , a maximum element
by >V . (V,v) is called

� an upper semi-lattice i� each two elements of V have a supremum;
� a lower semi-lattice i� each two elements of V have an in�mum;
� a lattice i� each two elements of V have a supremum and an in�mum.

In an upper semi-lattice, the supremum of two elements a, b ∈ V is denoted
by a t b and we use

⊔
to denote suprema of sets D (note that, in an upper

semi-lattice, each non-empty �nite set has a supremum, which equals the
iterated supremum of its elements, as the binary supremum is an associative
operation); if V has a minimum element, then, by convention,

⊔
∅ = ⊥V . In a

lower semi-lattice, the in�mum of two elements a, b ∈ V is denoted by a u b.

For two partially ordered sets V,W a function h : V →W is called an order
embedding i�, for all a, b ∈ V , a vV b ⇔ h(a) v h(b). An order isomorphism is
a bijective order embedding.

Let V be a partially ordered set with minimum element. An element a ∈ V
is called an atom i� a 6= ⊥V and {b | ⊥V v b v a} = {⊥V , a}. If, for all b ∈ V
there is an atom a ∈ V such that a v b, then we call V atomic.

A lattice is called boolean i� V has a minimal element ⊥ and maximal element
> and there is a function · such that, for all a ∈ V , a u a = ⊥ and a t a = >.

For example, for each k ∈ N, the set of all �nite sets that contain only words
of length k is, with inclusion as the order, an atomic lattice, which is boolean i�
the alphabet is �nite. We call this lattice Vfac−k.

De�nition 2. For an upper semi-lattice V and a function f : Σ∗ → V such
that f and u are (total) computable, (V, f) is called a String Extension Space
(SES) i�, for each v ∈ V , there is a �nite D ⊆ range(f) with

⊔
x∈D x = v.3

(V, f) is called polytime i� f and suprema in V are polytime.

As an example, for each k, we let fack : Σ∗ → Vfac−k, x 7→ {v ∈ Σk | ∃u,w ∈
Σ∗ : x = uvw}. Then (Vfac−k, fack) is an SES.4

De�nition 3. Let (V, f) be an SES.

� A grammar is any v ∈ V .5

3 This de�nition might seem a little strange at �rst, and in general one could de�ne
SESes without those restrictions. However, elements that are not the �nite union
of elements from range(f) are not directly useful for our purposes, and many of
our theorems would have to be stated in terms of the �stripped� sub semi-lattice one
gets from restricting to all elements which are �nite union of elements from range(f).
Thus, for notational purposes, we only allow for �stripped� SESes in the �rst place.

4 Any substring of length k of a word x is called a k-factor of x.
5 Note that we assume our grammars to be �nite with respect to a relevant measure,
i.e., containing for example a �nite number of admissible substrings, or other rules.

4

� The language of grammar v is Lf (v) = {w ∈ Σ∗ | f(w) v v}.
� The class of languages obtained by all possible grammars is Lf =
{Lf (v) | v ∈ V }.

We de�ne φf such that ∀v, x : φf (σ) =
⊔
x∈content(σ) f(x).

Any class of languages L such that there is an SES (V, f) with L = Lf is
called a String Extension Class (SEC), φf a String Extension Learner (SEL).6

We will omit the subscript of f if it is clear from context.

For example, with respect to (Vfac−2, fac2), {aa, ab} is a grammar for the set
of all words for which any contiguous subword of length 2 is either aa or ab.
Example such words include aaa, ab, aaaab, c, . . .

Next we de�ne what we mean by �learning�.

De�nition 4. Let L ⊆ Σ∗ and T : N → Σ∗. T is called a text for L i� L ⊆
content(T) ⊆ L ∪ {#}. Let h : Seq → N be a (total computable) learner. We
assume the outputs of h to be mapped by a function L(·) to a language. Whenever
no concrete function L(·) is given, we assume the mapping λp Wp.

The learner h ∈ P is said to TxtEx-identify a languages L with respect to
L(·) i�, for each text T for L, there is k ∈ N such that

(i) L(h(T [k])) = L; and
(ii) for all k′ ≥ k, h(T [k′]) = h(T [k]).

