
The Univariate Marginal Distribution Algorithm
Copes Well With Deception and Epistasis

Benjamin Doerr1 and Martin S. Krejca2

1 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institute Polytechnique de Paris, Palaiseau, France

lastname@lix.polytechnique.fr
2 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

martin.krejca@hpi.de

Abstract In their recent work, Lehre and Nguyen (FOGA 2019) show
that the univariate marginal distribution algorithm (UMDA) needs time
exponential in the parent populations size to optimize the Deceiving-
LeadingBlocks (DLB) problem. They conclude from this result that
univariate EDAs have difficulties with deception and epistasis.
In this work, we show that this negative finding is caused by an unfortu-
nate choice of the parameters of the UMDA. When the population sizes
are chosen large enough to prevent genetic drift, then the UMDA opti-
mizes the DLB problem with high probability with at most λ(n2 + 2e lnn)
fitness evaluations. Since an offspring population size λ of order n logn
can prevent genetic drift, the UMDA can solve the DLB problem with
O(n2 logn) fitness evaluations. In contrast, for classic evolutionary al-
gorithms no better run time guarantee than O(n3) is known, so our
result rather suggests that the UMDA can cope well with deception and
epistatis.
Together with the result of Lehre and Nguyen, our result for the first
time rigorously proves that running EDAs in the regime with genetic
drift can lead to drastic performance losses.

Keywords: Estimation-of-distribution algorithm · Univariate marginal
distribution algorithm · Run time analysis · Epistasis · Theory

1 Introduction

Estimation-of-distribution algorithms (EDAs) are randomized search heuristics
that evolve a probabilistic model of the search space in an iterative manner.
Starting with the uniform distribution, an EDA takes samples from its current
model and then adjusts it such that better solutions have a higher probability
of being generated in the next iteration. This method of refinement leads to
gradually better solutions and performs well on many practical problems, often
outperforming competing approaches [21].

Theoretical analyses of EDAs also often suggest an advantage of EDAs when
compared to evolutionary algorithms (EAs); for an in-depth survey of run time
results for EDAs, please refer to the article by Krejca and Witt [16]. With respect

2 B. Doerr and M. S. Krejca

to simple unimodal functions, EDAs seem to be comparable to EAs. For example,
Sudholt and Witt [22] proved that the two EDAs cGA and 2-MMASib have
an expected run time of Θ(n logn) on the standard theory benchmark function
OneMax (assuming optimal parameter settings; n being the problem size),
which is a run time that many EAs share. The same is true for the EDA UMDA,
as shown by the results of Krejca and Witt [15], Lehre and Nguyen [17], and
Witt [24]. For the benchmark function LeadingOnes, Dang and Lehre [4] proved
an expected run time of O(n2) for the UMDA when setting the parameters
right, which is, again, a common run time bound for EAs on this function. One
result suggesting that EDAs can outperform EAs on unimodal function was
given by Doerr and Krejca [9]. They proposed an EDA called sig-cGA, which
has an expected run time of O(n logn) on both OneMax and LeadingOnes –
a performance not known for any classic EA or EDA.

For the class of all linear functions, the EDAs perform slightly worse than
EAs. The classical (1 + 1) evolutionary algorithm optimizes all linear functions
in time O(n logn) in expectation [12]. In contrast, the conjecture of Droste [11]
that the cGA does not perform equally well on all linear functions was recently
proven by Witt [23], who showed that the cGA has an Ω(n2) expected run time
on the binary value function. We note that the binary value function was found
harder also for classical EAs. While the (1 + λ) evolutionary algorithm optimizes
OneMax with Θ(nλ log log λ/ log λ) fitness evaluations, it takes Θ(nλ) fitness
evaluations for the binary value functions [8].

For the bimodal Jumpk benchmark function, which has a local optimum
with a Hamming distance of k away from the global optimum, EDAs seem to
drastically outperform EAs. Hasenöhrl and Sutton [13] recently proved that the
cGA only has a run time of exp

(
O(k + logn)

)
. In contrast, common EAs have a

run time of Θ(nk) [12] (mutation-only) or Θ(nk−1) [3] (mutation and crossover),
and only get to O(n logn + kn + 4k) by using crossover in combination with
diversity mechanisms like Island models [2]. Doerr [6] proved that the cGA even
has an expected run time of O(n logn) on Jumpk if k < 1

20 lnn, meaning that
the cGA is unfazed by the gap of k separating the local from the global optimum.

Another result in favor of EDAs was given by Chen et al. [1], who introduced
the Substring function and proved that the UMDA optimizes it in polynomial
time, whereas the (1 + 1) evolutionary algorithm has an exponential run time,
both with high probability. In the Substring function, only substrings of length
αn, for α ∈ (0, 1), of the global optimum are relevant to the fitness of a solution,
and these subtrings provide a gradient to the optimum. In the process, the (1 + 1)
evolutionary algorithm loses bits that are not relevant anymore for following the
gradient (but relevant for the optimum). The UMDA fixes its model for correct
positions while it is following the gradient and thus does not lose these bits.

The first, and so far only, result to suggest that EDAs can be drastically worse
than EAs was recently stated by Lehre and Nguyen [18] via the DeceivingLea-
dingBlocks function (DLB for short), which they introduce and which consists
of blocks of size 2, each with a deceiving function value, that need to be solved
sequentially. The authors prove that many common EAs optimize DLB within

The UMDA Copes Well With Deception and Epistasis 3

O(n3) fitness evaluations in expectation, whereas the UMDA has a run time of
eΩ(µ) (where µ is an algorithm-specific parameter that often is chosen as a small
power of n) for a large regime of parameters. Only for extreme parameter values,
the authors prove an expected run time of O(n3) also for the UMDA.

