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Abstract—The Pareto front of a multi-objective optimization
problem is typically very large and can only be approximated.
Approximation-Guided Evolution (AGE) is a recently presented
evolutionary multi-objective optimization algorithm that aims at
minimizing iteratively the approximation factor, which measures
how well the current population approximates the Pareto front. It
outperforms state-of-the-art algorithms for problems with many
objectives. However, AGE’s performance is not competitive on
problems with very few objectives. We study the reason for
this behavior and observe that AGE selects parents uniformly at
random, which has a detrimental effect on its performance. We
then investigate different algorithm-specific selection strategies
for AGE. The main difficulty here is finding a computationally
efficient selection scheme which does not harm AGEs linear
runtime in the number of objectives. We present several im-
proved selections schemes that are computationally efficient and
substantially improve AGE on low-dimensional objective spaces,
but have no negative effect in high-dimensional objective spaces.

I. INTRODUCTION

Real-world optimization problems often aim at minimizing
and/or maximizing several objectives at the same time. If
these objectives are in conflict with each other (like e.g.
minimizing production time and maximizing sales price), we
get a Pareto front of all compromise solutions. The difficulty
is that this set can be very large and can even be infinite for
continuous optimization problems. The aim of evolutionary
multi-objective optimization algorithms (EMOA) is therefore
finding a good approximation of this Pareto front. Different
EMOAs have (often implicitly) used very different definitions
of what kind of approximation they want to optimize.

One popular measure is the volume of the objective space
dominated by the set of solutions called hypervolume [29].
There are various well-established hypervolume-based EMOAs
such as MO-CMA-ES [18] or SMS-EMOA [3]. This approach
has theoretical and practical drawbacks. First, the hypervolume
is computationally demanding. It cannot be computed in time
polynomial in the number of objectives unless P = NP [5]. It is
also NP-hard to determine which solution gives approximately
the least contribution to the total hypervolume [6, 7]. It is also
dissatisfying theoretically that maximizing the hypervolume
does not imply that the resulting point set in the limit is any
form of approximation of the true Pareto front. The only known
relationship is that the worst-case approximation obtained by
optimal hypervolume distributions is asymptotically equivalent
to the best worst-case approximation achievable by all sets of
the same size [4].

We aim at finding a small set of solutions with best possible
approximation of the Pareto set. More formally, we want to
find a population that additively ε-approximates the Pareto
front with the smallest ε possible (a point ε-approximates all
points which are (i) worse or (ii) better by at most ε in all
objectives) [2]. For a rigorous definition, see Section II. This
notion of multi-objective approximation was introduced in the
80’s by several authors [15, 17, 20, 23, 24] and its theoretical
properties are extensively studied, e.g. in [9, 12, 21, 22, 25].
Laumanns et al. [19] have incorporated this notion of approx-
imation in an EMOA. However, this algorithm is mainly of
theoretical interest as the desired approximation is determined
by a parameter of the algorithm and is not improved over time.

Two years ago, Bringmann et al. [8] introduced the frame-
work of Approximation-Guided Evolution (AGE). It uses above
formal notion of approximation and improves the approxima-
tion quality during its iterative process. As the algorithm does
not have complete knowledge about the true Pareto front, it
uses the best knowledge obtained so far during the optimiza-
tion process: it guides the search not by the approximation
factor regarding the true Pareto front, but by the approximation
factor regarding the set of all non-dominated points seen so far.
For a more detailed description of the algorithm, see Section II.
The experimental results in [8] show that given a fixed time
budget it outperforms current state-of-the-art algorithms in
terms of the desired additive approximation, as well as the
covered hypervolume on standard benchmark functions. In
particular, this holds for problems with many objectives, which
most other algorithms have difficulties dealing with.

