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Abstract

This chapter first reviews the simple genetic algorithm. Mathematical models of the genetic

algorithm are also reviewed, including the schema theorem, exact infinite population models,

and exact Markovmodels for finite populations. The use of bit representations, including Gray

encodings and binary encodings, is discussed. Selection, including roulette wheel selection,

rank-based selection, and tournament selection, is also described. This chapter then reviews

other forms of genetic algorithms, including the steady-state Genitor algorithm and the CHC

(cross-generational elitist selection, heterogenous recombination, and cataclysmic mutation)

algorithm. Finally, landscape structures that can cause genetic algorithms to fail are looked at,

and an application of genetic algorithms in the domain of resource scheduling, where genetic

algorithms have been highly successful, is also presented.
1 The Basics of Genetic Algorithms

Genetic algorithms were the first form of evolutionary algorithms to be widely accepted across

a diverse set of disciplines ranging from operations research to artificial intelligence. Today,

genetic algorithms and other evolutionary algorithms are routinely used as search and optimi-

zation tools for engineering and scientific applications.

Genetic algorithms were largely developed by John Holland and his students in the 1960s,

1970s, and 1980s. The term ‘‘genetic algorithms’’ came into common usage with the publi-

cation of Ken De Jong’s 1975 PhD dissertation. Holland’s classic 1975 book, Adaptation in

Natural and Artificial Systems (Holland 1975), used the term ‘‘genetic plans’’ rather than

‘‘genetic algorithms.’’ In the mid-1980s genetic algorithms started to reach other research com-

munities. An explosion of research in genetic algorithms came soon after a similar explosion of

research in artificial neural networks. Both areas of research draw inspiration from biological

systems as a computational model.

There are several forms of evolutionary algorithms that use simulated evolution as a

mechanism to solve problems where the problems can be expressed as a search or optimiza-

tion problem. Other areas of evolutionary computation, such as evolutionary programming,

evolution strategies, and genetic programming, are discussed in other chapters. Compared to

other evolutionary algorithms, genetic algorithms put a great deal of emphasis on the combined

interactions of selection, recombination, and mutation acting on a genotype. In most early

forms of genetic algorithms, recombination was emphasized over mutation. This emphasis still

endures in some forms of the genetic algorithm. However, hybridization of genetic algorithms

with local search is also very common.

Genetic algorithms emphasize the use of a ‘‘genotype’’ that is decoded and evaluated. These

genotypes are often simple data structures. In most early applications, the genotypes (which are

sometimes thought of as artificial chromosomes) are bit strings which can be recombined in a

simplified form of ‘‘sexual reproduction’’ and can be mutated by bit flips. Because of the bit

encoding, it is sometimes common to think of genetic algorithms as function optimizers.

However, this does not mean that they yield globally optimal solutions. Instead, Holland (in

the introduction to the 1992 edition of his book Adaptation in Natural and Artificial Systems

Holland (1992)) and De Jong (1993) have both emphasized that these algorithms find

competitive solutions rather than optimal solutions, but both also suggest that it is probably

best to view genetic algorithms not as an optimization process, but rather as adaptive systems.
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At the risk of overemphasizing optimization, an example application from function

optimization provides a useful vehicle for explaining certain aspects of these algorithms. For

example, consider a control or production process which must be optimized with respect to

some evaluation criterion. The input domain to the problem, X , is the set of all possible

configurations to the system. Given an evaluation function f, one seeks to maximize (or

minimize) f ðxÞ; x 2 X . The input domain can be characterized in many ways. For instance, if

X ¼ f0; 1; . . . ; 2L � 1g is the search space then our input domain might be the set of

binary strings of length L. If we elect to use a ‘‘real-valued’’ encoding, a floating point

representation might be used, but in any discrete computer implementation, the input domain

is still a finite set.

In the evolutionary algorithm community, it has become common to refer to the evalua-

tion function as a fitness function. Technically, one might argue that the objective function f (x)

is the evaluation function, and that the fitness function is a second function more closely

linked with selection. For example, we might assign fitness to an artificial chromosome based

on its rank in the population, assigning a ‘‘fitness’’ of 2.0 to the best member of the population

and a fitness of 1.0 to the median member of the population. Thus, the fitness function and

evaluation function are not always the same. Nevertheless in common usage, the term fitness

function has become a surrogate name for the evaluation function.

Returning to our simple example of an optimization problem, assume that there is a

system with three parameters we can control: temperature, pressure, and duration. These are

in effect three inputs to a black box optimization problem where inputs from the domain of the

function are fed into the black box and a value from the co-domain of the function is produced

as an output. The system’s response could be a quality measure dependent on the tempera-

ture, pressure, and duration parameters.

One could represent the three parameters using a vector of three real-valued parameters,

such as

h32:56; 18:21; 9:83i
or the three parameters could be represented as bit strings, such as

h000111010100; 110100101101; 001001101011i:
Using an explicit bit encoding automatically raises the question as to what precision should

be used, and what should be the mapping between bit strings and real values. Picking the

right precision can have a large impact on performance. Historically, genetic algorithms have

typically been implemented using low precision; using 10 bits per parameter is common in

many test functions. Using high precision (e.g., 32 bits per parameters) generally results in

poor performance, and real-valued representations should be considered if high precision is

required.

Recombination is central to genetic algorithms. For now, assume that the artificial

chromosomes are bit strings and that 1-point crossover will be used. Consider the string

1101001100101101 and another binary string, yxyyxyxxyyyxyxxy, in which the values 0 and 1

are denoted by x and y. Using a single randomly chosen crossover point, a 1-point recombi-

nation might occur as follows.

11010 n= 01100101101

yxyyx =n yxxyyyxyxxy



. Fig. 1

One generation is broken down into a selection phase and a recombination phase. This figure

shows strings being assigned into adjacent slots during selection. It is assumed that selection

randomizes the location of strings in the intermediate population. Mutation can be applied

before or after crossover.
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Swapping the fragments between the two parents produces the following two offspring.

11010yxxyyyxyxxy and yxyyx01100101101

Parameter boundaries are ignored. We can also apply a mutation operator. For each bit in

the population, mutate with some low probability pm. For bit strings of length L a mutation

rate of 1 ∕L is often suggested; for separable problems, this rate of mutation can be shown to be

particularly effective.

In addition to mutation and recombination operators, the other key component to a gene-

tic algorithm (or any other evolutionary algorithm) is the selection mechanism. For a genetic

algorithm, it is instructive to view the mechanism by which a standard genetic algorithm moves

from one generation to the next as a two-stage process. Selection is applied to the current

population to create an intermediate generation, as shown in> Fig. 1. Then, recombination and

mutation are applied to the intermediate population to create the next generation. The process

of going from the current population to the next population constitutes one generation in the

execution of a genetic algorithm.

We will assume that our selection mechanism is tournament selection. This is not the

mechanism used in early genetic algorithms, but it is commonly used today. A simple version

of tournament selection randomly samples two strings out of the initial population, then

‘‘selects’’ the best of the two strings to insert into the intermediate generation. If the popula-

tion size is N, then this must be done N times to construct the intermediate population.

We can then apply mutation and crossover to the intermediate population.
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1.1 The Canonical Holland-Style Genetic Algorithm

In a Holland-style genetic algorithm, tournament selection is not used; instead fitness propor-

tional selection is used. Proportional fitness is defined by fi=
�f ; where fi is the evaluation

associated with string i and �f is the average evaluation of all the strings in the population.

Under fitness proportional selection, fitness is usually being maximized. All early forms of

genetic algorithms used fitness proportional selection. Theoretical models also often assume

fitness proportional selection because it is easy to model mathematically.

The fitness value fi may be the direct output of an evaluation function, or it may be scaled

in some way. After calculating fi=
�f for all the strings in the current population, selection is

carried out. In the canonical genetic algorithm, the probability that strings in the current

population are copied (i.e., duplicated) and placed in the intermediate generation that is

proportional to their fitness.

For a maximization problem, if fi=
�f is used as a measure of fitness for string i, then strings

where fi=
�f is greater than 1.0 have above average fitness and strings where fi=

�f is less than 1.0

have below average fitness. We would like to allocate more chances to reproduce to those

strings that are above average. One way to do this is to directly duplicate those strings that are

above average. To do so, fi is broken into an integer part, xi, and a remainder, ri.

We subsequently place xi duplicates of string i directly into the intermediate population and

place 1 additional copy with probability ri.

This is efficiently implemented using stochastic universal sampling. Assume that the popu-

lation is laid out in random order as a number line where each individual is assigned space on

the number line in proportion to fitness. Now generate a random number between 0 and 1

denoted by k. Next, consider the position of the number i+k for all integers i from 1 to N

where N is the population size. Each number i+k will fall on the number line in some space

corresponding to a member of the population. The position of the N numbers i+k for

i ¼ 1 to N in effect selects the members of the intermediate population. This is illustrated in
> Fig. 2.

This method is also known as roulette wheel selection: the space assigned to the 25 members

of the population in > Fig. 2 could be laid out along the circumference of a circle representing

the roulette wheel. The choice of k in effect ‘‘spins’’ the roulette wheel (since only the fractio-

nal part of the spins effects the outcome) and determines the position of the evenly spaced

pointers, thereby simultaneously picking all N members of the intermediate population. The

resulting selection is unbiased (Baker 1987).

After selection has been executed, the construction of the intermediate population is

complete. The next generation of the population is created from the intermediate population.
. Fig. 2

Stochastic Universal Sampling. The fitnesses of the population can be seen as being laid out on a

number line in random order as shown at the bottom of the figure. A single random value, 0 � k

� 1, shifts the uniformly spaced ‘‘pointers’’ which now select the member of the next

intermediate population.
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Crossover is applied to randomly paired strings with a probability denoted pc. The offsprings

created by ‘‘recombination’’ go into the next generation (thus replacing the parents). If no

recombination occurs, the parents can pass directly into the next generation. However, parents

that do not undergo recombination may still be changed due to the application of a mutation

operator.

After the process of selection, recombination, and mutation is complete, the next genera-

tion of the population can be evaluated. The process of evaluation, selection, recombination,

and mutation forms one generation in the execution of a genetic algorithm.

One way to characterize selective pressure is to calculate the selection bias toward the best

individual in the population compared to the average fitness or the median fitness of the

population. This is more useful for ‘‘rank-based’’ than fitness proportional, but it still serves

to highlight the fact that fitness proportional selection can result in a number of problems.

First, selective pressure can be too strong: too many duplicates are sometimes allocated to the

best individual(s) in the population in the early generations of the search. Second, in the later

stages of search, as the individuals in the population improve over time, there tends to be less

variation in fitness, with more individuals (including the best individual(s)) being close to the

population average. As the population average fitness increases, the fitness variance decreases

and the corresponding uniformity in fitness values causes selective pressure to go down. When

this happens, the search stagnates.