In this paper, we prove that the UMDA is, in fact, able to optimize DLB in
time O(n2 logn) with high probability if its parameters are chosen more carefully
(Theorem 5). Note that our result is better than any of the run times proven
in the paper by Lehre and Nguyen [18]. We achieve this run time by choosing
the parameters of the UMDA such that its model is unlikely to degenerate
during the run time (Lemma 6). Here by degenerate we mean that the sampling
frequencies approach the boundary values 0 and 1 without that this is justified
by the objective function. This leads to a probabilistic model that is strongly
concentrated around a single search point. This effect is often called genetic
drift [22]. While it appears natural to choose the parameters of an EDA as to
prevent genetic drift, it also has been proven that genetic drift can lead to a
complicated run time landscape and inferior performance (see Lengler et al. for
the cGA [19]).

In contrast to our setting, for their exponential lower bound, Lehre and
Nguyen [18] use parameters that lead to genetic drift. Once the probabilistic
model it is sufficiently degenerated, the progress of the UMDA is so slow that even
to leave the local optima of DLB (that have a better search point in Hamming
distance two only), the EDA takes time exponential in µ.

Since the UMDA shows a good performance in the (more natural) regime
without genetic drift and was shown inferior only in the regime with genetic drift,
we disagree with the statement of Lehre and Nguyen [18] that there are “inherent
limitations of univariate EDAs against deception and epistasis”.

In addition to the improved run time, we derive our result using only tools
commonly used in the analysis of EDAs and EAs, whereas the proof of the poly-
nomial run time of O(n3) for the UMDA with uncommon parameter settings [18]
uses the level-based population method, which is an advanced tool that can be
hard to use. We are thus optimistic that our analysis method can be useful also
in other run time analyses of EDAs.

Last, we complement our theoretical result with an empirical comparison
of the UMDA to two other evolutionary algorithms. The outcome of these
experiments suggests that the UMDA outperforms the competing approaches
while also having a smaller variance.

The remainder of this paper is structured as follows: in Section 2, we introduce
our notation, formally define DLB and the UMDA, and we state the tools we use
in our analysis. Section 3 contains our main result (Theorem 5) and discusses its
proof informally before stating the different lemmas used to prove it. In Section 4,
we discuss our empirical results. Last, we conclude this paper in Section 5.

4 B. Doerr and M. S. Krejca

2 Preliminaries

We are concerned with the run time analysis of algorithms optimizing pseudo-
Boolean functions, that is, functions f : {0, 1}n → R, where n ∈ N denotes the
dimension of the problem. Given a pseudo-Boolean function f and a bit string x,
we refer to f as a fitness function, to x as an individual, and to f(x) as the fitness
of x.

For n1, n2 ∈ N := {0, 1, 2, . . .}, we define [n1..n2] = [n1, n2] ∩ N, and for
an n ∈ N, we define [n] = [1..n]. From now on, if not stated otherwise, the
variable n always denotes the problem size. For a vector x of length n, we denote
its component at index i ∈ [n] by xi and, for and index set I ⊆ [n], we denote
the subvector of length |I| consisting only of the components at indices in I by
xI . Further, let |x|1 denote the number of 1s of x and |x|0 its number of 0s.

DeceivingLeadingBlocks. The pseudo-Boolean function DeceivingLeading-
Blocks (abbreviated as DLB) was introduced by Lehre and Nguyen [18] as a
deceptive version of the well known benchmark function LeadingOnes. In DLB,
an individual x of length n is divided into blocks of equal size 2. Each block
consists of a trap, where the fitness of each block is determined by the number
of 0s (minus 1), except that a block of all 1s has the best fitness of 2. The overall
fitness of x is then determined by the longest prefix of blocks with fitness 2 plus
the fitness of the following block. Note that in order for the chunking of DLB to
make sense, it needs to hold that 2 divides n. In the following, we always assume
this implicitly.

We now provide a formal definition of DLB. To this end, we first introduce
the function DeceivingBlock : {0, 1}2 → [0..2] (abbreviated as DB), which
determines the fitness of a block (of size 2). For all x ∈ {0, 1}2, we have

DB(x) =
{

2 if |x|1 = 2,
|x|0 − 1 else.

Further, we define the function Prefix : {0, 1}n → [0..n], which determines the
longest prefix of x with blocks of fitness 2. For a logic formula P , let [P] be 1
if P is true and 0 otherwise. We define, for all x ∈ {0, 1}n,

Prefix(x) =
n/2∑
i=1

[
∀j ≤ i : DB(x{2i−1,2i}) = 2

]
.

DLB is now defined as follows for all x ∈ {0, 1}n:

DLB(x) =
{
n if Prefix(x) = n,∑Prefix(x)+1
i=1 DB(x{2i−1,2i}) else.

The UMDA Copes Well With Deception and Epistasis 5

The univariate marginal distribution algorithm. Our algorithm of interest
is the UMDA ([20]; Algorithm 1) with parameters µ, λ ∈ N+, µ ≤ λ. It maintains
a vector p (frequency vector) of probabilities (frequencies) of length n as its
probabilistic model. This vector is used to sample an individual x ∈ {0, 1}n,
which we denote as x ∼ sample(p), such that, for all y ∈ {0, 1}n,

Pr[x = y] =
n∏
i=1:
yi=1

pi

n∏
i=1:
yi=0

(1− pi).