The runtime of AGE is linear in the number of objectives.
This results in a very good performance for problems with
many objectives, where it outperformed all competitors in [8].
However, the situation changes for problems with two or
three objectives. There its performance is inferior to other
EMOAs. A simple approach to solve this problem would
be to pair AGE with one of the other algorithms and then
decide deterministically which algorithm to use based on the
number of objectives. However, we will show that with a
minor adjustment to AGE, this pairing is not required. The
key discovery is that the random parent selection of AGE is
free of any bias. For problems with many objectives, this is
not a problem, and can even be seen as its biggest advantage.
For problems with few objectives, however, it is well known
that algorithms can do better than random selection, such as
selection based on crowding distance, hypervolume contribu-
tion, etc. Such strategies then select potential candidates based
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Algorithm 1: Measure approximation quality of a pop-
ulation ([8])

input : Archive A, Population P
output: Indicator Sα(A,P )

1 S ← ∅;
2 foreach a ∈ A do
3 δ ←∞;
4 foreach p ∈ P do
5 ρ← −∞;
6 for i← 1 to d do
7 ρ← max{ρ, ai − pi};
8 δ ← min{δ, ρ};
9 S ← S ∪ {δ};

10 sort S decreasingly;
11 return S;

on their relative position in the current population. For AGE,
the lack of this bias means that solutions can be picked for
parents that are not necessarily candidates with high potential.
Consequently, it is not surprising to see that the original
AGE is outperformed by algorithms that do well with their
parent selection strategy, if their strategy is effective. This
paper shows that a non-uniform parent selection significantly
increases AGEs performance for small dimensions without
loosing in higher dimensions or increasing its runtime.

The outline of this paper is as follows. We introduce some
basic definitions as well as the original AGE in Section II.
In Section III we outline the problem of finding a suitable
selection scheme. Then, we motivate, investigate and compare
different selection schemes for AGE. Finally, we finish with
some conclusions.

II. PRELIMINARIES

In our work, we consider minimization problems with
d objective functions, where d ≥ 2 holds. Each objective
function fi : S 7→ R, 1 ≤ i ≤ d, maps from the considered
search space S into the real values. In order to simplify the
presentation we only work with the dominance relation on the
objective space and mention that this relation transfers to the
corresponding elements of S.

Given two points x = (x1, . . . , xd) and y = (y1, . . . , yd),
with x, y ∈ Rd we define the following dominance relation:

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d,
x ≺ y :⇔ x � y and x 6= y.

The typical notions of approximation used in theoretical
computer science are multiplicative and additive approxima-
tion. We use the following definition

Definition 1: For finite sets S, T ⊂ Rd, the additive ap-
proximation of T with respect to S is defined as

α(S, T ) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

This paper only regards additive approximation. However,
this approach can be easily adapted to multiplicative approx-

imation where in Definition 1 just the term si − ti has to be
replaced by si/ti.

The aim of AGE is to minimize the additive approximation
of the population P we output with respect to the archive A
of all points seen so far, i.e., we want to minimize α(A,P ).
The problem is that α(A,P ) is not sensitive to local changes
of P . α(A,P ) only measures improvements of points which
are currently worst approximated.

To get a sensitive indicator that can be used to guide the
search, we consider instead the set {α({a}, P ) | a ∈ A} of all
approximations of the points in A. We sort this set decreasingly
and call the resulting sequence

Sα(A,P ) := (α1, . . . , α|A|).

The first entry α1 is again α(A,P ). Our new goal it then
to minimize Sα(A,P ) lexicographically. Note that this is an
augmentation of the order induced by α(A,P ): If we have
α(A,P1) < α(A,P2) then we also have Sα(A,P1) <lex
Sα(A,P2). Moreover, this indicator is locally sensitive. Al-
gorithm 1 describes how to calculate it.

A. Approximation-Guided Evolution

AGE [8] is an evolutionary multi-objective algorithm that
works with a formal notion of approximation. The experimen-
tal results presented in [8] show that given a fixed time budget
it outperforms current state-of-the-art algorithms in terms of
the desired additive approximation, as well as the covered
hypervolume on standard benchmark functions. In particular,
this holds for problems with many objectives, which most other
algorithms have difficulties dealing with.

