
Information and Computation 251 (2016) 1–15
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Strongly non-U-shaped language learning results by general
techniques

John Case a, Timo Kötzing b,∗
a Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
b Hasso Plattner Institute, 14482 Potsdam, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 February 2014
Received in revised form 8 June 2015
Available online 1 July 2016

Keywords:
Inductive inference
Non-U-shaped learning
General techniques
Self-learning classes
Infinitary self-referential programs

In learning, a semantic or behavioral U-shape occurs when a learner first learns, then
unlearns, and, finally, relearns, some target concept.
This paper introduces two general techniques and applies them especially to syntactic
U-shapes in learning: one technique to show when they are necessary and one to show
when they are unnecessary. The technique for the former is very general and applicable to
a much wider range of learning criteria. It employs so-called self-learning classes of languages
which are shown to characterize completely one criterion learning more than another.
We apply these techniques to show that, for set-driven and rearrangement-independent
learning, any kind of U-shapes is unnecessary. Furthermore, we show that U-shapes are
necessary in a strong way for iterative learning, contrasting with an earlier result by Case
and Moelius that semantic U-shapes are unnecessary for iterative learning.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In Section 1.1 we explain U-shaped learning. In Section 1.2 we briefly discuss the general techniques of the present paper
and summarize in Section 1.3 our applications of these techniques regarding the necessity of U-shaped learning.

1.1. U-shaped learning

U-shaped learning occurs when a learner first learns a correct behavior, then abandons that correct behavior and finally
returns to it once again. This pattern of learning has been observed by cognitive and developmental psychologists in a va-
riety of child development phenomena, such as language learning [6,31,38], understanding of temperature [38,39], weight
conservation [5,38], object permanence [5,38] and face recognition [7]. The case of language acquisition is paradigmatic. For
example, a child first uses spoke, the correct past tense of the irregular verb to speak. Then the child ostensibly overregular-
izes incorrectly using speaked. Lastly and finally the child returns to using spoke. The language acquisition case of U-shaped
learning behavior has figured prominently in cognitive science [31,34,41].

While the prior cognitive science literature on U-shaped learning was typically concerned with modeling how humans
achieve U-shaped behavior, the papers [3,11] are motivated by the question of why humans exhibit this seemingly inefficient
behavior. Is it a mere harmless evolutionary inefficiency or is it necessary for full human learning power? A technically

* Corresponding author.
E-mail addresses: case@udel.edu (J. Case), timo.koetzing@hpi.de (T. Kötzing).
http://dx.doi.org/10.1016/j.ic.2016.06.015
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.06.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:case@udel.edu
mailto:timo.koetzing@hpi.de
http://dx.doi.org/10.1016/j.ic.2016.06.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.06.015&domain=pdf

2 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
answerable version of this question is: are there some formal learning classes of tasks for which U-shaped behavior is
logically necessary? We first need to describe some formal criteria of successful learning.

An algorithmic learning function h is, in effect, fed an infinite sequence consisting of the elements of a (formal) language
L in arbitrary order with possibly some pause symbols # in between elements. During this process, h outputs a correspond-
ing sequence p(0), p(1), . . . of hypotheses (grammars) which may generate the language L to be learned. A fundamental
criterion of successful learning of a language is called explanatory learning (TxtEx-learning, also called learning in the limit)
and was introduced by Gold [27]. Explanatory learning requires that the learner’s output conjectures stabilize in the limit
to a single conjecture (grammar/program, description/explanation) that generates the input language. Behaviorally correct
learning [18,33] requires, for successful learning, convergence in the limit to a sequence of correct (but possibly syntactically
distinct) conjectures. Another interesting class of criteria features vacillatory learning [10,28]. This paradigm involves learn-
ing criteria which allow the learner to vacillate in the limit between at most some bounded, finite number of syntactically
distinct but correct conjectures. For each criterion that we consider above (and below), a non-U-shaped learner is naturally
modeled as a learner that never returns to a previously semantically abandoned correct conjecture on languages it learns
according to that criterion.

Ref. [3] showed that every TxtEx-learnable class of languages is TxtEx-learnable by a non-U-shaped learner, that is, for
TxtEx-learnability, U-shaped learning is not necessary. Furthermore, based on a proof in [24,3] noted that, by contrast, for
behaviorally correct learning [23,1,18,33], U-shaped learning is necessary for full learning power. In [11] it is shown that,
for non-trivial vacillatory learning, U-shaped learning is again necessary (for full learning power). Thus, in many contexts,
seemingly inefficient U-shaped learning can actually increase one’s learning power.

What turns out to be a variant of non-U-shaped learning is strongly non-U-shaped learning essentially defined in [43],1

where the learner is required never to syntactically abandon a correct conjecture on languages it learns according to that
criterion. Clearly, strong non-U-shaped learnability implies non-U-shaped learnability.2 In our experience, for theoretical
purposes, it is frequently easier to show non-U-shaped learnability by showing strong non-U-shaped learnability. Herein we
especially study strong non-U-shaped learnability.

1.2. Presented techniques

The present paper presents two general techniques to tackle problems regarding U-shaped learning.
The first general technique can be used to show the necessity of U-shapes and employs so-called self-learning classes of

languages. These are explained in Section 3 below. These self-learning classes of languages provide a (provably) most general
way for finding classes of languages that separate two learning criteria, i.e., they give a general way of finding an example
class of languages learnable with a given learning criterion, but not with another. Theorem 3.6 implies that its presented
self-learning classes necessarily separate two learnability sets — iff any class does. This technique is not specialized only to
analyze U-shaped learning, but can be applied to other learning criteria as well. The technique is developed and discussed
further in Section 3.

The second general technique is used to show that syntactic U-shapes are unnecessary and is phrased as a characteriza-
tion of strongly non-U-shaped learnability of classes of languages (Theorem 4.4).

1.3. Applications of general techniques

A learning machine is set-driven [42,37,26,28] (respectively, rearrangement-independent [37,26,28]) iff, at any time, its out-
put conjecture depends only on the set of non-pause data it has seen (respectively, set of non-pause data and data-sequence
length), not on the order of that data’s presentation. Child language learning may be insensitive to the order or timing of
data presentation; set-drivenness and rearrangement independence, Sd and Ri, respectively, provide two local notions of
such insensitivity [10]. It is interesting, then, to see the interaction of these notions with forbidding U-shapes of one kind
or another. As we shall see in Section 5, Theorems 5.2 and 5.3, proved with the aid of a general technique from Section 4,
imply, for these local data order insensitivity notions, for TxtEx-learning, U-shapes, even in the strong sense are unnecessary.

An iterative learner outputs its conjectures only on the basis of its immediately prior conjecture (if any) and its current
datum. As we shall see in Section 5, iterative learning provides a (first) example of a setting in which non-U-shaped and
strongly non-U-shaped learning are extensionally distinct: [19] shows semantic U-shapes to be unnecessary for iterative
learning, while Theorem 5.7 in the present paper implies that they are in the strong sense necessary. To prove this latter
result, we actually modify the self-learning class of languages from Theorem 3.6 to make it easier to work with — although
the original version must work too (by Theorems 3.6 and 5.7).3

1 Wiehagen actually used the term semantically finite in place of strongly non-U-shaped. However, there is a clear connection between this notion and that
of non-U-shapedness. Our choice of terminology is meant to expose this connection. See also [21].

2 For non-U-shaped learning, the learner (on the way to success) must not semantically abandon a correct conjecture. In general, semantic change of
conjecture is not algorithmically detectable, but syntactic change is. However, in the cognitive science lab we can many times see a behavioral/semantic
change, but it is beyond the current state of the art to see, for example, grammars in people’s heads — so we can’t yet see mere syntactic changes in
people’s heads.