The UMDA updates this vector iteratively in the following way: first, λ individuals
are sampled. Then, among these λ individuals, a subset of µ with the highest
fitness is chosen (breaking ties uniformly at random), and, for each index i ∈ [n],
the frequency pi is set to the relative number of 1s at position i among the µ
best individuals. Last, if a frequency pi is below 1

n , it is increased to 1
n , and,

analogously, frequencies above 1− 1
n are set to 1− 1

n . Capping into the interval
[1
n , 1−

1
n] circumvents frequencies from being stuck at the extremal values 0 or 1.

Last, we denote the frequency vector of iteration t ∈ N with p(t).

Algorithm 1: The UMDA [20] with parameters µ and λ, µ ≤ λ,
maximizing a fitness function f : {0, 1}n → R with n ≥ 2

1 t← 0;
2 p(t) ← (1

2)i∈[n];
3 repeat B iteration t

4 for i ∈ [λ] do x(i) ∼ sample
(
p(t));

5 let y(1), . . . , y(µ) denote the µ best individuals out of x(1), . . . , x(λ)

(breaking ties uniformly at random);
6 for i ∈ [n] do p

(t+1)
i ← 1

µ

∑µ

j=1 y
(j)
i ;

7 restrict p(t+1) to the interval [1
n
, 1− 1

n
];

8 t← t+ 1;
9 until termination criterion met;

Run time analysis. When analyzing the run time of the UMDA optimizing
a fitness function f , we are interested in the number T of fitness function
evaluations until an optimum of f is sampled for the first time. Since the UMDA
is a randomized algorithm, this run time T is a random variable. Note that the
run time of the UMDA is at most λ times the number of iterations until an
optimum is sampled for the first time, and it is at least (λ− 1) times this number.

In the area of run time analysis of randomized search heuristics, it is common
to give bounds for the expected value of the run time of the algorithm under
investigation. This is uncritical when the run time is concentrated around its
expectation, as often observed for classical evolutionary algorithms. For EDAs, it

6 B. Doerr and M. S. Krejca

has been argued, among others in [6], that it is preferable to give bounds that
hold with high probability. This is what we shall aim at in this work as well.
Of course, it would be even better to give estimates in a distributional sense,
as argued for in [5], but this appears to be difficult for EDAs, among others,
because of the very different behavior in the regimes with and without strong
genetic drift.

Probabilistic tools. We use the following results in our analysis.
In order to prove statements on random variables that hold with high proba-

bility, we use the following commonly known Chernoff bound.

Theorem 1 (Chernoff bound [7, Theorem 10.5], [14]). Let k ∈ N, δ ∈
[0, 1], and let X be the sum of k independent random variables, each taking values
in [0, 1]. Then

Pr
[
X ≤ (1− δ)E[X]

]
≤ exp

(
−δ

2E[X]
2

)
.

The next lemma tells us that, for a random X following a binomial law, the
probability of exceeding E[X] is bounded from above by roughly the term with
the highest probability.

Lemma 2 ([7, Eq. (10.62)]). Let k ∈ N, p ∈ [0, 1], X ∼ Bin(k, p), and let
m ∈

[
E[X] + 1..k

]
. Then

Pr[X ≥ m] ≤ m(1− p)
m− E[X] · Pr[X = m].

We use Lemma 2 for the converse case, that is, in order to bound the
probability that a binomially distributed random variable is smaller than its
expected value.

Corollary 3. Let k ∈ N, p ∈ [0, 1], X ∼ Bin(k, p), and let m ∈
[
0..E[X] − 1

]
.

Then

Pr[X ≤ m] ≤ (k −m)p
E[X]−m · Pr[X = m].

Proof. Let X := k −X, and let m := k −m. Note that X ∼ Bin(k, 1− p) with
E[X] = k − E[X] and that m ∈

[
E[X] + 1..k

]
. With Lemma 2, we compute

Pr[X ≤ m] = Pr[X ≥ m] ≤ mp

m− E[X]
· Pr[X = m] = (k −m)p

E[X]−m · Pr[X = m],

which proves the claim. ut

The UMDA Copes Well With Deception and Epistasis 7

Last, the following theorem deals with a neutral bit in a fitness function f ,
that is, a position i ∈ [n] such that bit values at i do not contribute to the fitness
value at all. The theorem (from [10], extending a similar result [25, Theorem 4.5])
states that if the UMDA optimizes such an f , then the frequency at position i
stays close to its initial value 1

2 for Ω(µ) iterations. We go more into detail about
how this relates to DLB at the beginning of Section 3.

Theorem 4 ([10, Corollary 2]). Consider the UMDA optimizing a fitness
function f with a neutral bit i ∈ [n]. Then, for all d > 0 and all t ∈ N, we have

Pr
[
∀t′ ∈ [0..t] : |p(t′)

i − 1
2 | < d

]
≥ 1− 2 exp

(
−d

2µ

2t

)
.

3 Run Time Analysis

In the following, we prove that the UMDA optimizes DeceivingLeadingBlocks
efficiently, which is the following theorem.

Theorem 5. Let cµ, cλ ∈ (0, 1) be constants chosen sufficiently large or small,
respectively. Consider the UMDA optimizing DeceivingLeadingBlocks with
µ ≥ cµn lnn and µ/λ ≤ cλ. Then the UMDA samples the optimum after λ(n2 +
2e lnn) fitness function evaluations with a probability of at least 1− 9n−1.