Interestingly, it is the other way around when the problems
have just very few objectives. As can be seen in Figure 4
(that will serve us for our final evaluation), the original AGE
( ) is clearly outperformed by other algorithms in several
cases when the problem has just two to three objectives.
Of course, a simple approach to solve this problem would
be to pair AGE with one of the other algorithms and then
decide deterministically which algorithm to use based on the
number of objectives. However, we will see, that with a minor
adjustment to AGE, this pairing is not required.

The original AGE is outlined in Algorithm 2. One impor-
tant observations can be made. In line 6, the parents for the
mating process are selected uniformly at random. Interestingly,
this random selection does not seem to be detrimental to the
algorithm’s performance on problems with many objectives.
However, realizing that the selection process might be im-
proved motivated us to investigate algorithm-specific selection
processes. In Section III, we will show that the achievable
quality can be improved significantly by selecting strategically.

B. On Problems with Many Objectives

Let us start with an easy observation. An algorithm like
NSGA-II that is known for its deficiencies on problems with
many objectives1 can be made competitive when compared
to algorithms that seem to work better, such as IBEA and

1The cuboids used to determine the crowding distances fail to distinguish
between points that are in the “nearest corner” and the “far-end corner”.
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Algorithm 2: Outline of the (µ + λ)-Approximation
Guided EA ([8])
1 Initialize population P with µ random individuals;
2 Set archive A← P ;
3 foreach generation do
4 Initialize offspring population O ← ∅;
5 for j ← 1 to λ do
6 Select two random individuals from P ;
7 Apply crossover and mutation;
8 Add new individual to O;
9 foreach p ∈ O do

10 Insert offspring p in the archive A such that
only non-dominated solutions remain;

11 Add offsprings to population, i.e., P ← P ∪O;
12 while |P | > µ do
13 Remove p from P that is of least importance to

the approximation (for details on this step see
[8]);

SMS-EMOA, with a very simple modification: the modified
NSGA-II focusses exclusively on the extreme points2. The
result is truly stunning: with this simple modification, the
algorithm iteratively improves the extreme points, and as the
computational complexity of the algorithm is very low, it
rushes to the true Pareto front in short time. Now, the task
for a researcher is to assess the quality of the new algorithm
by assessing the generated solutions. The problem is that for
the class of DTLZ functions the true fronts are very small, and
that an additive approximation of 1.0 or better can already be
achieved if the algorithm finds all extreme points. This might
be quite surprising: a rather simple algorithm can achieve
higher quality solutions than a more complex one that tries
to maintain a higher level of diversity.3 This modified NSGA-
II has one big disadvantage, if the task it to find a diverse
set of solutions: points between the extreme points are very
unlikely to be discovered, as the algorithm’s new focus is to
find a good local optima for the individual objectives; the final
population’s diversity is insufficient and the dominance of huge
portions of the objective space would make it necessary for the
multi-objective algorithm to “step back” in order to discover
new multi-dimensional basements of attraction (volumes that
are likely to attract the population and that lead to new
local optima). Thus, one has created a fast algorithm that is
incapable of finding intermediate compromise solutions.

We see this as another advantage of the epsilon indicator.
Based on the knowledge gained from experiments, the actual
“dimensions” of the Pareto front become clearer based on a
single indicator value, and with the final quality assessments,
a single number can make a reliable statement about the
distribution of the points. Note that the approximation of a
set of solutions with respect to some unknown Pareto front
can be approximated as well: the non-dominated solutions of

2These are the solutions that have small objective values for at least one
objective, but not necessarily for all objectives. Thus, they mark the ‘corners’
of the population in the objective space.

