
Algorithmica (2017) 78:561–586
DOI 10.1007/s00453-016-0190-3

Time Complexity Analysis of Evolutionary Algorithms
on Random Satisfiable k-CNF Formulas

Benjamin Doerr1 · Frank Neumann2 ·
Andrew M. Sutton3

Received: 12 October 2015 / Accepted: 20 July 2016 / Published online: 29 August 2016
© Springer Science+Business Media New York 2016

Abstract Wecontribute to the theoretical understanding of randomized search heuris-
tics by investigating their optimization behavior on satisfiable random k-satisfiability
instances both in the planted solution model and the uniform model conditional on
satisfiability. Denoting the number of variables by n, our main technical result is that
the simple (1 + 1) evolutionary algorithm with high probability finds a satisfying
assignment in time O(n log n) when the clause-variable density is at least logarith-
mic. For low density instances, evolutionary algorithms seem to be less effective, and
all we can show is a subexponential upper bound on the runtime for densities below

1
k(k−1) . We complement these mathematical results with numerical experiments on
a broader density spectrum. They indicate that, indeed, the (1 + 1) EA is less effi-
cient on lower densities. Our experiments also suggest that the implicit constants
hidden in our main runtime guarantee are low. Our main result extends and consider-
ably improves the result obtained by Sutton and Neumann (Lect Notes Comput Sci
8672:942–951, 2014) in terms of runtime, minimum density, and clause length. These
improvements are made possible by establishing a close fitness-distance correlation
in certain parts of the search space. This approach might be of independent interest
and could be useful for other average-case analyses of randomized search heuristics.
While the notion of a fitness-distance correlation has been around for a long time,
to the best of our knowledge, this is the first time that fitness-distance correlation
is explicitly used to rigorously prove a performance statement for an evolutionary
algorithm.
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1 Introduction

Randomized search heuristics such as randomized local search, evolutionary algo-
rithms, and ant colony optimization have been widely used to solve complex
combinatorial optimization and engineering problems. Their popularity with practi-
tioners lies in the broad and easy applicability to many complex problems in a number
of application domains. In contrast to this, the theoretical understanding still lags
behind their practical success due to complex random processes underlying the run of
such algorithms. Nevertheless, the analysis of randomized search heuristics has made
significant progress over the past fifteen years. A wide range of randomized search
heuristics has been analyzed for specific fitness functions as well as problems from
combinatorial optimization. We refer the reader to the timely books [5,23,35] for a
comprehensive presentation.

In this paper, we study the behavior of randomized search heuristics on one of the
most classical combinatorial optimization problems, namely propositional satisfiabil-
ity. Our aim is to get new insights into the behavior of randomized search heuristics
whendealingwith random k-CNF formulas.Random instances cangive insight into the
average-case (“typical”) behavior of an algorithm as opposed to worst-case analyses,
which give upper bounds valid for all instances (and thus absolute guarantees), some-
times at the price of being very pessimistic. So far, there are only a few runtime results
of randomized search heuristics on random instances of combinatorial optimization
problems.Witt [42] investigated random instances for makespan scheduling. Based on
an analysis of thewell-known2-OPT local search algorithmon random instances of the
Traveling Salesperson problem (TSP) carried out in [19], results have been obtained
for ant colony optimization [27]. Furthermore, runtime results using the fixed bud-
get perspective [24] have been obtained for evolutionary algorithms [34] and random
instances of the TSP.

In the first runtime analysis for the (1+1) EAon random satisfiability instances [41],
a runtime bound of O(n2 log n) was shown to hold with probability 1 − o(1) for the
3-satisfiability problem when the number of random clauses is at least Ω(n2), that
is, the constraint density is linear. The key argument used in the proof is that a large
proportion of the search space (with sufficiently high probability) has no pair of Ham-
ming neighbors with fitness gradient pointing away from the planted assignment. This
condition implies that any search point has a Hamming neighbor closer to the planted
solution with strictly higher fitness. Unfortunately, it turns out that this condition is not
sufficient to handle search trajectories that do not only move towards the optimum via
moves to Hamming neighbors. Such trajectories arise, e.g., from mutation steps that
change more than one bit at once. This weakness leads to an additional linear factor in
the runtime bound, which we overcome in this paper by establishing a fitness-distance
correlation (FDC) that implies that trajectories involving multiple bit flips also make
sufficient progress towards the target.

Our proof techniques utilize rigorous bounds on the FDC of an instance to show
there is a sufficiently strong fitness signal that yields a stochastic drift toward the opti-

123



Algorithmica (2017) 78:561–586 563

mal solution. This technique may be of independent interest, and should be extensible
to other algorithms and analyses. Historically, the notion of fitness-distance correla-
tion has been used to qualitatively explain the hardness of a problem by considering
how the distance of search points to an optimum relates to their fitness values [25].
The intuition is that problems are easy to solve by evolutionary algorithms if the fit-
ness improves with decreasing distance to the optimum and hard to solve if the fitness
is pointing in the opposite direction. While the intuition sounds sensible, it does not
always translate directly into an accurate prediction of algorithm performance. Differ-
ent counterexamples have been presented in the literature that show FDC is not always
a good predictor of algorithm performance (see, e.g., [4,22,37]).

Furthermore, a strong FDC is only a reliable predictor if a randomized search
heuristic does not encounter any deviations from the assumed usual behavior. In the
case that a deviation from the predicted behavior becomes very unlikely, a strong FDC
can potentially be used to accurately predict the runtime of randomized search heuris-
tics. This property is explored in this paper, and we show that there is a strong FDC
for sufficiently dense k-CNF formulas. Usually, the FDC is established by sampling
search points and calculating the empirical correlation between fitness and the distance
to a known optimum. In order to make it useful for upper bounds on the runtime of
randomized search heuristics, we must be able to make rigorous statements about the
properties of the relationship between fitness and distance and show that those prop-
erties hold with high probability. We also require such statements to explicitly depend
on the input size, and hence are valid for all problem sizes larger than a reasonable
minimum bound. Experimental investigations into FDC, on the other hand, can only
make statements about fixed problem sizes.

We prove rigorous bounds on a suitable notion of FDC for k-CNF formulas having
at least logarithmic density. This admits a proof of an improved runtime bound of
O(n log n), attained with probability 1 − o(1), for these instances. We also present a
straightforward matching lower bound for asymptotically almost all satisfiable k-CNF
formulas of sufficiently high constraint density.

We begin by studying the planted model of random k-CNF distributions and extend
our results to the filtered model using a straightforward generalization of a correspon-
dence on 3-CNF formulas due to Ben-Sasson et al. [6]. Planted distributions for the
maximumclique problem in graphs have also been studied byStorch [40] in the context
of randomized search heuristics. In propositional satisfiability, the planted distribution
of k-CNF formulas is known to be easy to solve for classical algorithms [29], and our
objective is to advance the theoretical analysis of evolutionary algorithms on random
satisfiability models. This article is based on its conference version [16] which carried
out the investigations for 3-CNF formulas. The present article generalizes the results
obtained in the conference version to k-CNF formulas where k ≥ 3 is a constant.