3 Some recent papers [13,15,16,30] have also employed (different) self-learning classes for separations.

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 3
Some of our proofs involve subtle infinitary program self-reference arguments employing (variants of) the Case’s Operator
Recursion Theorem (ORT) from [8,9,28,32].

Note that the present paper is an extended version of [14].

1.4. Open problems

Some problems regarding the necessity of U-shapes of one kind or another still remain open. An iterative with counter
learner is an iterative learner which, in making a conjecture, also has access to the data-sequence length so far. For example,
it is still open whether semantic U-shapes are necessary for iterative with counter learning — as asked in [19]. If so, then
the relevant self-learning class from Theorem 3.6 below must provide a separation.

See the end of Section 5 for some more open problems regarding the necessity of any one of the two kinds of U-shapes
for learning criteria of the present paper.

2. Mathematical preliminaries

Unintroduced complexity theoretic notation follows [35]. Other unintroduced notation follows [36].
By N we denote the set of natural numbers, {0, 1, 2, . . .}. We let N+ = N \ {0}. The symbols ⊆, ⊂, ⊇, ⊃ respectively

denote the subset, proper subset, superset and proper superset relation between sets. For any set A, we let Pow(A) denote
the set of all subsets of A. We let � denote the symmetric difference of two sets. ∅ denotes both the empty set and the
empty sequence. P denotes the set of all partial functions N → N.

The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x means “for infinitely many x”.
With dom and range we denote, respectively, domain and range of a given function. We sometimes denote a partial

function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as λx1, . . . , xn f (x1, . . . , xn). For example, with
c ∈N, λx c is the constantly c function of one argument. The composition of two functions f , g is denoted by f ◦ g .

Whenever we consider tuples of natural numbers as input to a function, it is understood that they are suitably encoded
as a single natural number; similarly for finite sets and sequences, see, for example, [35] for details.

If a function f is not defined for some argument x, then we denote this fact by f (x)↑, and we say that f on x diverges;
the opposite is denoted by f (x)↓, and we say that f on x converges. If f on x converges to p, then we denote this fact by
f (x)↓ = p.

The special symbol ? is used as a possible hypothesis (meaning “no change of hypothesis”); note that typically the learner
can remember its past conjecture and is thus able to output this past hypothesis instead of ?. We write f → p to denote
that f : N → N ∪ {?} converges to p, i.e., ∃x0 : f (x0) = p ∧ ∀x ≥ x0 : f (x)↓ ∈ {?, p}.4 P and R denote, respectively, the set of
all partial computable and the set of all computable functions (mapping N → N).

We let ϕ be any fixed acceptable programming system for P ([36], an acceptable programming system could, for exam-
ple, be based on a natural programming language such as C or Java, or on Turing machines). Further, we let ϕp denote the
partial computable function computed by the ϕ-program with code number p. A set L ⊆ N is computably enumerable (ce)
iff it is the domain of a partial computable function. Let E denote the set of all ce sets. We call a set computable iff its
characteristic function is computable. We let W be the mapping such that ∀e : W (e) = dom(ϕe). For each e, we write We

instead of W (e). W is, then, a mapping from N onto E . We say that e is an index, or program, (in W) for We .
The symbol # is pronounced pause and is used to symbolize “no new input data”. For each (possibly infinite) sequence q

with its range contained in N ∪{#}, let content(q) = (range(q) \ {#}). For any function f ∈P and all i, we use f [i] to denote
the sequence f (0), . . . , f (i − 1) (the empty sequence if i = 0 and undefined, if one of these values is undefined).

We will make use of a padded variant of the s-m-n Theorem [36]. Intuitively, s-m-n permits algorithmic storage of
arbitrary data (and, hence, programs) inside any program. The suitable padded variant of s-m-n we use herein states that
there is a strictly monotonic increasing computable function s such that

∀a,b, c : ϕs(a,b)(c) = ϕa(b, c). (1)

In (1), ϕ-program s(a, b) is essentially ϕ-program a with datum b stored inside. We will also use a suitably padded version
of Case’s Operator Recursion Theorem (ORT), providing infinitary self (and other) reference [8,9,28]. See [36] for a treatment
of computable operators (also called recursive operators). ORT itself states that, for all computable operators � : P →P,

∃e ∈ R∀a,b : ϕe(a)(b) = �(e)(a,b).

In the padded version we employ, the function e will also be strictly monotone increasing.

2.1. Computability-theoretic learning

In this section we formally define several criteria for computability-theoretic learning.

4 f on x converges should not be confused with f converges to.

4 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
In this section we formally introduce our setting of learning in the limit and associated learning criteria. We follow [29]
in its “building-blocks” approach for defining learning criteria.

A learner is a partial function from N to N ∪ {?} (note that, for this paper, we do not always require computability of
learners). A language is a ce set L ⊆ N. Any total function T : N → N ∪ {#} is called a text. Note that the only text for the
empty language is an infinite sequence of #. For any given language L, a text for L is a text T such that content(T) = L. This
kind of text is what learners usually get as information; we assume that the #-symbol and the data are appropriately coded
to serve as input to (partial) computable functions. With Txt(L) we denote the set of all texts for L.

A sequence generating operator is an operator β taking as arguments a function h (the learner) and a text T and outputting
a one-argument function. For p the output of β on h and T we call p the learning sequence of h given T . Intuitively, β defines
how a learner can interact with a given text to produce a sequence p of conjectures.

We define the sequence generating operators G and It (corresponding to the learning criteria discussed in the introduc-
tion) as follows. For all learners h, texts T and all i,

G(h, T)(i) = h(T [i]);

It(h, T)(i) =
{

h(∅), if i = 0; 5

h(It(h, T)(i − 1), T (i − 1)), otherwise.

Thus, in iterative learning, the learner has access to the previous conjecture and the current datum, but not directly to any
strictly previous data as in G-learning.

Another interesting sequence generating operator is set-driven learning ([42], denoted Sd). We let, for all learners h,
texts T and all i,

Sd(h, T)(i) = h(content(T [i])).
A slight variant of set-driven learning, called rearrangement-independent learning additionally provides information about the
length of the input sequence. We let, for all learners h, texts T and all i,

Ri(h, T)(i) = h(content(T [i]), i).

Finally, we are also interested in iterative-with-counter learning [19]; for all learners h, texts T and all i, we let

ItCtr(h, T)(i) =
{

h(∅), if i = 0;
h(ItCtr(h, T)(i − 1), T (i − 1), i − 1), otherwise.

Successful learning requires the learner to observe certain restrictions, for example convergence to a correct index or
non-U-shapedness. These restrictions are formalized in our next definition.

A sequence acceptance criterion is a predicate δ on a learning sequence and a text. We give the examples of explanatory
(Ex) non-U-shaped (NU) and strongly non-U-shaped (SNU) learning, which were discussed in Section 1. Formally, we define,
for all conjecture sequences p and texts T ,

Ex(p, T) ⇔ [∃q : content(T) = Wq ∧ ∀∞i : p(i) = q];
NU(p, T) ⇔ [∀i, j,k : i ≤ j ≤ k ∧ W p(i) = W p(k) = content(T) ⇒ W p(i) = W p(j)];

SNU(p, T) ⇔ [∀i, j,k : i ≤ j ≤ k ∧ W p(i) = W p(k) = content(T) ⇒ p(i) = p(j)].
We combine any two sequence acceptance criteria δ and δ′ by intersecting them; we denote this by juxtaposition (for
example, NU is meant to be always used together with Ex).