Because of these problems, few implementations of genetic algorithms use simple fitness

proportionate reproduction. At the very least, the fitness may be rescaled before fitness propor-

tionate reproduction. Fitness scaling mechanisms are discussed in detail in Goldberg’s textbook

Genetic Algorithm in Search, Optimization and Machine Learning (Goldberg 1989b). In recent

years, the use of rank-based selection and in particular tournament selection has become

common.
1.2 Rank-Assigned Tournament Selection

Selection can be based on fitness assigned according to rank, or relative fitness. This can be

done explicitly. Assume the population is sorted by the evaluation function. A linear ranking

mechanism with selective pressure Z (where 1 < Z � 2) allocates a fitness bias of Z to the top-

ranked individual, 2�Z to the bottom-ranked individual, and a fitness bias of 1.0 to the

median individual. Note that the difference in selective pressure between the best and the

worst member of the population is constant and independent of how many generations have

passed. This has the effect of making selective pressure more constant and controlled. Code for

linear ranking is given by Whitley (1989).

The use of rank-based selection also transforms the search into what is known as an ordinal

optimization method. The exact evaluation of sample points from the search space is no

longer important. All that is important is the relative value (or relative fitness) of the strings

representing sample points from the search space. Note that the fitness function can be an

ordinal measure, but the evaluation function itself is not ordinal.

Ordinal optimization may also sometimes relax computation requirements (Ho et al. 1992;

Ho 1994). It may be easier to determine f (x1)< f (x2) than to exactly compute f (x1) and f (x2).

An approximate evaluation or even noisy evaluation may still provide enough information

to determine the relative ranking, or to determine the relative ranking with high probability.
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This can be particularly important when the evaluation is a simulation rather than an exact

mathematical objective function.

A fast and easy way to implement ranking is tournament selection (Goldberg 1990;

Goldberg and Deb 1991). We have already seen a simple form of tournament selection

which selects two strings at random and places the best in the intermediate population. In

expectation, every string is sampled twice. The best string wins both tournaments and gets two

copies in the intermediate population. The median string wins one and loses one and gets one

copy in the intermediate population. The worst string loses both tournaments and does not

reproduce. In expectation, this produces a linear ranking with a selective pressure of 2.0

toward the best individual. If the winner of the tournament is placed in the intermediate

population with probability 0.5 < p < 1.0, then the selective pressure is less than 2.0. If a

tournament size larger than 2 is used and the winner is chosen deterministically, then the

selective pressure is greater than 2.0.

We can first generalize tournament selection to generate a linear selection bias less than 2,

or a nonlinear bias greater than 2. For stronger selection, pick t>2 individuals uniformly at

random and select the best one of those individuals for reproduction. The process is repeated

the number of times necessary to achieve the desired size of the intermediate population. The

tournament size, t, has a direct correspondence with selective pressure because the expected

number of times we sample the fittest individual in the intermediate population is t.

The original motivation behind the modern versions of tournament selection is that the

algorithm is embarrassingly parallel because each tournament is independent (Suh and Gucht

1987). If one has the same number of processors as the population size, all N tournaments can

be run simultaneously in parallel and constructing an intermediate population would require

the same amount of time as executing a single tournament. Each processor samples the

population t times and selects the best of those individuals.

Poli (2005) has noted that there are two factors that lead to the loss of diversity in regular

tournament selection. Due to the randomness of tournaments, some individuals might not get

sampled to participate in a tournament at all. Other individuals might be sampled but not be

selected for the intermediate population because the individual loses the tournament.

One way to think of tournament selection (where t ¼ 2) is a comparison of strings based

on two vectors of random numbers.

vector A: 5 4 2 6 2 2 8 3

vector B: 5 3 6 5 4 3 4 6

The integer stored at A(i) identifies a member of the population. We will assume that the

lower integers correspond to better evaluations. During the ith tournament, A(i) is compared

to B(i) to determine the winner of the tournament. Note that in this example, if the integers

1–8 represent the population members, then individuals 1 and 7 are not sampled. Poli points

out that the number of individuals neglected in the first decision if two offsprings are produced

by recombination is Pð1� 1=PÞTP where P is the population size and T is the tournament size.

Expressed another way, what Poli calculates is the expected number of population members

that fail to appear in vector A or B if these were used to keep track of tournament selection

during one generation (or the amount of time needed to sample P new points in the search

space). It is also possible to under-sample. If the tournament size is 2, in expectation, all

members of the population would be sampled twice if tournament selection were used in

combination with a generational genetic algorithm. However, some members of the popula-

tion might be sampled only once.
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Other forms of selection do not have this problem. Universal stochastic sampling guar-

antees that all individuals with above-average fitness get to reproduce, and all individuals

below average get a chance to reproduce with a probability proportional to their fitness. Note

that fitness in this case could be based on the evaluation function or it could still be a rank-

based assignment of space on the roulette wheel in > Fig. 2.

Unbiased tournament selection (Sokolov and Whitley 2005) eliminates loss of diversity

related to the failure to sample. Unbiased tournament selection also reduces the variance

associated with how often an individual is sampled in one generation (variance reduction

tournament selection might have been a more accurate name, but is somewhat more cumber-

some). Unbiased tournament selection operates much like regular tournament selection

except that permutations are used in place of random sampling during tournament construc-

tion. Rather than randomly sampling the population (or using random vectors of numbers

to sample the population), t random permutations are generated. The ith element in each

permutation indexes to a population member: the t population members pointed to by the ith

element of each permutation form a tournament. An effective improvement is to use only t�1

permutations; the indices from 1 to P in sorted order can serve as one permutation (e.g.,

as generated in a for-loop). Other permutations can be constructed by sequentially sampling

the population without replacement.

An example of unbiased tournament selection for tournament size t ¼ 3 can be seen in
> Fig. 3. Assume that f (x) ¼ x and that lower numbers correspond to better individuals; then

the last row, labeled ‘‘Winners,’’ presents the resulting intermediate population as chosen by

unbiased tournament selection. Note that permutation 1 is in sorted order. Recall that the

selective pressure is partially controlled through the number of permutations.

Unbiased stochastic tournament selection can also be employed for selective pressure

S < 2. We align two permutations, perform a pairwise comparison of elements, but select

the best with 0.5 < ps < 1.0. For selective pressure less than or equal to 2 we also enforce the

constraint that the ith element of the second permutation is not equal to i. This provides a

guarantee that every individual will participate in a tournament twice. This is easily enforced:

when generating the ith element of a permutation, we withhold the ith individual from

consideration. There are not enough degrees of freedom to guarantee that this constraint

holds for the last element of the permutation, but a violation can be fixed by swapping the last

element with its immediate predecessor. The constraint is not enforced for t>2 as too much

overhead is involved.

To illustrate the congruence between ‘‘formula-based’’ ranking and tournament selection,

a simulation was performed to compare three methods of linear ranking: (1) by random

sampling using an explicit mathematical formula, (2) using regular tournament selection, and

(3) using unbiased tournament selection. The number of times an individual with each rank

was selected was measured as the search progressed. > Figure 4 presents these measurements
. Fig. 3

Unbiased tournament selection with tournament size t = 3. In this case, each column

represents a slot in the population; the best individual in each column wins the tournament

for that slot.



. Fig. 4

The number of times an individual with a particular rank was selected for recombination. The

results are presented for rank-based, regular, and unbiased tournament selection schemes.

Solid line is the mean computed across 50 runs with 100 generations/run. Dashed lines lie one

standard deviation away from the mean.
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for a population of size 100 averaged over 50 runs with 100 generations each. A selective

pressure of 2.0 was used. The solid line represented the mean and the two dashed lines were

one standard deviation away from it. Notice that linear ranking behavior is problem indepen-

dent because the only measure used in the calculations is the relative goodness of solutions.

As can be seen, formula-based ranking and regular tournament selection are essentially

the same. On the other hand, unbiased tournament selection controls for variance by insuring

the actual sample in each case is within one integer value of its expected value.
1.3 Different Forms of Representation, Crossover, and Mutation

One of the long-standing debates in the field of evolutionary algorithms involves the use of binary

versus real-valued encodings for parameter optimization problems. The genetic algorithms

community has largely emphasized bit representations. The main argument for bit encodings

is that this representation decomposes the problem into the largest number of smallest possible

building blocks and that a genetic algorithm works by processing these building blocks. This

viewpoint, whichwas widely accepted 10 years ago, is now considered to be controversial. On the

other hand, the evolution strategies community (Schwefel 1981, 1995; Bäck 1996) has empha-

sized the use of real-valued encodings for parameter optimization problems. Application-

oriented researchers were also among the first in the genetic algorithms community to

experiment with real-valued encodings (Davis 1991; Schaffer and Eshelman 1993).

Real-valued encodings can be recombined using simple crossover. The assignment of

parameter values can be directly inherited from one parent or the other. But other forms of

recombination are also possible, such as blending crossover that averages the real-valued

parameter values. This idea might be generalized by considering the two parents as points

p1 and p2 in a multidimensional space. These points might be combined as a weighted average

(using some bias 0 � a � 1) such that an offspring might be produced by computing a new

point p0 in the following way:

p0 ¼ ap1 þ ð1� aÞp2
One can also compute a centroid associated with multiple parents.
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Because real-valued encodings are commonly used in the evolution strategy community,

the reader is encouraged to consult the chapter on evolution strategies. This chapter will focus

on binary versus Gray coded bit representations.
1.3.1 Binary Versus Gray Representations

A related issue that has long been debated in the evolutionary algorithms community is the

relative merit of Gray codes versus standard binary representations for parameter optimiza-

tion problems. Generally, ‘‘Gray code’’ refers to the standard binary reflected Gray code (Bitner

et al. 1976); but there are exponentially many possible Gray codes for a particular Hamming

space. A Gray code is a bit encoding where adjacent integers are also Hamming distance 1

neighbors in Hamming space.

There are at least two basic ways to compute a Gray code. In general, a Gray matrix can be

used that acts as a transform of a standard binary string. The standard binary reflected Gray

code encoding matrix has 1s along the diagonal and 1s along the upper minor diagonal and 0s

everywhere else. The matrix for decoding the standard binary reflected Gray code has 1s along

the diagonal and all of the upper triangle of the matrix is composed of 1 bits. The lower

triangle of the matrix is composed of 0 bits. The following is an example of the Graying matrix

G (on the left) and the deGraying matrix D (on the right).

G ¼
1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

0
BB@

1
CCA D ¼

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0
BB@

1
CCA

Given a binary string (vector) b, a Graying matrix G, and a deGraying matrix D, bG

produces a binary string (vector), which is the binary reflected Gray code of string b. Using the

deGraying matrix, (bG)D ¼ b.

A faster way to produce the standard binary reflected Gray code is to shift vector b by 1 bit,

which will be denoted by the function s(b). Using exclusive-or (denoted by�) over the bits in

b and s(b),

b � sðbÞ ¼ bG

This produces a string with L+1 bits; the last bit is deleted. In implementation, no shift is

necessary and one can have exclusive-or pairs of adjacent bits.