Before we present the proof, we sketch its main ideas and introduce important
notation. We show that the frequencies of the UMDA are set to 1− 1

n block-wise
from left to right with high probability. We formalize this concept by defining
that a block i ∈ [n2] is critical (in iteration t) if and only if p(t)

2i−1 + p
(t)
2i < 2− 2

n

and, for each index j ∈ [2i− 2], the frequency p(t+1)
j is at 1− 1

n . Intuitively, a
critical block is the first block whose frequencies are not at their maximum value.
We prove that a critical block is optimized within a single iteration with high
probability if we assume that its frequencies are not below (1− ε)/2, for ε ∈ (0, 1)
being a constant.

In order to assure that the frequencies of each block are at least (1 − ε)/2
until it becomes critical, we show that most of the frequencies right of the critical
block are not impacted by the fitness function. We call such frequencies neutral.
More formally, a frequency pi is neutral in iteration t if and only if the probability
to have a 1 at position i in each of the µ selected individuals equals p(t)

i . Note
that since we assume that µ = Ω(n logn), the impact of the genetic drift on
neutral frequencies is low with high probability (Theorem 4).

We know which frequencies are neutral and which are not by the following
key observation: consider a population of λ individuals of the UMDA during
iteration t; only the first (leftmost) block that has strictly fewer than µ 11s is
relevant for selection, since the fitness of individuals that do not have a 11 in
this block cannot be changed by bits to the right anymore. We call this block
selection-relevant. Note that this is a notion that depends on the random offspring
population in iteration t, whereas the notion critical depends only on p(t).

8 B. Doerr and M. S. Krejca

The consequences of a selection-relevant block are as follows: if block i ∈ [n2]
is selection-relevant, then all frequencies in blocks left of i are set to 1− 1

n , since
there are at least µ individuals with 11s. All blocks right of i have no impact on
the selection process: if an individual has no 11 in block i, its fitness is already
fully determined by all of its bits up to block i by the definition of DLB. If an
individual has a 11 in block i, it is definitely chosen during selection, since there
are fewer than µ such individuals and since its fitness is better than that of all of
the other individuals that do not have a 11 in block i. Thus, its bits at positions
in blocks right of i are irrelevant for selection. Overall, since the bits in blocks
right of i do not matter, the frequencies right of block i get no signal from the
fitness function and are thus neutral (Lemma 6).

Regarding block i itself, all of the individuals with 11s are chosen, since they
have the best fitness. Nonetheless, individuals with a 00, 01, or 10 can also be
chosen, where an individual with a 00 in block i is preferred, as a 00 has the
second best fitness after a 11. Since the fitness for a 10 or 01 is the same, this
does not impact the number of 1s at position i in expectation. However, if more
00s than 11s are sampled for block i, it can happen that the frequencies of block i
are decreased. Since we assume that µ = Ω(n logn), the frequency is sufficiently
high before the update and the frequencies of block i do not decrease by much
with high probability (Lemma 8). Since, in the next iteration, block i is the
critical block, it is then optimized within a single iteration (Lemma 9), and we
do not need to worry about its frequencies decreasing again.

Neutral frequencies. We now prove that the frequencies right of the selection-
relevant block do not decrease by too much within the first n iterations.

Lemma 6. Let ε ∈ (0, 1) be a constant. Consider the UMDA with λ ≥ µ ≥
(16n/ε2) logn optimizing DeceivingLeadingBlocks. Let t ≤ n be the first
iteration such that block i ∈ [n2] becomes selection-relevant for the first time. Then,
with a probability of at least 1− 2n−1, all frequencies at the positions [2i+ 1..n]
are at least (1− ε)/2 within the first t iterations.

Proof. Let j ∈ [2i+ 1..n] denote the index of a frequency right of block i. Note
that by the assumption that t is the first iteration such that block i becomes
selection-relevant it follows that, for all t′ ≤ t, the frequency p(t′)

i is neutral, as
we discussed above.

Since p(t′)
j is neutral for all t′ ≤ t, by Theorem 4 with d = ε

2 , we see that the
probability that pj leaves the interval

(
(1− ε)/2, (1 + ε)/2

)
within the first t ≤ n

iterations is at most 2 exp
(
− ε2µ/(8t)

)
≤ 2 exp

(
− ε2µ/(8n)

)
≤ 2n−2, where we

used our bound on µ.
Applying a union bound over all n− 2i ≤ n neutral frequencies yields that

at least one frequency leaves the interval
(
(1− ε)/2, (1 + ε)/2

)
within the first t

iterations with a probability of at most 2n−1, as desired. ut

Update of the selection-relevant block. As mentioned at the beginning of
the section, while frequencies right of the selection-relevant block do not drop

The UMDA Copes Well With Deception and Epistasis 9

below (1 − ε)/2 with high probability (by Lemma 6), the frequencies of the
selection-relevant block can drop below (1− ε)/2, as the following example shows.

Example 7. Consider the UMDA with µ = 0.05λ ≥ c lnn, for a sufficiently
large constant c, optimizing DLB. Consider an iteration t and assume that
block i = n

2 − 1 − o(n) is critical. Assume that the frequencies in blocks i
and i+ 1 are all at 2/5. Then the offspring population in iteration t has roughly(
(2/5)2/e

)
λ ≈ 0.058λ > µ individuals with at least 2i leading 1s in expectation.