The outline of the paper is a follows. We introduce the model and algorithm under
investigation in Sect. 2.We start our analysis by investigating formulas of high (linear)
density in Sect. 3 and prove the O(n log n) bound. We then extend this analysis to for-
mulas of logarithmic density and present a matching lower bound on the expectation.
Finally, we give a short proof in Sect. 4 that the runtime of the (1+1) EA is faster than
exponential for very low constant densities. Our theoretical results are complemented
by experimental investigations in Sect. 5. We conclude the paper in Sect. 6.
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2 Preliminaries

A k-CNF formula F is obtained from a set of n Boolean variables {v1, . . . , vn} by
forming a logical conjunction of exactly m clauses F = C1 ∧ C2 ∧ · · · ∧ Cm . Each
clause is the logical disjunction of exactly k literals, Ci = �i1 ∨ · · · ∨ �ik and each
literal �i j is either an occurrence of a variable v or its negation ¬v. A k-CNF formula
F is satisfiable if and only if there is an assignment of variables to truth values so that
every clause contains at least one true literal.

The set of all assignments to a set of n Boolean variables is isomorphic to {0, 1}n
by interpreting the bit at each position i of the string as the state of exactly one
Boolean variable vi . Given a string x ∈ {0, 1}n , we say a disjunctive clause C is
satisfied by x if it evaluates to true under the variable assignment corresponding
to x . Otherwise, we say it is unsatisfied or false. For a length-m formula F on n
variables, we define the fitness function f := fF : {0, 1}n → {0, . . . ,m} defined
by fF (x) := |{C ∈ F : C is satisfied by x}|. If F is satisfiable, the task of finding a
satisfying assignment reduces to the task of maximizing f .

The standard (1+1) EA, illustrated inAlgorithm1, is a basic evolutionary algorithm
that maintains a size-one population and produces a single offspring in each step. It
can be characterized as a stochastic hill-climbing search that uses the standard bit-
wise uniform mutation operator. Given a length-m formula F on n variables we seek
an asymptotic bound on the runtime of the (1 + 1) EA searching for a satisfying
assignment to F by optimizing the corresponding pseudo-Boolean function f = fF .
We study the infinite stochastic process {x (t) : t ∈ N0} on {0, 1}n where x (t) is the
assignment generated in iteration t of Algorithm 1. The runtime of the (1 + 1) EA is
the random variable T = inf{t ∈ N0 : f (x (t)) = m}.

Algorithm 1: The (1 + 1) EA.
choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x ;
flip each bit of y independently with probability 1/n;
if f (y) ≥ f (x) then x ← y

In order to bound the runtime of the (1 + 1) EA, we will consider the sequence
(x (0), x (1), . . .) of assignments generated by the (1 + 1) EA and study the drift of
corresponding stochastic processes that measure fitness values and distance values
along this sequence. To make precise statements about the runtime, we rely heavily
on the following drift theorem.

Theorem 1 (Multiplicative Drift [14,15]) Let {Xt : t ∈ N0} be a sequence of random
variables over R≥0. Let T be the random variable that denotes the earliest point in
time t ≥ 0 such that Xt < 1. Assume that there exists δ > 0 such that, for all a ≥ 1,
E(Xt − Xt+1 | Xt = a) ≥ δ a. Then for all a ≥ 1, we have

E(T | X0 = a) ≤ 1 + ln(a)

δ
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and

Pr

(
T >

λ + ln(a)

δ

∣∣∣ X0 = a

)
≤ e−λ for all λ > 0.

2.1 Random k-CNF Distributions

Throughout the paper we assume that k ≥ 3 is an integer constant. We consider
distributions of k-CNF formulas consisting of m clauses of length exactly k over n
distinct variables. We also impose the assumption that each clause consists of distinct
variables. We assume clauses are sampled with replacement (i.e., repeated clauses are
allowed). This assumption is common, and simplifies the proofs.

Definition 1 Let Ωn,m,k be the finite set of all k-CNF formulas over n variables and
m clauses.

We say a property holds for asymptotically almost all formulas with n variables
and m := m(n) clauses if that property holds for all formulas in Ωn,m,k except for a
set of measure tending to zero with n → ∞.

We associate random k-CNF distributions with categorical distributions over the
sample space Ωn,m,k . In particular, the well-known uniform distribution Un,m,k is
defined by

Pr(F) = ∣∣Ωn,m,k
∣∣−1

for all F ∈ Ωn,m,k . The filtered distribution USAT
n,m,k is the uniform distribution condi-

tioned on satisfiability, that is, we have

Pr(F) = ∣∣{F ∈ Ωn,m,k : F is satisfiable
}∣∣−1

for all satisfiable formulas F . The planted distribution Pn,m,k is the uniform distrib-
ution conditioned on satisfiability by a “planted assignment” x�. For all formulas F
satisfied by the assignment x�, we have

Pr(F) = ∣∣{F ∈ Ωn,m,k : F is satisfied by x�
}∣∣−1

.

When considering a formula F constructed from Pn,m,k , without loss of generality
we will hereafter assume that the planted solution is x� = (1, 1, . . . , 1) since the
behavior of the (1 + 1) EA is invariant under negating literals of F . We define the
function d : {0, 1}n → {0, . . . , n}; x 
→ |{i : xi = 0}| that measures the Hamming
distance to the planted solution.

Definition 2 Fix a small constant ε > 0. We define a subset of directed hypercube
edges H = Hε ⊆ {0, 1}n × {0, 1}n such that (x, y) ∈ H if and only if

1. |{i : xi �= yi }| = 1,
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2. d(y) = d(x) − 1, and
3. d(x) ≤ (1/2 + ε)n

The following lemma introduces a two-sided bound on the expected difference in
fitness between pairs inH, provided that F is drawn from the Pn,m,k distribution.

Lemma 1 Let (x, y) ∈ H. Let F ∼ Pn,m,k and f := fF . Then there exists a γk : R →
R such that

km

(2k − 1)n
(1 − γk(n)) ≤ E( f (y) − f (x)) ≤ km

(2k − 1)n
,

where limn→∞ γk(n) = 1 − ( 1−2ε
2

)k−1
.

Proof Let A be the set of all k-CNF clauses on n variables with at least one positive
literal that are not satisfied by x but are satisfied by y. Similarly, let B be the set of all
k-CNF clauses on n variables with at least one positive literal that are satisfied by x
but not satisfied by y. Let C ⊃ A ∪ B be the set of all k-CNF clauses on n variables
with at least one positive literal.

We begin by computing the sizes of the sets A, B and C . Let i ∈ [n] be the unique
index in which x and y differ. Then every clause in Amust contain the variable vi as a
positive literal. Furthermore, since the clause is unsatisfied under x , the polarity of the
remaining k − 1 literals in the clause is uniquely determined by their corresponding
bit values in x . There are k−1 remaining variables to pick from the set of all variables
(excluding vi ), so |A| = (n−1

k−1

)
.