Assume that bit strings are assigned to the corner of a hypercube so that the strings

assigned to the adjacent points in the hypercube differ by one bit. In general, a Gray code is a

permutation of the corners of the hypercube, such that the resulting ordering forms a path that

visits all of the points in the space and every point along the path differs from the point before

and after it by a single bit flip.

There is no known closed form for computing the number of Gray codes for strings of

length L. Given any Gray code (such as the standard binary reflected Gray code), one can

(1) permute the order of the bits themselves to create L! different Gray codes, and for each

of these Gray codes one can (2) shift the integer assignment to the strings by using modular

addition of a constant and still maintain a Gray code. This can be done in 2L different ways.

If all the Gray codes produced by these permutation and shift operations were unique, there

would be at least 2L(L!) Gray codes. Different Gray codes have different neighborhood
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structures. In practice, it is easy to use the trick of shifting the Gray code by a constant to

explore different Gray codes with different neighborhoods. But one can also prove that the

neighborhood structure repeats after a shift of 2L ∕4.
The ‘‘reflected’’ part of the standard binary reflected Gray code derives from the follow-

ing observation. Assume that we have a sequence of 2L strings and we wish to extend that

sequence to 2L+1 strings. Let the sequence of 2L strings be denoted by

a b c . . . x y z

Without loss of generality, assume the strings can be decoded to correspond to integers

such that a ¼ 0; b ¼ 1; c ¼ 2; . . . ; y ¼ ð2L � 2Þ; z ¼ ð2L � 1Þ. In standard binary representa-

tions, we extend the string by duplicating the sequence and appending a 0 to each string in the

first half of the sequence and a 1 to each string in the second half of the sequence. Thus, if we

start with a standard binary sequence of strings, then the following is also a standard binary

encoding:

0a 0b 0c . . . 0x 0y 0z 1a 1b 1c . . . 1x 1y 1z

However, in a reflected Gray code, we extend the string by duplicating and reversing the

sequence; then a 0 is appended to all the strings in the original sequence and a 1 appended to

the string in the reflected or reversed sequence.

0a 0b 0c . . . 0x 0y 0z 1z 1y 1x . . . 1c 1b 1a

It is easy to verify that if the original sequence is a Gray code, then the reflected expansion is

also a Gray code.

Over all possible discrete functions that can bemapped onto bit strings, the space of any and

all Gray code representations and the space of binary representations must be identical. This is

another example of what has come to be known as a ‘‘no-free-lunch’’ result (Wolpert and

Macready 1995; Radcliffe and Surry 1995; Whitley and Rowe 2008). The empirical evidence

suggests, however, that Gray codes are often superior to binary encodings. It has long been

known that Gray codes remove Hamming cliffs, where adjacent integers are represented by

complementary bit strings: for example, 7 and 8 encoded as 0111 and 1000. Whitley et al.

(1996) first made the rather simple observation that every Gray code must preserve the

connectivity of the original real-valued functions and that this impacts the number of local

optima that exists under Gray and binary representation. This is illustrated in > Fig. 5.

A consequence of the connectivity of the Gray code representation is that for every

1-dimensional parameter optimization problem, the number of optima in the Gray coded

space must be less than or equal to the number of optima in the original real-valued function.

Binary encodings offer no such guarantee. Binary encodings destroy half of the connectivity

of the original real-valued function; thus, given a large basin of attraction with a globally

competitive local optimum, many of the points near the optimum that are not optima become

new local optima under a binary representation. The theoretical and empirical evidence suggests

(Whitley 1999) that for parameter optimization problems with a bounded number of optima,

Gray codes are better than binary in the sense that Gray codes induce fewer optima.

As for the debate over whether Gray bit encodings are better or worse than real-coded

representations, the evidence is very unclear. If high precision is required, real-valued encod-

ings are usually better. In other cases, a lower precision Gray code outperforms a real-valued

encoding. This also means that an accurate comparison is difficult. The same parameter

optimization problem encoded with high precision real-valued representation versus a low
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Adjacency in 4-bit Hamming space for Gray and standard binary encodings. The binary

representation destroys half of the connectivity of the original function.
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precision bit encoding results in two different search spaces. There are no clear theoretical or

empirical answers to this question.
1.3.2 N-Point and Uniform Recombination

Early mathematical models of genetic algorithms often employed 1-point crossover in con-

junction with binary strings. This bias again seems to be connected to the fact that 1-point

crossover is easy to model mathematically. It is easy to see that 2-point crossover has advantages

over 1-point crossover. In 1-point crossover, bits at opposite ends of the encoding are virtually

always separated by recombination. Thus, there is a bias against inheriting bits from the same

parents if they are at opposite ends of the encoding. However, with 2-point crossover, there is no

longer any bias with regard to the end of the encodings. In 1-point crossover, the ‘‘end’’ of the

encoding is a kind of explicit crossover point. 2-Point crossover treats the encoding as if it were

circular so that the choice of both of the two crossover points are randomized.

Spears and De Jong (1991) argue for a variable N-point recombination. By controlling the

number of recombination points, one can also control the likelihood of the two bits (or real-

values) which are close together on one parent string and which are likely to be inherited

together. With a small number of crossover points, recombination is less disruptive in terms of

assorting which bits are inherited from which parents. With a large number of crossover

points, recombination is more disruptive.

Is disruptive crossover good or bad? The early literature on genetic algorithms generally

argued disruption was bad. On the other hand, disruption is also a source of new exploration.

The most disruptive form of crossover is uniform crossover. Syswerda (1989) was one of the first

application-oriented researchers to champion the use of uniform crossover. When uniform

crossover is applied to a binary encoding, every bit is inherited randomly from one of the two

parents. This means that uniform crossover on bit strings can actually be viewed as a blend of

crossover and mutation. Any bits that are shared by the two parents must be passed along to
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offspring, because no matter which parent the bit comes from, the bit is the same. But if the

two parents differ in a particular bit position, then the bit that is inherited is randomly chosen.

Another way of looking at uniform crossover is that all bit assignments that are shared by the

two parents are automatically inherited. All bits that do not share the same value are set to a

random value, because the inheritance is random. In some sense, the bits that are not set to the

same value in the parents are determined by mutation: each of their values has an equal

probability of being either one or zero.

Does it really matter if bits from a single parent that are close together on the encoding are

inherited together or not? The early dogma of genetic algorithms held that inheritance of bits

from a single parent that are close to each other on the chromosome was very important; very

disruptive recombination, and uniform crossover in particular, should be bad. This in some

sense was the central dogma at the time. This bias had a biological source.

This idea was borrowed in part from the biological concept of coadapted alleles. A widely

held tenant of biological evolution is that distinct fragments of genetic information, or alleles,

that work well together to enhance survivability of an organism should be inherited together.

This view had a very strong influence on Holland’s theory regarding the computational power

of genetic algorithms: a theory based on the concept of hyperplane sampling.
1.4 Schemata and Hyperplanes

In his 1975 book, Adaptation in Natural and Artificial Systems (Holland 1975), Holland

develops the concepts of schemata and hyperplane sampling to explain how a genetic algorithm

can yield a robust search by implicitly sampling subpartitions of a search space. The idea that

genetic algorithms derive their primary searchpower by hyperplane sampling is now controversial.

The set of strings of length L over a binary alphabet correspond to the vertices of an

L-dimensional hypercube. A hyperplane is simply a subset of such vertices. These are defined in

terms of the bit values they share in common. The concept of schemata is used to describe

hyperplanes containing strings that contain particular shared bit patterns. Bits that are shared

are represented in the schema; bits that are not necessarily shared are replaced by the � symbol.

We will say that a bit string matches a particular schema if that bit string can be constructed

from the schema by replacing a � symbol with the appropriate bit value. Thus, a 10-bit schema

such as 1��������� defines a subset that contains half the points in the search space, namely, all

the strings that begin with a 1 bit in the search space. All bit strings that match a particular

schema are contained in the hyperplane partition represented by that particular schema. The

string of all � symbols corresponds to the space itself and is not counted as a partition of the

space. There are 3L�1 possible schemata since there are L positions in the bit string and each

position can be a 0,1, or � symbol and we do not count the string with no zeros or ones. A low

order hyperplane is represented by a schema that has few bits, but many � symbols. The

number of points contained in a hyperplane is 2k where k is the number of � symbols in the

corresponding schema.

The notion of a population-based search is critical to the schema-based theory of the search

power of genetic algorithms. A population of sample points provides information about num-

erous hyperplanes; furthermore, low order hyperplanes should be sampled by numerous points

in the population. Holland introduced the concept of intrinsic or implicit parallelism to describe

a situation where many hyperplanes are sampled when a population of strings is evaluated; it
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has been argued that far more hyperplanes are sampled than the number of strings contained

in the population.

Holland’s theory suggests that schemata representing competing hyperplanes increase or

decrease their representation in the population according to the relative fitness of the strings

that lie in those hyperplane partitions. By doing this, more trials are allocated to regions of the

search space that have been shown to contain above average solutions.
1.5 An Illustration of Hyperplane Sampling

Holland (1975) suggested the following view of hyperplane sampling. In > Fig. 6, a function

over a single variable is plotted as a one-dimensional space. The function is to be maximized.

Assume the encoding uses 8 bits. The hyperplane 0������� spans the first half of the space and
1������� spans the second half of the space. Since the strings in the 0������� partition are on

average better than those in the 1������� partition, we would like the search to be proportion-

ally biased toward this partition. In the middle graph of > Fig. 6, the portion of the space

corresponding to ��1����� is shaded, which also highlights the intersection of 0������� and
��1�����, namely, 0�1����. Finally, in the bottom graph, 0�10����� is highlighted.

One of the assumptions behind the illustration in > Fig. 6 is that the sampling of hyper-

plane partitions is not affected to a significant degree by local minima. At the same time,

increasing the sampling rate of regions of the search space (as represented by hyperplanes) that

are above average compared to other competing regions does not guarantee convergence to a

global optimum. The global optimum could be a relatively isolated peak that might never be

sampled, for example. A small randomly placed peak that is not sampled is basically invisible;

all search algorithms are equally blind to such peaks if there is no information to guide search.

Nevertheless, good solutions that are globally competitive might be found by such a strategy.

This is particularly true if the search space is structured in such a way that pieces of good

solutions can be recombined to find better solutions. The notion that hyperplane sampling is a

useful way to guide search should be viewed as heuristic. In general, even having perfect

knowledge of schema averages up to some fixed order provides little guarantee as to the quality

of the resulting search. This is discussed in detail in > Sect. 2.
1.6 The Schema Theorem

Holland (1975) developed the schema theorem to provide a lower bound on the change in the

sampling rate for a single hyperplane from generation t to generation t+1. By developing

the theorem as a lower bound, Holland was able to make the schema theorem hold indepen-

dently for every schema/hyperplane. At the same time, as a lower bound, the schema theorem

is inexact, and the bounds hold for only one generation into the future. After one generation,

the bounds are no longer guaranteed to hold. This weakness is just one of the many reasons

that the concept of ‘‘hyperplane sampling’’ is controversial.