3Similarly, the hypervolume value will be larger, but as so often it does
not indicate much about the actual distribution of the points in the objective
space.
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Fig. 1. Achievable additive approximations of the Pareto fronts, when only
all corner points are found for DTLZ 1 ( ) and for DTLZ 2/3/4 ( ),
and when only the centre of the Pareto front is found for DTLZ 1 ( ) and
for DTLZ 2/3/4 ( )

the union of all points found during multiple repetitions of the
experiment can be seen as an approximation of the true Pareto
front.

As we will later-on compare the algorithms on the DTLZ
benchmark family [11], let us briefly highlight some of
their properties. We used the functions DTLZ 1–4, each
with 30 function variables and between 2 to 20 objective
values/dimensions. The fronts of DTLZ 3 and DTLZ 4 are
equivalent to DTLZ 2; they only differ in the mapping from
the search space to the objective space. Regarding the objective
spaces themselves, DTLZ 1 and DLTZ 3 are similar. Their
Pareto fronts are merely points in the corner of voluminous
multi-objective search spaces. Search points sampled uni-
formly at random from the search space [0, 1]30 typically have
in the objective space an `∞-distance to the Pareto front of
DTLZ 1 of 200–700. This implies that a random population
has an additive approximation of this order of magnitude.
Analogously, the objective spaces of DTLZ 2 and DTLZ 4
are similar. There, randomly drawn solutions typically have
an `∞-distance of 1–2 from the Pareto front. This implies that
for these two functions randomly drawn solutions achieve a
significantly smaller (better) approximation of the Pareto front
than randomly drawn solutions approximate DTLZ 2 and 4,
i.e., random populations are significantly “closer” to the fronts
of DTLZ 2 and 4 than to DTLZ 1 and 3. In practise, this
means the following: DTLZ 2/4 proved to be especially hard
to optimise, when compared to DTLZ 1/3, as the objective
space is significantly smaller. Even though it is easy to find
some of the corner points, if proves to be difficult to find all
corner points, and to maintain a diverse population at the same
time.

To understand the consequences of the corner points of the
Pareto fronts on the achievable additive epsilon approximation,
let us consider Figure 1. The red and blue plots show the
achievable approximations for DTLZ 1 and DTLZ 2/3/4. As it
can be seen, a single solution that is placed on the centre
of the front can achieve very good approximation values,
whereas a good approximation via the corner points is very
difficult to achieve. Consequently, based on this figure, it
is possible to determine whether an algorithm is capable
of finding intermediate compromise solutions even when the
dimensionality of the objective space makes it difficult for
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many people to get an intuitive understanding of the achieved
indicator values.

III. APPROXIMATION-SPECIFIC PARENT SELECTION

We are seeking to improve AGE’s performance, subject to
the following conditions:

1) The introduced computation time required to select
parents should be polynomial in the number of ob-
jectives d.

2) The selection mechanism should significantly im-
prove the performance on problems with few ob-
jectives, while not influencing the performance on
problems with many objectives.

3) The selection scheme should favour individuals that
have the potential to improve the approximation qual-
ity.

Note that most hypervolume-based algorithms, such as
SMS-EMOA and MO-CMA-ES, violate condition (1), as some
of the computations that are associated with the selection
process take time exponential in d. However, we have to
note that it is possible to deal with this drawback by ap-
proximating the hypervolume, as shown and demonstrated in
[26]. Nevertheless, we opted against the use of (approximated)
hypervolume-based indicators because their computational ap-
proximation comes at the cost of reduced final quality, and
because maximization of the hypervolume can interfere with
our goal of improving the approximative quality.

Also note that the exclusive use of domination based-
criteria is problematic: assuming a general d-dimensional
unbounded space (with d ≥ 2), then a point in this space
dominates 1/2d of the volume. Obviously then, a pure dom-
inance check in high-dimensional spaces is extremely likely
to fail. Or, when interpreted the other way around, this means
that a check of the dominance relation between two solutions
is extremely unlikely to bring up any additional information
about the relative quality between these two solutions.