Similarly, every clause in B must contain the negative literal ¬vi , and the polarity
of the remaining literals in the clause is again uniquely determined by the state of
the corresponding bit values in y. However, this also counts clauses that contain no
positive literal, and so these must be subtracted out. Any k-clause not satisfied by y
has no positive literal if and only if it is comprised entirely of literals that correspond
to variables that are true under y. There are n − d(y) such variables, so

|B| =
(
n − 1

k − 1

)
−
(
n − d(y) − 1

k − 1

)
≤
(
n − 1

k − 1

)
−
(
n(1/2 − ε)

k − 1

)
,

where the inequality follows from d(y) = d(x) − 1 ≤ (1/2 + ε)n − 1. Setting

γk(n) = 1 −
(
n(1/2 − ε)

k − 1

)/(n − 1

k − 1

)
,

we have

0 ≤ |B| < γk(n)

(
n − 1

k − 1

)
. (1)

Finally, we note that the set C is constructed by all k-clauses that contain at least
one positive literal, so |C | = (2k − 1)

(n
k

)
.

To finish the proof, suppose F ∼ Pn,m,k . Let ZA be the random variable that counts
the occurrences of clauses from A in F and ZB be the random variable that counts
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the occurrences of clauses from B in F . Since F contains exactly m clauses chosen
from C uniformly at random, we have E(ZA) = m|A|/|C | and E(ZB) = m|B|/|C |.
Hence,

E( f (y) − f (x)) = E(ZA − ZB) = m

( |A| − |B|
|C |

)
,

and the claimed two-sided bound follows from (1). ��
Lemma 2 Let n be sufficiently large and m a function of n. Let (x, y) ∈ H. Let
F ∼ Pn,m,k and f = fF . Then

Pr
(c1m

n
< f (y) − f (x) <

c2m

n

)
= 1 − e−Ω(m/n)

for particular positive constants c1 and c2 that depend on k.

Proof We consider the random variables Z = ZA − ZB from the proof of Lemma 1.
Note that ZA and ZB can each be written as the sum of m independent indicator
random variables (indicating whether or not the i-th clause belongs to A or B).

By multiplicative Chernoff bounds, for any constant 0 < δ < 1,

Pr

(
ZA /∈

[
(1 − δ)

km

(2k − 1)n
, (1 + δ)

km

(2k − 1)n

])
= e−Ω(m/n),

For n sufficiently large, γk(n) < (1 + δ/2)
(
1 − ( 1−2ε

2

)k−1
)
, and so we also have

Pr

(
ZB /∈

[
0, (1 + δ)

(
1 −
(
1 − 2ε

2

)k−1
)

km

(2k − 1)n

])
= e−Ω(m/n),

Thus both random variables take on values in these intervals with probability 1 −
2e−Ω(m/n). Under this event,

((
1 − 2ε

2

)k−1

− 2δ

)
km

(2k − 1)n
< Z < (1 + δ)

km

(2k − 1)n
.

The proof is completed by choosing δ small enough. ��

2.2 Constraint Density

The constraint density of a formula is the ratio of clauses to variables m/n. The con-
straint density (apart from the constant factor of k) quantifies the average number
of constraints that are imposed on a variable. Boolean formulas with low constraint
density are expected to be easy to satisfy, since each variable has, on average, few
constraints. On the other hand, formulas with high constraint density are, on average,
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easy to refute because backtracking search algorithms can quickly derive a contradic-
tion. The study of a threshold phenomenon in the uniform random k-CNF distribution
Un,m,k has been the focus of intense study in the last two decades. The satisfiability
threshold conjecture [2] asserts that for all k ≥ 3 there exists a real number rk such
that if is a formula drawn uniformly at random from the set of all k-CNF formulas
with n variables and m clauses, then

lim
n→∞Pr{F is satisfiable} =

{
1 m/n < rk;
0 m/n > rk .

Recently, Coja-Oghlan and Panagiotou [10] proved that rk = 2k ln 2 − 1
2 (1+ ln 2) +

o(1) where the error term vanishes as k → ∞. Ding, Sly, and Sun [12] obtained
an exact representation of the threshold for all k ≥ k0, where k0 is a large enough
constant. There are still no exact results for the location of this threshold at low values
of k, but experimental studies on 3-CNF formulas suggest one exists around r3 ≈ 4.26.
For a more detailed treatment of random satisfiability, see the chapter by Achlioptas
[1].

Backtracking SAT solvers like the Davis-Putnam-Logemann-Loveland (DPLL)
procedure exhibit an empirical hardness peak around the critical value [11,31]. This
corresponds to the so-called phase transition phenomenon in the uniform random
Un,m,k model where formulas near the critical threshold have high decision complex-
ity [26].

The planted Pn,m,k and filtered USAT
n,m,k models obviously have no satisfiability

threshold.However, it is interesting to observehow the complexity of formulas depends
on the constraint density parameter on these distributions since they are formed from
the uniform distribution Un,m,k that has been conditioned on satisfiability.

Planted 3-CNF formulas with densitym/n = Ω(n) are known to be easy for simple
greedy algorithms [28] (always flipping the variable assignment that gives the largest
improvement). More sophisticated algorithms can even handle planted formulas with
densities bounded below by a sufficiently high constant [20,29].

For low-density planted 3-CNF formulas, a basic hillclimber that accepts only
strictly improving moves fails with high probability for ε < m/n < (7/6) ln n (where
ε is an arbitrary positive constant) because it is likely to become trapped in a local
optimum [7]. This strict hillclimber is claimed to be successful again at extremely low
densities, i.e., m/n ≈ n−1/4 [7]. A slightly more sophisticated hillclimber called
GSAT is successful with high probability on planted 3-CNF formulas of density
Ω(log n) [39]. On the other hand, the random WalkSAT local search algorithm [36]
(which iteratively selects an unsatisfied clause uniformly at random and flips one of
its variables uniformly at random) needs an exponential number of steps to find the
planted assignment [44].

Similar to its the uniform counterpart, an empirical easy-hard-easy pattern has also
been also observed on the filtered USAT

n,m,3 model near the same critical parameter [8].
In the remainder of the paper we characterize the time complexity of the (1 + 1) EA
on the Pn,m,k and USAT

n,m,k models in different constraint density regimes.
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3 Upper Bounds Based on FDC Arguments

We now study the runtime of the (1 + 1) EA on high-density planted formulas. We
begin with linear densities in Sect. 3.1, namely, length-m formulas on n variables
where m/n ≥ cn for a specific constant c. In this regime we prove a strong FDC
condition (Lemma 3) and use this to show that for all formulas in Pn,m,k , except for
a set of measure tending to zero exponentially fast, the (1 + 1) EA finds a satisfying
assignment in O(n log n) time. For k = 3 this improves by a linear factor the previous
runtime bound [41] for the (1 + 1) EA at these densities.

In Sect. 3.2, we consider formulas where m/n ≥ c ln n for a particular c. In this
sparser regime, we can only prove a weaker type of FDC (Lemma 5) holds. Moreover,
the set of formulas on which it does not hold only vanishes polynomially fast. Nev-
ertheless, this weaker FDC condition suffices for favorable drift toward the planted
solution and we can extend our O(n log n) runtime bound to this regime as well.