For the minimum such k, we then say that h on T has converged after k steps,
and denote this by Conv(h, T) = k.

We denote the set of all languages TxtEx-identi�ed by a learner h with
TxtEx(h). We say that a class of languages L is TxtEx-identi�ed (possibly
with certain properties) i� there is a learner h ∈ P (observing those properties)
TxtEx-learning every set in L. Further, we say that h learns a language using
a uniformly decidable hypothesis space i� λx, p x ∈ L(p) is (total) computable.

The following learner properties have been studied in the literature.

De�nition 5. Let a learner h : Seq→ N be given. We call h

� iterative [Ful85, Wie76], i� there is a function hit : N × Σ∗ → N such that
∀σ ∈ Seq, w ∈ Σ∗ : hit(h(σ), w) = h(σ � w);

� polytime iterative, i� there is a polytime such function hit;
� set-driven [WC80, JORS99], i� there is a function hset : Pow(Σ∗)→ N such

that ∀σ ∈ Seq : hset(content(σ)) = h(σ);
� globally consistent [B	ar74, BB75, Wie76], i� ∀σ ∈ Seq : content(σ) ⊆
L(h(σ));

� locally conservative [Ang80], i� ∀σ ∈ Seq, x ∈ Σ∗ : h(σ) 6= h(σ � x) ⇒ x 6∈
L(h(σ));

6 In general, in formal language theory, several descriptions may de�ne the same
language. Observe that for the language classes de�ned here this is not the case �
we have Lf (u) 6= Lf (v) for any two elements u, v ∈ V with u 6= v. See Theorem 10.

5

� strongly monotone [Jan91], i� ∀σ ∈ Seq, x ∈ Σ∗ : L(h(σ)) ⊆ L(h(σ � x));
� prudent [Wei82, OSW86], i� ∀σ ∈ Seq : L(h(σ)) ∈ TxtEx(h);
� optimal [Gol67], i�, for all learners h′ with TxtEx(h) ⊆ TxtEx(h′),

∃L ∈ TxtEx(h), T ∈ Txt(L) : Conv(h′, T) < Conv(h, T)
⇒

∃L ∈ TxtEx(h), T ∈ Txt(L) : Conv(h, T) < Conv(h′, T).
(1)

We brie�y show that SELs have a number of desirable properties.

Theorem 6. Let (V, f) be an SES. Then φf TxtEx-learns Lf
(i) iteratively;
(ii) if (V, f) is a polytime SES, polytime iteratively;
(iii) set-drivenly;
(iv) globally consistently;
(v) locally conservatively;
(vi) strongly monotonically;
(vii) prudently; and
(viii) optimally.

Proof. Regarding TxtEx-learnability: Let L ∈ Lf and let v ∈ V be such
that L(v) = L. Let T be a text for L. As (V, f) is an SES, let D ⊆ Σ∗ such
that v =

⊔
x∈D f(x). Let k be such that D ⊆ content(T [k]). Then, obviously,

∀k′ ≥ k : φf (T [k′]) = v. Regarding the di�erent items of the list, we have:

(i) We let φitf ∈ P be such that

∀v, x : φitf (v, x) =

{
v, if x = #;
v t f(x), otherwise.

(2)

(ii) Clearly, φitf from (i) is polytime, if (V, f) is a polytime SES.

(iii) Let φset ∈ P be such that ∀D : φset(D) =
⊔
x∈D f(x).

(iv) Let σ be a sequence in Σ∗, let v = φf (σ) and x ∈ content(σ). Then f(x) v⋃
y∈content(σ) f(y) = φf (σ) = v. Thus, x ∈ L(v).

(v) Let σ ∈ Seq and x ∈ Σ∗ with φf (σ) 6= φf (σ�x). Thus, φf (σ) 6= φf (σ)∪f(x),
in particular, f(x) 6v φf (σ). Therefore, x 6∈ L(φf (σ)).

(vi) Let σ ∈ Seq and x ∈ Σ∗. Clearly, φf (σ) v φf (σ � x). Thus,

Lf (φf (σ)) = {w ∈ Σ∗ | f(w) v φf (σ)}
⊆ {w ∈ Σ∗ | f(w) v φf (σ � x)}
= Lf (φf (σ � x)).