For any set of allowed learners C ⊆ P , sequence generating operator β and any sequence acceptance restriction δ,
(C, β, δ) is a learning criterion. We also write this learning criterion as CTxtβδ and omit C if C =P . A learner h CTxtβδ-learns
the empty set if h /∈ C and otherwise the set

CTxtβδ(h) = {L ∈ E | ∀T ∈ Txt(L) : δ(β(h, T), T)}.

With [CTxtβδ] we denote the collection of all sets of language L such that there is a learner h with L ⊆ CTxtβδ(h).
With these definitions we see that the informally introduced criterion TxtEx from the introduction corresponds to

TxtGEx.

5 h(∅) denotes the initial conjecture made by h.

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 5
Starred Learners
For two sequence generating operators β and β ′ we write β � β ′ if, for all h there is h′ with

∀T : β(h, T) = β ′(h′, T).

Intuitively, any learners learning with information corresponding to β can be turned into learners learning according to
information from β ′ . Clearly, for all β give above, we have β � G. Thus, for any β-learner h, we let h∗ be the corresponding
G-learner. That is, for all sequences σ , h∗(σ) denotes the current conjecture of h after being fed the sequence σ of data
items.

In particular, for h ∈P and σ a sequence, we have the following.

• If h is a set-driven learner:

h∗(σ) = h(content(σ)). (2)

• If h is a rearrangement-independent learner:

h∗(σ) = h(content(σ), len(σ)). (3)

2.2. Locking

In this section we will make a number of definitions in dependence on a learning criterion CTxtβδ and a learner h ∈ C .
We first define the concept of a stabilizer sequence (introduced in [2] and called “stabilizer segment” in [26]). Let β be

a sequence generating operator. Let L be a language and h ∈ P a learner. A sequence σ with elements from L is said to be
a β-stabilizer sequence of h on L iff

(∀T ∈ Txt(L)|σ ⊆ T)∀i ≥ len(σ) : β(h, T)(len(σ)) = β(h, T)(i);
Intuitively, a stabilizer sequence σ of h on L is a sequence of elements from L such that h on any text extending σ will
never make a change of conjecture after having seen σ . For any stabilizer sequence σ of h on L, we call σ a locking sequence
if the conjecture of h after σ is a correct conjecture.

It is well known that, if a learner h TxtGEx-learns a language L, then there is a stabilizer sequence of h on L (see [28]).
However, texts do not necessarily contain such a sequence as an initial segment. Below, we define a learning restriction
that requires a learner and a language to have stabilizer sequences as initial sequences of all texts for the language. This
motivates us to define the following notion. We say that a learner h CTxtβδ-learns a set of languages L stabilizingly iff h
CTxtβδ-learns L and, for all L ∈L and T a text for L, there is n such that T [n] is a β-stabilizer sequence of h on L.

We define a β-sink of h on L to be a conjecture e such that

∀T ∈ Txt(L)∀i0 : [β(h, T)(i0) = e ⇒ (∀i ≥ i0)(β(h, T)(i) = e)].
Intuitively, a sink is a conjecture never abandoned on texts for L. A stabilizer sequence σ for h on a language L is called a
sink-stabilizer sequence for h on L iff for all texts T for L with σ ⊆ T we have that β(h, T)(len(σ)) is a β-sink of h on L.

We say that a learner h CTxtβδ-learns a set of languages L sink-stabilizingly iff h CTxtβδ-learns L and, for all L ∈L and
T a text for L, there is n such that T [n] is a β-sink-stabilizer sequence of h on L.

Sink-stabilizing is of interest, as we show a characterization theorem (Theorem 4.4 below) of strongly non-U-shaped
learning in terms of sink-stabilizing learning.

3. Self-learning classes of languages for separations

In this section we discuss a way of showing U-shapes to be necessary. Formally, this is done via showing that a learn-
ability class separates from its non-U-shaped variant.

The approach described below is very general and can be applied to show separation results in many other areas of
computability-theoretic learning in the limit as well.

The key idea is that of self-learning classes of languages. In the previous literature, self-describing classes of languages have
been used.6 A particularly simple example class of self-describing languages, taken from [18, Theorem 1], is

L0 = {L is computable | L �= ∅ ∧ Wmin L = L}. (4)

Intuitively, each L ∈L0 gives a complete description of itself, encoded (as a W -index) within only finitely many (in fact, one)
of its elements. It is well-known, using standard computability theoretic arguments, that these kind of classes of languages
are very big (for example, L0 contains a finite variant7 of any given computable language, which can easily be seen using
Kleene’s Recursion Theorem).

6 See [28]. In there, the term “self-describing” was used on page 71 in the context of function learning and extended on page 97 to language learning.
7 A set A is a finite variant of a set B iff A�B is a finite set.

6 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
Many variants of self-describing classes of languages have been used for separation results within computability-theoretic
learning (see, for example, [2,18,22,10,28]). Showing a separation with a complicated self-describing class of languages
sometimes requires a non-trivial learner (see, for extreme examples, [12]).

We now take the technique of self-describing one step further. A self-learning class of languages is such that each element
of each language of the class provides instructions for what to compute and output as a new hypothesis. Thus, all a learner
needs to do is to execute the instructions given by its latest datum. For example, an informal8 learner h1 can be defined
such that, for all sequences σ and numbers x,

h1(σ � x) = ϕx(σ � x). (5)

Intuitively, h1 interprets the latest datum as a program in the ϕ-system and runs this program on all known data, which
is σ � x. Variants of this h1 can be defined to obtain learners with special additional properties, such as totality or set-
drivenness (see Theorem 3.6).

In practice, the general scheme is as follows. Suppose we want to show, for two learning criteria I0 and I1, [I1] \ [I0] �= ∅.
Then we define a simple learner, for example h1 above, and let L1 be the class of all languages I1-learned by h1. All that
would remain to be shown is that L1 is not I0-learnable, which can often be done using ORT.

Below, in Theorem 3.6, we give a very general result regarding some self-learning classes of languages guaranteed to
witness separations when they exist. In order to do so, we proceed next by making some formal definitions.

For a function e ∈ P and a language L, we let e(L) = {e(x) | x ∈ L}; for a class of languages L, we let e(L) = {e(L) | L ∈L}.
Let Pc1-1 ⊆ P (respectively, Rc1-1 ⊆ R), denote the set of all 1-1 partial (respectively, total) computable functions with

computable domain and range.

Definition 3.1. A learning criterion I is called computably Pc1-1-invariant iff there is a computable operator � :P2 →P such
that

∀h ∈ P,∀e ∈ Pc1-1 : e(I(h)) ⊆ I(�(h, e)). (6)

Intuitively, if a learner h learns languages L, then �(h, e) learns e(L). Note that this property was called robustness in
previous publications [15,30].

Remark 3.2. Let I be computably Pc1-1-invariant. Then we have

∀e ∈ Pc1-1,∀L ⊆ E : L ∈ [I] ⇔ e(L) ∈ [I].
Remark 3.3. For any of the choices C ∈ {R, P}, β ∈ {G, Ri, Sd, ItCtr, It} and δ ∈ {SNUEx, NUEx, Ex} we have that (C, β, δ) is
computably Pc1-1-invariant.

Proof. Let L be CTxtβδ-learnable as witnessed by h and let e ∈ Pc1-1. We show e(L) is CTxtβδ-learnable for the examples
of β ∈ {G, It}, all other cases are similar. Using padded s-m-n, there is a strictly monotone increasing f ∈R such that

∀p : W f (p) = e(W p).

Regarding G: Let h′ ∈P be such that

∀σ : h′(σ) =
{

f (h(e−1 ◦ σ)), if content(σ) ⊆ range(e); 9

0, otherwise.