By Theorem 1, this also holds with high probability. Thus, the frequencies in
block i are set to 1− 1

n with high probability.
The expected number of individuals with at least 2i+ 2 leading 1s is roughly(

(2/5)4/e
)
λ ≈ 0.0095λ, and the expected number of individuals with 2i leading 1s

followed by a 00 is roughly
(
(2/5)2 · (3/5)2/e

)
λ ≈ 0.02λ. In total, we expect

approximately 0.0295λ < µ individuals with 2i leading 1s followed by either a 11
or a 00. Again, by Theorem 1, these numbers occur with high probability. Note
that this implies that block i+ 1 is selection-relevant with high probability.

Consider block i+ 1. For selection, we choose all 0.0295λ individuals with 2i
leading 1s followed by either a 11 or a 00 (which are sampled with high probability).
For the remaining µ− 0.0295λ = 0.0205λ selected individuals with 2i leading 1s,
we expect half of them, that is, 0.01025λ individuals to have a 10. Thus, with high
probability, the frequency p(t+1)

2i+1 is set to roughly (0.0095 + 0.01025)λ/µ = 0.395,
which is less than 0.4 = p

(t)
2i+1. Thus, this frequency decreased.

The next lemma shows that such frequencies do not drop too low, however.

Lemma 8. Let ε, δ ∈ (0, 1) be constants, and let c be a sufficiently large constant.
Consider the UMDA with λ ≥ µ ≥ c lnn optimizing DeceivingLeadingBlocks.
Further, consider an iteration t such that block i ∈ [2..n2] is selection-relevant, and
assume that its frequencies p(t)

2i−1 and p(t)
2i are at least (1−ε)/2 when sampling the

population. Then the frequencies p(t+1)
2i−1 and p(t+1)

2i are at least (1− δ)(1− ε)2/4
with a probability of at least 1− 4n−2.

Proof. Let k denote the number of individuals with a prefix of at least 2i − 2
leading 1s. Since block i is selection-relevant, it follows that k ≥ µ. We consider
a random variable X that follows a binomial law with k trials and with a success
probability of p(t)

2i−1p
(t)
2i =: p̃ ≥ (1− ε)2/4. We now bound the probability that at

least (1− δ)p̃µ =: m have 2i leading 1s, that is, we bound Pr[X ≥ m | X < µ],
where the condition follows from the definition of block i being selection-relevant.

Elementary calculations show that

Pr[X ≥ m | X < µ] = 1− Pr[X < m | X < µ] = 1− Pr[X < m,X < µ]
Pr[X < µ]

= 1− Pr[X < m]
Pr[X < µ] . (1)

To show a lower bound for (1), consider separately the two cases that E[X] < µ
and E[X] ≥ µ.

10 B. Doerr and M. S. Krejca

Case 1: E[X] < µ. We first bound the numerator of the subtrahend in (1).
Since m/(1− δ) = p̃µ ≤ p̃k = E[X], we have Pr[X < m] ≤ Pr

[
X < (1− δ)E[X]

]
.

By Theorem 1, by E[X] ≥ p̃µ, and by our assumption that µ ≥ c lnn, choosing c
sufficiently large, we have

Pr
[
X < (1− δ)E[X]

]
≤ exp

(
−δ

2E[X]
2

)
≤ exp

(
−δ

2p̃µ

2

)
≤ n−2.

For bounding the denominator, we note that p̃ ≤ 1− 1
n and use the fact that

a binomially distributed random variable with a success probability of at most
1− 1

n is below its expectation with a probability of at least 1
4 [7, Lemma 10.20 (b)].

This yields

Pr[X < µ] ≥ Pr
[
X < E[X]

]
≥ 1

4 .

Combining these bounds, we obtain Pr[X ≥ m|X < µ] ≥ 1− 4n−2 for this
case.

Case 2: E[X] ≥ µ > m. We bound the subtrahend from (1) from above. By
basic estimations and by Corollary 3, we see that

Pr[X < m]
Pr[X < µ] ≤

Pr[X ≤ m− 1]
Pr[X = µ− 1] ≤

(k −m+ 1)p̃
E[X]−m+ 1 ·

Pr[X = m− 1]
Pr[X = µ− 1] . (2)

We bound the first factor of (2) as follows:

(k −m+ 1)p̃
E[X]−m+ 1 ≤

E[X]
E[X]−m = 1 + m

E[X]−m ≤ 1 + m

µ−m
≤ 1 + m

m

p̃
−m

= 1 + p̃

1− p̃ ≤ 1 + n− 1 = n ,

where the last inequality uses that p̃ ≤ (1− 1
n)2 ≤ 1− 1

n .
For the second factor of (2), we compute

Pr[X = m− 1]
Pr[X = µ− 1] =

(
k

m−1
)
p̃m−1(1− p̃)k−m+1(

k
µ−1
)
p̃µ−1(1− p̃)k−µ+1

= (µ− 1)!(k − µ+ 1)!
(m− 1)!(k −m+ 1)! ·

(
1− p̃
p̃

)µ−m
. (3)

Since p̃ ≥ (1− ε)2/4, we see that (1− p̃)/p̃ ≤ 4/(1− ε)2.
For the first factor of (3), let p∗ := (1−δ)p̃, thus µp∗ = m. Noting that, for all

a, b ∈ R with a < b, the function j 7→ (a+ j)(b− j) is maximal for j = (b− a)/2,
we first bound

(µ− 1)!
(m− 1)! =

µ−m−1∏
j=0

(µ− 1− j) ≤
b(µ−m−1)/2c∏

j=0

(
(µ− 1− j)(m+ j)

)
≤
(
µ+m

2

)µ−m
≤
(µ

2 (1 + p∗)
)µ−m

.