(vii) Prudence is clear, as, for all σ ∈ Seq and x ∈ Lf (φf (σ)), we have f(x) v
φf (σ). Hence, for all texts T for Lf (φf (σ)), φf on T will converge to φf (σ).

(viii) Optimality follows from consistency, conservativeness and prudence, as
stated in [OSW86, Proposition 8.2.2A].

For each SES (V, f) we will use φitf and φsetf as shown existent just above.

6

3 Example SECs

We already came across the example of k-factor languages and its SES
(Vfac−k, fack). Many more examples like this can be found in [Hei09]. In this
section we de�ne a more complex example.

De�nition 7. Let Σ be an alphabet and let X be a countably in�nite set (of
variables) disjoint from Σ.

Let Pat = (Σ ∪X)∗ be the set of all patterns. For any π ∈ Pat, let L(π) =

{w0vx0w1vx1 . . . vxn
wn+1 | π = w0x0w1x1 . . . xnwn+1 ∧ ∀x ∈ X : vx ∈ Σ∗ \ {ε}}

denote the set of all strings matching the pattern π. We call any L such that
there is a pattern π with L = L(π), a (non-erasing) pattern language. For each
w ∈ Σ∗, let pat(w) = {π ∈ Pat | w ∈ L(π)} denote the set of patterns matched
by w. Note that, for each w ∈ Σ∗, pat(w) is �nite.

The pattern languages are not learnable globally consistently and iteratively
in a non-redundant hypothesis space, see [CJLZ99, Corollary 12]. The usual
iterative algorithm is �rst published in [LW91].

Theorem 8. For any �nite set D ⊆ Σ∗, we let pat(D) =
⋂
w∈D pat(w).7 Let

Vpat be the lattice {pat(D) | D ⊆ Σ∗ �nite} with order relation ⊇.8 Then
(Vpat ,pat) is an SES.

Now φpat learns the pattern languages maximally consistently and itera-
tively (as well as with all other properties as given in Theorem 6). Note that
some of the grammars of (Vpat ,pat) are not for pattern languages, for example
pat({a3, b4}) = {x1, x1x2, x1x2x3, x1x1x2, x1x2x1, x1x2x2}.

Also note: One can code the elements of Vpat , as all but ⊥Vpat
are �nite sets.

Fernau [Fer03] introduced the notion of distinguishable languages (DLs). The
following shows that the concept of DLs is subsumed by the concept of SECs,
while the concept of SECs is not subsumed by the concept of DLs.

Theorem 9.

DL ⊂ SEC.

The inequality is witnessed by a class of regular languages as stated below.

Proof. � 6=�: Obviously, the class of all �nite languages is an SEL but not a DL.
�⊆�: Let L be a DL. Let h be the learner for L given in [Fer03, � 6]. By

[Fer03, Theorem 35], h ful�lls the condition of Theorem 14(iii). Hence, h is a
String Extension Learner by Theorem 14 and L is an SEC.

For the reader familiar with [Fer03] we specify a concrete SES (V, f) such
that φf learns the class of f ′-DLs for any distinguishing function f ′ : Σ∗ → X.

7 By convention, we let pat(∅) = Pat.
8 Note that the order is inverted with respect to the usual powerset lattice.

7

De�ne V as the set of all stripped9 f ′-distinguishable DFA ∪
{({q0}, Σ, q0, ∅, ∅)}, and v such that B1 v B2 i� L(B1) ⊆ L(B2) for B1, B2 ∈ V .