Clearly, e(L) ⊆ CTxtGEx(h′); it is easy to verify that (strongly) non-U-shapedness is preserved.
Regarding It: Let h′ ∈P be such that

∀p, x : h′(p, x) =
{

f (h(f −1(p), e−1(x))), if p ∈ range(f) and x ∈ range(e);
0, otherwise.

The remaining reasoning for It is analogous to that for G. �
Definition 3.4. Let I = (C, β, δ) be a learning criterion. We call I data normal iff, for all p0 such that W p0 = ∅, there is a
computable operator �̂ : P →P such that

I(h) ⊆ I(�̂(h)) (7)

and (a)–(d) below.

8 Note that we ignore the possible input of x = #.
9 Note that we use the convention f (?) =? and e(#) = # for ease of notation.

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 7
(a) There is an fβ ∈R such that, for all learners h, texts T and all i > 0,

β(h, T)(i) = h(fβ(T [i], β(h, T)[i])).10 (8)

(b) There is a function dβ ∈R such that, for all texts T and all i, if we have β(�̂(h), T)[i]↓, then

dβ(fβ(T [i], β(�̂(h), T)[i])) ∈
{

{#}, if content(T [i]) = ∅;
content(T [i]), otherwise.11 (9)

(c) For all h ∈P ,

∀σ ,τ : dβ(fβ(σ , τ)) = # ⇒ �̂(h)(fβ(σ , τ)) = p0.
12 (10)

(d) For all h, h′ ∈P ,

[∀L ∈ I(h)∀T ∈ Txt(L) : β(h, T) = β(h′, T)] ⇒ I(h) ⊆ I(h′).13 (11)

Remark 3.5. For any of the choices C ∈ {R, P}, β ∈ {G, Ri, Sd, ItCtr, It} and δ ∈ {SNUEx, NUEx, Ex} we have that (C, β, δ) is
data normal.

Proof. Regarding (a), we can, for example, take, for each σ , τ ,

fG(σ , τ) = σ ;
fSd(σ , τ) = content(σ);

f It(σ , τ) =
{

〈last(τ), last(σ)〉, if σ �= ∅ and τ �= ∅;
0, otherwise.

These work for each C ∈ {R, P}. Similarly, we can get fβ for the other relevant β .
We show Requirements (b) and (c) for β = It; all other cases are similar, but easier.
Let p0 be such that W p0 = ∅. By the padded s-m-n Theorem, there is a strictly monotone increasing z ∈ R such that

∀e, a : W z(e,a) = We and p0 /∈ range(z). Then there is a y ∈R such that ∀e, a : y(z(e, a)) = a. Let �̂ be such that

∀h, e, x : �̂(h)(e, x) =

⎧⎪⎨
⎪⎩

p0, if x = # and e ∈ {?, p0};
z(h(?, x), x), else if e /∈ range(z);
z(h(e′, x),a), otherwise, with e = z(e′,a).

Let d ∈R such that

∀e, x : d(e, x) =

⎧⎪⎨
⎪⎩

x, if x �= #;
#, else if e /∈ range(z);
a, otherwise, with e = z(e′,a).

Then d fulfills (b), and (c) is obvious.
Requirement (d) is clear for all criteria considered. �
Next (Theorem 3.6) is the main result of this section, giving sufficient conditions for when a separation will necessarily

be witnessed by a specific self-learning class of languages. As a corollary, we get that for each pair of learning criteria with
components from {R, P}, {G, Ri, Sd, ItCtr, It} and {SNUEx, NUEx, Ex}, any separations are witnessed by such classes! In
this sense, self-learning classes of languages capture the essence of separations (when they exist). Note that the proof of
the theorem would simplify a lot, were one to suppose somewhat stronger properties of the learning criteria, in particular,
excluding the use of It and ItCtr as sequence generating operators. Theorem 3.6 can be modified to cover other kinds of
criteria, for example, those pertaining to learnability by total learners. In a future paper, we will analyze self learning-classes
in more depth and will provide further theorems like Theorem 3.6.

10 Intuitively, the i-th conjecture of h on T depends only on some information (as specified by fβ) about the first i datapoints and conjectures.
11 Intuitively, from the information given by fβ , a datum (if any) that this datum is based on can be extracted.
12 Intuitively, constantly outputting one and the same index for the empty language is a viable strategy as long as no numerical data has been presented.
13 Intuitively, changing a learner on inputs that do not present data from a language learned does not harm learnability.

8 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
Theorem 3.6. Let I0 and I1 be computably Pc1-1-invariant learning criteria. Suppose I1 is data normal as witnessed by f1 and d1 . Let
p0 be such that W p0 = ∅ and h1 be such that

∀x : h1(x) =
{

p0, if d1(x) = #;
ϕd1(x)(x), otherwise.

(12)

Further, let L1 = I1(h1). Then we have

[I1] \ [I0] �= ∅ ⇔ L1 /∈ I0.

In other words, if I1 allows for learning a set of languages which is not I0-learnable, then L1 is an example such class.

Proof. The implication “⇐” is obvious. Regarding “⇒”, let L be I1-learnable as witnessed by h and suppose L is not
I0-learnable. Let � be as given by I1 being computably Pc1-1-invariant. Let �̂ be as given by I1 being data normal. By
padded ORT, there is a strictly monotone increasing e ∈ R such that

∀x, y : ϕe(x)(y) = (�̂ ◦ �)(h, e)(y). (13)

As e ∈Pc1-1 and I0 is computably Pc1-1-invariant, we have, from Remark 3.2 with I0 in the place of I , e(L) /∈ [I0]. It now
suffices to show e(L) ⊆ L1, as this would imply L1 /∈ [I0] as desired.

Suppose I1 = (C1, β1, δ1). Let L ∈ e(L) and T ∈ Txt(L). We show, by induction on i,

∀i : β1(h1, T)(i) = β1((�̂ ◦ �)(h, e), T)(i).

Let h′ = �(h, e). For all i with content(T [i]) = ∅, we have

β1(h1, T)[i] =
(8)

h1(f1(T [i], β1(h1, T)[i])) =
(12)

p0

=
(9) & (10)

�̂(h′)(f1(T [i], β1(�̂(h′), T)[i])) =
(8)

β1(�̂(h′), T)(i).

Let i ∈N, suppose content(T [i]) �= ∅ and (inductively) β1(h1, T)[i] = β1((�̂ ◦ �)(h, e), T)[i]. Let

x = f1(T [i], β1(h1, T)[i]) =
IH

f1(T [i], β1((�̂ ◦ �)(h, e), T)[i]). (14)

Note that d1(x) ∈
(9)

content(T [i]) ⊆ L ⊆ range(e). We have

β1(h1, T)(i) =
(8) & (14)

h1(x) =
(12)

ϕd1(x)(x) =
(13)

(�̂ ◦ �)(h, e)(x)

=
(8) & (14)

β1((�̂ ◦ �)(h, e), T)(i).

This concludes the induction. Thus, h1 on any text for a language from e(L) makes the same conjectures as (�̂ ◦ �)(h, e)
on T . By (6) and (7), (�̂ ◦ �)(h, e) I1-learns e(L); thus, using (d) of I1 being data normal, e(L) ⊆ I1(h1) =L1. �
4. Helping remove U-shapes

In this section we provide, in Theorem 4.4, a general technique for helping with the removal of U-shapes from a learner,
preserving what is learned. When applicable, this shows U-shapes unnecessary. The main result of this section is Theorem 4.4,
which characterizes strongly non-U-shaped learning in terms of sink-stabilizing learning; this theorem is applied in Sec-
tion 5.