3.1 Linear Density

The following strong FDC condition is the key to our analysis in the case of linear
densities. It contains two crucial parts. The first is that in a sufficient part of the search
space (given by the set H) we gain a significant fitness increase when going to a
Hamming neighbor closer to the planted solution. This part is very similar to the
condition used in [41]. The second part shows a weaker fitness distance correlation,
however, for a much larger set of pairs of search points (in particular, not only for
Hamming neighbors). This part will enable us to argue that alsomulti-bit flipmutations
cannot be harmful.

Definition 3 We say a formula F has strong FDC if f = fF satisfies the following
two properties.

Property A. For all (x, y) ∈ H, we have c1m/n < f (y) − f (x) < c2m/n.
Property B. For all x, y ∈ {0, 1}n with n/2 + εn ≥ d(x) ≥ n/2 + 3εn/4 and

d(y) ≤ n/2 + εn/2, we have f (x) < f (y).

Here 0 < c1 < c2 are the constants used in Lemma 2.

Lemma 3 Let F ∼ Pn,m,k , where m/n ≥ cn for a sufficiently large positive constant
c. The probability that F has strong FDC is at least 1 − e−Ω(n).

Proof By Lemma 2 together with a union bound over the elements ofH and taking c
sufficiently large, Property A of Definition 3 holds with probability 1 − e−Ω(n).

To show Property B, we first observe that for any z ∈ {0, 1}n , the expected fitness
E( f (z)) depends only on d(z) and not the particular z. More precisely, let z, z′ ∈
{0, 1}n such that d(z) = d(z′) =: i . Then E( f (z)) = E( f (z′)). We may thus define
Ei := E( f (z)).

Let x, y ∈ {0, 1}n with n/2+ εn ≥ d(x) ≥ n/2+ 3εn/4 and d(y) ≤ n/2+ εn/2.
Let u, v ∈ {0, 1}n such that d(u) = d(x) =: a and d(v) = d(y) =: b and such that
u ≤ v bit-wise, that is, such that u can be transformed into v by changing a−b ≥ εn/4
zeros to ones.
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We now argue that Eb ≥ Ea + Θ(m). By a repeated application of Lemma 1, we
have

Eb = E( f (v)) ≥ E( f (u)) + km

(2k − 1)n
(1 − γk(n))(εn/4) = Ea + Θ(m).

Let q := (Ea + Eb)/2. Note that f (y) is a random variable that can be written
as sum of m independent 0/1 random variables. Consequently, the additive Chernoff
bound [13, Theorem 1.11] shows that

Pr( f (y) ≤ q) = Pr( f (y) ≤ Eb − (Eb − Ea)/2) ≤ e−Θ(m).

The same argument shows that x has a fitness of at least q with probability e−Θ(m)

only. Consequently, we have f (x) < f (y) with probability 1 − e−Θ(m). Applying a
union bound over the applicable pairs x, y ∈ {0, 1}n , we conclude that Property B of
Definition 3 holds with probability at least 1− e−Ω(n). A final union bound over both
properties concludes the proof. ��

Note that the proof above actually shows that with probability 1 − e−Ω(n), any
x, y ∈ {0, 1}n with d(y) ≤ d(x) − ε/4 and d(x) ≤ n/2 + εn satisfy f (x) < f (y).
We shall not need this stronger statement, though.

Theorem 2 Let m/n ≥ cn for a sufficiently large positive constant c. For all but an
e−Ω(n)-fraction of the k-CNF formulas with n variables and m clauses satisfied by
1n, the runtime of the (1 + 1) EA is O(n log n) with probability 1 − o(1).

Proof ByLemma 3, every planted formula at density at least cn has strong FDC except
for an e−Ω(n)-fraction, so we will assume for the remainder of the proof that we are
working with a formula that has the strong FDC property.

If F has strong FDC, then for states that are not too far away from the planted
assignment, the fitness and distance are tightly correlated in the following sense. For
all x ∈ {0, 1}n with d(x) ≤ n/2 + εn, we have

f (x) + c2d(x)m/n ≥ m and f (x) + c1d(x)m/n ≤ m. (2)

This follows again from regarding a shortest path from x to 1n and applying Property
A to each edge.

We consider the drift of the stochastic process {Xt : t ∈ N0}, where Xt = m −
f (x (t)). Assume at iteration t that 0 < d(x (t)) ≤ (1/2 + ε)n (we will later show that
the second inequality holds with high probability throughout the run of the algorithm).
By the structure of the hypercube, the set S of y ∈ {0, 1}n such that (x (t), y) ∈ H, has
cardinality exactly d(x (t)).

For each y ∈ S, since f (y) > f (x (t)) + c1m/n > f (x (t)), a mutation from x (t) to
y is clearly accepted by selection. Furthermore, selection does not accept mutations
to lower fitness values, so Xt − Xt+1 ≥ 0 with probability one. Let E denote the
event that mutation produces some y ∈ S from x (t). Let a ≥ 1. By the law of total
expectation,
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E(Xt − Xt+1 | Xt = a) ≥ E(Xt − Xt+1 | Xt = a ∧ E) Pr(E)

≥ E(Xt − Xt+1 | Xt = a ∧ E)
d(x (t))

en
.

By the first inequality in (2),

Xt

c2m/n
= m − f (x (t))

c2m/n
≤ d(x (t)).

Also, if E holds, then we have Xt − Xt+1 ≥ c1m/n by Property A. Consequently, we
can bound the drift by

E (Xt − Xt+1 | Xt = a) ≥ c1(m/n)
a

en(c2m/n)
= a

c1/c2
en

. (3)

We only need to show that with high probability, the process never leavesH. Using
the multiplicative Chernoff bound, the initial search point generated uniformly at
random has d(x (0)) ≤ n/2 + εn/2 with high probability. In this case, by Property B
of Definition 3, the EA can never reach a search point with distance n/2 + 3εn/4 or
worse in H. Since H by definition contains points at distance at most (1/2 + ε)n, in
order for the process to leaveH, it must jump over the gap between n/2+ 3εn/4 and
n/2 + εn. This can only occur after mutating at least εn/4 bits: an event that occurs
with probability at most e−Ω(n log n) under uniform mutation.

We thus assume that the process does not leave H, and so the inequality of (3)
is valid for all times t . Finally, we apply Theorem 1 using inequality (3) by setting
δ = c1/(c2en) and λ = log n to obtain the tail bound. ��

3.2 Logarithmic Density

For lower densities, we cannot show part A of the strong fitness-distance correlation
of the previous subsection, that is, that with high probability reducing the Hamming
distance to the planted solution (along an edge in H) strictly increases the fitness
by Θ(m/n). However, we will be able to show the weaker condition that, roughly
speaking, the average fitness gain from reducing the Hamming distance by one is
Θ(m/n). This shall be enough to again obtain a multiplicative drift in the fitness
distance.

In terms of results, we obtain the same Θ(n log n) bound on the runtime as before,
but we only are able to show that it holds for all but a fraction of formulas that
is vanishing only polynomially fast. Specifically, for m/n ≥ c ln n, where c is a
sufficiently large positive constant, we show that the (1+1) EAhas quasilinear runtime
on all but a O(n−δ)-fraction of formulas of Pn,m,k , where δ is a constant depending
on k and c.