As already discussed in Section II-B, we found out in
preliminary testing that it is very easy to design algorithms that
easily discover the corner points of the Pareto front. However,
the problem of finding points “between” those corner points
proved to be much more difficult. Selection mechanisms for
the (fitness-based) parent selection and the offspring selection
tend to have different biases that result in different preferences
for corner points or central points, depending on the “shape” of
the intermediate populations and on the shape of the true Pareto
front. With an increasing number of dimensions, this problem
becomes even more apparent, as solutions should evenly cover
the front, while not concentrating only on extreme points.

A. Experimental Setup

Our selection strategies were implemented in the jMetal
framework [13].4 We compared the performance of our se-
lection schemes against each other, and finally the scheme
that we deemed best to the original AGE, and to the
established MOO algorithms IBEA [28], NSGA-II [10],
MO-CMA-ES [18], and SMS-EMOA [14], and SPEA2 [30]

4The code is available here http://cs.adelaide.edu.au/∼ec/research/age.php.

on the DTLZ benchmark family [11]. The test setup is iden-
tical to that of [8]. We used the functions DTLZ 1-4, each
with 30 function variables and between 2 to 20 objective
values/dimensions. The Pareto front in the objective space
of DTLZ 1 is a hyperplane. The Pareto fronts of DTLZ 2,
DTLZ 3 and DTLZ 4 are hyperspheres; they only differ in
the mapping from the search space to the objective space.
Except for the original AGE, parents are selected via a binary
tournament in all algorithms. We limit the calculations of the
algorithms to a maximum of 100,000 fitness evaluations and
a maximum computation time of 4 hours per run. Note that
the time restriction had to be used as the runtime of some
algorithms increases exponentially with respect to the size of
the objective space.

As variation operators, the polynomial mutation and the
simulated binary crossover [1] were applied, which are both
used widely in MOO algorithms [10, 16, 30]. The distribution
parameters associated with the operators were ηm = 20.0
and ηc = 20.0. The crossover operator is biased towards the
creation of offspring that are close to the parents, and was
applied with pc = 0.9. The mutation operator has a specialized
explorative effect for MOO problems, and was applied with
pm = 1/(number of variables). Population size was set to
µ = 100 and λ = 100. Each setup was given a budget of
100.000 evaluations. In the following, we report the averages
of 100 independent runs.

We assess the selection schemes and algorithms using the
approximation measure. However, as it is difficult to compute
the exact achieved additive approximation of a known Pareto
front, we approximate it. First, we draw one million points
of the front uniformly at random. Then, we compute the
additive approximation that the final population achieved for
this set ([8]).

B. Step 1 — Single-Level Selection Mechanisms

As the basis of our investigations, we use AGE as defined
in [8]. The key discovery was that the random parent selection
of AGE is free of any bias. For problems with many objectives,
this is not a problem, and can even be seen as an advantage.
For problems with few objectives, however, it is well known
that one can do better than random selection, such as selection
based on crowding distance, hypervolume contribution, etc.
Such strategies then select potential candidates based on their
relative position in the current population. For AGE, the lack of
this bias means that solutions can be picked for parents that are
not necessarily candidates with high potential. Consequently, it
is not surprising to see that AGE is outperformed by algorithms
that do well with their parent selection strategy.

The following are our selection schemes:

1) RS: Parents are drawn randomly from the population,
following the original AGE.

2) RSfront1: First, the population is sorted into fronts of
non-dominating solutions, then parents are drawn ran-
domly from only the first front of the population, as
these are expected to be good candidates to improve
the approximation of the archive.

3) RSthinning: After thinning the population (a solution
is dropped from the population5 with p = 0.5),

5Note that the solution will remain in the archive.
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parents are drawn randomly from it. Via this dis-
ruptive thinning, the exploration of the search space
per generation is increased, which allows for the
discovery of new multi-dimensional basements of
attraction.

4) BTfront no: First, the population is sorted into fronts
of non-dominating solutions, then the fitness F (X)
of a solution X is set to its front number before then
binary tournament is performed (preferring smaller
front numbers).