Obviously, V is a partially ordered set. (V,v) is also an upper semi-lattice �
the supremum B of B1, B2 is obtained as follows: Compute the stripped mini-
mal DFA B0 for L(B1) ∪ L(B2) (algorithms can be found in the literature). If
B0 ∈ V then B := B0. Else build a �nite positive sample set I+ by adding all
shortest strings leading to an accepting state in B0, and then for every hitherto
unrepresented transition δ(q1, a) = q2 (a ∈ Σ) of B0 adding the string resulting
from concatenating a string leading to q1, a, and a string leading from q2 to
an accepting state. Use the learner h from [Fer03] on I+. By Lemma 34 and
Theorem 35 in [Fer03] the result is a stripped DFA recognizing the smallest f ′-
distinguishable language containing L(B1)∪L(B2), and since the elements of V
are all stripped there is only one such DFA in V , which is the supremum of B1

and B2. Also note that (V,v) has a minimum element ⊥V = ({q0}, Σ, q0, ∅, ∅).
For any distinguishing function f ′ : Σ∗ → X de�ne f : Σ∗ → V by setting

f(w) := Aw where Aw is the minimal stripped DFA with L(Aw) = {w} (Aw is
f ′-distinguishable by [Fer03], Lemma 15). We show that (V, f) is an SES.

Obviously, f is computable. For each v ∈ V there is a �nite set D ∈ range(f)
such that

⊔
x∈D x = v: Take any two elements B1, B2 ∈ V such that B1tB2 = v

and construct the set I+ as speci�ed above. We can set D := I+.
Thus, the class of f ′-DLs is learnable by φf .

10

4 Properties of SECs

In this section we give a number of interesting theorems pertaining to SECs and
their learnability. Most importantly, we characterize SELs (Theorem 14) and
SECs (Theorem 15).

Theorem 10. Let (V, f) be an SES. Then (V,v) and (Lf ,⊆) are order-
isomorphic, with order-isomorphism Lf (·).

Proof. Clearly, Lf (·) is surjective. Regarding injectivity, let a, b ∈ V with
Lf (a) = Lf (b). Let Da, Db ⊆ Σ∗ be �nite sets such that

⊔
x∈Da

f(x) = a and⊔
x∈Db

f(x) = b. Clearly,Da, Db ⊆ Lf (a) = Lf (b). Therefore, for all x ∈ Da∪Db,
f(x) t a = a and f(x) t b = b, i.e., both a and b are upper bounds on the set
E = {f(x) | x ∈ Da ∪Db}. As both a and b are the least upper bounds already
on subsets of E, they both must be the least upper bound of E. The least upper
bound of a set is unique, thus a = b.

Let a, b ∈ V such that a v b. Then we have

Lf (a) = {x ∈ Σ∗ | f(x) v a} ⊆ {x ∈ Σ∗ | f(x) v b} = Lf (b). (3)

9 An automaton is stripped when taking away any state or transition would change
the language recognized by the automaton.

10 Note that in a concrete implementation we would not have to construct I+ when
computing suprema in V as we can just use the text seen so far. Also, it seems
relatively easy to de�ne an incremental version of the learner from [Fer03].

8

Let a, b ∈ V such that Lf (a) ⊆ Lf (b). Then we have

{x ∈ Σ∗ | f(x) v a} = Lf (a) ⊆ Lf (b) = {x ∈ Σ∗ | f(x) v b}. (4)

Let D ⊆ Σ∗ be a �nite set such that
⊔
x∈D f(x) = a. Clearly, D ⊆ Lf (a), and,

thus, D ⊆ Lf (b). Therefore, b is an upper bound on {f(x) | x ∈ D}. As a is the
least upper bound of this set, we get a t b = b; thus, a v b.

Corollary 11. Let (V, f) and (W, g) be two SESes with Lf ⊆ Lg. Then there
is an order embedding h : V →W .

Proof. De�ne h such that

∀v ∈ V : Lf (v) = Lg(h(v)). (5)

Such a function exists, as Lf ⊆ Lg. We have, for all a, b ∈ V ,

a vV b⇔ Lf (a) ⊆ Lf (b)⇔ Lg(h(a)) ⊆ Lg(h(b))⇔ h(a) v h(b). (6)

Lemma 12. Let (V, f) be an SES. We have the following.

(i) For all a, b ∈ V , L(a) ∪ L(b) ⊆ L(a t b).
(ii) For all a ∈ V , L(a) = Σ∗ i� a = >V .
(iii) If Lf is closed under (�nite) union, then we have, for all a, b ∈ V , L(a) ∪

L(b) = L(a t b).
(iv) If V is a lattice, then we have, for all a, b ∈ V , L(a) ∩ L(b) = L(a u b).

Proof.