Let P(H,t) be the proportion of the population that samples a hyperplane H at time t. Let

P(H,t + intermediate) be the proportion of the population that samples hyperplane H after

fitness proportionate selection but before crossover or mutation. Let f (H,t) be the average

fitness of the strings sampling hyperplane H at time t and denote the population average by �f .

Note that �f should also have a time index, but this is often not denoted explicitly. This is
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A function and various partitions of hyperspace. Fitness is scaled to a 0 to 1 range in this

diagram.
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important because the average fitness of the population is not constant. Assuming that

selection is carried out using fitness proportional selection:

PðH ; t þ intermediateÞ ¼ PðH ; tÞ f ðH ; tÞ
�f

:
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Thus, ignoring crossover andmutation, under just selection, the sampling rate of hyperplanes

changes according to their average fitness. Put another way, selection ‘‘focuses’’ the search inwhat

appears to be promising regions where the strings sampled so far have above-average fitness

compared to the remainder of the search space. Some of the controversy related to ‘‘hyperplane

sampling’’ begins immediately with this characterization of selection. The equation accurately

describes the focusing effects of selection; the concern, however, is that the focusing effect of

selection is not limited to the 3L�1 hyperplanes that Holland considered to be relevant.

Selection acts exactly the same way on any arbitrarily chosen subset of the search space.

Thus, it acts in exactly the same way on the 2ð2
LÞ members of the power set over the set of all

strings. While there appears to be nothing special about the sampling rate of hyperplanes

under selection, all subsets of strings are not acted on in the same way by crossover and

mutation. Some subsets of bit patterns corresponding to schemata are more likely to survive

and be inherited in the population under crossover and mutation. For example, the sampling

rate of order 1 hyperplanes is not disrupted by crossover and, in general, lower order hyperplanes

are less affected by crossover than higher order hyperplanes.

Laying this issue aside for a moment, it is possible to write an exact version of the

schema theorem that considers selection, crossover, and mutation. What we want to compute

is P(H,t+1), the proportion of the population that samples hyperplane H at the next genera-

tion as indexed by t+1. First just consider selection and crossover.

PðH ; t þ 1Þ ¼ ð1� pcÞPðH ; tÞ f ðH ; tÞ
�f

þ pc PðH ; tÞ f ðH ; tÞ
�f

ð1� lossesÞ þ gains

� �

where pc is the probability of performing a crossover operation. When crossover does not

occur (which happens with probability (1�pc)), only selection changes the sampling rate.

However, when crossover does occur (with probability pc) then we have to consider how

crossover and mutation can destroy hyperplane samples (denoted by losses) and how cross-

over can create new samples of hyperplanes (denoted by gains).

For example, assume we are interested in the schema 11�����. If a string such as 1110101

were recombined between the first two bits with a string such as 1000000 or 0100000, no

disruption would occur in hyperplane 11����� since one of the offspring would still reside in

this partition. Also, if 1000000 and 0100000 were recombined exactly between the first and

second bit, a new independent offspring would sample 11�����; this is the source of gains that
is referred to in the above calculation.

We will return to an exact computation, but, for now, instead of computing losses and

gains, what if we compute a bound on them instead? To simplify things, gains are ignored and

the conservative assumption is made that crossover falling in the significant portion of a

schema always leads to disruption. Thus, we now have a bound on the sampling rate of

schemata rather than an exact characterization:

PðH ; t þ 1Þ � ð1� pcÞPðH ; tÞ f ðH ; tÞ
�f

þ pc PðH ; tÞ f ðH ; tÞ
�f

ð1� disruptionsÞ
� �

:

The defining length of a schema is based on the distance between the first and last bits in the

schema with value either 0 or 1 (i.e., not a � symbol). Given that each position in a schema can

be 0, 1, or �, scanning left to right, if Ix is the index of the position of the rightmost occurrence

of either a 0 or a 1 and Iy is the index of the leftmost occurrence of either a 0 or a 1, then the

defining length is merely Ix�Iy . The defining length of a schema representing a hyperplane H
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is denoted here by D(H). If 1-point is used, then the defining length can be used to also

calculate a bound on disruption:

DðHÞ
L � 1

ð1� PðH ; tÞÞ

and including this term (and applying simple algebra) yields:

PðH ; t þ 1Þ � PðH ; tÞ f ðH ; tÞ
�f

1� pc
DðHÞ
L � 1

ð1� PðH ; tÞÞ
� �

We now have a useful version of the schema theorem (although it does not yet consider

mutation). This version assumes that selection for the first parent string is fitness-based and

the second parent is chosen randomly. But typically both parents are chosen based on fitness.

This can be added to the schema theorem by merely indicating the alternative parent chosen

from the intermediate population after selection (Schaffer 1987).

PðH ; t þ 1Þ � PðH ; tÞ f ðH ; tÞ
�f

1� pc
DðHÞ
L � 1

1� PðH ; tÞ f ðH ; tÞ
�f

� �� �

Finally, mutation is included. Let o(H) be a function that returns the order of the hyper-

plane H. The order of H exactly corresponds to a count of the number of bits in the schema

representing H that have value 0 or 1. Let the mutation probability be pm where mutation

always flips the bit. Thus, the probability that mutation does not affect the schema represent-

ing H is (1�pm)
o(H). This leads to the following expression of the schema theorem.

PðH ; t þ 1Þ � PðH ; tÞ f ðH ; tÞ
�f

1� pc
DðHÞ
L � 1

1� PðH ; tÞ f ðH ; tÞ
�f

� �� �
ð1� pmÞoðHÞ

2 Interpretations and Criticisms of the Schema Theorem

For many years, the schema theorem was central to the theory of how genetic algorithms are

able to effectively find good solutions in complex search spaces. Groups of bits that are close

together on the encoding are less likely to be disrupted by crossover. Therefore, if groups of

bits that are close together define a (hyperplane) subregion of the subspace that contains good

solutions, selection should increase the representation of these bits in the population, and

crossover and mutation should not ‘‘interfere’’ with selection since the probability of disrup-

tion should be low. In effect, such groups of bits act as coadapted sets of alleles; these are

so important that they have been termed the ‘‘building blocks’’ of genetic search. As different

complexes of coadaptive alleles (or bits) emerge in a population, these building blocks are put

together by recombination to create even better individuals. The most aggressive interpreta-

tion of the schema theorem is that a genetic algorithm would allocate nearly optimal trials to

sample different partitions of the search space in order to achieve a near-optimal global search

strategy.

There are many different criticisms of the schema theorem. The schema theorem is not

incorrect, but arguments have been made that go beyond what is actually proven by the schema

theorem. First of all, the schema theorem is an inequality, and it only applies to one generation

into the future. So while the bound provided by the schema theorem absolutely holds for one
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generation into the future, it provides no guarantees about how strings or hyperplanes will be

sampled in future generations.

It is true that the schema theorem does hold true independently for all possible hyper-

planes for one generation. However, over multiple generations, the interactions between

different subpartitions of the search space (as represented by hyperplanes and schemata) are

extremely important. For example, in some search space of size 28 suppose that the schemata

11������ and �00����� are both ‘‘above average’’ in the current generation of a population in

some run of a genetic algorithm. Assume the schema theorem indicates that both will have

increasing representation in the next generation. But trials allocated to schemata 11������ and
�00����� are in conflict because they disagree about the value of the second bit. Over multiple

generations, both regions cannot receive increasing trials. These schema are inconsistent about

what bit value is to be preferred in the second position. The schema theorem does not predict

how such inconsistencies will be sorted out.

Whitley et al. (1995b) and Heckendorn et al. (1996) have shown that problems can have

varying degrees of consistency in terms of which hyperplanes appear to be promising. For

problems that display higher consistency, the ‘‘most fit’’ schemata tend to agree about what the

values of particular bits should be. In a problem where there is a great deal of consistency,

genetic search is usually effective. But other problems can be highly inconsistent, so that the

most fit individuals (and sets of individuals as represented by schemata) display a large degree

of conflict in terms of what bit values are preferred in different positions. It seems reasonable to

assume that a genetic algorithm should do better on problems that display greater consistency,

since inconsistency means that the search is being guided by conflicting information (this is

very much related to the notion of ‘‘deception’’ but the concept of deception is controversial

and much misunderstood).

One criticism of pragmatic significance is that users of the standard or canonical genetic

algorithm often use very small populations. The number of positions containing 0 or 1 is

referred to as the order of a schema. Thus, ��1����� is an order 1 schema, ���0���1 is an order

2 schema, and �1��0�1� is an order 3 schema. Many users employ a population size of 100 or

smaller. In a population of size 100, we would expect 50 samples of any order 1 schema,

25 samples of any order 2 schema, 12.5 samples of any order 3 schema, and exponentially

decaying numbers of samples to higher order schema. Thus, if we suppose that the genetic

algorithm is implicitly attempting to allocate trials to different regions of the search space based

on schema averages, a small population (e.g., 100) is inadequate unless we only care about very

low order schemata. Therefore, even if hyperplane sampling is a robust form of heuristic search,

the user destroys this potential by using small population sizes. Small populations require that the

search rely more on hill-climbing. But in some cases, hill-climbing is very productive.

What if we had perfect schema information? What if we could compute schema information

exactly in polynomial time? Rana et al. (1998) have shown that schema information up to any

fixed order can be computed in polynomial time for some nondeterministic polynomial time

(NP)-Complete problems. This includes Maximum Satisfiability (MAXSAT) problems and

NK-Landscapes. This is very surprising. One theoretical consequence of this is captured by the

following theorem:

" If P 6¼NP then, in the general case, exact knowledge of the static schema fitness averages up to

some fixed order cannot provide information that can be used to guarantee finding a global

optimum, or even an above average solution, in polynomial time. (For proofs, see Heckendorn

et al. 1999a,b).
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This seems like a very negative result. But it is dangerous to overinterpret either positive

or negative results. In practice, random MAXSAT problems are characterized by highly

inconsistent schema information, so there is really little or no information that can be

exploited to guide the search (Heckendorn et al. 1999b). And in practice, genetic algorithms

perform very poorly on MAXSAT problems (Rana et al. 1998) unless they are aided by

additional hill-climbing techniques. On the other hand, genetic algorithms are known to

work well in many other domains. Again, the notion of using schema information to guide

search is heuristic.

There are many other criticisms of the schema theorem. In the early literature, too much

was claimed about schema and hyperplane processing that was not backed up by solid

proofs. It is no longer accepted that genetic algorithms allocate trials in an ‘‘optimal way’’

and it is certainly not the case that the genetic algorithm is guaranteed to yield optimal or

even near-optimal solutions. In fact, there are good counterexamples to these claims. On

the other hand, some researchers have attacked the entire notion of schema processing as

invalid or false. Yet, the schema theorem itself is clearly a valid bound; and, experimentally,

in problems where there are clearly defined regions that are above average, the genetic

algorithm does quickly allocate more trials to such regions as long as these regions are

relatively large.