The heart of our weaker notion of fitness-distance correlation is the following
lemma, which states that with very high probability the average fitness gain from
flipping a bit towards the planted solution is Θ(m/n). The failure probability is small
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enough to allow a union bound over all search points not too far away from the planted
solution (Lemma 5). Lemma 4 is also the reason for the multiplicative drift exploited
in the main proof.

Lemma 4 There exist positive constants a0, a1, a2 (independent of n, but depending
on k) such that the following is true. Let x ∈ {0, 1}n with d(x) < (1/2 + ε)n. Let
F ∼ Pn,m,k and f := fF . Then

a0
d(x)m

n
≥
∑

y:(x,y)∈H
( f (y) − f (x)) ≥ a1

d(x)m

n

with probability 1 − exp(a2d(x)m/n).

Proof There are exactly d := d(x) solutions y such that (x, y) ∈ H. Each can be
constructed from x by changing exactly one of the variables that is zero in x to one.
Let S be the set of these d variables.

Let Ar for r ∈ {0, 1, . . . , k} be the set of all k-CNF clauses on n variables with
at least one positive literal that are not satisfied by x but are satisfied by exactly r
solutions y with (x, y) ∈ H (i.e., they contain exactly r variables from S as positive
literals). Similarly, let B ′ be the set of all k-CNF clauses on n variables with at least
one positive literal that are satisfied by x but not satisfied by some y with (x, y) ∈ H.
Note that for such a clause there is in fact only one such y. Let C be the set of all
k-CNF clauses on n variables with at least one positive literal.

We define a random variable Y over the probability space of random formulas as

Y =
∑

y:(x,y)∈H
( f (y) − f (x)) .

We argue that Y can be written as a sum of m independent random variables Yi where
Yi counts how the i-th clause contributes to the change in fitness. In particular, we
have Yi = −1 if the i-th clause is selected from B ′. Otherwise, Yi = r if the i-th
clause is selected from Ar

Note that |B ′| is similar to |B| in the proof of Lemma 1, except now we can choose
which of the variables from S appears negated in the clause so it is satisfied by one
of the neighbors y obtained by changing a zero in x to a one. The remaining literals
of the clause can be chosen from the remaining n − 1 variables, but their polarity is
uniquely determined by their state in x to ensure it is not satisfied by x . Hence we
have

|B ′| = d|B| < dγk(n)

(
n − 1

k − 1

)
, (4)

where γk(n) is defined in Lemma 1 and we have applied the inequality in (1). The
equality

k∑
r=1

r
|Ar |(n
k

) = dk

n
(5)
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is given by the expectation of a hypergeometric-distributed random variable in which
we draw k elements without replacement from a population of size n with d successes.
As earlier, we also have |C | = (2k − 1)

(n
k

)
.

By Eqs. (4) and (5), we have

E(Y ) =
m∑
i=1

E(Yi ) = m
k∑

r=1

r
|Ar |
|C | − m

|B ′|
|C |

and

dkm

(2k − 1)n
≥ E(Y ) ≥ dkm

(2k − 1)n
− dγk(n)km

(2k − 1)n
= dkm

(2k − 1)n
(1 − γk(n)) ,

where γk(n) is as in Lemma 1. As there, we can bound 1 − γk(n) from below by a
positive constant.

All this shows our claim for the expectation instead of with a tail bound. For the
tail bound, we use multiplicative Chernoff bounds as in the proof of Lemma 2. Note
that the fact that the Yi take values in a range of order k can be overcome by rescaling.
That this also rescales the expectation and thus the failure probability is not visible in
the bound since we allow a2 to depend on k. ��
Definition 4 We say that a formula F hasweak FDC if f = fF satisfies the following
two properties.

Property A. For all x ∈ {0, 1}n with n/2 + εn > d(x), we have

a0
d(x)m

n
≥
∑

y:(x,y)∈H
( f (y) − f (x)) ≥ a1

d(x)m

n

with a0, a1, a2 positive constants as in Lemma 4.
Property B. For all x, y ∈ {0, 1}n with n/2 + εn ≥ d(x) ≥ n/2 + 3εn/4 and

d(y) ≤ n/2 + εn/2, we have f (x) < f (y).

Lemma 5 Let m/n > c ln n for a sufficiently large positive constant c (depending on
k). Let F ∼ Pn,m,k and f = fF . Then with probability 1 − O(n−δ), for a positive
constant δ depending only on c and k, the formula F satisfies the weak FDC.

Proof Property B of the weak FDC is identical to Property B of the strong FDC and
its proof in Lemma 3 (with the lower success probability claimed here) remains valid.

For Property A, we use a union bound argument. We say a solution x with d(x) <

(1/2 + ε)n is good if it satisfies the conditions of Lemma 4. Let δ = a2c − 1. For c
sufficiently large, δ > 0. Moreover, δ depends only on c and a2 (which itself depends
only on k). By Lemma 4, the probability that x is good is 1 − exp(−a2cd(x) ln n) =
1 − n−(δ+1)d(x).

For any d < (1/2 + ε)n, denote by Ed the event (over the probability space of
random planted formulas) that there is at least one solution at distance d from the
planted solution that is not good. We can estimate Pr(Ed) as
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Pr(Ed) ≤ Pr

⎛
⎝ ⋃

x :d(x)=d

n−(δ+1)d(x)

⎞
⎠ ≤

∑
x :d(x)=d

n−(δ+1)d(x) ≤ n−δd .

We conclude that every solution within distance (1/2 + ε)n is good with probability
at least

1 − Pr

⎛
⎝(1/2+ε)n⋃

d=1

Ed
⎞
⎠ ≥ 1 −

(1/2+ε)n∑
d=1

n−δd = 1 − O(n−δ).

Thus, a random planted formula with m/n ≥ c ln n and c sufficiently large has the
property that every solution within distance (1/2+ ε)n is good with probability poly-
nomially close to one.

From Lemma 4 we also deduce the following weaker, but global fitness-distance
correlation result.

Lemma 6 Let F ∼ Pn,m,k and f := fF . Assume that F satisfies Property A of the
weak FDC. Then for all x ∈ {0, 1}n with d(x) < (1/2 + ε)n, we have

a0
d(x)m

n
≥ m − f (x) ≥ a1

d(x)m

n
.

Proof We proceed by induction over d(x). For d(x) = 0, we have f (x) = m and the
claim is fulfilled. Assume that for some d ′ < (1/2 + ε)n − 1 the claim is fulfilled
for all y ∈ {0, 1}n having d(y) = d ′. Let x ∈ {0, 1}n with d(x) = d ′ + 1. By the
assumption of this lemma, we have

d(x) f (x) ≤
∑

y:(x,y)∈H
f (y) − a1

d(x)m

n
.

By induction, we have

d(x) f (x) ≤ d(x)

(
m − a1

d ′m
n

)
− a1

d(x)m

n
= d(x)

(
m − a1

(d ′ + 1)m

n

)
,

which implies the right-hand side of the claim. The left-hand side follows in a similar
manner. ��

In the proof of the following theorem, we use Lemma 4 a second time, namely to
give lower bounds on the expected fitness gain in one iteration.