(i) Let a, b ∈ V , let x ∈ L(a) ∪ L(b). Then f(x) v a or f(x) v b; thus, f(x) v
a t b. Therefore, x ∈ L(a t b).

(ii) Let a ∈ V be such that L(a) = Σ∗. Let v ∈ V be such that a v v, and
let D ⊆ Σ∗ be �nite such that

⊔
x∈D f(x) = v. Then, as L(a) = Σ∗, for

all x ∈ D, f(x) v a. Thus, v =
⊔
x∈D f(x) v a. This shows v = a, and,

therefore, a = >V . The converse is trivial.
(iii) Let a, b ∈ V . Let L ∈ L be the supremum of L(a) and L(b) with respect to

(L,⊆) (i.e., the smallest language containing L(a) and L(b)). As L(a)∪L(b) ∈
L, we have L = L(a)∪L(b). By Theorem 10, (L,⊆) and (V,v) are isomorphic
with order isomorphism L(·). Thus L(a t b) equals the supremum of L(a)
and L(b) in (L,⊆), that is, L(a t b) = L(a) ∪ L(b).

(iv) Let a, b ∈ V . We have, for all x ∈ Σ∗,

x ∈ L(a u b)⇔ f(x) v a u b⇔ f(x) v a and f(x) v b⇔ x ∈ L(a) ∩ L(b).

9

Theorem 13. Let (V, f) be an SES. We have the following.

(i) λv, x x ∈ L(v) is computable (i.e., (L(v))v∈V is uniformly decidable).

(ii) If (V, f) is polytime, then λv, x x ∈ L(v) is computable in polynomial time
(i.e., (L(v))v∈V is uniformly decidable in polynomial time).

(iii) L is closed under intersection i� V is a lattice.

Proof.

(i) We have λv, x [x ∈ L(v)] = λv, x [φitf (v, x) = v] by consistency and conser-

vativeness of φf . Clearly, λv, x [φitf (v, x) = v] is computable.

(ii) Using Theorem 6(ii), analogous to the just above proof of (i).

(iii) �⇒�: Follows from the isomorphie given in Theorem 10.

�⇐�: Follows directly from Lemma 12(iv).

Now we get to our main theorem of this section, which shows that all learn-
ers having a certain subset of the properties listed above in Theorem 6 can
necessarily be expressed as SELs.

Theorem 14. Let h ∈ R. The following are equivalent.

(i) There is an SES (V, f) such that h = φf .

(ii) h TxtEx-learns L set-drivenly, globally consistently, locally conservatively
and strongly monotonically.

(iii) There is a 1-1 L(·) such that L(v) is ce uniformly in v and, for all σ ∈ Seq,
L(h(σ)) is the⊆-minimum element ofTxtEx(h) containing all of content(σ).

Proof. We have that (i) implies (iii) by basic properties of the SEL.

Regarding (iii) implies (ii): set-drivenness, global consistency and local con-
servativeness are straightforward. Then h is prudent [CK09, Proposition 21].
Concerning strong monotonicity we have the following. Let D,D′ ⊆ Σ∗ with
D ⊆ D′. Then D ⊆ L(hset(D′)), while L(hset(D)) is the ⊆-minimum element of
TxtEx(h) containing all ofD (from prudence we have L(hset(D)) ∈ TxtEx(h)).
Hence, L(hset(D)) ⊆ L(hset(D′)).

Regarding (ii) implies (i): As h learns set-drivenly, let hset be such that,
for all sequences σ, h(σ) = hset(content(σ)). Note that, for all D,D′ such that
hset(D) = hset(D′), we have

hset(D) = hset(D ∪D′) (7)

by consistency and conservativeness.

Let V = range(hset) and de�ne t by

∀D0, D1 : hset(D0) t hset(D1) = hset(D0 ∪D1). (8)

10

To show t to be well-de�ned: Let D0, D
′
0, D1, D

′
1 be such that hset(D0) =

hset(D′0) and h
set(D1) = hset(D′1). We have

D0 ∪D′0 ∪D1 ∪D′1 (9)

⊆
cons.