There is still a great deal of work to be done to understand the role that hyperplane

sampling plays in genetic search. Historically, the role of hyperplane sampling has been

exaggerated, and the role played by hill-climbing has been underestimated. At the same

time, many of the empirical results that call into question how genetic algorithms really

work have been carried out on a highly biased sample of test problems. These test problems

tend to be separable. A separable optimization problem is one in which the parameters are

independent in terms of interaction. These problems are inherently easy to solve. For example,

using a fixed precision (e.g., 32 bits per parameter), a separable problem can be solved exactly

in a time that is a polynomial in the number of parameters by searching each parameter

separately. On such problems, hill-climbing is a highly effective search strategy. Perhaps

because of these simple test problems, the effectiveness (and speed) of simple hill-climbing

has been overestimated.

In the next section, exact models of Holland’s simple genetic algorithm will be introduced.
3 Infinite Population Models of Simple Genetic Algorithms

Goldberg (1987, 1989b) and Bridges and Goldberg (1987) were the first to model critical

details of how the genetic algorithm processes infinitely large populations under recombina-

tion. These models were independently derived in 1990 by Vose and Whitley in a more

precise and generalized form. Vose and Liepins (1991) and Vose (1993) extended and generali-

zed this model while Whitley et al. (1992) and Whitley (1993) introduced another version

of the infinite population model that connects the work of Goldberg and Vose. In this section,

the Vose model is reviewed and it is shown how the effects of various operators fit into

this model.

The models presented here all use fitness proportionate reproduction because it is simpler

to model mathematically. Vose (1999) also presents models for rank-based selection.

The vector pt 2  is such that the kth component of the vector is equal to the proportional

representation of string k at generation t. It is assumed that n ¼ 2L is the number of points
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in the search space defined over strings of length L and that the vector p is indexed 0 to n�1.

The vector st 2  represents the tth generation of the genetic algorithm after selection and

the ith component of st is the proportional representation of string i in the population after

selection, but before any operators (e.g., recombination, mutation, and local search) are applied.

Likewise, pti represents the proportional representation of string i at generation t before

selection occurs.

The function ri, j(k) yields the probability that string k results from the recombination

of strings i and j. (For now, assume that r only yields the results for recombination; the effect of

other operators could also be included in r.) Now, using E to denote expectation,

Efptþ1
k g ¼

X
i;j

sti s
t
j r i;jðkÞ ð1Þ

To begin the construction of a general model, we first consider how to calculate the

proportional representation of string 0 (i.e., the string composed of all zeros) at generation

t+1; in other words, we compute ptþ1
0 . A mixing matrix M is constructed where the (i, j)th

entry mi, j ¼ ri, j(0). Here M is built by assuming that each recombination generates a

single offspring. The calculation of the change in representation for string k ¼ 0 is now

given by

Efptþ1
0 g ¼

X
i;j

sti s
t
j r i;jð0Þ ¼ sTMs ð2Þ

where T denotes transpose. Note that this computation gives the expected representation of

a single string, 0, in the next genetic population.

It is simple to see that the exact model for the infinite population genetic algorithm has the

same structure as the model on which the schema theorem is based. For example, if we accept

that the string of all zeros (denoted here simply by the integer 0) is a special case of a

hyperplane, then when H ¼ 0, the following equivalence holds:

sTMs ¼ PðH ; t þ 1Þ ¼ ð1� pcÞPðH ; tÞ f ðH ; tÞ
�f

þ pc PðH ; tÞ f ðH ; tÞ
�f

ð1� lossesÞ þ gains

� � ð3Þ

The information about losses and gains is contained in the matrix M. To keep matters

simple, assume the probability of crossover is pc¼1. Then, in the first row and column of

matrix M, the calculation is really the probability of retaining a copy of the string, which

is (1� losses) (except at the intersection of the first row and column); the probabilities

elsewhere in M are the gains in the above equation. To include the probability of crossover

pc in the model one must include the crossover probability in the construction of the

M matrix.

The point of > Eq. 3 is that the exact Vose/Liepins model and the model on which the

schema theorem is based is really the same. Whitley (1993) presents the calculations of losses

and gains so as to make the congruent aspects of the infinite population model and the schema

theorem more obvious.

The equations that have been looked at so far tell us how to compute the expected

representation of one point in the search space one generation into the future. The key is to

generalize this calculation to all points in the search space. Vose and Liepins formalized the
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notion that bitwise exclusive-or can be used to access various probabilities from the

recombination function r. Specifically,

ri;jðkÞ ¼ ri;jðk � 0Þ ¼ ri�k;j�kð0Þ: ð4Þ
This implies that the mixing matrixM, which was defined such that entrymi, j¼ ri, j(0), can

provide mixing information for any string k just by changing howM is accessed. By reorganiz-

ing the components of the vector, s, the mixing matrix M can yield information about the

probability ri, j(k). A permutation function, s, is defined as follows:

sjhs0; . . . ; sn�1iT ¼ hsj�0; . . . ; sj�ðn�1ÞiT ð5Þ
where the vectors are treated as columns and n is the size of the search space. The computation

ðsq st ÞTMðsq stÞ ¼ ptþ1
q ð6Þ

thus reorganizes s with respect to string q and produces the expected representation of string

q at generation tþ1. A general operator M can now be defined over s, which remaps sTMs to

cover all strings in the search space.

MðsÞ ¼ hðs0 sÞTMðs0 sÞ; . . . ; ðsn�1 sÞTMðsn�1 sÞiT ð7Þ
This model has not yet addressed how to generate the vector st given pt. A fitness matrix

F is defined such that fitness information is stored along the diagonal; the (i, i)th element is

given by f (i) where f is the fitness function. Following Vose and Wright (1997),

st ¼ Fpt=1TFpt ð8Þ
since Fpt ¼ h f0pt0; f1pt1; . . . ; fn�1; p

t
n�1i and the population average is given by 1TFpt.

Vose (1999) refers to this complete model as the G function. Given any population

distribution p, GðpÞ can be interpreted in two ways. On one hand, if the population is infinitely
large, then GðpÞ is the exact distribution of the next population. On the other hand, given any

finite population p, if strings in the next population are chosen one at a time, then GðpÞ also
defines a vector such that element i is chosen for the next generation with probability GðpÞi.
This is because GðpÞ defines the exact sampling distribution for the next generation. This is

very useful when constructing finite Markov models of the simple genetic algorithm.

Next, we look at how mutation can be added to this model in a modular fashion. This

could be built directly into the construction of the M matrix. But looking at mutation as an

additional process is instructive.

Recall that M is the mixing matrix, which we initially defined to cover only crossover.

Define Q as the mutation matrix. Assuming mutation is independently applied to each bit

with the same probability, Q can be constructed by defining a mutation vector G such that

component Gi is the probability of mutating string i and producing string 0. The vector G is

the first column of the mutation matrix and in general G can be reordered to yield column j of

the matrix by reordering such that element qi, j ¼ Gi� j.

Having defined a mutation matrix, mutation can now be applied after recombination in

the following fashion:

ptþ1;m ¼ ðptþ1ÞTQ;

where pt+1,m is just the p vector at time t+1 after mutation has occurred. Mutation also can be

done before crossover; the effect of mutation on the vector s immediately after selection

produces the following change: sTQ, or equivalently, QT s.
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Now we drop the pt+1,m notation and assume that the original pt+1 vector is defined to

include mutation, such that

p0
tþ1 ¼ ðQT sÞTMðQT sÞ

p0
tþ1 ¼ sT ðQMQT Þs

and we can therefore define a new matrix M2 such that

p0
tþ1 ¼ sTM2s where M2 ¼ ðQMQT Þ

As long as the mutation rate is independently applied to each bit in the string, it makes no

difference whether mutation is applied before or after recombination. Also, this view of

mutation makes it clear how the general mixing matrix can be built by combining matrices

for mutation and crossover.
4 The Markov Model for Finite Populations

Nix and Vose (1992) show how to structure the finite population for a simple genetic

algorithm. Briefly, the Markov model is an N �N transition matrix Q, where N is the number

of finite populations of K strings and Qi, j is the probability that the k th generation will be

population Pj , given that the (k�1)th population is Pi .

Let

hZ0;j ;Z1;j ;Z2;j ; . . . ;Zr�1;ji
represent a population, where Zx, j represents the number of copies of string x in population j,

and r¼2L. The population is built incrementally. The number of ways to place the Z0, j copies

of string 0 in the population is:

K

Z0;j

� �

The number of ways Z1, j strings can be placed in the population is:

K � Z0;j

Z1;j

� �

Continuing for all strings,

K

Z0;j

� �
K � Z0;j

Z1;j

� �
K � Z 0;j � Z1;j

Z2;j

� �
� � � K � Z 0;j � Z1;j � � � � � Zr�2;j

Zr�1;j

� �

which yields

K !

ðK � Z 0;jÞ!Z 0;j !

ðK � Z 0;jÞ!
ðK � Z 0;j � Z1;jÞ!Z1;j !

ðK � Z 0;j � Z1;jÞ!
ðK � Z 0;j � Z1;j � Z2;jÞ!Z2;j !

� � � ðK � Z 0;j � Z1;j � � � � � Zr�2;jÞ!
Zr�1;j !

which in turn reduces to

K !

Z 0;j !Z1;j !Z2;j ! . . .Zr�1;j !
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Let Ci(y) be the probability of generating string y from the finite population Pi. Then

Qi;j ¼ K !

Z 0;j !Z1;j !Z2;j ! . . .Zr�1;j !

Yr�1

y¼0

CiðyÞZy;j

and

Qi;j ¼ K !
Yr�1

y¼0

CiðyÞZy;j

Zy;j !

So, how do we compute Ci(y)? Note that the finite population Pi can be described by a vector p.

Also note that the sampling distribution from which Pj is constructed is given by the infinite

population model GðpÞ (Vose 1999). Thus, replacing Ci(y) by GðpÞy yields

Qi;j ¼ K !
Yr�1

y¼0

ðGðpÞyÞZy;j

Zy;j !

5 Theory Versus Practice

As the use of evolutionary algorithms became more widespread, a number of alternative

genetic algorithm implementations have also come into common use. Some of the evolution-

ary algorithms in common use are based on evolution strategies. Select algorithms closest to

traditional genetic algorithms will be reviewed.