Lemma 4.1. Let h ∈P . Then there is an infinite set L ∈ E such that h does not TxtGEx-learn any L′ ⊇ L such that L′ \ L is finite.

Proof. 14Trivial if N /∈ TxtGEx(h). Otherwise, let σ be a locking sequence for h on N, D = content(σ). Then, obviously,
h does not learn any L such that D ⊆ L ⊂N. In this case, then, let L be an infinite set ce set with infinite complement such
that D ⊂ L ⊂N. Clearly this L suffices. �

For each h ∈P , let Lh denote a set L corresponding to h and as shown existent in Lemma 4.1.
Let h ∈ P , L = TxtGEx(h) and let Q be a ce predicate on two arguments. Then, using padded s-m-n, there is a strictly

monotone increasing function ph,Q ∈R with, for all e, x,

W ph,Q (e,x) = {y ∈ Lh | Q (e, x)} ∪ {y ∈ We | not (Q (e, x) in ≤ y steps)}.

14 This version of the proof is due to Frank Stephan [40].

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 9
Lemma 4.2. Let h ∈P , L = TxtGEx(h) and Q be a ce set. For all e, x, we have

W ph,Q (e,x) ∈ L ⇒ ¬Q (e, x) (15)

⇒ W ph,Q (e,x) = We. (16)

Proof. Immediate from the choice of Lh . �
Let β ∈ {G, Ri, Sd, ItCtr, It}. We have that

{〈e0, e1, e2〉 | e0 is not a β-sink of ϕe1 on We2}
is ce.

Remember that Rc1-1 ⊆R denotes the set of all 1-1 total computable functions with computable domain and range.

Definition 4.3. A sequence generating operator β is called 1-1 left-modifiable iff

∀r ∈Rc1-1 ∃sl, sr ∈R ∀h ∈P, T ∈ Txt : β(sl ◦ h ◦ sr, T) = r ◦ β(h, T).

Note that G, Ri, Sd, ItCtr and It are 1-1 left-modifiable: for any given β ∈ {G, Ri, Sd} and given r ∈ Rc1-1 we can choose
sl = r and sr the identity; for the two variants of iterative learning we similarly use sl = r but now define employ sr to
decode the previous conjecture.

We now present the main theorem of this section, characterizing strongly non-U-shaped learning.

Theorem 4.4. Let β � G be 1-1 left-modifiable. Let C ∈ {P, R} and let L ⊆R. Then the following are equivalent.

(i) L is CTxtβSNUEx-learnable.
(ii) L is sink-stabilizingly CTxtβEx-learnable.

Proof. “(i) ⇒ (ii)”: Let h0 ∈ C be a TxtβSNUEx-learner for L. Let L ∈L and let T be a text for L. Let k be such that h0 has
converged on T after T [k] to some e. Then

We = L. (17)

To show that e is a β-sink of h0 on L: Let T ∈ Txt(L) and i0 be given such that β(h0, T)(i0) = e. Let i ≥ i0. Then, as h0 is
strongly non-U-shaped on L and from (17), β(h0, T)(i) = e.

Regarding “(ii) ⇒ (i)”: Let h0 ∈ C , be a sink-stabilizing TxtβEx-learner for L. Let Q be a ce predicate such that

∀e : Q (e) ⇔ e is not a β-sink of h0 on We . (18)

Recall the definition of starred learners from Section 2.1, which uses β � G. Let p = ph∗
0,Q . Let β ’s left-modifiability with

respect to p be witnessed by sl and sr ∈R. Let h ∈R be such that

h = sl ◦ h0 ◦ sr .

Note that, if h0 ∈R, then h ∈R.

Claim 1. h is strongly non-U-shaped.

Proof of Claim 1. Let L ∈L, e ∈N and σ such that content(σ) ⊆ L. Suppose h∗(σ) = p(e) and

W p(e) = L ∈ L.

From (15) we get ¬Q (e). Hence, from the definition of Q in (18), for all texts T for L extending σ , we have that h0 has
syntactically converged after seeing σ . Thus, h has syntactically converged after seeing σ (and, thus, does not exhibit a
U-shape). � (for Claim 1)

Claim 2. h TxtβEx-learns L.

Proof of Claim 2. Let L ∈ L and let T be a text for L. As h0 is sink-stabilizing, there is k minimal such that, with e =
h∗

0(T [k]),

e is a sink of h on L. (19)

10 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
Thus, h0 converges on T to e; therefore,

We = L. (20)

Furthermore, h on T converges to p(e) and, by (19), ¬Q (e); hence,

W p(e) =
(16)

We =
(20)

L. � (for Claim 2) �
5. Applications of the techniques

In this section we essentially apply general techniques presented in the two just previous sections to prove a number of
results pertaining to the necessity of U-shapes in learning.

The following lemma will be useful for later proofs. Parts (i) and (iii) have been shown in [26].

Lemma 5.1. Let h ∈P and let C ∈ {P, R}. Then

(i) Any CTxtGEx-learnable set can be so learned stabilizingly;
(ii) Any TxtSdEx-learner is stabilizing;

(iii) Any CTxtRiEx-learnable set can be so learned stabilizingly.

Proof. Claims (i) and (iii) are proven in [26].
Regarding “⊆” in (ii): Let h ∈P . Let L ∈ TxtSdEx(h) be a language and suppose σ is a locking sequence of h∗ (as defined

in Equation (2)) on L. Let T be a text for L. Let c0 be such that content(σ) ⊆ content(T [c0]). We show that T [c0] is a
locking sequence of h on L, as desired. In particular, we show, for all σ ′ ⊇ T [c0] such that content(σ ′) ⊆ L, h∗(σ ′) = h∗(σ).
Let σ ′ ⊇ T [c0] such that content(σ ′) ⊆ L.

Let σ ′′ ⊇ σ be such that content(σ ′′) = content(σ ′) ⊆ L. As σ is stabilizing sequence of h∗ on L, h∗(σ ′′) = h∗(σ). There-
fore, we have

h∗(σ ′) = h(content(σ ′)) = h∗(σ ′′) = h∗(σ).

Thus, h is stabilizing on L. �
Note that [20] implies that [RTxtSdEx] ⊂ [TxtSdEx]. This separation can also be shown using Theorem 3.6. The next

theorem shows that, in both cases, we can get strong non-U-shapeness of the learner.

Theorem 5.2. We have that set-driven learning allows for strongly non-U-shaped learning, i.e.,

(i) [TxtSdEx] = [TxtSdSNUEx] and
(ii) [RTxtSdEx] = [RTxtSdSNUEx].

Proof. We will mostly prove both assertions at once. The inclusion “⊇” is trivial.
Regarding “⊆”: Let h0 ∈P , let L = TxtSdEx(h0). For all finite sets D , we let M(D) be the set of all D ′ ⊆ D such that

∀D ′′ : D ′ ⊆ D ′′ ⊆ D ⇒ h0(D ′′) = h0(D ′).

Let h1 ∈P be such that

∀D : h1(D) =
{

↑, if ∃D ′ ⊆ D : h0(D ′)↑;
pad(h0(D),min(M(D))), otherwise.

(21)

To help with Assertion (ii) of the theorem, note that

h0 ∈ R ⇒ h1 ∈ R. (22)

Claim 1. h1 is sink-stabilizing on L.

Proof of Claim 1. Let L ∈ L, let T ∈ Txt(L). Using Lemma 5.1, h0 stabilizes on L; thus, let D0 ⊆ L be the ≤-minimum such
that

(∀D | D0 ⊆ D ⊆ L)h0(D) = h0(D0). (23)

Then we have

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 11
∀∞n : h1(content(T [n])) = pad(h0(D0), D0). (24)

Furthermore, for all D such that h1(D) = pad(h0(D0), D0) we have D ⊇ D0. � (for Claim 1)

The theorem now follows from Theorem 4.4. �
With a similar proof as in Theorem 5.2, we can also show that rearrangement-independent learning allows for strongly

non-U-shaped learning.