L(hset(D0)) ∪ L(hset(D′0)) ∪ L(hset(D1)) ∪ L(hset(D′1)) (10)

= L(hset(D0)) ∪ L(hset(D1)) (11)

⊆
str. mon.

L(hset(D0 ∪D1)). (12)

Similarly, we get

D0 ∪D′0 ∪D1 ∪D′1 ⊆ L(hset(D′0 ∪D′1)). (13)

From conservativeness we get

hset(D0 ∪D1) = hset(D0 ∪D′0 ∪D1 ∪D′1) = hset(D′0 ∪D′1). (14)

This shows t to be well-de�ned.

We de�ne v by, for all a, b ∈ V , a v b i� a t b = b. It is easy to verify that
v is a partial order on V (see [Nat09, Theorem 2.1]).

Let f : Σ∗ → V, x 7→ hset({x}). Then, for all σ ∈ Seq, φf (σ) = h(σ).
Obviously, f and suprema in V are computable. Furthermore, for each v ∈ V

there is a �nite set D ⊆ range(f) such that
⋃
x∈D x = v.

This shows that (V, f) is an SES as desired.

Theorem 15. Let L be a set of languages. The following are equivalent.

(i) L is an SEC.
(ii) L can be TxtEx-learned by a globally consistent, locally conservative, set-

driven and strongly monotonic learner.
(iii) There is a 1-1 L(·) such that L(v) is ce uniformly in v and a (total) com-

putable function g such that, for all D ⊆ Σ∗ L(g(D)) is the ⊆-minimum
element of L containing all of D.

(iv) L can be TxtEx-learned by a strongly monotonic set-driven learner using a
uniformly decidable hypothesis space.

Proof. We have that (i), (ii) and (iii) are equivalent by Theorem 14.
Further, (i) implies (iv) by Theorems 6 and 13.
Regarding (iv) implies (ii) we have the following. Suppose h ∈ P TxtEx-

learns L strongly monotonically and set-drivenly using a uniformly decidable
hypothesis space. We will de�ne a learner h′ ∈ P using hypotheses in the W -
system. We will use functions p, q ∈ R as follows to de�ne hypotheses in the
W -system.

∀e, σ : Wp(e,σ) = L(e) ∪ content(σ); (15)

∀e : Wq(e) = L(e). (16)

11

Employing these functions, we de�ne h′ as follows.

∀σ ∈ Seq : h′(σ) =


p(h(σ), σ), if content(σ) 6⊆ L(h(σ));
q(h′(σ−)), else if σ 6= ∅ ∧ content(σ) ⊆ L(h′(σ−));
q(h(σ)), otherwise.

(17)

It is easy to see that h′ is set-driven, globally consistent, locally conservative and
strongly monotonic.

Proposition 16 just below gives a su�cient condition for a language to be an
SEC.

Proposition 16. Let L be a class of languages closed under intersection and
TxtEx-learnable set-drivenly, globally consistently and locally conservatively as
witnessed by h ∈ P. Then h is strongly monotone, and, in particular, L is an
SEC.

Proof. Let σ ∈ Seq, x ∈ Σ∗. We need to show L(h(σ)) ⊆ L(h(σ � x)). Let L0 =
L(h(σ)) ∩ L(h(σ � x)). As h is maximally consistent, we have content(σ) ⊆ L0.
Note that L0 ∈ L, as L is closed under intersection. Let T ⊇ σ be a text for
L0. As h is globally conservative and identi�es L0, we have, for all k ≥ len(σ),
h(T [k]) = h(σ). Thus, L(h(σ)) = L0. This shows the lemma, as

L(h(σ)) = L0 = L(h(σ)) ∩ L(h(σ � x)) ⊆ L(h(σ � x)). (18)

We now get that L is an SEC by Theorem 15.

5 Query Learning of SECs

This section is concerned with learning SECs from queries. We address the issue
from a more GI-oriented view, inasmuch as for example some concrete algorithms
are given and complexity questions are considered.