The widespread use of alternative forms of genetic algorithms also means there is a

fundamental tension between (at least some part of) the theory community and the applica-

tion community. There are beautiful mathematical models and some quite interesting results

for Holland’s original genetic algorithm. But there are few results for the alternative forms of

genetic algorithms that are used by many practitioners.
5.1 Steady-State and Island Model Genetic Algorithms

Genitor (Whitley and Kauth 1988; Whitley 1989) was the first of what was later termed ‘‘steady-

state’’ genetic algorithms by Syswerda (1989). The name ‘‘steady-state’’ is somewhat unfortu-

nate and the term ‘‘monotonic’’ genetic algorithm has been suggested by Alden Wright: these

algorithms keep the best solutions found so far, and thus the population average monotoni-

cally improves over time. The distinction between steady-state genetic algorithms and regular

generational genetic algorithms was also foreshadowed by the evolution strategy community.

The Genitor algorithm, for example, can also be seen as a variant of a (m+1)-Evolution
strategy in terms of its selection mechanism. In contrast, Holland’s generational genetic

algorithm is an example of a (m,l)-Evolution Strategy where m ¼ l. The genetic algorithms

community also used ‘‘monotonic’’ selection for classifier systems in the early 1980s.

Reproduction occurs one individual at a time in the Genitor algorithm. Two parents are

selected for reproduction and produce an offspring that is immediately placed back into the

population. The worst individual in the population is deleted. Ignoring the worst member of

the population, the remainder of the population monotonically improves.
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Another major difference between Genitor and other forms of genetic algorithms is that

fitness is assigned according to rank rather than by fitness proportionate reproduction. In

the original Genitor algorithm, the population is maintained in a sorted data structure.

Fitness is assigned according to the position of the individual in the sorted population. This

also allows one to prevent duplicates from being introduced into the population.

This selection schema also means that the best N�1 solutions are always preserved in a

population of size N. Goldberg and Deb (1991) have shown that by replacing the worst

member of the population, Genitor generates much higher selective pressure than the canoni-

cal genetic algorithm.

Steady-state genetic algorithms retain the flavor of a traditional genetic algorithm. But the

differences are significant. Besides the additional selective pressure, keeping the best strings

seen so far means that the resulting search is more focused. This can be good or bad. The

resulting search has a strong hill-climbing flavor, and the algorithm will continue to perturb

the (best) strings in the population by crossover and mutation looking for an improved

solution. If a population contains adequate building blocks to reach a solution in reasonable

time, this focus can pay off. However, if the population does not contain adequate building

blocks to generate further improvements, the search will be stuck. A traditional genetic algo-

rithm or a (m,l)-evolution strategy allows a certain degree of drift and has the ability to

continue moving in the space of possible populations. Thus, the greedy focus of a steady-state

genetic algorithm sometimes pays off, and sometimes it does not.

To combat stagnation, it is sometimes necessary to use larger populations with steady-state

genetic algorithms, or to use more aggressive mutation. Generally, larger populations result in

slower progress, but improved solutions in the long run. Another way to combat stagnation is

to use an island model genetic algorithm. Steady-state genetic algorithms seem to work better in

conjunction with the island model paradigm than generational genetic algorithms. This may

be due to the fact that steady-state genetic algorithms are more prone to stagnation.

Instead of using one large population, the population can be broken into several smaller

populations. Thus, instead of running one population of size 1,000, one might run five

populations of size 200. While the smaller population will tend to converge faster, diversity

can be maintained by allowing migration between the subpopulations. For example, a small

number of individuals (e.g., 1–5) might migrate from one subpopulation to another every

5–10 generations. It is important that migration be limited in size and frequency, otherwise the

set of subpopulation becomes homogeneous too quickly (Starkweather et al. 1990).

In practice, steady-state genetic algorithms such as Genitor are often better optimizers

than the canonical generational genetic algorithm. This has especially been true for scheduling

problems such as the traveling salesman problem.

Current implementations of steady-state genetic algorithms are likely to use tournament

selection instead of explicit rank-based selection. The use of tournament selection makes it

unnecessary to keep the population in sorted order for the purposes of selection. But the

population must still be sorted to keep track of the worst member of the population over time.

Of course, once the population is sorted, inserting a new offspring takesO(N) time, whereN is

the population size. In practice, poor offspring that are not inserted incur no insertion cost,

and by starting from the bottom of the population, the insertion cost is proportional to the

fitness of the offspring.

Some researchers have experimented with other ways of deciding which individuals should

be replaced after new offspring are generated. Tournament selection can be used in reverse to

decide if a new offspring should be allowed into the population and which member of the
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current population should be replaced. When tournament selection is used in reverse, the

tournament sizes are typically larger. One can also use an aspiration level, so that new offspring

are not allowed to compete for entry into the population unless this aspiration level is met.
5.2 CHC

The CHC (Cross generational elitist selection, Heterogeneous recombination and Cataclys-

mic mutation) (Eshelman 1991; Eshelman and Schaffer 1991) algorithm was created by

Larry Eshelman with the explicit idea of borrowing from both the genetic algorithm and the

evolution strategy community. CHC explicitly borrows the (m+l) strategy of evolution strate-

gies. After recombination, the N best unique individuals are drawn from the parent popula-

tion and offspring population to create the next generation. This also implies that duplicates are

removed from the population. This form of selection is referred to as truncation selection.

From the genetic algorithm community, CHC builds on the idea that recombination should be

the dominant search operator. A bit representation is typically used for parameter optimiza-

tion problems. In fact, CHC goes so far as to use only recombination in the main search

algorithm. However, it restarts the search where progress is no longer being made by employ-

ing what Eshelman refers to as cataclysmic mutation.

Since truncation selection is used, parents can be paired randomly for recombination.

However, the CHC algorithm also employs a heterogeneous recombination restriction as a

method of ‘‘incest prevention’’ (Eshelman 1991). This is accomplished by only mating those

string pairs which differ from each other by some number of bits; Eshelman refers to this as

a mating threshold. The initial mating threshold is set at L ∕4, where L is the length of the string.
If a generation occurs, in which no offspring are inserted into the new population, then the

threshold is reduced by 1.

The crossover operator in CHC performs uniform crossover; bits are randomly and

independently exchanged, but exactly half of the bits that differ are swapped. This operator,

called HUX (Half Uniform Crossover) ensures that offspring are equidistant between the two

parents. This serves as a diversity preserving mechanism. An offspring that is closer to a parent

in terms of Hamming distance will have a tendency to be more similar to that parent in terms

of evaluation. Even if this tendency is weak, it can contribute to loss of diversity. If the offspring and

parent that are closest in Hamming space tend to be selected together in the next generation,

diversity is reduced. By requiring that the offspring be exactly halfway in between the two parents

in terms of Hamming distance, the crossover operator attempts to slow down loss of genetic

diversity. One could also argue that the HUX operator attempts to maximize the distribution

of new samples in new regions of the search space by placing the offspring as far as possible

from the two parents while still retaining the bits which the two parents share in common.

No mutation is applied during the regular search phase of the CHC algorithm. When no

offspring can be inserted into the population of a succeeding generation and themating threshold

has reached a value of 0, CHC infuses new diversity into the population via a form of restart.

Cataclysmic mutation uses the best individual in the population as a template to re-initialize the

population. The new population includes one copy of the template string; the remainder of the

population is generated by mutating some percentage of bits (e.g., 35%) in the template string.

Bringing this all together, CHC stands for cross generational elitist selection, heterogeneous

recombination (by incest prevention) and cataclysmic mutation, which is used to restart the

search when the population starts to converge.
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The rationale behind CHC is to have a very aggressive search by using truncation selection

which guarantees the survival of the best strings, but to offset the aggressiveness of the search

by using highly disruptive uniform crossover. Because of these mechanisms, CHC is able to use

a relatively small population size. It generally works well with a population size of 50.

Eshelman and Schaffer have reported quite good results using CHC on a wide variety of test

problems (Eshelman 1991; Eshelman and Schaffer 1991). Other experiments (c.f. Mathias and

Whitley 1994; Whitley et al. 1995) have shown that it is one of the most effective evolutionary

algorithms for parameter optimization on many common test problems. Given the small

population size and the operators, it seems unreasonable to think of an algorithm such as

CHC as a ‘‘hyperplane sampling’’ genetic algorithm. Rather, it can be viewed as an aggressive

population-based hill-climber that also uses restarts to quickly explore new regions of the

search space. This is also why the small population size is important to the performance of

CHC. If the population size is increased, there is some additional potential for increased

performance before a restart is triggered. But as with steady-state genetic algorithms, an increase

in population size generally results in a small increase in performance after a significant increase

in time to convergence/stagnation. The superior performance of CHC using a population of 50

suggests that more restarts have a better payoff than increasing the population size.
6 Where Genetic Algorithms Fail

Do genetic algorithms have a particular mode of failure? There are probably various modes of

failure, some of which are common to many search algorithms. If functions are too random, too

noisy, or fundamentally unstructured, then search is inherently difficult. ‘‘Deception’’ in the form

of misleading hyperplane samples is also a mode of failure that has been studied (Whitley 1991;

Goldberg 1989a; Grefenstette 1993).

There is another fundamental mode of failure such that there exists a well-defined set of

problems where the performance of genetic algorithms is likely to be poor. Experiments show

that various genetic algorithms and local search methods are more or less blind to ‘‘ridges’’ in

the search space of parameter optimization problems. In two dimensions, the ridge problem is

essentially this: a method that searches parallel to the x and y axes cannot detect improving

moves that are oriented at a 45	 angle to these axes.

A simplified representation of a ridge problem appears in > Fig. 7. Changing one variable

at a time will move local search to the diagonal. However, looking in either the x-dimension or

the y-dimension, every point along the diagonal appears to be a local optimum. There is

actually gradient information if one looks along the diagonal; however, this requires either

(1) changing both variables at once or (2) transforming the coordinate system of the search

space so as to ‘‘expose’’ the gradient information.

The ridge problem is relatively well documented in the mathematical literature on derivative

free minimization algorithms (Rosenbrock 1960; Brent 1973). However, until recently, there

has been little discussion of this problem in the evolutionary algorithm literature.

Let O ¼ f0; 1; . . . ; 2‘ � 1g be the search space which can be mapped onto a hypercube.

Elements x ,z 2 O are neighbors when (x ,z) is an edge in the hypercube. Bit climbing search

algorithms terminate at a local optimum, denoted by x 2 O, such that none of the points in the

neighborhood N(x) improve upon x when evaluated by some objective function. Of course, the

neighborhood structure of a problem depends upon the coding scheme used. Gray codes are often

used for bit representations because, by definition, adjacent integers are adjacent neighbors.



. Fig. 7

Local search moves only in the horizontal and vertical directions. It therefore ‘‘finds’’ the

diagonal, but gets stuck there. Every point on the diagonal is locally optimal. Local search is

blind to the fact that there is gradient information moving along the diagonal.
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Suppose the objective function is defined on the unit interval 0 � x < 1. To optimize this

function, the interval is discretized by selecting n points. The natural encoding is then a map

from O to the graph that has edges between points x and x+1 for all x ¼ 0; 1; . . . ; n� 2.