Theorem 3 Let m/n > c ln n for a sufficiently large positive constant c. Let F ∼
Pn,m,k and f = fF . Then with probability 1 − O(n−δ), for a postive constant δ

depending only on c and k, the runtime of the (1 + 1) EA optimizing f is O(n log n).
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Proof By Lemma 5, we can assume that F satisfies the weak FDC. This implies that
we have the assertion of Lemma 6.

As in the proof of Theorem 2, we consider the drift of the stochastic process {Xt :
t ∈ N0}, where Xt = m− f (x (t)). Assume at iteration t that 0 < d(x (t)) < (1/2+ε)n.
Unlike in the proof of Theorem 2, we now need Lemma 4 to show a multiplicative
drift. Conditional on x (t), we compute

E(Xt − Xt+1) ≥
∑

y:(x (t),y)∈H
Pr(x (t+1) = y)max

{
0, f (y) − f (x (t))

}

≥ 1

en

∑
y:(x (t),y)∈H

( f (y) − f (x (t)))

≥ 1

en
a1

d(x (t))m

n

≥ 1

en

a1
a0

Xt ,

the latter by Lemma 6.
With probability 1−exp(−Θ(n)), the random initial search point satisfies d(x (0)) ≥

n/2+εn/2. By Property B of the weak FDC and the elitism of the (1+1) EA, we have
d(x (t)) < n/2+εn for all t . Consequently, we can assume that the abovemultiplicative
drift is satisfied for all times t . From Theorem 1, we derive the claim. ��

3.3 Extension to the Uniform Filtered Distribution

In an unpublishedmanuscript, Ben-Sasson et al. [6] proved that for at least logarithmic
densities and k = 3, the uniformplanted distributionPn,m,3 becomes statistically close
to the uniform filtered distribution USAT

n,m,3. In this section, we show this remains true
for any constant k. This allows us to apply our runtime bounds that hold with high
probability on dense planted instances to the uniform filtered k-CNF distribution. To
ease the notationwhenworkingwith different distributions, let uswrite Pr(E | F ∼ D)

to denote the probability that the event E holds for a formula F chosen randomly with
distribution D.

We beginwith the following technical lemma,which yields a straightforward exten-
sion of the results of [6] to higher arity clauses. Denote by X (F) the random variable
over Ωn,m,k that counts the number of satisfying assignments to F .

Lemma 7 If m/n > 2(2k − 1) ln n, the following three properties hold.

1. Pr
(
X (F) = 1 | F ∼ Pn,m,k

) = 1 − o(1).

2. Pr
(
X (F) = 1 | F ∼ USAT

n,m,k

)
= 1 − o(1).

3. For all f ∈ Ωn,m,k such that X ( f ) = 1,

Pr
(
F = f | F ∼ Pn,m,k

) = Pr
(
F = f | F ∼ USAT

n,m,k

)
.
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Proof To prove property 1, consider a planted formula F with planted solution x� =
(1, 1, . . . , 1) (w.l.o.g.). Let Aδ denote the event that an arbitrary assignment x ′ with
d(x ′) = δ satisfies a k-clause that is selected uniformly at random from the set of all
clauses satisfied by x�.

For simplicity, we assume without loss of generality that x ′ and x� agree on the
first n − δ positions, that is,

x ′ =
⎛
⎝1, 1, . . . , 1︸ ︷︷ ︸

n−δ

, 0, 0, . . . , 0︸ ︷︷ ︸
δ

⎞
⎠ .

Let C be drawn uniformly at random from all clauses satisfying x�. There are two
events that can occur for C to be satisfied by x ′. The first event is that all k variables
of C are chosen from the first n − δ variables. In this case, C must be satsified by x ′
since it is also satisfied by x�. The second event is that not all k variables of C are
chosen from the first n − δ, but the signs of the literals are set correctly so that C is

still satisfied by x ′. The first event happens with probability
(n−δ

k

)/(n
k

)
. In the second

event, the probability that not all variables of C are chosen from the first n − δ is

1− (n−δ
k

)/(n
k

)
. Given the chosen variables, the probability thatC is not satisfied by x ′

is 1/(2k − 1) since there are exactly 2k − 1 possible ways to set the literals to ensure
C is still satisfied by x�, and each clause is made false by exactly one setting of its k
variables. Thus,

Pr(Aδ) =
(n−δ

k

)
(n
k

) + 2k − 2

2k − 1

(
1 −
(n−δ

k

)
(n
k

)
)

≤ 2k − 2

2k − 1
+ 1

2k − 1

(
n − δ

n

)
= 1 − δ

(2k − 1)n
.

By the union bound, the probability that there are more satisfying assignments than
x� is at most

Pr
(
X (F) > 1 | F ∼ Pn,m,k

) ≤
n∑

δ=1

(
n

δ

)
Pr(Aδ)

m

≤
n∑

δ=1

(
n

δ

)(
1 − δ

(2k − 1)n

)2(2k−1)n ln n

≤
n∑

δ=1

nδe−2δ ln n =
n∑

δ=1

e−δ ln n = o(1).

The proof of property 2 is identical to the proof of Lemma 3.3 in [6], but we
derive it again here in our own notation for completeness. We first define the fol-
lowing sets. For i ∈ [2n], let S(i)

n,m,k = {F : F ∈ Ωn,m,k and X (F) = i}
and Sn,m,k = ⋃2n

i=1 S
(i)
n,m,k . When sampling a formula from Pn,m,k , the planted

assignment x� is sampled first uniformly at random from all 2n assignments. Let
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s := ∣∣{F ∈ Sn,m,k : F is satisfied by x�}∣∣. By a simple symmetry argument, for an
arbitrary y ∈ {0, 1}n , ∣∣{F ∈ Sn,m,k : F is satisfied by y}∣∣ = s.

Suppose there exists a formula F ∈ Ωn,m,k with X (F) = i . This F is generated
by the planted model if (1) one of the i assignments that satisfies F is selected as the
planted assignment x�, and (2) F is then selected from the set of formulas satisfied by
x�. By definition, the planted model selects a formula uniformly from the formulas
that satisfy the planted assignment so (1) occurs with probability i/2n and (2) occurs
with probability 1/s. We thus have

Pr
(
X (F) = i | F ∼ Pn,m,k

) =
i
∣∣∣S(i)

n,m,k

∣∣∣
2ns

≤
i
∣∣∣S(i)

n,m,k

∣∣∣∣∣Sn,m,k
∣∣ , (6)

because |Sn,m,k | ≤ 2ns. Since the uniform filtered distribution chooses uniformly
from every satisfiable formula,

Pr
(
X (F) = 1 | F ∼ USAT

n,m,k

)
=
∣∣∣S(1)

n,m,k

∣∣∣
|Sn,m,k |

≥ Pr
(
X (F) = 1 | F ∼ Pn,m,k

) = 1 − o(1)

by Eq. (6) and Property 1.
Finally, observing that both distributions give equal weight among all satisfying

assignments with unique solutions yields property 3. ��
Theorem 4 Let E be an event defined for a formula F. If m/n > c log n for a partic-
ular constant c > 0, then

Pr
(
E | F ∼ USAT

n,m,k

)
= Pr

(E | F ∼ Pn,m,k
)± o(1).