Note that we use superscript and subscript to indicate
the approaches used for fitness assignment and population
thinning.

We apply binary tournaments for candidates X and Y
as follows. In a first step, dominance is checked, and the
dominating solution wins the tournament. If the two solutions
are incomparable, then the fitness values F (X) and F (Y ) are
compared and the better solution wins the tournament.

Note that the dominance check in binary tournament does
not render the ranking in BTfront no obsolete: two solutions
that are in different ranks can still be incomparable. In partic-
ular, this is likely to be the case when the number of objectives
is high.

The results of the experimental investigations are shown
in Figure 2. First, it can be observed that the different
schemes have a measurable impact on the approximation
quality achieved for problems with few objectives. At the
same time, the performance on problems with many objectives
remains relatively unchanged. However, there is no single
scheme that performs well on all four different function
classes, when one compares their performance for low values
of d:

• The very aggressive selection scheme RSfront1 ( )
performs very well on the low-dimensional DTLZ 1
and DTLZ 3 variants, but loses to every other scheme
on the DTLZ 4 variants.

• RSthinning ( ) maintains some of our base-AGE’s
good performance on low-dimensional DTLZ 4 vari-
ants, and can be seen as a useful trade-off between
the base-AGE and the aggressive RSfront1, as even
dominated solutions can become parents.

• BTfront no ( ) on average shows a performance
that is comparable to that of RSthinning. While the
assignment of the rank numbers as the fitness values
proves to bring small benefits in some cases over the
random selection, it is in other cases even minimally
detrimental.

• The selection schemes have no significant effects on
the resulting achieved additive approximations for the
DTLZ 2 variants.

C. Step 2 — Incorporating Crowding Distance

In general, NSGA-II’s crowding distance proves to be a
good tool to maintain diverse populations on problems with
two or three objectives. In the following, we build upon this
observation, and we investigate empirically different selection
schemes:

1) BTcrowding: First, the population is sorted into fronts,
then the fitness of a solution is set to its crowding
distance, then a binary tournament is performed (pre-
ferring larger crowding distance values).

2) BTfront no,crowding: A binary tournament is used,
where the individuals are compared firstly according
to their front number (preferring lower numbers). In
case of equal front numbers, the solution with the
larger crowding distance is selected.

3) BTcrowding
thinning firstfronts: First, the population is reduced:

solutions in the front i have a probability of 1/i
of staying in the population. Subsequently, a binary
tournament is performed where solutions of higher
crowding distance are preferred. Thus, solutions that
are dominated multiple times are less likely to be
selected as a potential parent.

4) BTcrowding
thinning center: First, the population is reduced:

solutions within one front are ordered per objective,
then a solution at position i (of a total t) has
probability 1/i to stay in the population if i <
t/2, else 1/t − i). This has the effect that more
“central” solutions have a higher chance of getting
dropped from the population. Subsequently, a binary
tournament is performed where solutions of higher
crowding distance are preferred. This parent selection
mechanism is also used in [27].

The consequence of the thinning approaches used in the
latter two schemes is that all solutions that form the first front
(including the extreme points) are kept in the population.

The achieved additive approximations are shown in Fig-
ure 3. The main observations are as follows:

• The performance of BTcrowding ( ) on the low-
dimensional DTLZ 4 variants is remarkable, and in
many cases better than anything that we have seen so
far (including other algorithms). This comes, however,
at a price: its performance on the DTLZ 1 and
DTLZ 3 variant is easily beaten by the other selection
mechanisms.

• BTfront no,crowding ( ) represents an alternative to
BTcrowding, as is incorporates both the rank number
as a fitness values (proved to be beneficial in the
previous section) and the crowding distance. As a
result, it inherits some of the good properties from
both approaches: the good performance on DTLZ 1/3
and on DTLZ 4.

• Both BTcrowding
thinning linear ( ) and BTcrowding

thinning center
( ) perform very similarly, indicating that the
choice of the thinning scheme may be just of minor
importance.