De�nition 17. Let (V, f) be an SES and v ∈ V the target to identify.11 A
membership query (MQ) for w ∈ Σ∗ and L ⊆ Σ∗ is a query `w ∈ L?' receiving
an answer from {0, 1} with MQ = 1 if w ∈ L and MQ = 0 otherwise.12 An
equivalence query (EQ) for v0 ∈ V is a query `L(v0) = L(v)?' receiving an answer
from Σ∗ ∪ {yes} (Σ∗ ∩ {yes} = ∅) such that EQ(v0) = yes for L(v0) = L(v)
and EQ(v0) = c with [f(c) v v∧¬f(c) v v0]∨ [f(c) v v0∧¬f(c) v v] otherwise.

11 To be precise, the concept to infer is a language. However, as no two elements of V
de�ne the same language (see Footnote 6) our potential targets are elements of V .

12 Algorithmically, using MQs only makes sense if the membership problem is decidable.
As for SECs we have f : Σ∗ → V an MQ for w ∈ Σ∗ amounts to checking if f(w) v v.

12

Let (V, f) be an SES. As Lf is identi�able in the limit from text (see [Hei09])
Lf is also identi�able in the limit from MQs: Consider a learner just querying
all strings of Σ∗ in length-lexical order � at some point the set of all strings w
with MQ(w) = 1 queried sofar necessarily includes a text for the target.

If we are interested in complexity, unfortunately in general we cannot bound
the number of MQs needed in any interesting way. For each v ∈ V , de�ne
Tv := {T ⊆ range(f)|

⊔
t∈T t = v} and let T0 be an element of Tv with minimal

cardinality. Obviously, |T0| is a lower bound on the number of MQs needed to
converge on the target. However, note that there exist SECs with properties that
allow more speci�c statements:

Theorem 18. Let (V, f) be an SES. If Lf is the class of k-factor languages or
the class of k-piecewise testable languages (see [Hei09]) identi�cation is possible
with a query complexity of O(|Σ|k) MQs.

Proof. We give a simple learning algorithm in pseudo-code that can be used to
identify any SEC Lf such that there is a �nite set Q with ∀v ∈ V : ∃S ⊆ Q :
f(S) ∈ Tv. Observe that we can set Q := Σk for the k-factor languages and
Q := Σ≤k for the k-piecewise testable languages.

[Initialize Q0 with the respective Q as given just above];
v0 := ⊥V ;
for all s ∈ Q0 do:

if MQ(s) = 1 v0 := v0 t f(s)
return v0.

It is easy to see that this algorithm yields the target after |Q0| loop executions
which corresponds to having asked |Q0| MQs, where |Q0| = |Σk| = |Σ|k for
the k-factor languages and |Q0| = |Σ≤k| = (|Σ|k+1 − 1)/(|Σ| − 1) such that
O(|Q0|) = O(|Σ|k) for the k-piecewise testable languages.

Remark: If the SES is polytime it follows from Theorem 18 that in these
special cases identi�cation is possible in polytime as well.

However, as stated above, polytime identi�cation cannot be ensured in the
general case. The situation changes if we allow EQs instead of MQs:

Theorem 19. Let (V, f) be an SES. Then Lf is identi�able in the limit from
EQs. In particular, for all v ∈ V , if the length of each ascending path from ⊥V
to v is at most n then v can be identi�ed using O(n) EQs.

Proof. Let v ∈ V be the target. We give a concrete learning algorithm:

v0 := ⊥V ;
repeat until EQ(v0) = yes:

c := EQ(v0);
v0 := v0 t f(c)

return v0.

Lemma 20. The algorithm identi�es any target v ∈ V using O(n) EQs.

13

As v0 v v before each loop execution counterexample c = EQ(v0) must be
chosen such that f(c) v v, which entails v0 t f(c) v v. The fact that c is a
counterexample implies ¬(f(c) v v0) and v0 t f(c) 6= v0. Consequently, the
successive values of v0 in the execution of the algorithm form a path from ⊥V to
v, where the length of this path equals the number of loop executions. Hence, the
target v is identi�ed in �nitely many steps using O(n + 1) = O(n) EQs (which
corresponds to receiving at most n counterexamples).

If n can be bounded by some polynomial relating the length of the longest
ascending path from ⊥V to v to the size of the grammar, and if (V, f) is polytime,
then Lf is identi�able in polytime from EQs as well. Remark: EQs as such cost
as much as it costs the teacher to compare two elements of the lattice.