Under a Gray encoding, adjacent integers have bit representations that are neighbors at

Hamming distance 1 (e.g., 3 = 010, 4 = 110). Thus a Gray encoding has the following nice

property:

" A function f : O !  cannot have more local optima under a Gray encoding than it does under

the natural encoding.

A proof first appears in Rana and Whitley (1997); this theorem states that when using a

Gray code, local optima of the objective function considered as a function on the unit interval

can be destroyed, but no new local optima can be created (> Fig. 8).

But are there unimodal functions where the natural encoding is multimodal? If the function

is one dimensional, the answer is no. However, if the function is not one dimensional, the answer

is yes. False local optima are induced on ridges since there are points along the ridge where

improving moves become invisible to search.

This limitation is not unique to local search, and it is not absolute for genetic algorithms.

Early population sampling can potentially allow the search to avoid being trapped by ‘‘ridges.’’

It is also well known that genetic algorithms quickly lose diversity and then the search must use

mutation or otherwise random jumps to move along the ridge. Any method that tends to

search one dimension at a time (or to find improvements by changing one dimension at a

time via mutation) has the same limitation, including local search and simple ‘‘line search’’

methods.

Salomon (1960) showed that most benchmarks become much more difficult when the

problems are rotated. Searching a simple two-dimensional elliptical bowl is optimally solved

by one iteration of line search when the ellipse is oriented with the x and y axis. However, when

the space is rotated 45	, the bowl becomes a ridge and the search problem is more difficult for

many search algorithms.



. Fig. 8

The two leftmost images show how local search moves on a 2D ridge using different step sizes.

Smaller step sizes results in more progress on the ridge, but more steps to get there. The

rightmost figure shows points at which local search becomes stuck on a real-world application.

664 21 Genetic Algorithms — A Survey of Models and Methods
Modern evolution strategies are invariant under rotation. In particular, the covariance

matrix adaptation (CMA) evolution strategy uses a form of principal component analysis

(PCA) to rotate the search space as additional information is obtained about the local

landscape (Hansen 2006). Efforts are currently underway to generalize the concept of a

rotationally invariant representation that could be used by different search algorithms (Hansen

2008). Until this work advances, current versions of genetic algorithms still have problems

with some ridge structures. Crossover operators such as interval crossover (Schaffer and

Eshelman 1993) attempt to deal with the ridge problem but are not as powerful as CMA.
7 An Example of Genetic Algorithms for Resource Scheduling

Resource scheduling problems involve the allocation of time and/or a resource to a finite set of

requests. When demand for a resource becomes greater than the supply, conflicting requests

require some form of arbitration and the scheduling problem can be posed as an optimization

problem over a combinatorial domain. Thus, these problems are combinatorial in nature and

are quite distinct from parameter optimization problems. Indeed, genetic algorithms have

been very successful on scheduling applications of this nature.

A schedule may attempt to maximize the total number of requests that are filled, or the

aggregate value (or priority) of requests filled, or to optimize some other metric of resource

utilization. In some cases, a request needs to be assigned a time window on some appropriate

resource with suitable capabilities and capacity. In other cases, the request does not correspond

to a particular time window, but rather just a quantity of an oversubscribed resource.

One example of resource scheduling is the scheduling of flight simulators (Syswerda 1991).

Assume a company has three flight simulators, and 100 people who want to use them. In this

case, the simulators are a limited resource. A user might request to use a simulator from

9:00 a.m. to 10:00 a.m. on Tuesday. But if six users want a simulator at this time, then not all

requests can be fulfilled. Some usersmay only be able to utilize the simulators at certain times or

on certain days. How does one satisfy as many requests as possible? Or which requests are most

important to satisfy? Does it make sense to schedule a user for less time than they requested?
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One way to attempt to generate an approximate solution to this problem is to have users

indicate a number of prioritized choices. If a user’s first choice cannot be filled, then perhaps

their second choice of times is available. A hypothetical evaluation function is to have a schedule

evaluator that awards ten points for every user that gets their first choice, and five points for

those that get their second choice and three points for those that get their third choice, one point

for those scheduled (but not in their first, second, or third prioritized requests) and�10 points

for user requests that cannot be scheduled.

Is this the best evaluation function for this problem? This raises an interesting issue. In

real-world applications, sometimes the evaluation function is not strictly determined and

developers must work with users to define a reasonable evaluation function. Sometimes what

appears to be an ‘‘obvious’’ evaluation function turns out to be the wrong evaluation function.

Reasonably good solutions to a resource scheduling problem can usually be obtained by

using a greedy scheduler which allocates to each request the best available resource at the best

available time on a first-come, first-served basis.

The problemwith a simple greedy strategy is that requests are not independent – when one

request is assigned a slot on a resource, that resource is no longer available (or less available).

Thus, placing a single request at its optimal position may preclude the optimal placement of

multiple other requests. This is the standard problem with all greedy methods.

A significant improvement on a greedy first-come, first-served strategy is to explore the

space of possible permutations of the requests where the permutation defines a priority ordering

of the requests to be placed in the schedule. A genetic algorithm can then be applied to search the

space of permutations. The fitness function is some measure of cost or quality of the resulting

schedule.

The use of a permutation-based representation also requires the construction of a ‘‘sched-

ule builder’’ which maps the permutation of requests to an actual schedule. In a sense, the

schedule builder is also a greedy scheduling algorithm. Greedy scheduling on its own can be a

relatively good strategy. However, by exploring the space of different permutations, one changes

the order in which requests get access to resources; this can also be thought of as changing the

order in which requests arrive. Thus, exploring the space of permutations provides the oppor-

tunity to improve on the simple greedy scheduler.

The separation of ‘‘permutation space’’ and ‘‘schedule space’’ allows for the use of two

levels of optimization. At a lower level, a greedy scheduler converts each permutation into a

schedule; at a higher level, a genetic algorithm is used to search the space of permutations. This

approach thus creates a strong separation between the problem representation and the actual

details of the particular scheduling application. This allows the use of relatively generic

‘‘genetic recombination’’ operators or other local search operators. A more direct representa-

tion of the scheduling problem would require search operators that are customized to the

application. When using a permutation-based representation, this customization is hidden

inside the schedule builder. Changes from one application to another only require that a new

schedule builder be constructed for that particular application. This makes the use of

permutation-based representations rather flexible.

Whitley et al. (1989) first used a strict permutation-based representation in conjunction

with genetic algorithms for real-world applications. However, Davis (1985b) had previously

used ‘‘an intermediary, encoded representation of schedules that is amenable to crossover

operations, while employing a decoder that always yields legal solutions to the problem.’’ This

is also a strategy later adopted by Syswerda (1991) and Syswerda and Palmucci (1991), which

he enhanced by refining the set of available recombination operators.



666 21 Genetic Algorithms — A Survey of Models and Methods
Typically, simple genetic algorithms encode solutions using bit-strings, which enable the

use of ‘‘standard’’ crossover operators such as 1-point and 2-point (Goldberg 1989b). How-

ever, when solutions for scheduling problems are encoded as permutations, a special crossover

operator is required to ensure that the recombination of two parent permutations results in a

child that (1) inherits good characteristics of both parents and (2) is still a legal permutation.

Numerous crossover operators have been proposed for permutations representing scheduling

problems. For instance, Syswerda’s (1991) order and position crossover are methods for pro-

ducing legal permutations that inherit various ordering or positional elements from parents.

Syswerda’s order crossover and position crossover differ from other permutation crossover

operators such as Goldberg’s Partially Mapped Crossover (PMX) operator (Goldberg and

Lingle 1985) or Davis’ order crossover (Davis 1985a) in that no contiguous block is directly

passed to the offspring. Instead, several elements are randomly selected by absolute position.

These operators are largely used for scheduling applications (e.g., Syswerda 1991; Watson et al.

1999; Syswerda and Palmucci 1991 for Syswerda’s operator) and are distinct from the

permutation recombination operators that have been developed for the traveling salesman

problem (Nagata and Kobayashi 1997; Whitley et al. 1989). Operators that work well for

scheduling applications do not work well for the traveling salesman problem, and operators

that work well for the traveling salesman problem do not work well for scheduling.

Syswerda’s order crossover operator can be seen as a generalization of Davis’ order crossover

(Davis 1991) that also borrows from the concept of uniform crossover for bit strings.

Syswerda’s order crossover operator starts by selecting K uniform-random positions in

Parent 2. The corresponding elements from Parent 2 are then located in Parent 1 and

reordered, so that they appear in the same relative order as they appear in Parent 2. Elements

in Parent 1 that do not correspond to selected elements in Parent 2 are passed directly to the

offspring.

Parent 1: ‘‘A B C D E F G00

Parent 2: ‘‘C F E B A D G00

Selected Elements : � � �
The selected elements in Parent 2 are F B and A in that order. A remapping operator reorders

the relevant elements in Parent 1 in the same order found in Parent 2.

‘‘A B F 00 remaps to ‘‘FB A 00

The other elements in Parent 1 are untouched, thus yielding

‘‘F B C D E A G00

Syswerda also defined a ‘‘position crossover.’’ Whitley and Yoo (1995) prove that Syswerda’s

order crossover and position crossover are identical in expectation when order crossover selects

K positions and position crossover selects L�K positions over permutations of length L.
7.1 The Coors Warehouse Scheduling Problem

The Coors production facility (circa 1990) consists of 16 production lines, a number of loading

docks, and a warehouse for product inventory. At the time this research was originally carried

out (Starkweather et al. 1991), each production line could manufacture approximately 500

distinct products. Orders could be filled directly from the production lines or from inventory.



Genetic Algorithms — A Survey of Models and Methods 21 667
A solution is a priority ordering of customer orders. While the ultimate resource is the

product that is being ordered, another limiting resource are the loading docks. Once a customer

order is selected to be filled, it is assigned a loading dock and (generally) remains at the dock

until it is completely filled, at which point the dock becomes empty and available for another

order. All orders compete for product from either the production line or inventory. Note that

scheduling also has secondary effects on how much product is loaded from the production line

onto a truck (or train) and how much must temporarily be placed in inventory.

The problem representation used here is permutation of customer orders; the permutation

queues up the customer orders which then wait for a vacant loading dock. When a dock

becomes free, an order is removed from the queue and assigned to the dock.

A simulation is used to compute the evaluation function. Assume we wish to schedule one

24 h period. The simulation determines how long it takes to fill each order and how many

orders can be filled in 24 h. The simulation must also track which product is drawn out of

inventory, how much product is directly loaded off the production line, and how much

product must first go into inventory until it is needed.
> Figure 9 illustrates how a permutation is mapped to a schedule. Customer orders are

assigned a dock based on the order in which they appear in the permutation; the permutation

in effect acts as a customer priority queue. In the right-hand side of the illustration, note that

initially customer orders A–I get first access to the docks (in a left to right order). C finishes

first, and the next order, J, replaces C at the dock. Order A finishes next and is replaced by K.

G finishes next and is replaced by L.

