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of restricted pairs. We solve all cases that were still open. As a byproduct, we also
derive that the maximum size weakly stable matching problem is hard even in
very dense graphs, which may be of independent interest.
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1. Introduction

In the classical stable marriage problem (sMm) [1], a bipartite graph is given, where one side symbolizes
a set of men U, while the other side symbolizes a set of women W. Man u and woman w are connected
by the edge uw if they find one another mutually acceptable. In the most basic setting, each participant
provides a strictly ordered preference list of the acceptable agents of the opposite gender. An edge uw blocks
matching M if it is not in M, but each of w and w is either unmatched or prefers the other to their respective
partner in M. A stable matching is a matching not blocked by any edge. From the seminal paper of Gale
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Table 1
The three types of restricted edges are marked with bold letters. The columns tell edge uw’s role regarding
being in a matching, while the rows split cases based on uw'’s ability to block a matching.

uw must be in M uw can be in M uw must not be in M
uw can block M Forced Unrestricted Forbidden
uw cannot block M Forced Free Irrelevant

and Shapley [1], we know that the existence of such a stable solution is guaranteed and a stable matching
can be found in linear time.

Several real-world applications [2] require a relaxation of the strict order to weak order, or, in other words,
preference lists with ties, leading to the stable marriage problem with ties (SMT) [3-5]. When ties occur, the
definition of a blocking edge needs to be revisited. In the literature, three intuitive definitions are used,
namely weakly, strongly and super-stable matchings [3]. According to weak stability, a matching is weakly
blocked by an edge uw if agents w and w both strictly prefer one another to their partners in the matching.
A strongly blocking edge is preferred strictly by one end vertex, whereas it is not strictly worse than the
matching edge at the other end vertex. A super-blocking edge is at least as good as the matching edge for
both end vertices in the super-stable case. Super-stable matchings are strongly stable and strongly stable
matchings are weakly stable by definition, because weakly blocking edges are strongly blocking, and strongly
blocking edges are super-blocking at the same time.

Weak and strong stability serve as the goal to achieve in most applications, such as college admission
programs. In most countries, colleges are not required to rank all applicants in a strict order of preference,
hence large ties occur in their lists. According to the equal treatment policy used in Chile and Hungary
for example, it may not occur that a student is rejected from a college preferred by her, even though other
students with the same score are admitted [6,7]. Other countries, such as Ireland [8], break ties with lottery,
which gives way to a weakly stable solution according to the original, weak order. Super-stable matchings can
represent safe solutions if agents provide uncertain preferences that mask an underlying strict order [9-11].
If two edges are in the same tie because of incomplete information derived from the agent, then super-stable
matchings form the set of matchings that guarantee stability for all possible true preferences.

Another classical direction of research is to distinguish some of the edges based on their ability to be
part of or to block a matching. Table 1 provides a structured overview of the three sorts of restricted edges
that have been defined in earlier papers [12-17]. The mechanism designer can specify three sets of restricted
edges: forced edges must be in the output matching, forbidden edges must not appear in it, and finally, free
edges cannot block the matching, regardless of the preference ordering.

The market designer’s motivation behind forced and forbidden edges is clear. By adding these restricted
edges to the instance, one can shrink the set of stable solutions to the matchings that contain a particularly
important or avoid an unwelcome partnership between agents. Free edges model a less intuitive, yet
ubiquitous scenario in applications [15]. Agents are often not aware of the preferences of others, not even
once the matching has been specified. This typically occurs in very large markets, such as job markets [18],
or if the preferences are calculated rather than just provided by the agents, such as in medical [19] and social
markets [20]. Agents who cannot exchange their preferences are connected via a free edge. If a matching is
only blocked by free edges, then no pair of agents can undermine the stability of it.

In this paper, we combine weakly ordered lists and restricted edges, and determine the computational
complexity of finding a stable matching in all cases not solved yet.