EQs have two advantages: First, the learner actually knows when he has
identi�ed the target, namely when the teacher has no more counterexamples to
give and answers the next EQ in the positive. And second, unlike in the general
cases of learning from text or MQs where the learner has to handle strings
s ∈ Σ∗ \ Lf (v) that do not change the current hypothesis at all, EQs can be
used in such a way that every EQ results in the retrieval of at least one more
hitherto unrevealed element of the target (which can be seen from the fact that
we �make progress� in every loop execution of the algorithm given above).

6 Conclusion and Outlook

We have given a general de�nition of String Extension Classes and have shown
that several natural examples are SECs. We have argued further for the natural-
ity of these language classes by giving various characterizations and properties.

It seems to us that the lattice theoretic framework can be highly bene�cial to
the analysis of classes of learning algorithms. For example, one can analyze the
probabilistic learnability of String Extension Classes � we have some promising
preliminary results pertaining to atomic lattices.

Furthermore, one could try to �nd other natural language classes character-
ized by a di�erent kind of learnability, for example by dropping the requirement
of strong monotonicity and possibly picking up some other requirement.

References

[Ang80] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117�135, 1980.

[Ang87] D. Angluin. Learning regular sets from queries and counter-examples. In-
formation and Computation, 75:87�106, 1987.

[B	ar74] J. B	arzdi�n². Inductive inference of automata, functions and programs. In
Proceedings of the 20th International Congress of Mathematicians, Van-
couver, Canada, pages 455�560, 1974. English translation in, American
Mathematical Society Translations: Series 2 109 (1977), pp. 107-112.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive infer-
ence. Information and Control, 28:125�155, 1975.

14

[Bir84] G. Birkho�. Lattice Theory. American Mathematical Society, Providence,
RI, 1984.

[CJLZ99] J. Case, S. Jain, S. Lange, and T. Zeugmann. Incremental concept learning
for bounded data mining. Information and Computation, 152:74�110, 1999.

[CK09] John Case and Timo Kötzing. Di�culties in forcing fairness of polyno-
mial time inductive inference. In ALT, volume 5809 of Lecture Notes in
Computer Science, pages 263�277. Springer, 2009.

[dlH10] C. de la Higuera. Grammatical Inference. Cambridge University Press,
2010. In press.

[Fer03] H. Fernau. Identi�cation of function distinguishable languages. Theoretical
Computer Science, 290(3), 2003.

[Ful85] M. Fulk. A Study of Inductive Inference Machines. PhD thesis, SUNY at
Bu�alo, 1985.

[Gol67] E. Gold. Language identi�cation in the limit. Information and Control,
10:447�474, 1967.

[Hei09] J. Heinz. String extension learning, 2009.
http://phonology.cogsci.udel.edu/~heinz/papers/heinz-sel.pdf.

[Jan91] K. P. Jantke. Monotonic and non-monotonic inductive inference. New
Generation Computing, 8(4), 1991.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[LW91] S. Lange and R. Wiehagen. Polynomial time inference of arbitrary pattern
languages. New Generation Computing, 8:361�370, 1991.

[Nat09] J. Nation. Notes on lattice theory, 2009.
http://www.math.hawaii.edu/~jb/books.html.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Intro-
duction to Learning Theory for Cognitive and Computer Scientists. MIT
Press, Cambridge, Mass., 1986.

[RC94] J. Royer and J. Case. Subrecursive Programming Systems: Complexity and
Succinctness. Research monograph in Progress in Theoretical Computer
Science. Birkhäuser Boston, 1994.

[Rog67] H. Rogers. Theory of Recursive Functions and E�ective Computability.
McGraw Hill, New York, 1967. Reprinted by MIT Press, Cambridge, Mas-
sachusetts, 1987.

[WC80] K. Wexler and P. Culicover. Formal Principles of Language Acquisition.
MIT Press, Cambridge, Mass, 1980.

[Wei82] S. Weinstein, 1982. Private communication at theWorkshop on Learnability
Theory and Linguistics, University of Western Ontario.

[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Elektronische Informationverarbeitung und Kybernetik, 12:93�
99, 1976.

15