Theorem 5.3. We have that rearrangement-independent learners can be assumed total and strongly non-U-shaped, i.e.,

[RTxtRiSNUEx] = [TxtRiEx].

Proof. The inclusion “⊇” is trivial.
“⊆”: Let h0 ∈ P , let L = TxtRiEx(h0). From [26] we know that, without loss of generality, h0 ∈R. Thanks to Lemma 5.1,

we can suppose, without loss of generality, h0 is stabilizing on L. For all D ′ , c′ , D , c, we write 〈D ′, c′〉 → 〈D, c〉 iff there is a
text T such that content(T [c′]) = D ′ , content(T [c]) = D and c′ ≤ c (i.e., it is possible that at some point 〈D ′, c′〉 is the input
to a learner, and at some later point 〈D, c〉 is the input).

Let R be a computable predicate such that, for all D ′ , c′ , D , c, R(D ′, c′, D, c) iff 〈D ′, c′〉 → 〈D, c〉 and

∀〈D ′′, c′′〉 : (〈D ′, c′〉 → 〈D ′′, c′′〉 → 〈D, c〉) ⇒ h0(D ′′, c′′) = h0(D, c).

We define computable predicates f , h1 ∈P such that

∀D, c : f (D, c) = min{〈D ′, c′〉 | R(D ′, c′, D, c)};15

∀D, c : h1(D, c) = pad(h0(f (D, c)), f (D, c)).

Note that h1 ∈ R. Further note that, for all x, ϕh0(x) = ϕh1(x) . Of course we have, as h0 is stabilizing on L, for all L ∈ L and
all texts T for L that there is a c with

(∀D ′, c′|〈content(T [c]), c〉 → 〈D ′, c′〉 ∧ D ′ ⊆ L) h0(content(T [c]), c) = h0(D ′, c′).

Hence, h1 is stabilizing on L, and, thus,

L ⊆ TxtRiEx(h1).

Claim 1. h1 is sink-stabilizing.

Proof of Claim 1. Let L ∈ L and let T be a text for L. Let D ⊆ L and c be such that h1 stabilizes on ρ ⊆ T to
pad(h0(D, c), 〈D, c〉), i.e.,

(∀〈D ′, c′〉 | 〈content(ρ), len(ρ)〉 → 〈D ′, c′〉)h1(D ′, c′) = pad(h0(D, c), 〈D, c〉). (25)

It remains to show that pad(h0(D, c), 〈D, c〉) is a sink for h1 on L, i.e., that for all ρ ′ with content(ρ ′) ⊆ L we have h∗
1(ρ �

ρ ′) = pad(h0(D, c), 〈D, c〉). Let ρ ′ be such that content(ρ ′) ⊆ L. We have 〈D, c〉 → 〈content(ρ), len(ρ)〉. Therefore, 〈D, c〉 →
〈content(ρ � ρ ′), len(ρ � ρ ′)〉, and thus, using (25), h∗

1(ρ � ρ ′) = pad(h0(D, c), 〈D, c〉). � (for Claim 1)

An application of Theorem 4.4 finishes the proof. �
As [TxtGEx] = [TxtRiEx] [37,25,26,28], we immediately get the following corollary, reproving a result from [3] and one

from [21].

Corollary 5.4. We have that full-information learning allows for strongly non-U-shaped learning, and thus also for non-U-shaped
learning, i.e.,

[TxtGNUEx] =
[3]

[TxtGEx] =
[21]

[TxtGSNUEx].

The following definition and the succeeding lemma are from [19]. These will be used for the proof of the final theorem
for this paper, Theorem 5.7.

15 Note that, for all D and c such that card(D) ≥ c, R(D, c, D, c).

12 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
Definition 5.5. For all M ∈ P , M is called canny iff, for all σ , (i) through (iii) below (recall from Section 2.1 that M∗ is the
G-learner equivalent to the iterative learner M).

(i) M∗(σ)↓ ⇒ M∗(σ) ∈N, i.e., M∗ never outputs ?.
(ii) M∗(σ � #) = M∗(σ).

(iii) For all x ∈N, if M∗(σ � x) �= M∗(σ), then, for all τ ⊇ σ � x, M∗(τ � x) = M∗(τ).

Lemma 5.6. [Theorem 1 in [19]] For all M ′ ∈P , there is M such that TxtItEx(M ′) ⊆ TxtItEx(M) and M is canny.

From the proof of [19, Theorem 1], it is easy to see that, if M ′ is strongly non-U-shaped, then so is M . Note that the
construction in that proof does not, in general, preserve non-U-shapedness.

From [19, Theorem 2] we have [TxtItEx] = [TxtItNUEx]. Contrasting this result, we have the following theorem.

Theorem 5.7. We have that there are non-U-shapedly iteratively learnable collections of languages which are not strongly non-
shapedly learnable by an iterative learner, i.e.,

[TxtItSNUEx] ⊂ [TxtItNUEx].

Our proof makes use of padded ORT and, as noted above, for convenience, a self-learning class simpler to work with
than that from Theorem 3.6.

Proof. It is easy to see that, in our present setting, the initial conjecture of any given iterative learner does not matter.
Hence, for the following learner M , we will suppose the initial conjecture to be pad(0, ∅). Let M ∈P be such that

∀e, D, x : M(pad(e, D), x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pad(e, D), if x ∈ D ∪ {#};
↑, else if ϕx(e)↑;
pad(ϕx(e), D ∪ {x}), else if ϕx(e) �= e;
pad(e, D), otherwise.

Obviously, M is canny. Let L = TxtItEx(M). From [19, Theorem 2] we have L is TxtItNUEx-learnable.
We proceed by showing that no canny TxtItEx-learner for L can be strongly non-U-shaped. By the remark after

Lemma 5.6, any strongly non-U-shaped TxtItEx-learner can be assumed canny; hence, there is no TxtItSNUEx-learner for L
if there is no canny TxtItSNUEx-learner for L. Let h ∈P be canny such that L ⊆ TxtItEx(h).

Let p be a program for h∗ (where h∗ is again a starred learner as introduced in Section 2.1). We will make use of
a Blum complexity measure [4] � associated with ϕ; intuitively, for all programs p and inputs x, ϕp(x)↑ iff �p(x)↑, and
the predicate (p, x, t) �→ �p(x) ≤ t is decidable (one can think of �p(x) as the number of steps until program p holds on
input x). By the padded ORT, there are a, b, e1, e2 ∈R strictly monotone increasing with pairwise disjoint ranges and e0 ∈N

such that, abbreviating, for all i, k,

Pk(i) ⇔ h∗(a[k] � b(k) � a(i))↓ = h∗(a[k] � b(k))↓,

Pk(i) ⇔ h∗(a[k] � b(k) � a(i))↓ �= h∗(a[k] � b(k))↓,

Ek =
{

a(i)

∣∣∣∣ ∃ j[(∀ j′ < j : Pk(j′)) ∧ �p(a[k] � b(k) � a(j)) ≥ i]
∨ ∀ j < i : Pk(j)

}
,

we have, for all e, i, k,

ϕa(i)(e) =

⎧⎪⎨
⎪⎩

e0, if e ∈ {?, e0};
e2(k), else if e = e1(k) and i ≥ k;
e, otherwise;

ϕb(k)(e) =
{

e1(k), if e ∈ {?, e0};
e, otherwise;

We0 = content(a);

We1(k) = content(a[k]) ∪ {b(k)} ∪
{

Ek, if ∃i : (P k(i) ∧ ∀ j < i : Pk(j));
∅, otherwise;

We (k) = content(a[k]) ∪ {b(k)} ∪ Ek.
2

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 13
It is easy to see that We0 ∈L as witnessed by M . Hence, h on the text a for We0 converges to a correct program number
for We0 . Let k be such that

∀k′ ≥ k : h∗(a[k′]) = h∗(a[k])
and

Wh∗(a[k]) = We0 .

We now focus on the sets We1(k) and We2(k) .

Claim 1. There is i such that Pk(i) and ∀ j < i : Pk(j).

Proof of Claim 1. Suppose, by way of contradiction, otherwise, i.e., suppose

¬[∃i : (P k(i) ∧ ∀ j < i : Pk(j))]. (26)

This is equivalent to

∀i : [Pk(i) ∨ h∗(a[k] � b(k) � a(i))↑ ∨ ∃ j < i : ¬Pk(j)]. (27)

Which is equivalent to

[∀i : Pk(i)] ∨ [∃i0 : (h∗(a[k] � b(k) � a(i0))↑ ∧ ∀ j < i0 : Pk(j))]. (28)

Note that (28) is implied by (27) by choosing the i0 in the second disjunct of (28) to be the minimum i making the first
disjunct of (27) false, if any.

Subclaim: Ek = content(a).

We proceed by considering possible cases of (28).
Suppose first that ∀i : Pk(i). Then, by the second disjunct in the definition of Ek , Ek = content(a).
Suppose second that there is i0 such that h∗(a[k] � b(k) � a(i0))↑ and, for all j < i0, Pk(j). Then, by the first disjunct in

the definition of Ek , we get the subclaim. � (for Subclaim)

Using (26), we have that

We1(k) = content(a[k]) ∪ {b(k)}.
Further, by the Subclaim,

We2(k) = content(a[k]) ∪ {b(k)} ∪ content(a).

It is easy to see that We1(k) and We2(k) are elements of L. Note that a[k] � b(k) � λi # is a text for We1(k) , and, as h is
canny, h converges on this text to h∗(a[k] � b(k)). Also note that a[k] � b(k) � a is a text for We2(k) , and, using (26) and the
fact that h is an iterative learner, h on this text converges to h∗(a[k] � b(k)). This is a contradiction to We2(k) �= We1(k) , as h
supposedly identifies both. � (for Claim 1)

Let i0 be the minimum i0 as shown existent by Claim 1. Then Ek is finite, and, in particular, there is k′ such that
Ek = content(a[k′]). Let k1 = max(k, k′). Letting L = content(a[k1]) ∪ {b(k)}, we have that

We1(k) = L = We2(k)

is a finite set. It is easy to see that L ∈ L. Note that

a(i0) ∈ L. (29)

As h is canny, we get, as a[k1] � b(k) � λi # is a text for L,

Wh∗(a[k1]�b(k)) = L.

However, by choice of i0,

h∗(a[k1] � b(k)) �= h∗(a[k1] � b(k) � a(i0)).

Using (29), we see that h is not strongly non-U-shaped. �

14 J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15
6. Conclusion and open problems

Summing up, the following table indicates whether, for a given learning criterion (first column) semantic U-shapes
(second column) or syntactic U-shapes (third column) can be avoided; in particular, “yes” in a column of the row of a
learning criterion I means that every I-learnable set is I-learnable by a (strongly) non-U-shaped learner. Some of the
justificatory remarks omit citing [TxtGEx] = [TxtRiEx] shown in [37,26].

NU SNU

TxtGEx yes, [3], Corollary 5.4 yes, [21], Corollary 5.4

RTxtGEx yes, Theorem 5.3 yes, [3], Theorem 5.3

TxtRiEx yes, Theorem 5.3 yes, Theorem 5.3

RTxtRiEx yes, Theorem 5.3 yes, Theorem 5.3

TxtSdEx yes, Theorem 5.2 yes, Theorem 5.2

RTxtSdEx yes, Theorem 5.2 yes, Theorem 5.2

TxtItEx yes, [19] no, Theorem 5.7

RTxtItEx open no, [17]

We think that one can obtain [RTxtItNUEx] = [RTxtItEx] as a corollary to the proof in [19] of [TxtItNUEx] = [TxtItEx].
Trivially, we have

[TxtItCtrSNUEx] ⊆ [TxtItCtrNUEx] ⊆ [TxtItCtrEx];
[RTxtItCtrSNUEx] ⊆ [RTxtItCtrNUEx] ⊆ [RTxtItCtrEx].

The other directions of inclusions are open.
As we can see from the overview, U-shaped learning is unnecessary in many different learning settings. Only very

restricted settings in which learners make use of the hypothesis as a way to store information (as in the case of iterative
learning), can sometimes require U-shapes.

Acknowledgments

We would like to thank the anonymous referees both of the conference version and the journal version of this paper for
their comments and suggestions. Further, we want to thank Samuel E. Moelius III and Thomas Zeugmann for discussions on
various theorems and their proofs. Major work on this paper was conducted while the second author was at the Department
of Computer and Information Sciences, University of Delaware, USA.

References

[1] J.M. Barzdin, Two Theorems on the Limiting Synthesis of Functions, Theory of Algorithms and Programs I, vol. 210, Latvian State University, Riga, 1974,
pp. 82–88 (in Russian).

[2] Lenore Blum, Manuel Blum, Toward a mathematical theory of inductive inference, Inf. Control 28 (2) (1975) 125–155.
[3] Ganesh Baliga, John Case, Wolfgang Merkle, Frank Stephan, Rolf Wiehagen, When unlearning helps, Inf. Comput. 206 (5) (2008) 694–709.
[4] Manuel Blum, A machine-independent theory of the complexity of recursive functions, J. ACM 14 (2) (1967) 322–336.
[5] T. Bower, Concepts of development, in: Proceedings of the 21st International Congress of Psychology, Presses Universitaires de France, Paris, 1978.
[6] M. Bower, Starting to talk worse: clues to language development from children’s late speech errors, in: S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral

Growth, in: Developmental Psychology Series, Academic Press, NY, 1982.
[7] S. Carey, Face perception: anomalies of development, in: S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral Growth, in: Developmental Psychology Series,

Academic Press, NY, 1982.
[8] John Case, Periodicity in generations of automata, Math. Syst. Theory 8 (1) (1974) 15–32.
[9] John Case, Infinitary self-reference in learning theory, J. Exp. Theor. Artif. Intell. 6 (1) (1994) 3–16.

[10] John Case, The power of vacillation in language learning, SIAM J. Comput. 28 (6) (1999) 1941–1969.
[11] Lorenzo Carlucci, John Case, Sanjay Jain, Frank Stephan, Non-u-shaped vacillatory and team learning, J. Comput. Syst. Sci. 74 (4) (2008) 409–430.
[12] John Case, Sanjay Jain, Steffen Lange, Thomas Zeugmann, Incremental concept learning for bounded data mining, Inf. Comput. 152 (1) (1999) 74–110.
[13] John Case, Timo Kötzing, Dynamically delayed postdictive completeness and consistency in learning, in: Yoav Freund, László Györfi, György Turán,

Thomas Zeugmann (Eds.), Algorithmic Learning Theory, 19th International Conference, ALT 2008, Proceedings, Budapest, Hungary, October 13–16,
2008, in: Lecture Notes in Computer Science, vol. 5254, Springer, 2008, pp. 389–403.

[14] John Case, Timo Kötzing, Strongly non-u-shaped learning results by general techniques, in: Adam Tauman Kalai, Mehryar Mohri (Eds.), COLT 2010 –
The 23rd Conference on Learning Theory, Haifa, Israel, June 27–29, 2010, Omnipress, 2010, pp. 181–193.

[15] John Case, Timo Kötzing, Computability-theoretic learning complexity, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 370 (2012) 3570–3596.
[16] John Case, Timo Kötzing, Memory-limited non-u-shaped learning with solved open problems, Theor. Comput. Sci. 473 (2013) 100–123.
[17] John Case, Timo Kötzing, Topological separations in inductive inference, Theor. Comput. Sci. 620 (2016) 33–45.
[18] John Case, Christopher Lynes, Machine inductive inference and language identification, in: Mogens Nielsen, Erik Meineche Schmidt (Eds.), Automata,

Languages and Programming, 9th Colloquium, Proceedings, Aarhus, Denmark, July 12–16, 1982, in: Lecture Notes in Computer Science, vol. 140,
Springer, 1982, pp. 107–115.

[19] John Case, Samuel E. Moelius, U-shaped, iterative, and iterative-with-counter learning, Mach. Learn. 72 (1–2) (2008) 63–88.

http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4261723A6A3A37343A74776F2D7468726Ds1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4261723A6A3A37343A74776F2D7468726Ds1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib426C752D426C753A6A3A3735s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib42616C2D4361732D4D65722D5374652D5769653A6A3A3038s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib426C753A6A3A36373A636F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib426F773A633A3738s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib426F7765723A633A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib426F7765723A633A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361723A613A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361723A613A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361733A6A3A3734s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361733A6A3A39343A73656C66s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361733A6A3A39393A766163696C6C6174696F6Es1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361722D4361732D4A61692D5374653A6A3A30353A7661632D752D736861706564s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4A61692D4C616E2D5A65753A6A3A39393A666565646261636Bs1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A633A30383A50637044656C6179s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A633A30383A50637044656C6179s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A633A30383A50637044656C6179s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A633A31303A636F6C74s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A633A31303A636F6C74s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A6A3A31323A726F79616Cs1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A6A3A31333A6D656D4C657373s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4B6F653A6A3A3133s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4C796E3A633A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4C796E3A633A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4C796E3A633A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4D6F653A6A3A30383A4E554974s1

J. Case, T. Kötzing / Information and Computation 251 (2016) 1–15 15
[20] John Case, Samuel E. Moelius, Parallelism increases iterative learning power, Theor. Comput. Sci. 410 (19) (2009) 1863–1875.
[21] John Case, Samuel E. Moelius, Optimal language learning from positive data, Inf. Comput. 209 (10) (2011) 1293–1311.
[22] John Case, Carl Smith, Comparison of identification criteria for machine inductive inference, Theor. Comput. Sci. 25 (1983) 193–220.
[23] Jerome A. Feldman, Some decidability results on grammatical inference and complexity, Inf. Control 20 (3) (1972) 244–262.
[24] Mark A. Fulk, Sanjay Jain, Daniel N. Osherson, Open problems in “systems that learn”, J. Comput. Syst. Sci. 49 (3) (1994) 589–604.
[25] M. Fulk, A study of inductive inference machines, PhD thesis, SUNY at Buffalo, 1985.
[26] Mark A. Fulk, Prudence and other conditions on formal language learning, Inf. Comput. 85 (1) (1990) 1–11.
[27] E. Mark Gold, Language identification in the limit, Inf. Control 10 (5) (1967) 447–474.
[28] S. Jain, D. Osherson, J. Royer, A. Sharma, Systems that Learn: An Introduction to Learning Theory, second edition, MIT Press, Cambridge, Mass., 1999.
[29] T. Kötzing, Abstraction and complexity in computational learning in the limit, PhD thesis, University of Delaware, 2009, available online at http://

pqdtopen.proquest.com/#viewpdf?dispub=3373055.
[30] Timo Kötzing, Iterative learning from positive data and counters, Theor. Comput. Sci. 519 (2014) 155–169.
[31] G. Marcus, S. Pinker, M. Ullman, M. Hollander, T.J. Rosen, F. Xu, Overregularization in Language Acquisition, Monographs of the Society for Research in

Child Development, vol. 57(4), University of Chicago Press, 1992, includes commentary by H. Clahsen.
[32] P. Odifreddi, Classical Recursion Theory, vol. II, Elsevier, Amsterdam, 1999.
[33] Daniel N. Osherson, Scott Weinstein, Criteria of language learning, Inf. Control 52 (2) (1982) 123–138.
[34] K. Plunkett, V. Marchman, U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition, Cognition

38 (1) (1991) 43–102.
[35] J. Royer, J. Case, Subrecursive Programming Systems: Complexity and Succinctness, research monograph in Progress in Theoretical Computer Science,

Birkhäuser, Boston, 1994.
[36] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967, reprinted by MIT Press, Cambridge, Massachusetts,

1987.
[37] G. Schäfer-Richter, Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien, Dissertation, RWTH Aachen, 1984.
[38] S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral Growth, Developmental Psychology Series, Academic Press, NY, 1982.
[39] S. Strauss, R. Stavy, N. Orpaz, The child’s development of the concept of temperature, Tel-Aviv University, 1977, unpublished manuscript.
[40] F. Stephan, 2009, private communication.
[41] N.A. Taatgen, J.R. Anderson, Why do children learn to say broke? a model of learning the past tense without feedback, Cognition 86 (2) (2002) 123–155.
[42] K. Wexler, P. Culicover, Formal Principles of Language Acquisition, MIT Press, Cambridge, Mass., 1980.
[43] Rolf Wiehagen, A thesis in inductive inference, in: Jürgen Dix, Klaus P. Jantke, Peter H. Schmitt (Eds.), Nonmonotonic and Inductive Logic, 1st Interna-

tional Workshop, Proceedings, Karlsruhe, Germany, December 4–7, 1990, in: Lecture Notes in Computer Science, vol. 543, Springer, 1991, pp. 184–207.

http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4D6F653A633A3037s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D4D6F653A633A30383A6F70744C616Es1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4361732D536D693A6A3A3833s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib46656C3A6A3A3732s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib46756C2D4A61692D4F73683A6A3A39343A6F7377s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib46756C3A74683A3835s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib46756C3A6A3A39303A70727564656E6365s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib476F6C3A6A3A3637s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4A61692D4F73682D526F792D5368613A623A39393A73746C32s1
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4B6F653A6A3A31343A4974437472s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4D61723A623A3932s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4D61723A623A3932s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4F64693A623A3939s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib4F73682D5765693A6A3A38323A6372697465726961s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib506C756E6B2D4D617263683A6A3A3931s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib506C756E6B2D4D617263683A6A3A3931s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib526F792D4361733A623A3934s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib526F792D4361733A623A3934s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib526F673A623A3837s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib526F673A623A3837s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib5363683A74683A3834s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib5374722D5374613A623A3832s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib5461612D416E643A6A3A3032s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib5765782D43756C3A623A3830s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib5769653A633A3931s1
http://refhub.elsevier.com/S0890-5401(16)30031-1/bib5769653A633A3931s1

	Strongly non-U-shaped language learning results by general techniques
	1 Introduction
	1.1 U-shaped learning
	1.2 Presented techniques
	1.3 Applications of general techniques
	1.4 Open problems

	2 Mathematical preliminaries
	2.1 Computability-theoretic learning
	2.2 Locking

	3 Self-learning classes of languages for separations
	4 Helping remove U-shapes
	5 Applications of the techniques
	6 Conclusion and open problems
	Acknowledgments
	References