The UMDA Copes Well With Deception and Epistasis 11

Substituting this into the first factor of (3), we bound

(µ− 1)!(k − µ+ 1)!
(m− 1)!(k −m+ 1)! ≤

(µ
2 (1 + p∗)

)µ−m
· (k − µ+ 1)!

(k −m+ 1)!

=
(
µ
2 (1 + p∗)

)µ−m∏µ−m−1
j=0 (k −m+ 1− j)

=
µ−m−1∏
j=0

µ(1 + p∗)
2(k −m+ 1− j) .

By noting that kp̃ = E[X] ≥ µ, we bound the above estimate further:

µ−m−1∏
j=0

µ(1 + p∗)
2(k −m+ 1− j) ≤

µ−m−1∏
j=0

µ(1 + p∗)
2(µ/p̃−m+ 1− j)

≤
(

µ(1 + p∗)
2µ(1/p̃− 1) + 2

)µ−m
≤
(
p̃(1 + p∗)
2(1− p̃)

)µ−m
.

Substituting both bounds into (3) and recalling that m = µp∗, we obtain

Pr[X = m− 1]
Pr[X = µ− 1] ≤

(
1 + p∗

2

)µ(1−p∗)
= exp

(
−µ(1− p∗) ln

(
2

1 + p∗

))
.

Finally, substituting this back into our bound of (2), using our assumption
that µ ≥ c lnn and noting that p∗ is constant, choosing c sufficiently large, we
obtain

Pr[X < m]
Pr[X < µ] ≤ n exp

(
−µ(1− p∗) ln

(
2

1 + p∗

))
≤ n−2.

Concluding the proof. In both cases, we see that the number of 11s in
block i is at least m = (1− δ)p̃µ ≥

(
(1− δ)(1− ε)2/4

)
µ with a probability of at

least 1− 4n−2. Since each 11 contributes to the new values of p2i−1 and p2i, after
the update, both frequencies are at least (1− δ)(1− ε)2/4, as we claimed. ut

Optimizing the critical block. Our next lemma considers the critical block
i ∈ [n2] of an iteration t. It shows that, with high probability, for all j ∈ [2i], we
have that p(t+1)

j = 1− 1
n . Informally, this means that (i) all frequencies left of

the critical block remain at 1− 1
n , and (ii) the frequencies of the critical block

are increased to 1− 1
n .

Lemma 9. Let δ, ε, ζ ∈ (0, 1) be constants and let q = (1 − δ)2(1 − ε)4/16.
Consider the UMDA optimizing DeceivingLeadingBlocks with λ ≥ (4/ζ2) lnn
and µ/λ ≤ (1 − ζ)q/e, and consider an iteration t such that block i ∈ [n2] is
critical and that p(t)

2i−1 and p(t)
2i are at least √q. Then, with a probability of at

least 1 − n−2, at least µ offspring are generated with at least 2i leading 1s. In
other words, the selection-relevant block of iteration t is at a position in [i+ 1..n2].

12 B. Doerr and M. S. Krejca

Proof. Let X denote the number of individuals that have at least 2i leading 1s.
Since block i is critical, each frequency at a position j ∈ [2i− 2] is at 1− 1

n . Thus,
the probability that all of these frequencies sample a 1 for a single individual is
(1− 1

n)2i−2 ≥ (1− 1
n)n−1 ≥ 1/e. Further, since the frequencies p(t)

2i−1 and p(t)
2i are

at least √q, the probability to sample a 11 at these positions is at least q. Hence,
we have E[X] ≥ qλ/e.

We now apply Theorem 1 to show that it is unlikely that fewer than µ
individuals from the current iteration have fewer than 2i leading 1s. Using our
bounds on µ and λ, we compute

Pr[X < µ] ≤ Pr
[
X ≤ (1− ζ)q

e
λ
]
≤ Pr

[
X ≤ (1− ζ)E[X]

]
≤ e−

ζ2λ
2 ≤ n−2.

Thus, with a probability of at least 1−n−2, at least µ individuals have at least 2i
leading 1s. This concludes the proof.

The run time of the UMDA on DLB. We now prove our main result.

Proof (of Theorem 5). We prove that the UMDA samples the optimum after
n
2 + 2e lnn iterations with a probability of at least 1− 9n−1. Since it samples λ
individuals each iteration, the theorem follows.

Due to Lemma 6 and µ ≥ cµn logn, for an ε ∈ (0, 1), within the first n
iterations, with a probability of at least 1 − 2n−1, no frequency drops below
(1− ε)/2 while its block has not been selection-relevant yet.

By Lemma 8, for another constant δ ∈ (0, 1), with a probability of at least
1− 4n−2, once a block becomes selection-relevant, its frequencies do not drop
below (1− δ)(1− ε)2/4 for the next iteration. By a union bound, this does not
fail for n consecutive times with a probability of at least 1− 4n−1. Note that a
selection-relevant block becomes critical in the next iteration.

Consider a critical block i ∈ [n2]. By Lemma 9, choosing cλ sufficiently large,
with a probability of at least 1 − n−2, all frequencies at positions in [2i] are
immediately set to 1− 1

n in the next iteration, and the selection-relevant block
has an index of at least i+ 1, thus, moving to the right. Applying a union bound
for the first n iterations of the UMDA and noting that each frequency belongs to
a selection-relevant block at most once shows that all frequencies are at 1− 1

n
after the first n

2 iterations, since each block contains two frequencies, and stay
there for at least n

2 additional iterations with a probability of at least 1− 2n−1.
Consequently, after the first n

2 iterations, the optimum is sampled in each
iteration with a probability of (1− 1

n)n ≥ 1/(2e). Thus, after 2e lnn additional
iterations, the optimum is sampled with a probability of at least 1 −

(
1 −

1/(2e)
)2e lnn ≥ 1− n−1.