For the Coors warehouse scheduling problem, one is interested in producing schedu-

les that simultaneously achieve two goals. One of these is to minimize the mean time that

customer orders to remain at dock. Let N be the number of customer orders. Let Mi be the

time that the truck or rail car holding customer order i spends at dock. Mean time at dock,M,

is then given by

M ¼ 1

N

XN
i¼0

Mi:

The other goal is to minimize the running average inventory. Let F be the makespan of the

schedule. Let Jt be inventory at time t. The running average inventory, I, is given by

I ¼ 1

F

XF
t¼0

Jt :

Technically this is a multi-objective problem. This problem was transformed into a single-

objective problem using a linear combination of the individual objectives:

obj ¼ ðM� mMÞ
sM

þ ðI � mIÞ
sI

ð9Þ

where I represents running average inventory, M represents order mean time at dock, while

m and s represent the respective means and standard deviations over a set of solutions.

In >Table 1, results are given for the Genitor steady-state genetic algorithm compared to a

stochastic hill-climber (Watson et al. 1999). Mean time at dock and average inventory

are reported, also with performance and standard deviations over 30 runs. The move operator

for the hill-climber was an ‘‘exchange operator.’’ This operator selects two random customers

and then swaps their position in the permutation. All of the algorithms reported here



. Table 1

Performance results. The final column indicates a human-generated solution used by Coors

Genetic algorithm Hill climber Coors

Mean time-at-dock

m 392.49 400.14 437.55

s 0.2746 4.7493 n.a.

Average inventory

m 364,080 370,458 549,817

s 1,715 20,674 n.a.

. Fig. 9

The warehouse model includes production lines, inventory, and docks. The columns in the

schedule represent different docks. Customer orders are assigned to a dock left to right and

product is drawn from inventory and the production lines.
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used 100,000 function evaluations. The Genitor algorithm used a population size of 500 and a

selective pressure of 1.1.

For our test data, we have an actual customer order sequence developed and used by Coors

personnel to fill customer orders. This solution produced an average inventory of 549,817.25

product units and an order mean time of 437.55 min at dock.

Genitor was able to improve the mean time at dock by approximately 9%. The big change,

however, is in average inventory. Both Genitor and the Hill Climber show a dramatic

reduction in average inventory, meaning more product came out of inventory and that the

schedule did a better job of directly loading product off the line. Watson et al. (1999) provide a

more detailed discussion of the Coors warehouse scheduling application.

8 Conclusions

This paper has presented a broad survey of both theoretical and practical work related to

genetic algorithms. For the reader who may be interested in using genetic algorithms to solve a

particular problem, two comments might prove to be useful.

First, the details matter. A small change in representation or a slight modification in how

an algorithm is implemented can change algorithm performance. The literature is full of

papers that claim one algorithm is better than the other. What is often not obvious is how hard

the researchers had to work to get good performance and how sensitive the results are to

tuning the search algorithms? Are the benchmarks representative of real-world problems, and

do the results generalize?

Second, genetic algorithms are a general purpose approach. An application-specific solu-

tion will almost always be better than a general purpose solution. Of course, in virtually every

real-world application, application-specific knowledge gets integrated into the evaluation

function, the operators, and the representation. Doing this well takes a good deal of experience

and intuition about how to solve optimization and search problems which makes the practice

of search algorithm design somewhat of a specialized art. This observation leads back to the

first point: the details matter, and a successful implementation usually involves keen insight

into the problem.
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man problem. In: Bäck T (ed) Proceedings of the

7th international conference on GAs, Morgan

Kaufmann, California, pp 450–457

Nix A, Vose M (1992) Modelling genetic algorithms with

Markov chains. Ann Math Artif Intell 5:79–88

Poli R (2005) Tournament selection, iterated coupon-

collection problem, and backward-chaining

evolutionary algorithms. In: Foundations of

genetic algorithms, Springer, Berlin, Germany, pp

132–155

Radcliffe N, Surry P (1995) Fundamental limitations on

search algorithms: evolutionary computing in per-

spective. In: van Leeuwen J (ed) Lecture notes in

computer science, vol 1000, Springer, Berlin, Germany

Rana S, Whitley D (1997) Representations, search and

local optima. In: Proceedings of the 14th national

conference on artificial intelligence AAAI-97. MIT

Press, Cambridge, MA, pp 497–502

Rana S, Heckendorn R, Whitley D (1998) A tractable

Walsh analysis of SATand its implications for genet-

ic algorithms. In: AAAI98, MIT Press, Cambridge,

MA, pp 392–397



Genetic Algorithms — A Survey of Models and Methods 21 671
Rosenbrock H (1960) An automatic method for finding

the greatest or least value of a function. Comput J

3:175–184

Salomon R (1960) Reevaluating genetic algorithm per-

formance under coordinate rotation of benchmark

functions. Biosystems 39(3):263–278

Schaffer JD (1987) Some effects of selection procedures

on hyperplane sampling by genetic algorithms.

In: Davis L (ed) Genetic algorithms and simulated

annealing. Morgan Kaufmann, San Francisco, CA,

pp 89–130

Schwefel HP (1981) Numerical optimization of com-

puter models. Wiley, New York

Schwefel HP (1995) Evolution and optimum seeking.

Wiley, New York

Sokolov A, Whitley D (2005) Unbiased tournament selec-

tion. In: Proceedings of the 7th genetic and evolu-

tionary computation conference. The Netherlands,

pp 1131–1138

Spears W, Jong KD (1991) An analysis of multi-point

crossover. In: Rawlins G (ed) FOGA – 1, Morgan

Kaufmann, Los Altos, CA, pp 301–315

Starkweather T, Whitley LD, Mathias KE (1990) Optimi-

zation using distributed genetic algorithms. In:

Schwefel H, Männer R (eds) Parallel problem solv-

ing from nature. Springer, London, UK, pp 176–185

Starkweather T, McDaniel S, Mathias K, Whitley D,

Whitley C (1991) A comparison of genetic sequenc-

ing operators. In: Booker L, Belew R (eds) Proceed-

ings of the 4th international conference on GAs.

Morgan Kaufmann, San Mateo, CA, pp 69–76

Suh J, Gucht DV (1987) Distributed genetic algorithms.

Tech. rep., Indiana University, Bloomington, IN

Syswerda G (1989) Uniform crossover in genetic algo-

rithms. In: Schaffer JD (ed) Proceedings of the 3rd

international conference on GAs, Morgan Kauf-

mann, San Mateo, CA

Syswerda G (1991) Schedule optimization using genetic

algorithms. In: Davis L (ed) Handbook of genetic

algorithms, Van Nostrand Reinhold, New York,

chap 21

Syswerda G, Palmucci J (1991) The application of genetic

algorithms to resource scheduling. In: Booker L,

Belew R (eds) Proceedings of the 4th inter-

national conference on GAs, Morgan Kaufmann,

San Mateo, CA

Vose M (1993) Modeling simple genetic algorithms.

In: Whitley LD (ed) FOGA – 2, Morgan Kaufmann,

San Mateo, CA, pp 63–73

Vose M (1999) The simple genetic algorithm. MIT Press,

Cambridge, MA
Vose M, Liepins G (1991) Punctuated equilibria in ge-

netic search. Complex Syst 5:31–44

Vose M, Wright A (1997) Simple genetic algorithms with

linear fitness. Evolut Comput 2(4):347–368

Watson JP, Rana S, Whitley D, Howe A (1999) The

impact of approximate evaluation on the perfor-

mance of search algorithms for warehouse schedul-

ing. J Scheduling 2(2):79–98

Whitley D (1999) A free lunch proof for gray versus

binary encodings. In: GECCO-99, Morgan

Kaufmann, Orlando, FL, pp 726–733

Whitley D, Kauth J (1988) GENITOR: A different genetic

algorithm. In: Proceedings of the 1988 RockyMoun-

tain conference on artificial intelligence, Denver, CO

Whitley D, Rowe J (2008) Focused no free lunch theo-

rems. In: GECCO-08, ACM Press, New York

Whitley D, Yoo NW (1995) Modeling permutation encod-

ings in simple genetic algorithm. In:WhitleyD, VoseM

(eds) FOGA – 3, Morgan Kaufmann, San Mateo, CA

Whitley D, Starkweather T, Fuquay D (1989) Scheduling

problems and traveling salesmen: the genetic edge

recombination operator. In: Schaffer JD (ed) Pro-

ceedings of the 3rd international conference on GAs.

Morgan Kaufmann, San Francisco, CA

Whitley D, Das R, Crabb C (1992) Tracking primary

hyperplane competitors during genetic search. Ann

Math Artif Intell 6:367–388

Whitley D, Beveridge R, Mathias K, Graves C (1995a)

Test driving three 1995 genetic algorithms. J Heur-

istics 1:77–104

Whitley D, Mathias K, Pyeatt L (1995b) Hyperplane

ranking in simple genetic algorithms. In: Eshelman

L (ed) Proceedings of the 6th international confer-

ence on GAs. Morgan Kaufmann, San Francisco, CA

Whitley D, Mathias K, Rana S, Dzubera J (1996)

Evaluating evolutionary algorithms. Artif Intell J

85:1–32

Whitley LD (1989) The GENITOR algorithm and selective

pressure: why rank based allocation of reproductive

trials is best. In: Schaffer JD (ed) Proceedings of the

3rd international conference on GAs. Morgan Kauf-

mann, San Francisco, CA, pp 116–121

Whitley LD (1991) Fundamental principles of decep-

tion in genetic search. In: Rawlins G (ed) FOGA – 1,

Morgan Kaufmann, San Francisco, CA, pp 221–241

Whitley LD (1993) An executable model of the simple

genetic algorithm. In: Whitley LD (ed) FOGA – 2,

Morgan Kaufmann, Vail, CO, pp 45–62

Wolpert DH, Macready WG (1995) No free lunch theo-

rems for search. Tech. Rep. SFI-TR-95-02-010, Santa

Fe Institute, Santa Fe, NM




	21 Genetic Algorithms &mdash; A•Survey of Models and Methods
	1 The Basics of Genetic Algorithms
	1.1 The Canonical Holland-Style Genetic Algorithm
	1.2 Rank-Assigned Tournament Selection
	1.3 Different Forms of Representation, Crossover, and Mutation
	1.3.1 Binary Versus Gray Representations
	1.3.2 N-Point and Uniform Recombination

	1.4 Schemata and Hyperplanes
	1.5 An Illustration of Hyperplane Sampling
	1.6 The Schema Theorem

	2 Interpretations and Criticisms of the Schema Theorem
	3 Infinite Population Models of Simple Genetic Algorithms
	4 The Markov Model for Finite Populations
	5 Theory Versus Practice
	5.1 Steady-State and Island Model Genetic Algorithms
	5.2 CHC

	6 Where Genetic Algorithms Fail
	7 An Example of Genetic Algorithms for Resource Scheduling
	7.1 The Coors Warehouse Scheduling Problem

	8 Conclusions
	Acknowledgments
	References