• Again, the selection schemes have no significant ef-
fects on the resulting achieved additive approximations
for the DTLZ 2 variants.

D. Comparison With Other Algorithms

Based on the previous experiments, we choose
BTcrowding

thinning center for the final comparison against the
established algorithms. In the following, we will refer to
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Fig. 2. Comparison of the performance of the different parent selection mechanisms: RS (random selection from the population, ([8])), RSfront1 (random
selection from the first front, ), RSthinning (random selection after thinning, ), BTfront no (the fitness is the front number, ) with varying
dimension d. The figures show the average of 100 repetitions each.
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Fig. 3. Comparison of the performance of the different parent selection mechanisms: RS (random selection from the population, ([8])), BTcrowding (the
fitness is the crowding distance within each front, ) BTfront no,crowding (front number and crowding, ), BTcrowding

thinning center (thinning towards each

front’s centre, ), BTcrowding
thinning firstfronts (thinning prefers first fronts, ) with varying dimension d. The figures show the average of 100 repetitions

each.
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Fig. 4. Comparison of the performance of our AGE-PS ( ) with strategic parent selection with the original AGE ( ), IBEA ( ), NSGA-II ( ),
SMS-EMOA ( ), and SPEA2 ( ) with varying dimension d. The figures show the average of 100 repetitions each.

the combination of AGE with the parent selection scheme
BTcrowding

thinning center as AGE-PS. The results are shown in
Figure 4.

Observations:

• AGE-PS ( ) shows a significantly improved per-
formance on the lower-dimensional variants of DTLZ
1, DTLZ 3, and DTLZ 4. Furthermore, it is either the
best performing algorithm, or in many cases, it shows
at least competitive performance.

• It is interesting to see that even though our AGE-PS
incorporates the crowding distance idea from NSGA-II
( ) for a fitness assignment, it is not influenced by
its detrimental effects in higher dimensional objective
spaces. This is thanks to the way how the next gener-
ation is formed in AGE (i.e., based on contributions
to the approximation achieved of the archive).

• When compared with the original AGE ( ), then
our modification results in a performance improve-
ment in nearly all cases. Still, as AGE-PS shows a
consistent performance across all scaled functions, we
deem the minimal loss in quality (in our experimental
setup) as negligible.

• Remarkably, NSGA-II ( ), SMS-EMOA ( ),
and SPEA2 ( ) are unable to find the front of the
high-dimensional DTLZ 1 and DTLZ 3 variants. This
results in extremely large approximation values.

• The reason for IBEA’s ( ) decreasing behavior
for very large dimension (d ≥ 18) is that it was
stopped after 4 hours and it could not perform 100, 000

iterations. The same holds already for much smaller
dimensions in the case of SMS-EMOA ( ), which
uses an exponential-time algorithm to internally deter-
mine the hypervolume. It did not finish a single gen-
eration for d ≥ 8 and only performed around 5, 000
iterations within four hours for d = 5. This implies
that the higher-dimensional approximations plotted for
SMS-EMOA actually show the approximation of the
random initial population.

• Interestingly, the final approximations achieved by
NSGA-II ( ) and SPEA2 ( ) are even worse
than those of their initial populations. Because they
are tuned for low-dimensional problems, they spread
out their populations too much, pushing them to the
boundaries for high dimensions.

• Lastly, it is interesting to see that even though DTLZ
1-4 are sometimes considered to be ‘easy’, the al-
gorithms perform very differently on the functions.
Especially when the number of objectives in increased,
the advantages and disadvantages of the selection
criteria become apparent.

IV. CONCLUSIONS

Compared to the original AGE with random parent se-
lection, the proposed AGE with strategic parent selection is
competitive with state-of-the-art algorithms on problems with
few objectives. On problems with many objectives, however,
it maintains the dominance over existing algorithms in the
achieved additive approximation. The code is available at
http://cs.adelaide.edu.au/∼ec/research/age.php.
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