1.1. Literature review

We first focus on the known results for the SMT problem without restricted edges, and then switch to the
SM problem with edge restrictions. Finally, we list all progress up to our paper in SMT with restricted edges.
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Ties. If all edges are unrestricted, a weakly stable matching always exists, because generating any linear
extension to each preference list results in a classical SM instance, which admits a solution [1]. This solution
remains stable in the original instance as well. On the other hand, strong and super-stable matchings are
not guaranteed to exist. However, there are polynomial-time algorithms to output a strongly/super-stable
matching or a proof for its nonexistence [3,21]. Very recently, new integer linear programming models have
been presented for various hard problems in SMT with weak stability and incomplete lists [22].

Restricted edges. Dias et al. [13] showed that the problem of finding a stable matching in a SM instance with
forced and forbidden edges or reporting that none exists is solvable in O(m) time, where m is the number of
edges in the instance. Approximation algorithms for instances not admitting any stable matching including
all forced and avoiding all forbidden edges were studied in [17]. The existence of free edges can only enlarge
the set of stable solutions, thus a stable matching with free edges always exists. However, in the presence of
free edges, a maximum-cardinality stable matching is NP-hard to find [15]. Kwanashie [16, Sections 4 and 5]
performed an exhaustive study on various stable matching problems with free edges. The term “stable with
free edges” [19,23] is equivalent to the adjective “socially stable” [15,16] for a matching.

Ties and restricted edges. Table 2 illustrates the known and our new results on problems that arise when
ties and restricted edges are combined in an instance. Weakly stable matchings in the presence of forbidden
edges were studied by Scott [24], where the author shows that deciding whether a matching exists avoiding
the set of forbidden edges is NP-complete. A similar hardness result was derived by Manlove et al. [25]
for the case of forced edges, even if the instance has a single forced edge. Forced and forbidden edges in
super-stable matchings were studied by Fleiner et al. [14], who gave a polynomial-time algorithm to decide
whether a stable solution exists. Strong stability in the presence of forced and forbidden edges is covered
by Kunysz [26], who gave a polynomial-time algorithm for the weighted strongly stable matching problem
with non-negative edge weights. Since strongly stable matchings are always of the same cardinality [4,27], a
stable solution or a proof for its nonexistence can be found via setting the edge weights to 0 for forbidden
edges, 2 for forced edges, and 1 for unrestricted edges.

1.2. Our contributions

In Section 3 we prove a stronger result than the hardness proof in [24] delivers: we show that finding a
weakly stable matching in the presence of forbidden edges is NP-complete even if the instance has a single
forbidden edge.

As a byproduct, we gain insight into the well-known maximum size weakly stable matching problem
(without any edge restriction). This problem is known to be NP-complete [25,28], even if preference lists
are of length at most three [29,30]. On the other hand, if the graph is complete, a complete weakly stable
matching is guaranteed to exist. It turns out that this completeness is absolutely crucial to keep the problem
tractable: as we show here, if the graph is a complete bipartite graph missing exactly one edge, then deciding
whether a perfect weakly stable matching exists is NP-complete.

We turn to the problem of free edges under strong and super-stability in Section 4. We show that deciding
whether a strongly/super-stable matching exists when free edges occur in the instance is NP-complete.
This hardness is in sharp contrast to the polynomial-time algorithms for the weighted strongly /super-stable
matching problems. Afterwards, we show that deciding the existence of a strongly or super-stable matching
in an instance with free edges is fixed-parameter tractable parameterized by the number of free edges.

2. Preliminaries

The input of the stable marriage problem with ties consists of a bipartite graph G = (U U W, E) and for
each v € U U W, a weakly ordered preference list O, of the edges incident to v. We denote the number of
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Table 2
Previous and our results summarized in a table. The contribution of this paper is marked by bold violet
font. The instance has n vertices, m edges, |P| forbidden edges, and |Q| forced edges.

Existence Weak Strong Super
Forbidden NP-complete [24] even if |P| =1 O(nm) [26] O(m) [14]
Forced NP-complete even if |Q| =1 [25] O(nm) [26] O(m) [14]
Free Always exists NP-complete NP-complete

vertices in G by n, while m stands for the number of edges. An edge connecting vertices u and w is denoted
by uw. We say that the preference lists in an instance are derived from a master list if there is a weak order
O of UUW so that each O, where v € U UW can be obtained by deleting entries from O.