Overall, by applying a union bound over all failure probabilities above, the
UMDA needs at most n+lnn iterations to sample the optimum with a probability
of at least 1− 9n−1. ut

The UMDA Copes Well With Deception and Epistasis 13

4 Experiments

In their paper, Lehre and Nguyen [18] analyze (among others) the (1 + 1) EA
and the (µ, λ) GA on DLB. For an optimal choice of parameters, they prove an
expected run time of O(n3) for all considered algorithms.

Since these are only provide upper bounds, it is not clear how well the
algorithms actually perform against the UMDA, which has a run time in the
order of n2 lnn (Theorem 5) for optimal parameters. Thus, we provide some
empirical results in Figure 1 on how well these algorithms compare against each
other.

We see that, for increasing n, the UMDA seems to perform best. Further, the
run time behavior of the (1 + 1) EA and the (µ, λ) GA is very similar. These
findings indicate that there is a strict difference in run time between the UMDA
and the other two algorithms.

Another interesting aspect of Figure 1 is the variance of the different algo-
rithms. The (1 + 1) EA and the (µ, λ) GA have a visible variance that does not
seems to reduce. In contrast, the UMDA is strongly concentrated around its
empirical mean. This behavior is supported by our analysis in Section 3, which
proves a run time that holds with high probability.

Overall, the UMDA seems to be outperforming the competing approaches.

5 Conclusion

We conducted a rigorous run time analysis of the UMDA on the Deceiving-
LeadingBlocks function. In particular, it shows that the algorithm with the
right parameter choice finds the optimum within O(n2 logn) fitness evaluations
with high probability (Theorem 5). This result shows that the lower bound by
Lehre and Nguyen [18], which is exponential in µ, is not due to the UMDA
being ill-suited for coping with epistasis and deception, but rather due to an
unfortunate choice of the algorithm’s parameters. For several EAs, Lehre and
Nguyen [18] showed a run time bound of O(n3) on DeceivingLeadingBlocks
and we believe that this is tight, which is further supported by our experiments in
Section 4. In this light, our result suggests that the UMDA can handle epistasis
and deception even better than many evolutionary algorithms.

Our run time analysis holds for parameter regimes that prevent genetic drift.
When comparing our run time with the one shown in [18], we obtain a strong
suggestion for running EDAs in regimes of low genetic drift. In contrast to the
work of Lengler, Sudholt, and Witt [19] that indicates moderate performance
losses due to genetic drift, here we obtain the first fully rigorous proof of such
a performance loss, and in addition one that is close to exponential in n (the
exp(−Ω(µ)) lower bound of [18] holds for µ up to o(n)).

On the technical side, our result indicates that the regime of low genetic drift
admits relatively simple and natural analyses of run times of EDAs, in contrast,
e.g., to the level-based methods previously used in comparable analyses, e.g.,
in [4,18].

14 B. Doerr and M. S. Krejca

50 100 150 200 250 300

105

106

107

n

n
u

m
b

er
o
f

fi
tn

es
s

ev
a
lu

at
io

n
s

UMDA

(1 + 1) EA

(µ, λ) GA

Figure 1. This figure shows the number of fitness evaluations (note the logarithmic
scale) until the optimum is sampled for the first time. Depicted are three different
algorithms and for various values of n (from 50 to 300 in steps of 50), optimizing DLB.
For each value of n, 50 independent runs were started per algorithm. The results of these
runs are depicted above. The lines depict the median of the 50 runs of an algorithm,
and the shaded areas denote the center 50%.
The UMDA uses µ = 3n lnn and λ = 12µ. The (µ, λ) GA uses µ = lnn, λ = 9µ,
uniform crossover, and has a crossover probability of 1/2.

The UMDA Copes Well With Deception and Epistasis 15

We conjecture that our result can be generalized to a version of the Decei-
vingLeadingBlocks function with a block size of k ≤ n.

Acknowledgments

This work was supported by COST Action CA15140 and by a public grant as
part of the Investissements d’avenir project, reference ANR-11-LABX-0056-LMH,
LabEx LMH, in a joint call with Gaspard Monge Program for optimization,
operations research and their interactions with data sciences.

References

1. Chen, T., Lehre, P.K., Tang, K., Yao, X.: When is an estimation of distribution
algorithm better than an evolutionary algorithm? In: Proc. of CEC ’09. pp. 1470–
1477 (2009). https://doi.org/10.1109/CEC.2009.4983116

2. Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt,
D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In:
Proc. of GECCO ’16. pp. 645–652 (2016). https://doi.org/10.1145/2908812.2908956

3. Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S.,
Sudholt, D., Sutton, A.M.: Escaping local optima using crossover with emergent
diversity. IEEE Transactions on Evolutionary Computation 22(3), 484–497 (2018).
https://doi.org/10.1109/TEVC.2017.2724201

4. Dang, D., Lehre, P.K.: Simplified runtime analysis of estimation of dis-
tribution algorithms. In: Proc. of GECCO ’15. pp. 513–518 (2015).
https://doi.org/10.1145/2739480.2754814

5. Doerr, B.: Analyzing randomized search heuristics via stochas-
tic domination. Theoretical Computer Science 773, 115–137 (2019).
https://doi.org/10.1016/j.tcs.2018.09.024