Proof For notational simplicity define the event A := {X (F) = 1} and the distrib-

utions P(·) := Pr
(· | F ∼ Pn,m,k

)
and Q(·) := Pr

(
· | F ∼ USAT

n,m,k

)
. By the law of

total probability,

Q(E) = Q(E | A)Q(A) + Q(E | A)Q(A), and

P(E) = P(E | A)P(A) + P(E | A)P(A).

By property 3 of Lemma 7, P(F |A) = Q(F |A) so

Q(E) = (P(E) − P(E | A)P(A)
) Q(A)

P(A)
+ Q(E | A)Q(A)

= (P(E) − o(1))
1 − o(1)

1 − o(1)
+ o(1),

by properties 1 and 2, which completes the proof. ��
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We conclude the typical runtime of the (1 + 1) EA very rarely deviates above
O(n log n) for all satisfiable formulas of sufficiently high density, except for a set of
measure vanishing with n.

Corollary 1 Let m/n > c ln n for a sufficiently large positive constant c. The runtime
of the (1+1) EA is bounded by O(n log n)with probability 1−o(1) on asymptotically
almost all satisfiable k-CNF formulas on n variables and m clauses.

We may also use these results to derive a simple lower bound on the runtime of the
(1 + 1) EA.

Theorem 5 On asymptotically almost all satisfiable k-CNF formulas of density
m/n > c ln n, c a sufficiently large constant, the runtime of the (1+1) EA isΩ(n log n)

with high probability.

Proof By Lemma 7, setting c := 2(2k − 1), for densities above c ln n, asymptotically
almost all formulas have a unique satisfying assignment. For the remainder of the
proof, assume that F is satisfied by a unique x� ∈ {0, 1}n , that is, the corresponding
fitness function fF has a unique optimum x�. Let t = γ (n − 1) ln(n) with γ < 1
a constant. The probability that the initial individual and the t individuals generated
in the first t iterations all have the i th bit different from x�

i , is (1/2)(1 − 1/n)t ≥
(1/2)e−γ ln(n) = n−γ /2. Note that this event implies that the (1 + 1) EA has not
found the optimum within the first t iterations. Since the (1 + 1) EA, apart from the
selection step, treats the bits independently, the probability that none of these n bad
events happens, is at most (1 − n−γ /2)n ≤ exp(−n1−γ /2) = o(1).

The proof above mostly builds on the well-known fact that the (1+1) E A needs
Ω(n log n) iterations to optimize a functionwith unique global optimum.However, we
have not found such a simple proof for a high-probability statement in the literature.
For the expectation, this was shown already in Droste et al. [18] (for linear functions
with positive weights, but it is clear that the proof extends to arbitrary functions with
unique optimum).

4 Low-Density Regime

On the uniform k-CNF distribution, formulas that appear to be difficult for complete
search algorithms lie near the critical threshold rk . For example 3-CNF formulas are
empirically harder for DPLL near r3 ≈ 4.26 [31]. However, at very low densities,
random formulas become easy to solve again on average, even by very simple linear-
time backtracking-free heuristics such as the unit clause heuristic, which succeedswith
asymptotically positive probability at all densities m/n < (1 − εk)(e/2)2k/k where
εk tends to zero for large k [30]. A slight generalization of the unit clause heuristic
(called the small clause heuristic) succeeds with high probability for densities up
to m/n < (1 − εk)(e2/8)2k/k and can even be improved to (1.817 − εk)2k/k if
limited backtracking is allowed [21]. The pure literal heuristic again succeeds with
high probability if m/n is below some constant ck , however, with ck = O(log k)
only [32,33]. For k = 3, for example, we have ck ≈ 1.637.
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In the context of randomized search heuristics, Alekhnovich and Ben-Sasson [3]
discovered a deep connection between a randomized local search algorithm (known as
RWalkSAT that iteratively flips a single randomly chosen variable in a random unsat-
isfied clause) and the pure literal heuristic. They proved that such a constraint-directed
random walk finds a satisfying assignment on uniform random 3-CNF formulas with
high probability in linear time for constraint densities at most 1.637. More recently,
Coja-Oghlan and Frieze proved that this approach works for all k > k0 (where k0 > 3
is a constant) when the density is below (1/25)2k/k [9]. We should point out, though,
that this randomized search heuristic is quite different from typical evolutionary algo-
rithms. In particular, RWalkSAT is completely ignorant of the fitness (except that is
stops when a satisfying assignment is found).

In the interest of a more complete picture, we would also like to understand the
behavior of the (1 + 1) EA at very sparse densities. While it may be easy to believe
that such instances are easy for the (1 + 1) EA, we can support this potential belief
only weakly via our experimental results in Sect. 5. The fact that all known efficient
heuristics of such instances ignore the fitness may even shed some doubt. In this
section, we show that if the density is O(k−2), then the structure of the constraints is so
sparse that the formula breaks up into logarithmic-size components that the (1+1) EA
can solve separately. However, even from this we can only derive a subexponential,
but not a polynomial time bound.

Lemma 8 Let H = Hk(n,m) denote a random k-uniform hypergraph with n vertices
and exactly m hyperedges selected uniformly at random with replacement from the
family of all

(n
k

)
possible k-sets.

Let α = km/n denote the average degree of H. If α < (k − 1)−1, then with
high probability, the number of vertices in the largest connected component of H is
O(log n).

Proof Let H be the random hypergraph obtained from m times selecting a k-set
chosen independently and uniformly at random (that is, with replacement). Let H0
be the hypergraph obtained from deleting multiple hyperedges. Note that H and H0
have the same connected components. Let H1 be the hypergraph obtained from H0 by
repeatedly adding random hyperedges not yet present until the number of hyperedges
is exactly m. By construction, every connected component of H0 (and thus of H ) is
contained in a connected component of H1. In particular, the largest component of H is
not larger than the largest component of H1. Finally, due to a result of Schmidt-Pruzan
and Shamir [38], the largest component of H1 has size O(log n)with high probability.

��

The constraint hypergraph of a formula is a hypergraph H = (X, E) where X
corresponds to the set of variables in F and E is a sequence of m nonempty subsets
of X constructed as follows. Each clause C of F corresponds to a unique S ∈ E
that contains exactly the variables that appear as literals in C . Thus, every k-CNF
formula on n variables with m clauses has a unique k-uniform constraint hypergraph
with m hyperedges (parallel hyperedges are allowed). It is easy to see that at very low
constant densities, the constraint structure of Boolean formulas breaks up into small
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Fig. 1 Median runtime of the (1 + 1) EA divided by n ln n as a function of n on formulas sampled from
the Pn,m,k model where k ∈ {3, 4, 5}, m = n2 (constraint density is Θ(n)). The error bars denote the
interquartile range. The statistics are taken from 100 runs each on 100 random formulas generated for each
value of n

components that the (1+1) EA can solve separately. This is captured by the following
theorem.

Theorem 6 Let F be a k-CNF formula drawn fromUn,m,k with densitym/n < 1
k(k−1) .

Then with high probability, the (1 + 1) EA finds a satisfying assignment for F in
subexponential time.

Proof We consider the average degree α of the constraint hypergraph H of F . Since
F is sampled uniformly at random from Ωn,m,k , its constraint hypergraph is a random
k-uniform hypergraph with n vertices andm edges sampled uniformly at random with
replacement since each of the 2k distinct clauses associated with each unique k-set is
also selected uniformly at random. Since α = km/n < 1/(k − 1), by Lemma 8, with
high probability the largest connected component in H contains O(log n) vertices.

In this case, let q be the number of connected components in H . We partition the
clause set into S1, S2, . . . , Sq such that Si is the set of clauses that contain only variables
from the i-th connected component of H (in some arbitrary order). The fitness function
f can be expressed as f (x) =∑q

i=1 fi (x) where fi (x) counts the number of clauses
in Si that are satisfied by x . Since each fi depends on at most O(log n) bits of x , f is
decomposable into linearly separable subfunctions of bounded size.
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Fig. 2 Median runtime of the (1 + 1) EA divided by n ln n as a function of n on formulas sampled from
the Pn,m,k model where k ∈ {3, 4, 5}, m = 2(2k − 1)n ln n (constraint density is Θ(log n)). The error
bars denote the interquartile range. The statistics are taken from 100 runs each on 100 random formulas
generated for each value of n

The proof is then completed by a simple fitness level argument [43]. In particular,
let (A0, . . . , Am) be a partition of {0, 1}n such that for all x ∈ A j , f (x) = j . Let t be
an arbitrary iteration in the execution of the (1+ 1) EA and set � := f (x (t)). As long
as there is an unsolved subfunction fi with respect to the assignment corresponding
to x (t), the (1 + 1) EA can generate a strictly improving offspring by solving fi and
flipping no other bit outside of Si . The resulting offspring must lie in some A�′ with
�′ > �. The probability of this event is at least (1 − 1/n)n−|Si |(1/n)|Si | ≥ n−|Si |/e,
and the waiting time to increase the fitness level by at least one is bounded by en|Si |.
Since there are at most m = O(n) suboptimal fitness levels, the expected time until
F is solved is bounded by nO(log n) = 2o(n). ��

Note that if we only aim at a statement on the expectation, then most of the last
paragraph of the proof could have been simply replaced by applying a general result
on optimization times of separable functions (Theorem 12 in [17]).

5 Experiments

In this section we report numerical experiments that investigate the constants in the
asymptotic bounds proved in this paper, and explore the runtime character of the
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Fig. 3 Runtime statistics for the (1 + 1) EA on the Pn,m,3 model controlling m for constraint density.
The statistics are taken from 100 runs each on 100 random formulas generated for each value of m/n. The
marked lines denote the median runtime. The error bars denote the interquartile range

(1 + 1) EA at lower densities. In Fig. 1 we investigate the runtime divided by n ln n
as a function of n = 300, 310, . . . , 1000 for the Pn,m,k model with k ∈ {3, 4, 5} and
m/n = n. For each value of n and k we generate 100 random k-CNF formulas, and
for each such random formula we conduct 100 runs of the (1+ 1) EA, measuring the
first iteration in which it finds a satisfying assignment. Thus, for each value of n and k
we have a total of 10000 measurements. We then calculate the quartiles of the number
of iterations to solve each formula as a robust statistic for the runtime as a function
of n. For each value of k ∈ {3, 4, 5}, the plotted value appears to converge to some
constant c ≤ e. Note that c might depend on k, but we cannot draw such a conclusion
from these experiments, as there exists a significant overlap in the interquartile ranges.
Most importantly, the plot provides empirical evidence that the runtime bound proved
in this paper is tight, and suggests that the true runtime on the linear-density Pn,m,k

model is concentrated around cn ln n ± O(n).
We repeat this experiment for asymptotically lower densities and plot the results in

Fig. 2. In this case,we setm/n = 2(2k−1) ln n for each randomformula corresponding
to the statement of Theorem 3. The value of the leading constant is taken from the
proof of Theorem 5. The behavior that can be observed in Fig. 2 is very similar to the
linear density case. Specifically, for some a constant c ≤ e (again, that may depend on
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Fig. 4 Percentage of runs (out of 10,000) for the (1+1) EA on thePn,m,3 model requiring≥ 107 iterations
at each density value

k), the true runtime on log-density instances from Pn,m,k appears to be concentrated
around cn ln n ± O(n).

5.1 Phase Transition Behavior

In order to gain a more precise understanding of the behavior of the (1 + 1) EA on
random planted k-CNF formulas across the density spectrum, we report numerical
experiments that measure the time until a satisfying assignment is found at different
densities for some distinct values of n.

We focus on the case k = 3. On the Pn,m,3 model, for three distinct values of n,
i.e., n ∈ {100, 300, 1000}, we generate formulas using 100 equidistant values of m
such that the constraint density ranges from 1 to 10. For each distinct density value,
we generate 100 formulas from the random Pn,m,3 model and run the (1+ 1) EA 100
times on each formula. Runs that do not complete in at most 107 iterations are halted
and removed from consideration. Of the runs that do not fail, the median runtime as
a function of constraint density for these trials is plotted in Fig. 3. We also plot the
percentage of runs that failed as a function of constraint density in Fig. 4.

In these results, we also observe the classical easy-hard-easy pattern similar to the
one that occurs for complete DPLL solvers on the uniform random model [11,31].
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Remarkably, our experiments suggest that there is also a critical density in the planted
model Pn,m,3 for the (1 + 1) EA at which formulas are on average more difficult to
optimize. We also observe that the hardness peak for the (1 + 1) EA occurs close to
density values of m/n ≈ 4.26, which is the critical density for DPLL solvers on the
uniform model Un,m,3. This corresponds to the conjectured satisfiability threshold r3
for random unfiltered, unplanted formulas.

Below the hardness peak, the (1 + 1) EA appears to find a satisfying assignment
quickly. Theorem 6 guarantees only subexponential time (and only for densities below
1/6 on Un,m,3) and it remains an open theoretical question whether or not polynomial
time is possible again for low densities. As density increases beyond the critical point,
the empirical running time in Fig. 3 appears to converge again toward en ln n for
each n value. Theorem 3 establishes an asymptotic bound on the density at which
most formulas become easy again. An interesting open problem is the location of the
critical density below which formulas become difficult on average for the (1+ 1) EA.

6 Conclusions

We have presented a time complexity analysis of the (1 + 1) EA for randomly con-
structed k-CNF formulas. Investigating the fitness distance correlation for high density
formulas, we have shown an improved bound of O(n log n) on the (1 + 1) EA. In
extension to the investigations in [41], the O(n log n) bound holds for formulas of
logarithmic density with probability 1 − o(1), and for k-CNF formulas where the
only restriction on k is that it is constant. Our complementary experimental investi-
gations imply the leading constants in our asymptotic bounds are low, and extend the
investigations to other density ratios.
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