The set of restricted edges consists of the set of forbidden edges P, the set of forced edges ), and the set
of free edges F. These three sets are disjoint.

Definition 1. A matching M is weakly/strongly/super-stable with restricted edge sets P,Q, and F, if
MNP=10,Q C M, and the set of edges blocking M in a weakly/strongly/super sense is a subset of F'.

3. Weak stability

In Theorem 1 we present a hardness proof for the weakly stable matching problem with a single forbidden
edge, even if this edge is ranked last by both end vertices. The hardness of the maximum-cardinality weakly
stable matching problem in dense graphs (Theorem 2) follows easily from this result.

Problem 1. SMT-FORBIDDEN-1

Input: A complete bipartite graph G = (U U W, E), a forbidden edge P = {uw} and preference lists with
ties.

Question: Does there exist a weakly stable matching M so that ww ¢ M?

Theorem 1. SMT-FORBIDDEN-1 is NP-complete, even if all ties are of length two, they appear only on one
side of the bipartition and at the beginning of the complete preference lists, and the forbidden edge is ranked
last by both its end vertices.

Proof. SMT-FORBIDDEN-1 is clearly in NP, as any matching can be checked for weak stability in linear
time.

We reduce from the PERFECT-SMTI problem defined below, which is known to be NP-complete even if all
ties are of length two, and appear on one side of the bipartition and at the beginning of the preference lists,
as shown by Manlove et al. [25].

Problem 2. PERFECT-SMTI
Input: An incomplete bipartite graph G = (U U W, E), and preference lists with ties.
Question: Does there exist a perfect weakly stable matching M?

Construction. To each instance Z of PERFECT-SMTI, we construct an instance Z’' of SMT-FORBIDDEN-1.

Let G = (UUW, E) be the underlying graph in instance Z. When constructing G’ for Z’, we add two men
uy and us to U, and two women w; and wg to W. On vertex classes U’ = UU{uy, us} and W' = WU{wy, ws},
G’ will be a complete bipartite graph. As the list below shows, we start with the original edge set E(G) in
stage 0, and then add the remaining edges in four further stages. An example for the built graph is shown
in Fig. 1.
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wy Wy

2. (Ux W)\ E(G)

.......................................... ANAAA MV

3. [(UU{w}) x {ws}] 4. uy wy 4. usy wy (forbidden)
U [{u2} x (WU {wi})]

Fig. 1. An example for the reduction. The legend below the graph lists the six groups of edges in the preference order at all vertices.
The edges from the PERFECT-SMTI instance (drawn in solid black) keep their ranks. Every vertex ranks solid black edges best, then
loosely dashed green edges, then densely dashed blue edges, then dotted red edges, then the wavy gray edge u;w; and the forbidden
violet zigzag edge usws. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

0. E(G)
We keep the edges in F(G) and also preserve the vertices’ rankings on them. These edges are solid
black in Fig. 1.

1. (U x{wi}) U ({ur} x W)
We first connect u; to all women in W, and w; to all men in U. Man u; (woman w;) ranks the women
from W (men from U) in an arbitrary order. Each u € U (w € W) ranks wy (uy) after all their edges
in F(G). These edges are loosely dashed green in Fig. 1.

2. (Ux W)\ E(G)
Now we add for each pair (u,w) € U x W with uw ¢ E(G) the edge vw, where u (w) ranks w (u) even
after wy (up). These edges are densely dashed blue in Fig. 1.

3. [(UU {u1}) x {wg}} U [{uz} x (WU {wl})]
Man ug is connected to all women from W U {w; }, and ranks all these women in an arbitrary order.
The women from W U {w; } rank us worse than any already added edge. Similarly, ws is connected to
all men from M U {u;}, and ranks all these men in an arbitrary order. The men from M U {u;} rank
wo worse than any already added edge. These edges are dotted red in Fig. 1.

4. uywy and uswsy
Finally, we add the edges u;w; and usws, which are ranked last by both of their end vertices. Edge
ugws is the only forbidden edge and it is the violet zigzag edge in Fig. 1, while ujw; is wavy gray.

Claim: 7 admits a perfect weakly stable matching if and only if Z' admits a weakly stable matching not
containing usws.

(=) Let M be a perfect weakly stable matching in Z. We construct M’ as M U {uqws } U{usws }. Clearly,
M’ is a matching not containing the forbidden edge usws, so it only remains to show that M’ is weakly
stable. We do this by case distinction on a possible weakly blocking edge.

0. E(G)
Since M does not admit a weakly blocking edge in Z, no edge from the original F(G) can block M’
weakly in 7.

1. (U X {U)l}) U ({ul} X W)
All vertices in U U W rank these edges lower than their edges in M.
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2. (UxW)\ E(G)
Edges in this set cannot block M’ weakly because they are ranked worse than edges in M’ by both of
their end vertices.

3. [(UU{w}) x {wa}] U [{ug} x (WU {w:})]
Vertices in U UW prefer their edge in M’ to all edges in this set. Since they are in M’, ujws and usw;
also cannot block M’ weakly.

4. wywy and ugws
These two edges are strictly worse than uyws € M’ and usw, € M’ at all four end vertices.

(<) Let M’ be a weakly stable matching in Z' and uqws ¢ M'. Since G’ is a complete bipartite graph
with the same number of vertices on both sides, M’ is a perfect matching. In particular, us and wy are
matched by M’, say to w and u, respectively. Since M’ does not contain the forbidden edge usws,, we have
that u # us and w # ws. Then we have w = w; and u = uy, as uw blocks M’ weakly otherwise.

If M’ contains an edge vw ¢ E(G) with u € U and w € W, then this implies that uw; is a weakly blocking
edge. Thus, M := M'\ {ujws, uswi} C E(G), i.e. it is a perfect matching in G. This M is also weakly stable,
as any weakly blocking edge in G immediately implies a weakly blocking edge for M’, a contradiction as M’
is weakly stable. [

As a byproduct, we get that MAX-SMTI-DENSE, the problem of deciding whether an almost complete
bipartite graph admits a perfect weakly stable matching, is also NP-complete.

Problem 3. MAX-SMTI-DENSE

Input: A bipartite graph G = (U U W, E), where E(G) = {uw : u € U,w € W} \ {u*w*} for some uv* € U
and w* € W, and preference lists with ties.

Question: Does there exist a perfect weakly stable matching M?

Theorem 2. MAX-SMTI-DENSE is NP-complete, even if all ties are of length two, are on one side of the
bipartition, and appear at the beginning of the preference lists.

Proof. MAX-SMTI-DENSE is in NP, as a matching can be checked for stability in linear time.

We reduce from SMT-FORBIDDEN-1. By Theorem 1, this problem is NP-complete even if the forbidden
edge uw is at the end of the preference lists of u and w. For each such instance Z of SMT-FORBIDDEN-1, we
construct an instance Z' of MAX-SMTI-DENSE by deleting the forbidden edge uw.

Claim: The instance Z admits a weakly stable matching if and only if Z/ admits a perfect weakly stable
matching.

(=) Let M be a weakly stable matching for Z. As SMT-FORBIDDEN-1 gets a complete bipartite graph
as an input, M is a perfect matching. Since M does not contain the edge ww, it is also a matching in Z’.
Moreover, M is weakly stable there, because the transformation only removed a possible blocking edge and
added none of these.

(<) Let M’ be a perfect weakly stable matching in Z’. Since uw is at the end of the preference lists of u
and w, and M’ is perfect, uw cannot block M’. Thus, M’ is weakly stable in Z. [

Having shown a hardness result for the existence of a weakly stable matching even in very restricted
instances with a single forbidden edge in Theorem 1, we now turn our attention to strongly and super-stable

matchings.
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4. Strong and super-stability

As already mentioned in Section 1.1, strongly and super-stable matchings or a proof for their nonexistence
can be found in polynomial time even if both forced and forbidden edges occur in the instance [14,26]. Thus
we consider the case of free edges, and in Theorem 3 and Proposition 4 we show hardness for the strong and
super-stable matching problems in instances with free edges. The same construction suits both cases. Then,
in Proposition 5 we remark that both problems are fixed-parameter tractable with the number of free edges
|F'| as the parameter.

Problem 4. SSMTI-FREE

Input: A bipartite graph G = (UU W, E), a set F' C E of free edges, and preference lists with ties.
Question: Does there exist a matching M so that ww € F for all uw € FE that block M in the
strongly /super-stable sense?

In SSMTI-FREE, we define two problem variants simultaneously, because all our upcoming proofs are
identical for both of these problems. For the super-stable marriage problem with ties and free edges, all
super-blocking edges must be in F'; while for the strongly stable marriage problem with ties and free edges,
it is sufficient if a subset of these, the strongly blocking edges, are in F'.

Theorem 3. SSMTI-FREE is NP-complete even in graphs with mazimum degree four, and if preference lists
of women are derived from a master list.

Proof. SSMTI-FREE is clearly in NP because the set of edges blocking a matching can be determined in
linear time.

We reduce from the 1-IN-3 POSITIVE 3-SAT problem, defined below, which is known to be NP-complete
[31-33].

Problem 5. 1-IN-3 POSITIVE 3-SAT

Input: A 3-SAT formula, in which no literal is negated and every variable occurs in exactly three clauses.
Question: Does there exist a satisfying truth assignment that sets exactly one literal in each clause to be
true?

Construction. To each instance 7 of 1-IN-3 POSITIVE 3-SAT, we construct an instance Z’ of SSMTI-FREE.

Let z1,...,x, be the variables and C1, ..., C,, be the clauses of the 1-IN-3 POSITIVE 3-SAT instance Z. For
each clause C;, we add a clause gadget consisting of three vertices a;, b;, and ¢;, where b; is connected to a;
and ¢;, as shown in Fig. 2. While vertices a; and b; do not have any further edges, ¢; will be incident to three
interconnecting edges leading to variable gadgets. These three edges are tied at the top of ¢;’s preference
list. Vertex b; is ranked first by a; and last by ¢;, and these two vertices are placed in a tie by b;.

For each variable x;, occurring in the three clauses C;,, Cj,, and Cj,, we add a variable gadget with nine
vertices yf , zf , and wi for j € [3], as indicated in Fig. 3. Each vertex zf is connected only to yj by a free
edge, and these are the only free edges in our construction. For each (¢, j) € [3]?, we add an edge wfyf , which
is ranked second (after zf ) by yf . The vertex w? ranks this edge at position one if £ = j and else at position
two. Finally, we connect the vertex w?! to the vertex c; , by an interconnecting edge, ranked at position one
by ¢;, and position three by wt.

The resulting instance is bipartite: U = {2/, w/,b;} is the set of men and W = {37, ¢;, a;} is the set of
women. These vertex sets are marked by white and black dots in Figs. 2 and 3. One easily sees that the
maximum degree in our reduction is four.
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Fig. 2. An example of a clause gadget for the clause C;, containing the variables z;, x4, and x5. Clause C; contains the second,
first, and first appearance of these three variables, respectively. The interconnecting edges are dashed and violet.
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Fig. 3. An example of a variable gadget for the variable z;, where x; occurs exactly in the clauses C;, C3, and Cj5. Free edges are
marked by wavy lines, while interconnecting edges are dashed and violet.

Note that the preference lists of the women in the SSMTI-FREE instance are derived from a master list.
The master list for the women W = {y/, ¢;, a;} is the following: At the top are all vertices of the form {2/}
in a single tie, followed by all vertices of the form {w/} in a single tie, and finally, all other vertices {b;} at
the bottom of the preference list, in a single tie.

Claim: 7 has a staisfying truth assignment if and only if Z/ admits a strongly/super-stable matching.

(=) Let T be a satisfying truth assignment such that for each clause, exactly one literal is true. For each
true variable x; in this assignment, appearing in the clauses Cj,, C,, and C,, let M contain the edges wle; .
and y¢z¢ for each £ € [3]. For all other variables, let M contain w{y; for each £ € [3]. For each clause C;, add
the edge a;b; to M.

Following these rules, we have constructed a matching. It remains to check that M is super-stable (and
thus also strongly stable). Since a; is matched to its only neighbor, it cannot be part of a super-blocking
edge. Since each ¢; is matched along an interconnecting edge, which is better than b;, no super-blocking edge
involves b;. A super-blocking interconnecting edge ciwf implies that wﬁ is not matched to any yf, however

this is only true if ciwf € M. A super-blocking edge wfyf

does not appear, as either wf is matched to its
unique first choice yf and therefore not part of a super-blocking edge, or y; is matched to its unique first

choice z/, and thus, y] is not part of a super-blocking edge.
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(<) Let M be a strongly stable matching (note that any super-stable matching is also strongly stable).
Then M contains the edge a;b;, and ¢; is matched to a vertex wf for all ¢ € [m], as else ¢;b; or a;b; blocks M

a

strongly. If wfc,; € M, then yjz; € M for all a € [3], as else wﬁy}’ would be a strongly blocking edge. This,

a
J
Thus, for each variable x;, the matching M contains either all edges wfcié for ¢ € [3] or none of these

however, implies that w§c;, € M for all a € [3], as else w§c;, would be a strongly blocking edge.

edges. We set a variable to be true if and only if wfc;, € M for ¢ € [3]. For ¢; must be matched to a vertex
wf for all ¢ € [m], this induces a truth assignment such that for each clause, exactly one literal is set to be
true. O

The previous proof is aimed at the hardness of the restricted case, in which the underlying graph has a
low maximum degree. For the sake of completeness, we add another variant, which is defined in a complete
bipartite graph.

Proposition 4. SSMTI-FREE is NP-complete, even in complete bipartite graphs, where each tie has length
at most three.

Proof. SSMTI-FREE in the above described setting belongs to NP for the same reason as we used for the
general problem in Theorem 3: the set of edges blocking a matching can be determined in linear time. We
reduce from SSMTI-FREE. Given an SSMTI-FREE instance in graph G, we add all non-present edges between
men and women as free edges, ranked worse than any edge from E(G). We call the resulting graph H.

Clearly, a strongly /super-stable matching in G is also strongly/super-stable in H, as we only added free
edges.

Vice versa, let M be a strongly/super-stable matching in H. Let M’ := M N E(G) arise from M by
deleting all edges not in E(G). Then M’ is clearly a matching in G, so it remains to show that M’ is
strongly /super-stable.

Assume that there is a blocking edge uw in G, in the strongly/super-stable sense. Since uw is not blocking
in H, at least one of v and w has to be matched in H, but not in G. However, this vertex prefers uw also
to its partner in H, and thus, uw is also blocking in H, which is a contradiction. [

Note that SSMTI-FREE becomes polynomial-time solvable if only a constant number of edges is free in the
same way as MAX-SSMI, the problem of finding a maximum-cardinality stable matching with strict lists and
free edges [15].

Proposition 5. SSMTI-FREE can be solved in O(2Fnm) time in the strongly stable case, and in O(28m) time
in the super-stable case, where k = |F| is the number of free edges, n = |V (G)| is the number of vertices,
and m = |E(Q)| is the number of edges.

Proof. For each subset Q C F of free edges, we construct an instance of SSMTI-FORCED as follows. Mark
all edges in @ as forced, and delete all edges in F'\ Q.

If any of the SSMTI-FORCED instances admits a stable matching, then this is clearly a stable matching in
the SSMTI-FREE instance, as only free edges were deleted. Vice versa, any solution M for the SSMTI-FREE
instance containing exactly the set of forced edges @ (i.e. @ = M N F) immediately implies a solution for
the SSMTI-FORCED instance with forced edges Q.

Clearly, there are 2F subsets of F. Since any instance of SSMTI-FORCED can be solved in O(nm) time in
the strongly stable case [26] and in O(m) time in the super-stable case [14], the result follows. [
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5. Conclusion

Studying the stable marriage problem with ties combined with restricted edges, we have shown three NP-
completeness results. Our computational hardness results naturally lead to the question whether imposing
master lists on both sides makes the problems easier to solve. Moreover, it is open whether SMT-FORBIDDEN-
1 remains hard in bounded-degree graphs. In addition, one may try to identify relevant parameters for our
problems and then decide whether they are fixed-parameter tractable or admit a polynomial-sized kernel
with respect to these parameters.
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