6. Doerr, B.: A tight runtime analysis for the cGA on jump functions: EDAs can cross
fitness valleys at no extra cost. In: Proc. of GECCO ’19. pp. 1488–1496 (2019).
https://doi.org/10.1145/3321707.3321747

7. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Theory of Evolutionary Computation: Recent Developments in Discrete Opti-
mization, pp. 1–87. Springer (2020). https://doi.org/10.1007/978-3-030-29414-4_1,
also available at https://arxiv.org/abs/1801.06733

8. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+λ) evolution-
ary algorithm - Different asymptotic runtimes for different instances. Theoretical
Computer Science 561, 3–23 (2015). https://doi.org/10.1016/j.tcs.2014.03.015

9. Doerr, B., Krejca, M.S.: Significance-based estimation-of-distribution
algorithms. In: Proc. of GECCO ’18. pp. 1483–1490 (2018).
https://doi.org/10.1145/3205455.3205553

10. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in EDAs. CoRR
abs/1910.14389 (2019), https://arxiv.org/abs/1910.14389

11. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Natural Computing 5(3), 257–283 (2006). https://doi.org/10.1007/s11047-006-9001-
0

12. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evo-
lutionary algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002).
https://doi.org/10.1016/S0304-3975(01)00182-7

https://doi.org/10.1109/CEC.2009.4983116
https://doi.org/10.1145/2908812.2908956
https://doi.org/10.1109/TEVC.2017.2724201
https://doi.org/10.1145/2739480.2754814
https://doi.org/10.1016/j.tcs.2018.09.024
https://doi.org/10.1145/3321707.3321747
https://doi.org/10.1007/978-3-030-29414-4_1
https://arxiv.org/abs/1801.06733
https://doi.org/10.1016/j.tcs.2014.03.015
https://doi.org/10.1145/3205455.3205553
https://arxiv.org/abs/1910.14389
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1016/S0304-3975(01)00182-7

16 B. Doerr and M. S. Krejca

13. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic
algorithm on jump functions. In: Proc. of GECCO ’18. pp. 967–974 (2018).
https://doi.org/10.1145/3205455.3205608

14. Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association 58(301), 13–30 (1963).
https://doi.org/10.2307/2282952

15. Krejca, M.S., Witt, C.: Lower bounds on the run time of the univariate marginal
distribution algorithm on OneMax. In: Proc. of FOGA ’17. pp. 65–79 (2017).
https://doi.org/10.1145/3040718.3040724

16. Krejca, M.S., Witt, C.: Theory of estimation-of-distribution algorithms. In: Theory
of Evolutionary Computation: Recent Developments in Discrete Optimization,
pp. 405–442. Springer (2020). https://doi.org/10.1007/978-3-030-29414-4_1, also
available at http://arxiv.org/abs/1806.05392

17. Lehre, P.K., Nguyen, P.T.H.: Improved runtime bounds for the univariate marginal
distribution algorithm via anti-concentration. In: Proc. of GECCO ’17. pp. 1383–
1390 (2017). https://doi.org/10.1145/3071178.3071317

18. Lehre, P.K., Nguyen, P.T.H.: On the limitations of the univariate marginal distri-
bution algorithm to deception and where bivariate EDAs might help. In: Proc. of
FOGA ’19. pp. 154–168 (2019). https://doi.org/10.1145/3299904.3340316

19. Lengler, J., Sudholt, D., Witt, C.: Medium step sizes are harmful for the
compact genetic algorithm. In: Proc. of GECCO ’18. pp. 1499–1506 (2018).
https://doi.org/10.1145/3205455.3205576

20. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of
distributions I. Binary parameters. In: Proc. of PPSN ’96. pp. 178–187 (1996).
https://doi.org/10.1007/3-540-61723-X_982

21. Pelikan, M., Hauschild, M., Lobo, F.G.: Estimation of distribution algorithms. In:
Springer Handbook of Computational Intelligence, pp. 899–928. Springer (2015).
https://doi.org/10.1007/978-3-662-43505-2_45

22. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81(4), 1450–1489
(2019). https://doi.org/10.1007/s00453-018-0480-z

23. Witt, C.: Domino convergence: why one should hill-climb on lin-
ear functions. In: Proc. of GECCO ’18. pp. 1539–1546 (2018).
https://doi.org/10.1145/3205455.3205581

24. Witt, C.: Upper bounds on the running time of the univariate marginal
distribution algorithm on OneMax. Algorithmica 81(2), 632–667 (2019).
https://doi.org/10.1007/s00453-018-0463-0

25. Zheng, W., Yang, G., Doerr, B.: Working principles of binary dif-
ferential evolution. In: Proc. of GECCO ’18. pp. 1103–1110 (2018).
https://doi.org/10.1145/3205455.3205623

https://doi.org/10.1145/3205455.3205608
https://doi.org/10.2307/2282952
https://doi.org/10.1145/3040718.3040724
https://doi.org/10.1007/978-3-030-29414-4_1
http://arxiv.org/abs/1806.05392
https://doi.org/10.1145/3071178.3071317
https://doi.org/10.1145/3299904.3340316
https://doi.org/10.1145/3205455.3205576
https://doi.org/10.1007/3-540-61723-X_982
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/s00453-018-0480-z
https://doi.org/10.1145/3205455.3205581
https://doi.org/10.1007/s00453-018-0463-0
https://doi.org/10.1145/3205455.3205623

	The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis

