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Abstract
Multi-column dependencies in relational databases come associated with two
different computational tasks. The detection problem is to decide whether a
dependency of a certain type and size holds in a given database, the discovery
problem asks to enumerate all valid dependencies of that type. We settle
the complexity of both of these problems for unique column combinations
(UCCs), functional dependencies (FDs), and inclusion dependencies (INDs).

We show that the detection of UCCs and FDs is W[2]-complete when
parameterized by the solution size. The discovery of inclusion-wise mini-
mal UCCs is proven to be equivalent under parsimonious reductions to the
transversal hypergraph problem of enumerating the minimal hitting sets of
a hypergraph. The discovery of FDs is equivalent to the simultaneous enu-
meration of the hitting sets of multiple input hypergraphs.

We further identify the detection of INDs as one of the first natural
W[3]-complete problems. The discovery of maximal INDs is shown to be
equivalent to enumerating the maximal satisfying assignments of antimono-
tone, 3-normalized Boolean formulas.
Keywords: data profiling, enumeration complexity, functional dependency,

⋆An extended abstract of this work was presented at the 11th International Symposium
on Parameterized and Exact Computation (IPEC 2016) [7].

∗The third author is corresponding.
Email addresses: thomas.blaesius@kit.edu (Thomas Bläsius),

tobias.friedrich@hpi.de (Tobias Friedrich), martin.schirneck@hpi.de (Martin
Schirneck)

1This work originated while all authors were affiliated with the Hasso Plattner Institute
at the University of Potsdam.

Preprint submitted to Theoretical Computer Science.



inclusion dependency, parameterized complexity, parsimonious reduction,
transversal hypergraph, unique column combination, W[3]-completeness

1. Introduction

Data profiling is the extraction of metadata from databases. An important
class of metadata in the relational model are multi-column dependencies.
They describe interconnections between the values stored for different at-
tributes or even across multiple instances. Arguably the most prominent
type of such dependencies are the unique column combinations (UCCs), also
known as candidate keys. These are collections of attributes such that the
value combinations appearing in those attributes identify all rows of the
database. In Figure 1, the Name and Area Code provide a unique fingerprint
of the first database as, for example, there is only one Doe, John living in
UK-W1K. Note that none of the two columns can be left out due to dupli-
cate values. Small UCCs are natural candidates for primary keys, avoiding
the need to introduce surrogate identification. More importantly though,
knowledge of the inclusion-wise minimal unique column combinations enable
various data cleaning tasks as well as query optimization. For example, value
combinations of UCCs are by definition distinct and form groups of size 1,
thus SQL queries working on UCCs can skip the grouping phase and the
DISTINCT operation, even if requested by the user [12, 47]. Also, the pres-
ence of UCCs allows for early returns of SELECT and ORDER BY operations.

Unfortunately, a dataset only rarely comes annotated with its dependen-
cies. Much more often they need to be computed from raw data. This leads
to two different computational tasks. The detection problem, is to decide for
a given database whether it admits a UCC with only a few columns. The
discovery problem instead asks for a complete list of all minimal UCCs, re-
gardless of their size and number. An equivalent term for the latter, which
is probably more common in the algorithms community, is the enumeration
of minimal solutions.

Functional dependencies (FDs), another dependency type, model the case
in which one is only interested in identifying the values of a specific column,
instead of all columns. In the example in Figure 1, it is enough to know
the Area Code to also infer the City since the value in the former deter-
mines the latter. Finally, inclusion dependencies (INDs) reveal connections
between different databases. A unary IND holds if all values in a column of
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Name

Nightingale, Florence

Address

South Street 8

City

London

Area Code

UK-W1K

Doe, John South Street 8 Philadelphia US-PA-19145

Menigmand, Morten Trøjburgvej 24 Aarhus

Mustermann, Max Mittelstraße 125 Potsdam D-14467

Mustermann, Max W Broadway 400 San Diego US-CA-92101

Doe, John South Street 8 London UK-W1K

DK-8200

Age

90

33

25

47

47

76

Author

Mustermann, Max

Title

Lovelace, Ada K. Sketch of the Analytical Engine

Doe, John The Art of Computer Programming

Menigmand, Morten

Nightingale, Florence Cassandra

ID

76

90

25

33

47

Prinsessen paa Ærten

Grundzüge der Theoretischen Logik

Figure 1: Illustration of multi-column dependencies. Name and Area Code together are
a minimal unique column combination in the first database. The functional dependency
Name, Area Code → City holds, but its left-hand side is not minimal since Area Code → City
is also valid. There are two maximal inclusion dependencies of size 1 between the first and
the second database, Age is included in ID and Name in Author. They cannot be combined
to an inclusion dependency of size 2 since, e.g., the value combination (33, Doe, John)
does not appear in column combination ID, Author.

the first database are also contained in one column of the second database.
In Figure 1, all values of the Name attribute appear again for the Author
attribute in the second table. The IND has higher arity if the inclusion also
pertains to the tuples of values in multiple columns.1 In contrast to UCCs
and FDs, where we want solutions to be small, we ought to find large or
maximal inclusion dependencies. Those are much more likely to be caused
by the inherent structure of the data than by mere coincidence.

Similar to UCCs, discovering the functional dependencies and inclusion
dependencies of a database (respectively pairs thereof) is an important pre-
processing step intended to improve the subsequent data access. The knowl-
edge of the valid FDs and INDs is used for example in cardinality estimation
in query plan optimizers [35], query rewriting [33], and joins [10]. For a de-
tailed exposition of the applications of data dependencies, we refer the reader
to the recent survey by Kossmann, Papenbrock, and Naumann [41].

The detection (decision) problems for all three types of dependencies are

1The formal definitions of UCCs, FDs, and INDs can be found in Section 2.2.
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NP-complete.2 Notwithstanding, detection algorithms often perform well on
practical datasets [1]. One approach to bridge this apparent gap is to analyze
whether properties that are usually observed in realistic data benevolently
influence the hardness of the problem. Exploiting those properties may even
lead to algorithms that guarantee a polynomial running time in case these
features are present in the problem instance. This is formalized in the concept
of parameterized algorithms [18, 25, 45]. There, one tries to ascribe the
exponential complexity entirely to an parameter of the input, other than its
mere size. If the parameter is bounded for a given class of instances, we
obtain a polynomial running time whose order of growth is independent of
the parameter. This, of course, requires one to identify parameters that are
both algorithmically exploitable and small in practice.

Consider, for instance, the histograms in Figure 2, showing the size distri-
bution of minimal unique column combinations and functional dependencies,
as well as maximal inclusion dependencies in the MusicBrainz database [52].
The majority of functional dependencies are rather small, same for unique
column combinations and inclusion dependencies. Beside surrogate keys, giv-
ing rise to multiple functional dependencies of size 1, causalities in the data
can also lead to small FDs. For example, the name of an event together with
the year in which it started determines the year in which it ends, implying an
FD of size 2. Note that the starting year alone is usually not enough to infer
this information. The name of the action, however, seems to indicate whether
the event ends in the same year or the next. The size of the dependency is
thus a natural candidate for an algorithmic parameter. Notwithstanding,
we show that it is unlikely to be the sole explanation for the good practical
performance. We prove that the detection of unique column combinations
and functional dependencies is W[2]-complete with respect to the size of the
sought solution, detecting inclusion dependencies is even W[3]-complete. For
all we know, this excludes any algorithm parameterized by the size.

The hardness of detecting INDs is surprising also from a complexity-
theoretic standpoint. Currently, there are only a handful of natural problems
known to be complete for the class W[3]. The first one was given by Chen and
Zhang [14] in the context of supply chain management. We show here that the
detection of inclusion dependencies has this property, making it the second
such problem. Since this result was first announced, Bläsius et al. [6] have also

2See Sections 3.1 and 4.1 for precise statements and references.
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Figure 2: The number of minimal unique column combinations, minimal functional depen-
dencies, and maximal inclusion dependencies for varying solution sizes in the MusicBrainz
database.

proven the extension problem for minimal hitting sets to be W[3]-complete
using different techniques. The latter has subsequently been improved by
Casel et al. [11], they have shown that already the special case of extension
to minimal dominating sets in bipartite graphs is hard for W[3]. Finally,
building on the work presented here, Hannula, Song, and Link [34] have very
recently identified independence detection in relational databases as another
representative of this class.

For enumeration problems, the border of tractability does not run between
polynomial and super-polynomial time, at least not when measured in the
input only. The number of solutions one wishes to be computed may be
exponential in the input size, ruling out any polynomial algorithm. Instead,
one could ask for an algorithm that scales polynomially both in the input
and the number of solutions. The most important yardstick in enumeration
complexity is the transversal hypergraph problem, where one is tasked to
compute all minimal hitting sets of a given hypergraph. Currently, the fastest
known algorithm runs in time NO( log N/log log N), where N is the combined input
and output size [30]. It is the major open question in the field of enumeration
algorithms whether the transversal hypergraph problem can be solved in
output-polynomial time. Besides data profiling, the problem also emerges
in many other applications in artificial intelligence [50], machine learning,
distributed systems, and monotone logic [28], as well as bioinformatics [49].
There are many algorithms known that work well on practical instances [32].

We use the insights gained on the detection of multi-column dependencies
in databases to also investigate their discovery (enumeration) problems. It is
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known that minimal unique column combinations and functional dependen-
cies can be discovered in output-polynomial time if and only if the transversal
hypergraph problem has an output-polynomial solution [26]. However, this
was proven via a Turing-style reduction that continuously calls a decision
subroutine to check whether the enumeration part has already found all so-
lutions. This construction inherently uses space proportional to the output
and is therefore hardly useful in practice. We are able to radically simplify
this equivalence and connect unique column combinations, functional depen-
dencies, and hitting sets directly at the enumeration level using so-called
parsimonious reductions, running in polynomial time and space. We give
similar results also for the discovery of maximal inclusion dependencies.

Parsimonious reductions are the most restrictive form of reduction be-
tween enumeration problems, but–therefore–also the most useful in practice.
The close connection to the transversal hypergraph problem that we prove
in this work explains in parts why dependency discovery works quite well on
real-world databases. Moreover, it allows us to transfer ideas from the design
of hitting set enumeration algorithms to data profiling, thereby connecting
the two research areas. For example, there are very space-efficient algorithms
known for the transversal hypergraph problem, while memory consumption
still seems to be a major obstacle in dependency discovery [46, 53]. We hope
that our results here inspire better data profiling algorithms in the future.

Our Contribution. We settle the parameterized complexity of the cardi-
nality-constrained decision problems for unique column combinations, func-
tional dependencies, and inclusion dependencies in relational databases, with
the solution size as parameter. We prove the following theorems.

Theorem 1. Detecting a unique column combination of size k in a relational
database is W[2]-complete when parameterized by k. The same is true for the
detection of a valid, non-trivial functional dependency with a left-hand side
of size at most k, even if the desired right-hand side is given in the input.

Theorem 2. Detecting an inclusion dependency of size k in a pair of rela-
tional databases is W[3]-complete when parameterized by k. The result re-
mains true even if both databases are over the same relational schema with
the identity mapping between their columns.

We also characterize the complexity of enumerating all multi-column de-
pendencies of a certain type in a given database. We do so by proving
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parsimonious equivalences with well-known enumeration problems as well as
generalizations thereof.

Theorem 3. The following enumeration problems are equivalent under par-
simonious reductions:

(i) discovering all minimal unique column combinations of a relational
database;

(ii) discovering all minimal, valid, and non-trivial functional dependencies
with a fixed right-hand side;

(iii) the transversal hypergraph problem.
The discovery of functional dependencies with arbitrary right-hand sides is
equivalent to enumerating the hitting sets of multiple input hypergraphs. The
latter two problems are at least as hard as the transversal hypergraph problem.

Theorem 4. The following enumeration problems are equivalent under par-
simonious reductions:

(i) discovering all maximal inclusion dependencies of a pair of relational
databases;

(ii) enumerating all maximal satisfying assignments of an antimonotone,
3-normalized Boolean formula.

This remains true even if the two databases are over the same schema and
only inclusions between the same columns are allowed. All those problems
are at least as hard as the transversal hypergraph problem.

Finally, we also briefly discuss the consequences of our findings to the
approximability of minimum dependencies.
Outline. In the next section, we fix some notation and review basic concepts
needed for the later proofs. Section 3 treats unique column combinations and
functional dependencies, Section 4 then considers inclusion dependencies.
Both of these sections start with a segment that formally defines all decision
and enumeration problems discussed in the respective section. The paper is
concluded in Section 5.
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2. Preliminaries

2.1. Hypergraphs and Hitting Sets
A hypergraph is a non-empty, finite vertex set V ̸= ∅ together with a set of
subsets H ⊆ P(V ), the (hyper-)edges. We identify a hypergraph with its edge
set H if this does not create any ambiguities. We do not exclude special cases
of this definition like the empty graph (H = ∅), an empty edge (∅ ∈ H), or
isolated vertices (V ⊋ ⋃

E∈H E). A hypergraph is Sperner if none of its edges
is contained in another. The minimization of H is the subset of all inclusion-
wise minimal edges, min(H) = {E ∈ H | ∀E ′ ∈ H : E ′ ⊆ E ⇒ E ′ = E}.
This should not be confused with the notation for a minimum element of a
set. The minimization of a hypergraph is always Sperner.

A hitting set, or transversal, of a hypergraph (V, H) is a set T ⊆ V of
vertices such that T has a non-empty intersection with every edge E ∈ H. A
hitting set is (inclusion-wise) minimal if it does not properly contain another
hitting set. The minimal hitting sets of H form a Sperner hypergraph on the
same vertex set V , the transversal hypergraph Tr(H). Regarding transversals,
it does not make a difference whether the full hypergraph H is considered or
its minimization, it holds that Tr(min(H)) = Tr(H).

2.2. Relational Databases and Dependencies
A (relational) schema R is a non-empty, finite set of attributes or columns.
Each attribute comes implicitly associated with a set of admissible values.
A row, or record, over schema R is a tuple r whose entries are indexed by
R such that, for any attribute a ∈ R, the value r[a] is admissible for a. A
(relational) database r over R is a finite set of records. For any row r and
subset X ⊆ R of columns, r[X] is the subtuple of r projected onto S. We let
r[X] denote the family of all such subtuples of rows in r. Note that r[X] is a
multiset as the same combination of values may appear in different rows.

We are interested in multi-column dependencies in relational databases,
namely, unique column combinations, functional dependencies, and inclusion
dependencies. For their definition, we need the notion of difference sets. For
any two distinct rows r1, r2, r1 ̸= r2, over the same schema R, their difference
set {a ∈ R | r1[a] ̸= r2[a]} is the set of attributes in which the rows disagree.
A difference set is (inclusion-wise) minimal if it does not properly contain
a difference set for another pair of rows in the database. We denote the
hypergraph of minimal difference sets by D. The vertex set is R.
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A unique column combination (UCC), or simply unique, for some database
r over schema R, is a subset U ⊆ R of attributes such that for any two records
r, s ∈ r, r ̸= s, there is an attribute a ∈ U such that r[a] ̸= s[a]. Equivalently,
U is a UCC for r iff the collection r[U ] of projections onto U is a mere set, that
is, every tuple appears at most once. A UCC is (inclusion-wise) minimal if
it does not properly contain another UCC. There is an intimate connection
between UCCs and transversals in hypergraphs. It is well-known in the lit-
erature, see [1, 19], probably the first explicit mention was by Mannila and
Räihä [43].

Observation 5 (Folklore). The unique column combinations are the hitting
sets of difference sets. In particular, let r be a database and D the hypergraph
of its minimal difference sets. Then, any minimal transversal in Tr(D) is a
minimal unique of r and there are no other minimal uniques in r.

Functional dependencies (FDs) over a schema R are expressions of the
form X → a for some set X ⊆ R of columns and a single attribute a ∈ R.
The set X is the left-hand side (LHS) of the dependency and a the right-
hand side (RHS). We say that the FD has size |X|. A functional dependency
X → a is said to hold, or be valid, in an database r (over R) if any pair
of records that agree on X also agree on a, that is, if r[X] = s[X] implies
r[a] = s[a] for any r, s ∈ r. Otherwise, X → a is said to fail in r, or be invalid.
The FD ∅ → a holds iff all rows agree on a. An FD X → a is (inclusion-wise)
minimal if it holds in r and X ′′ → a fails for any proper subset X ′′ ⊊ X. A
functional dependency is non-trivial if a /∈ X. Note that trivial functional
dependencies hold in any database.

Finally, we turn to multi-column dependencies among multiple databases.
Let R and S be two relational schemas and r and s databases over R and S,
respectively. For some X ⊆ R, let σ : X → S be an injective map. The pair
(X, σ) is an inclusion dependency (IND) if, for each row r ∈ r, there exists
some s ∈ s such that r[a] = s[σ(a)] for every a ∈ X, that is, iff the inclusion
r[X] ⊆ s[σ(X)] holds. If the map σ is given in the input, we say that X is the
dependency. Such an inclusion dependency then is maximal if the set X is
maximal among all INDs for r and s. For the general case, we define a partial
order on the pairs (X, σ). We say that (X, σ) ≼ (X ′, σ′) holds if X ⊆ X ′

and σ is the restriction of σ′ to X. An inclusion dependency then is maximal
if it is an ≼-maximal element among the inclusion dependencies between r
and s. Observe that the inclusion dependencies are indeed downward closed
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with respect to ≼. However, it may happen that (X, σ) and (X ′, σ′) are both
maximal although X ′ ⊊ X is a strict subset.

2.3. Parameterized Complexity
The central idea of the parameterized complexity of a decision problem is to
identify a quantity of the input, other than its mere size, that captures the
hardness of the problem. The decision problem associated with a language
Π ⊆ {0, 1}∗ is to determine whether some instance I ∈ {0, 1}∗ is in Π. A
decision problem is parameterized if any instance I is additionally augmented
with a parameter k = k(I) ∈ N+, we thus have Π ⊆ {0, 1}∗ ×N+. A pa-
rameterized decision problem Π is fixed-parameter tractable (FPT), if there
exists a computable function f : N+ → N+ and an algorithm that decides
any instance (I, k) in time f(k) · poly(|I|). The complexity class FPT is the
collection of all fixed-parameter tractable problems.

Let Π and Π′ be two parameterized problems. A parameterized reduction,
or FPT-reduction, from Π to Π′ is an algorithm running in time f(k)·poly(|I|)
on instances (I, k), which outputs some instance (I ′, k′) such that k′ ≤ g(k)
for some computable function g : N+ → N+, and (I, k) ∈ Π holds if and only
if (I ′, k′) ∈ Π′ does. Due to the time bound, we have |I ′| ≤ f(k) poly(|I|). If
there is also an FPT-reduction from Π′ to Π, we say that the problems are
FPT-equivalent. A notable special case of FPT-reductions are polynomial
many-one reductions that preserve the parameter, meaning k′ = k.

Parameterized reductions give rise to the so-called W-hierarchy of com-
plexity classes. We use one of several equivalent definitions involving (mainly)
Boolean formulas. However, first consider the Independent Set problem
on graphs parameterized by the size of the sought solution. The class W[1]
is the collection of all parameterized problems that admit a parameterized
reduction to Independent Set. For some positive integer t, a Boolean for-
mula is t-normalized if it is a conjunction of disjunctions of conjunctions of
disjunctions (and so on) of literals with t−1 alternations or, equivalently, t
levels in total. The Weighted t-normalized Satisfiability problem is
to decide, for a t-normalized formula φ and a positive integer k, whether φ
admits a satisfying assignment of Hamming weight k, that is, with (exactly)
k variables set to true. Here, k is the parameter. For every t ≥ 2, W[t] is
the class of all problems reducible to Weighted t-normalized Satisfia-
bility. The classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . form an ascending hierarchy.
All inclusion are conjectured to be strict, which is however still unproven.

10



Chen et al. [13] showed that, assuming the Exponential Time Hypothesis3

(ETH), Independent Set with budget k on n-vertex, m-edge graphs can-
not be solved in time f(k) · (m + n)o(k). Hence, ETH implies FPT ̸= W[1].

2.4. Enumeration Complexity
Enumeration is the task of compiling and outputting a list of all solutions
to a computational problem without repetitions. Note that this is different
from a counting problem, which asks for the mere number of solutions. More
formally, an enumeration problem is a function Π: {0, 1}∗ → P({0, 1}∗) such
that, for all instances I ∈ {0, 1}∗, the set of solutions Π(I) is finite. An
algorithm solving this problem needs to output, on input I, all elements of
Π(I) exactly once. We do not impose any order on the output. We focus on
the enumeration of minimal hitting sets, that is, Π: (V, H) 7→ Tr(H).

An output-polynomial algorithm runs in time polynomial in the combined
input and output size N = |V | + |H| + | Tr(H)|. A (seemingly) stronger re-
quirement is an incremental polynomial algorithm, generating the solutions
in such a way that the i-th delay, the time between the (i−1)-st and i-th
output, is bounded by poly(|V |, |H|, i). This includes the preprocessing time
until the first solution arrives (i = 1) as well as the postprocessing time be-
tween the last solution and termination (i = | Tr(H)| + 1). The strongest
form of output-efficiency is that of polynomial delay, where the delay is uni-
versally bounded by poly(|V |, |H|). There is currently no output-polynomial
algorithm known for the transversal hypergraph problem, but its existence
would immediately imply also an incremental polynomial algorithm [4].

Arguably the most restrictive way to relate enumeration problems are
parsimonious reductions. The concept is closely related but should not
be confused with the homonymous class of reductions for counting prob-
lems [9]. A parsimonious reduction from enumeration problem Π to Π′ is
a pair of polynomial time computable functions f : {0, 1}∗ → {0, 1}∗ and
g : ({0, 1}∗)2 → {0, 1}∗ such that, for any instance I ∈ {0, 1}∗, g(I, ·) is a bi-
jection from Π′(f(I)) to Π(I). The behavior of g(I, ·) on {0, 1}∗\Π′(f(I)) is
irrelevant. Intuitively, any enumeration algorithm for Π′ can then be turned
into one for Π by first mapping the input I to f(I) and translating the so-
lutions back via g. Observation 5 establishes a parsimonious reduction from

3The Exponential Time Hypothesis is the conjecture that the satisfiability problem
of formulas in conjunctive normal form on n variables with 3 literals per clause (3-SAT)
cannot be solved in time 2o(n) [36, 37].
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the enumeration of minimal UCCs to the transversal hypergraph problem
with f : (R, r) 7→ (R, D) and g((R, r), ·) being the identity over subsets of R.

3. Unique Column Combinations and Functional Dependencies

Theoreticians as well as practitioners in data profiling and database design
are frequently confronted with the task of finding a small collection of items
that has a non-empty intersection with each member of a prescribed family
of sets, see [1, 19, 20, 38, 42]. They thus aim to solve instances of the hitting
set problem. In this section, we show that this encounter is inevitable in
the sense that detecting a small unique column combination or functional
dependency in a relational database is the same as finding a hitting set in
a hypergraph. Even more so, this equivalence extends to enumeration. We
show that the associated discovery problems of finding all UCCs or FDs is
indeed the same as enumerating all hitting sets.

We first formally define the respective decision and enumeration problems.
The decision versions are always parameterized by the solution size. We then
order them in a (seemingly) ascending chain via parameterized reductions.
However, the start and end points of this chain will turn out to be FPT-
equivalent, settling the complexity of the problems involved as complete for
the parameterized complexity class W[2]. We then also show the equivalence
of the corresponding enumeration problems under parsimonious reductions.

3.1. Problem Definitions
Recall the definitions of hitting sets as well as unique column combinations
and functional dependencies from Sections 2.1 and 2.2. We are interested
in the parameterized complexity of the associated cardinality-constrained
decision problems. The constraint always serves as the parameter.

Hitting Set

Instance: A hypergraph (V, H) and a non-negative integer k.
Parameter: The non-negative integer k.

Decision: Is there a set T ⊆ V of vertices with cardinality |T | = k
such that T is a hitting set for H?

Note that if k > |V |, then the answer to the decision problem is trivially
false; otherwise, there is no difference between deciding the existence of a
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transversal with at most or exactly k elements since every superset of a hit-
ting set is again a hitting set. We ignore the special case of a too large k since
parameterized complexity is primarily concerned with the situation that the
parameter is much smaller than the input size. The unparameterized Hit-
ting Set problem is one of Karp’s initial 21 NP-complete problems [39]. In
fact, its minimization variant–to compute the minimum size of any hitting
set–is even NP-hard to approximate within a factor of (1 − ε) ln |V | for any
constant ε > 0 [21]. The parameterized variant defined above is the proto-
typical W[2]-complete problem [25].

The corresponding enumeration problem broadens the notion of a “small”
solution, namely, the task is now to list all inclusion-wise minimal hitting
sets, that is, the edges of the transversal hypergraph Tr(H). All other (non-
minimal) hitting sets can be trivially obtained from the minimal ones by
arbitrarily adding more vertices. Note that the term enumeration implicitly
contains the requirement not to repeat outputs.

Transversal Hypergraph

Instance: A hypergraph (V, H).
Enumeration: List all edges of Tr(H).

Let N = |H| + | Tr(H)| + |V | denote the combined input and output size,
Fredman and Kachiyan’s algorithm solves Transversal Hypergraph in
time NO( log N/log log N) [30].

We generalize the problem to the enumeration of minimal hitting sets for
multiple input hypergraphs simultaneously. We do not prescribe any order
in which the hypergraphs are processed. However, we want to be able to
quickly tell to which input a solution belongs. For this, let Tr(H)∪̇ Tr(G)
denote the disjoint union of the transversal hypergraphs of (V, H) and (W, G)
with the additional requirement that the union is encoded in such a way that,
for any T ∈ Tr(H)∪̇ Tr(G), the containment T ∈ Tr(H) is decidable in time
poly(|V |, |W |, |H|, |G|), independently of the sizes | Tr(H)| and | Tr(G)|.

Transversal Hypergraph Union

Instance: A d-tuple of hypergraphs (H1, H2, . . . , Hd).
Enumeration: List all edges of Tr(H1) ∪̇ Tr(H2) ∪̇ . . . ∪̇ Tr(Hd).

We now define the detection and discovery problems of multi-column
dependencies in relational databases, again starting with the cardinality-
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constraint decision problems.

Unique Column Combination

Instance: A relational database r over schema R
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Is there a set U ⊆ R of attributes with cardinality |U | = k

such that U is a unique column combination in r?

The minimization variant of Unique Column Combination is NP-hard [51].

Enumerate Minimal UCCs

Instance: A relational database r.
Enumeration: List all minimal unique column combinations of r.

For functional dependencies, we define two variants of the decision prob-
lem that slightly differ in the given input. The first one fixes the right-hand
side of the desired dependency, while the second one asks for an FD with ar-
bitrary RHS holding in the database. While their parameterized complexity
will turn out to be the same, there are some differences in their discovery.
Functional Dependencyfixed RHS

Instance: A relational database r over schema R, an attribute a ∈ R,
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Is there a set X ⊆ R\{a} with |X| = k such that

the functional dependency X → a holds in r?

Functional Dependency

Instance: A relational database r over schema R
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Is there a set X ⊆ R with |X| = k and an attribute a ∈ R\X

such that the functional dependency X → a holds in r?

The unparameterized variant of Functional Dependencyfixed RHS is NP-
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complete even if the number of admissible values for each attribute is at
most 2 [20]. It is the same to ask for a functional dependency whose left-hand
side is of size at most k; unless of course k ≥ |R| since then no non-trivial
FD adheres to the (exact) size constraint. Again, we ignore this issue.

Recall that we say that a functional dependency X → a is minimal if its
LHS X is inclusion-wise minimal among all X ′ ⊆ R such that X ′ → a is valid.

Enumerate Minimal FDsfixed RHS

Instance: A relational database r over schema R and an attribute a ∈ R.
Enumeration: List all minimal, valid, non-trivial functional dependencies of r

with right-hand side a.

Enumerate Minimal FDs

Instance: A relational database r.
Enumeration: List all minimal, valid, non-trivial functional dependencies of r.

Enumerate Minimal UCCs and Enumerate Minimal FDs can be
solved in output-polynomial time (in incremental polynomial time or with
polynomial delay, respectively) if and only if this is possible for the Transver-
sal Hypergraph problem [26].

3.2. Detection
Next, we prove the parameterized complexity of the detection problems for
unique column combinations and functional dependencies.

We remark that since the first announcement of our results, we learned
that the Unique Column Combination and the Functional Depen-
dencyfixed RHS problem have been studied before from a parameterized per-
spective, under different names and in different contexts. Therefore, some of
the following results already appeared in the literature. Namely, Lemma 6
was obtained independently by Froese et al. [31], and Cotta and Moscato [16]
showed the W[2]-completeness of Functional Dependencyfixed RHS using
different techniques. Our work can be seen as a unifying framework that
shows that Unique Column Combination is also contained in W[2] and
settles the complexity of the more general Functional Dependency prob-
lem (with an arbitrary right-hand side) in a way that additionally sheds some
light on the enumeration complexity of the related discovery problems.
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Figure 3: Illustration of the reductions in Lemmas 6 and 7. (a) An instance of Hitting
Set and the equivalent instance of Unique Column Combination. (b) An instance r
of Functional Dependencyfixed RHS with fixed right-hand side a and the equivalent
instance r′ of Functional Dependency. The functional dependencies ab → d holds in
r, but not in r′.

We start by proving that Unique Column Combination is hard for
W[2] under parameterized reductions.

Lemma 6. There is a parameterized reduction from Hitting Set to the
Unique Column Combination problem.

Proof. Let (V, H) be the hypergraph given in the input to the Hitting
Set problem. Without loss of generality, we can assume it to be Sperner;
otherwise, we replace it by its minimization min(H) (in quadratic time).
Observe that min(H) has a hitting set of size at most k iff H has one. We
construct from H in polynomial time a database r over schema V such that
the minimal difference sets of r are the edges of H. The lemma then follows
immediately from Observation 5. In particular, since Observation 5 transfers
solutions, the parameter k is preserved by the reduction.

Let E1, E2, . . . , Em be the edges of H. We take the integers 0, 1, . . . , m
as the admissible values for all attributes in V . As rows, we first add the
all-zero tuple r0 = (0)a∈V to r. For each i ∈ [m], we also add the record ri

defined as

ri[a] =

i, if a ∈ Ei;
0, otherwise.

See Figure 3a for an illustration. Clearly, r can be computed in linear time.
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Any edge Ei is a difference set in r, namely, that of the pair (r0, ri). Any
other difference set must come from a pair (ri, rj) with 1 ≤ i < j ≤ m. It is
easy to see that those rows disagree in Ei ∪ Ej, which is not minimal. Since
H is Sperner, it contains exactly the minimal difference sets of r.

The next two reductions are straightforward due to the similar structures
of uniques and functional dependencies. While a UCC separates any pair of
rows, an FD X → a needs to distinguish only those with r[a] ̸= s[a].

Lemma 7. There are parameterized reductions
(i) from Unique Column Combination

to Functional Dependencyfixed RHS ;
(ii) from Functional Dependencyfixed RHS

to Functional Dependency.

Proof. To prove Statement (i), we add a single unique column to the database
and fix it as the right-hand side of the sought functional dependency. Let
r = {r1, r2, . . . , r|r|} be a database over schema R, and a an attribute not
previously in R. We construct r′ over R ∪ {a} by adding, for each ri, the row
r′

i defined by r′
i[R] = ri[R] and r′

i[a] = i. The reduction maps an instance
(r, R, k) of Unique Column Combination to the instance (r′, R∪{a}, a, k)
of Functional Dependencyfixed RHS . Since, for any two distinct rows
r′

i, r′
j ∈ r′, i ̸= j, we have r′

i[a] ̸= r′
j[a], the left-hand sides of the non-trivial,

valid FDs X → a in r′ are in one-to-one correspondence to the UCCs in r.
To reduce Functional Dependencyfixed RHS to Functional Depen-

dency, we need to mask all “unwanted” FDs with RHS different from the
fixed attribute a. See Figure 3b for an example. Let again r be the in-
put database over R. To construct the resulting database r′ over the same
schema R, we take all rows from r and add |R| − 1 new ones. Fix an ar-
bitrary record r∗ ∈ r and let × be a new symbol that does not previously
appear as a value. For each attribute b ∈ R\{a}, we add the row rb satisfying
rb[R\{b}] = r∗[R\{b}] and rb[b] = ×. The rows r∗ and rb now witness that
any non-trivial FD X → b fails in r′.

It is left to prove that X → a holds in r if and only if it holds in r′.
Evidently, any valid FD in r′ is also valid in the subset r. Suppose X → a
holds in r and let rows r, s ∈ r′ be such that r[a] ̸= s[a]. The only case where
the conclusion r[X] ̸= s[X] may possibly be in doubt is if r ∈ r′\r and s ∈ r
(all new rows in r′\r agree on a). Hence, r = rb for some b ̸= a. If b ∈ X,
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the new value × appears in the projection r[X] but not in s[X]; otherwise,
we have r[X] = r∗[X]. Since X → a holds for the pair r∗, s ∈ r, the relation
r[X] = r∗[X] ̸= s[X] follows.

The next lemma proves that every instance of the unrestricted Func-
tional Dependency problem can be expressed as an equivalent Boolean
formula in conjunctive normal form. Since CNF formulas are exactly the
2-normalized ones, we obtain a reduction to Weighted 2-normalized
Satisfiability. This is the main result of this section.

Lemma 8. There is a parameterized reduction from Functional Depen-
dency to the Weighted 2-normalized Satisfiability problem.

Proof. Given a database r over R, we derive a CNF formula that has a
satisfying assignment of Hamming weight k+1 if and only if there is a non-
trivial FD with left-hand side of size k that holds in r. We use two types of
variables distinguished by their semantic purpose, VarLHS = {xa | a ∈ R}
and VarRHS = {ya | a ∈ R}. Some variable xa from VarLHS being set to
true corresponds to the attribute a appearing on the left-hand side of the
sought functional dependency; for ya from VarRHS, this means the attribute
is the right-hand side.

We start with the RHS. It might be tempting to enforce that any sat-
isfying assignment chooses exactly one variable from VarRHS. We prove
below that this is not necessary and forgoing the O(|R|2) clauses represent-
ing this constraint allows for a (slightly) leaner construction. However, we
do have to ensure that at least one variable from VarRHS is set to true
and the corresponding one in VarLHS is false. This is done by the clauses
CRHS = ∨

ya∈VarRHS
ya and Ca = ¬ya ∨ ¬xa for each a ∈ R. The subformula

φRHS is their conjunction.
We now model the LHS. For any attribute a ∈ R and rows r, s ∈ r, let

Ca,r,s = ¬ya ∨
∨

b∈R\{a}
r[b]̸=s[b]

xb.

Intuitively, the clause Ca,r,s represents the fact that if X → a is a valid, non-
trivial FD, then X has to contain at least one attribute b, different from a,
such that r[b] ̸= s[b]. From these clauses, we assemble the subformula

φa =
∧

r,s∈r

r[a]̸=s[a]

Ca,r,s.
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The output of our reduction is the formula φ = φRHS ∧ ∧
a∈R φa. Indeed, φ

is in conjunctive normal form and has O(|R| |r|2) clauses with at most |R|
literals each. An encoding of φ is computable in time linear in its size.

Regarding the correctness of the reduction, recall that we claimed φ to
have a weight k+1 satisfying assignment iff a non-trivial functional depen-
dency X → a of size k holds in r. Suppose that the latter is true. We show
that setting the variable ya as well as all xb with b ∈ X to true (and all
others to false) satisfies φ. Note that the assignment automatically satisfies
CRHS and all Cb,r,s with b ̸= a. We are left with the subformula φa containing
the clauses Ca,r,s for row pairs with r[a] ̸= s[a]. To distinguish these pairs,
the LHS X includes, for each of them, some attribute b ∈ R\{a} such that
r[b] ̸= s[b]. Clause Ca,r,s is then satisfied by the corresponding literal xb.

For the other direction, we identify assignments with the variables they
set to true. Let A ⊆ VarLHS ∪ VarRHS be an assignment of Hamming
weight |A| = k+1 that satisfies φ. The assignment induces two subsets of
the schema R, namely, X = {a ∈ R | xa ∈ A ∩ VarLHS} and Y = {a ∈
R | ya ∈ A ∩ VarRHS}. Due to the clause CRHS, Y is non-empty and X
contains at most k elements. Moreover, X and Y are disjoint as the Ca are
all satisfied. We say that the generalized functional dependency X → Y holds
in a database if X → a holds for every a ∈ Y . It is clearly enough to show
that X → Y indeed holds in r.

Assume X → a fails for some a ∈ Y . This is witnessed by a pair of rows
r, s ∈ r with r[X] = s[X] but r[a] ̸= s[a], whence the clause Ca,r,s is present
in φ. Since ya ∈ A is in the assignment, the literal ¬ya evaluates to false.
Also, as X is disjoint from the difference set {b ∈ R\{a} | r[b] ̸= s[b]}, no
other literal satisfies Ca,r,s, which is a contradiction.

We have established a chain of parameterized reductions between the de-
pendency detection problems of unique column combinations and functional
dependencies. The fact that the endpoints Hitting Set and Weighted
2-normalized Satisfiability are both W[2]-complete shows that all of
the problems are, this completes the proof of Theorem 1.

3.3. Approximation and Discovery
Our reductions have implications beyond the scope of parameterized com-
plexity. Observe that the transformations in Lemmas 6 and 7 are computable
in polynomial time, do not change the size of the vertex set/relational schema
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(by more than an additive constant), and preserve approximations with re-
spect to the solution size k or |X|, respectively. Also, recall that the mini-
mization version of Hitting Set is NP-hard to approximate within a factor
of (1 − ε) ln |V | for every ε > 0 [21]. As a consequence, the minimiza-
tion versions of Unique Column Combination, Functional Depen-
dencyfixed RHS , and Functional Dependency all inherit the same hard-
ness of approximation with respect to the size |R| of the schema. Previously,
an approximation-preserving reduction was known only for the Unique Col-
umn Combination problem, starting from Set Cover [2].

Rather than approximating minimum solutions, we are mainly interested
in the discovery of minimal dependencies in databases. Traditionally, enu-
meration has been studied via embedded decision problems that are different
from those defined in Section 3.1. Instead, the Transversal Hypergraph
problem (enumerating minimal hitting sets) has been associated with the
problem of deciding for two hypergraphs H and G whether G = Tr(H) or,
equivalently, H = Tr(G), called the Dual problem. Enumerate Minimal
UCCs analogously corresponds to decide for a database r and hypergraph
H, whether H consists of all minimal uniques of r. Intuitively, this formalizes
the decision whether an enumeration algorithm has found all solutions.

Both decision problems are in coNP and it was proven by Eiter and Got-
tlob [26] that they are many-one equivalent. Using a lifting result by Bioch
and Ibaraki [4], this shows that minimal hitting sets can be enumerated in
output-polynomial time if and only if minimal UCCs can, which is the case if
and only if Dual is in P. Such an equivalence is theoretically appealing and
has lead to the quasi-output-polynomial upper bound on the running time
of hitting set/UCC enumeration that is currently the best known [30]. The
connection to enumeration has also inspired the intriguing result that Dual
is likely not coNP-hard as it can be solved in polynomial time when given ac-
cess to O( log2 N/log log N) suitably guessed nondeterministic bits [3, 27], where
N denotes the total input size of the pair (H, G). There are classes of hy-
pergraphs for which Dual is indeed in P, see for example [8, 6, 22, 27, 48],
or at least in FPT with respect to certain structural parameters [29]. The
two most well-known special cases that are polynomial-time solvable are the
classes of hypergraphs with constant maximum degree [22] or edge size [27],
respectively. Translated to our database setting, this means that attributes
can only participate in a bounded number of (minimal) difference sets or
that any two rows can differ only in a bounded number of columns. Both are
severe restrictions and fairly uncommon in real-world databases. For a much
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more thorough overview of decision problems associated with enumeration,
see the recent work by Creignou et al. [17].

Unfortunately, the approach described above holds only limited value
when it comes to designing practical algorithms. Imagine an implementation
of the discovery of minimal UCCs of a database r via repeated checks whether
the hypergraph H of previously found solutions is already complete. Such
an algorithm is bound to use an amount of memory that is exponential in
the size of r. This is due to the fact that some databases have exponentially
many minimal solutions and the decision subroutine at least has to read all
of H. Note that such a large memory consumption is not at all necessary as
there are algorithms known for Transversal Hypergraph whose space
complexity is only linear in the input size [29, 44]. In fact, enumeration
algorithms are often analyzed not only with respect to their running time,
but also in terms of space consumption, see [9, 15]. For data profiling prob-
lems like Enumerate Minimal UCCs on the other hand, space-efficient
algorithms have only recently started to received some attention [5, 6, 40].

In the following, we simplify and at the same time extend the above
equivalences making them usable in practice, namely, we prove Theorem 3.
It states the existence of parsimonious reductions, in both directions, that
relate the input instances directly on the level of the enumeration problems,
without decision problems as intermediaries. This way, we characterize the
enumeration complexity of unique column combinations as well as functional
dependencies, both with fixed and arbitrary right-hand side. It is worth
noting that our insights on enumeration do stem from the study of decision
problems while the obtained results are entirely lifted.

The reductions between the decision problems Hitting Set, Unique
Column Combination, Functional Dependencyfixed RHS , and Func-
tional Dependency (in that order) for minimum dependencies described
in Lemmas 6 and 7 are all built on bijective correspondences between the
solutions. The running times of the reductions are polynomial and indepen-
dent of the given budget k. Finally, the mappings of the solution spaces also
preserve set inclusions. This means, the same input transformations applied
to the discovery of minimal dependencies are in fact parsimonious reductions
from Transversal Hypergraph to Enumerate Minimal UCCs and
onward to Enumerate Minimal FDs/FDsfixed RHS . Regarding the inverse
direction, Observation 5 shows that the enumeration of UCCs is at most
as hard as that of hitting sets, that is, Enumerate Minimal UCCs and
Transversal Hypergraph are equivalent. It is worth noting that the
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parsimonious reductions increase the size of the instances at most by a poly-
nomial factor (usually a constant one) in the input size only and therefore
transfer the space complexity of any enumeration algorithm.

To complete the proof of Theorem 3, we still need the following lemma
that characterizes the complexity of functional dependency discovery in terms
of the Transversal Hypergraph Union problem.

Lemma 9. The problems Enumerate Minimal FDs and Transver-
sal Hypergraph Union are equivalent under parsimonious reductions.
Moreover, there is a parsimonious reduction from Enumerate Minimal
FDsfixed RHS to Transversal Hypergraph.

Proof. This proof uses techniques that already helped to establish the previ-
ous lemmas of this section. Let r be a database over schema R, a ∈ R some
attribute, r, s ∈ r two rows with r[a] ̸= s[a]. Recall that their difference set is
D(r, s) = {b ∈ R | r[b] ̸= s[b]}. We define their punctured difference set to be
D(r, s)\{a}. It is implicit in the proof of Lemma 8–and easy to verify from the
definition of functional dependencies–that a set X ⊆ R\{a} is the left-hand
side of a valid, minimal, non-trivial FD X → a if and only if it is a minimal
hitting set for the hypergraph Da = {D(r, s)\{a} | r, s ∈ r; r[a] ̸= s[a]} of
punctured difference sets.

Transforming the input database r over schema R = {a1, . . . , a|R|} into
the |R| hypergraphs Da1 , . . . , Da|R| is a parsimonious reduction from the Enu-
merate Minimal FDs problem to Transversal Hypergraph Union.
In the same fashion, fixing the desired right-hand side in the input reduces
Enumerate Minimal FDsfixed RHS to Transversal Hypergraph.

The opposite reduction is the main part of the lemma. We are given
hypergraphs H1, . . . , Hd, without loss of generality all on the same vertex
set V, and we need to compute some database r such that its valid, non-
trivial functional dependencies are in one-to-one correspondence with the
hitting sets of the Hi. An example can be seen in Figure 4. As the relational
schema, we take the set R = V ∪{x1, . . . , xd}, where the xi are attributes not
previously appearing in V. The construction of r starts similarly to Lemma 6.
We first add the all-zeros row r0 (with r0[a] = 0 for every a ∈ R). Let
m = ∑d

i=1 |Hi| be the total number of edges and E1, E2, . . . , Em an arbitrary
numbering of them. Note that if the same set of vertices is an edge of multiple
hypergraphs, it appears in the list with that multiplicity. For every edge Ej,
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Figure 4: Illustration of Lemma 9. The three hypergraphs H1, H2, H3 on the vertex set V
are on the left and the equivalent database r is on the right. The hypergraphs H1 and H2
share the edge {b, c}, but this results in two rows r2 and r3. The corresponding transversal
hypergraphs are Tr(H1) = {{a, c}, {b}}, Tr(H2) = {{b}, {c, b}, {c, e}}, and Tr(H3) =
{{a, b}, {b, c, d}, {b, c, e}}. The functional dependencies b → x1 and b → x2 indeed hold in
r, and adding the attribute a gives ab → x3. The rows in the last block eliminate all non-
trivial functional dependencies X → v with v ∈ V .

we add the following row rj,

rj[a] =


j, if a ∈ Ej;
0, if a ∈ V \Ej;
1, if a = xi such that Ej ∈ Hi;
0, otherwise.

In other words, the subtuple rj[V ] is the characteristic vector of Ej only
that its non-zero entries are j instead of 1; the subtuple rj[{x1, . . . , xd}] has
exactly one 1 at the position corresponding to the hypergraph containing
Ej. The remaining construction of database r uses an idea of Lemma 7 (ii).
Let × be a new symbol. For every vertex v ∈ V , we add the row rv with
rv[v] = × and rv[a] = 0 for all other attributes a ∈ R\{v}. The database r
can be obtained in time poly(m, |V |).

We claim that the minimal, valid, non-trivial functional dependencies of r
are exactly those having the form T → xi with T ∈ Tr(Hi). The existence of a
parsimonious reduction from Transversal Hypergraph Union to Enu-
merate Minimal FDs easily follows from that. Let X ⊆ R and a ∈ R\X
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be such that the FD X → a holds in r and is minimal. For any v ∈ V ,
the rows r0 and rv differ only in attribute v, therefore v is not the right-
hand side of any non-trivial FD, whence a = xi for some 1 ≤ i ≤ d. As
seen above, the set X must be a minimal transversal of the hypergraph
Dxi

= {D(r, s)\{xi} | r, s ∈ r; r[xi] ̸= s[xi]}. We are left to prove that Dxi

has the same minimal transversals as Hi. Let r, s ∈ r be rows that differ
in attribute xi, say, r[xi] = 1 and s[xi] = 0. We thus have r = rj for some
1 ≤ j ≤ m. The rows r and s share only the value 0, if any. Therefore,

D(r, s) =


Ej ∪ {xi}, if s = r0;
Ej ∪ Ek ∪ {xi, xℓ}, if s = rk for 1 ≤ k ≤ m such that Ek ∈ Hℓ;
Ej ∪ {xi, v}, if s = rv for v ∈ V.

In the second case, note that ℓ ̸= i since s[xi] = 0. The above implies that
Hi ⊆ Dxi

. Moreover, all edges in Dxi
\Hi are supersets of ones in Hi. The

respective minimizations min(Dxi
) = min(Hi) are thus equal and, by duality,

also their transversal hypergraphs Tr(Dxi
) = Tr(Hi) are the same.

It is known that Enumerate Minimal FDs can be solved in output-
polynomial time if and only if Transversal Hypergraph can [26], this
has been established along the same lines as discussed in the remarks preced-
ing Lemma 9. Notably, Eiter and Gottlob additionally presented an alterna-
tive construction in the extended version of [26] that is almost parsimonious.
The only condition they needed to relax is the bijection between the solution
spaces. They transform a database over schema R into some hypergraph
(R2, F) such that the majority of its minimal hitting sets indeed correspond
to the functional dependencies with arbitrary right-hand side. However, F
has some O(|R|4) excess solutions (that is, polynomially many in the input
size only), which do not have an FD counterpart, but are easily recognizable.
We leave it as an open problem to give a fully parsimonious reduction be-
tween the problems. We have shown above that this is equivalent to encoding
the hitting set information of |R| different hypergraphs into a single one.

4. Inclusion Dependencies

We now discuss inclusion dependencies in relational databases. We show that
their detection problem, when parameterized by the solution size, is one of
the first natural problems to be complete for the class W[3]. We do so by
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proving its FPT-equivalence with the weighted satisfiability problem for a
certain fragment of propositional logic. Later in Section 4.4, we transfer our
results to the discovery of maximal inclusion dependencies.

4.1. Problem Definitions
A Boolean formula is antimonotone if it only contains negative literals. We
identify a variable assignment with those variables that are set to true. In
the case of antimonotone formulas, this means that the satisfying assign-
ments are closed under arbitrarily turning variables to false, that is, taking
subsets. The empty assignment that assigns false to all variables is al-
ways satisfying. Recall that a formula is 3-normalized if it is a conjunction
of disjunctions of conjunctions of literals or, equivalently, if it is a conjunc-
tions of subformulas in disjunctive normal form (DNF). An example of an
antimonotone, 3-normalized formula is

((¬x1∧¬x2∧¬x4)∨(¬x3∧¬x4))∧((¬x1∧¬x3)∨(¬x2∧¬x5)∨(¬x1∧¬x4∧¬x5)).

This formula admits satisfying assignments of Hamming weight 0, 1, and 2,
but none of larger weight.

The Weighted Antimonotone 3-normalized Satisfiability prob-
lem is the special case of Weighted 3-normalized Satisfiability re-
stricted to antimonotone formulas.

Weighted Antimonotone 3-normalized Satisfiability (WA3NS)

Instance: An antimonotone, 3-normalized Boolean formula φ
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Does φ admit a satisfying assignment of Hamming weight k?

By the above remark, this is the same as asking for an assignment of weight at
least k. The Antimonotone Collapse Theorem of Downey and Fellows [23, 24]
implies that the WA3NS special case is W[3]-complete on its own.

The inclusion-wise maximal satisfying assignments carry the full informa-
tion about the collection of all satisfying assignments. It is therefore natural
to define the corresponding enumeration problem as follows.
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Enumerate Maximal Satisfying WA3NS Assignments

Instance: An antimonotone, 3-normalized Boolean formula φ.
Enumeration: List all maximal satisfying assignments of φ.

For inclusion dependencies, the situation is similar. Every subset of a
valid IND is also valid. Asking for a dependency of size exactly k is thus
the same as asking for one of size at least k. We define two variants of the
decision problem, similar as we did with functional dependencies. The more
restricted variant requires the two databases to have the same schema with
the identity mapping between columns.

Inclusion DependencyIdentity

Instance: Two relational databases r, s over schema R
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Is there a set X ⊆ R with |X| = k such that

r[X] ⊆ s[X] is an inclusion dependency?

Inclusion Dependency

Instance: Two relational databases, r over schema R and s over S,
and a non-negative integer k.

Parameter: The non-negative integer k.
Decision: Is there a set X ⊆ R with |X| = k and an injective mapping

σ : X → S such that r[X] ⊆ s[σ(X)] is an inclusion dependency?

The unparameterized variant of the general Inclusion Dependency prob-
lem is NP-complete already for pairs of binary databases [38].

The solutions of Inclusion DependencyIdentity are mere subsets of the
underlying schema, therefore it is clear what we mean by a maximal solution.
The case of the general Inclusion Dependency problem is slightly more
intricate. Recall from Section 2.2 that we say a general inclusion dependency
(X, σ) is maximal if there is no other IND (X ′, σ′) such that X ⊊ X ′ is a
proper subset and σ is the restriction of σ′ to X. Note that the pair (X ′, τ)
with an alternative mapping τ might still be a valid inclusion dependency.
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This leads to the following enumeration problems.

Enumerate Maximal INDsIdentity

Instance: Two relational databases r, s over the same schema.
Enumeration: List all maximal valid inclusion dependencies between r and s

with the identity mapping between the columns.

Enumerate Maximal INDs

Instance: Two relational databases r and s.
Enumeration: List all maximal valid inclusion dependencies between r and s.

4.2. Membership in W [3]
We show that both variants of the Inclusion Dependency decision prob-
lem are contained in the class W[3]. Recall that the Inclusion Depen-
dencyIdentity problem restricts the input to pairs (r, s) of databases over the
same schema and forbids solutions in which the set of values r[a] of one col-
umn are contained in s[b] for some other column b ̸= a. As a first step, we
show (not entirely surprisingly) that this variant is at most as hard as the
general problem.

Lemma 10. There is a parameterized reduction from Inclusion Depen-
dencyIdentity to Inclusion Dependency.

Proof. Let r and s be two databases over the schema R and let t× = (×a)a∈R

be a new row, where the ×a are |R| different symbols none of which are
previously used anywhere in r or s. In the restricted setting, an inclusion
dependency is a set X ⊆ R of columns such that r[X] ⊆ s[X]. It is easy to
see that (r, s) has such an inclusion dependency of size k, for any k, if and
only if (r∪ {t×}, s∪ {t×}) has an inclusion dependency of the same size with
an arbitrary mapping between the columns since ×a ∈ s[b] holds iff a = b.
The lemma follows from here.

To demonstrate the membership of the general problem in W[3], we reduce
is to WA3NS. Namely, we compute from the two databases an antimonotone,
3-normalized formula which has a weight k satisfying assignment if and only
if the databases admit an inclusion dependency of that cardinality. For this,
we use a correspondence between pairs of attributes and Boolean variables.
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Lemma 11. There is a parameterized reduction from Inclusion Depen-
dency to Weighted Antimonotone 3-normalized Satisfiability.
Proof. Let R = {a1, . . . , a|R|} and S = {b1, . . . , b|S|} be two schemas. We
introduce a Boolean variable xi,j for each pair of attributes ai ∈ R and
bj ∈ S. We let VarP denote the set of variables corresponding to a collection
P ⊆ R × S of such pairs. Consider a subset X ⊆ R together with an
injection σ : X → S. From this, we construct a truth assignment including
the variable xi,j (setting it to true) iff ai ∈ X and σ(ai) = bj. The resulting
assignment has weight |X| and the collection of all possible configurations
(X, σ) is uniquely described by VarR×S and the truth assignments obtained
this way. Moreover, these assignments all satisfy the following antimonotone
Boolean formula φmap.

φmap =
 |R|∧

i=1

|S|−1∧
j=1

|S|∧
j′=j+1

(¬xi,j ∨ ¬xi,j′)
 ∧

 |S|∧
j=1

|R|−1∧
i=1

|R|∧
i′=i+1

(¬xi,j ∨ ¬xi′,j)
 .

The first half of φmap expresses that, for every pair of variables xi,j and
xi,j′ with j ̸= j′, at most one of them shall be true; the second half is
satisfied if the same holds for all pairs xi,j and xi′,j with i ̸= i′. Conversely,
a satisfying assignment A (a subset of VarR×S) for φmap defines a relation
σ ⊆ R × S and a set X ⊆ R by setting σ = {(ai, bj) | xi,j ∈ A} and
X = {ai ∈ R | ∃ 1 ≤ j ≤ |S| : xi,j ∈ A}. By construction, the relation σ
is not only a function σ : X → S, but an injection. In summary, φmap is
fulfilled exactly by the assignments described above. Observe that φmap is in
conjunctive normal form and therefore also 3-normalized as each literal is a
conjunctive clause of length 1.

We now formalize the requirement that a configuration (X, σ) is an in-
clusion dependency in a given pair of databases r and s over the respective
schemas R and S, that is, that r[X] ⊆ s[σ(X)] holds. First, assume that
each database consists only of a single row rℓ and sm, respectively. We say a
pair of attributes (ai, bj) ∈ R × S is forbidden for rℓ and sm if rℓ[ai] ̸= sm[bj].
Let Fℓ,m be the set of all forbidden pairs. For an configuration (X, σ) to
be an IND, the variables xi,j need to be set to false for all (ai, bj) ∈ Fℓ,m.
In terms of Boolean formulas, this is represented by the conjunctive clause
Mℓ,m = ∧

x∈VarFℓ,m
¬x. It follows that (X, σ) is an inclusion dependency if and

only if the corresponding variable assignment satisfies both φmap and Mℓ,m.
Now suppose s has multiple rows, while r is still considered to have only

one. The configuration (X, σ) is an IND for (r, s) iff it is one for at least one
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instance (r, {sm}) with sm ∈ s. If also r has more records, then (X, σ) is an
IND for (r, s) iff it is one in each instance ({rℓ}, s) with rℓ ∈ r. Therefore,
we obtain an inclusion dependency if and only if φmap and the formula

φ =
∧

rℓ∈r

∨
sm∈s

Mℓ,m

are simultaneously satisfied by the assignment corresponding to (X, σ).
The formula φ ∧ φmap is antimonotone and 3-normalized. The (disjunc-

tive) clauses of φmap can be constructed in total time O(|R|2|S| + |R||S|2)
and all sets Fℓ,m together are computable in time O(|r||s||R||S|). An encod-
ing of φ ∧ φmap can thus be obtained from the input databases r and s in
polynomial time. Finally, by the above observation that any solution for the
sub-formula φmap that corresponds to (X, σ) has weight |X|, the reduction
preserves the parameter.

4.3. Hardness for W [3]
We now show that detecting inclusion dependencies is also hard for W[3]. We
argue that the existence of weighted satisfying assignments for 3-normalized,
antimonotone formulas can be decided by solving instances of the more re-
stricted Inclusion DependencyIdentity variant. For the reduction, we make
use of indicator functions. On the one hand, we interpret propositional for-
mulas φ over n variables as Boolean functions fφ : {0, 1}n → {0, 1} in the
obvious way. On the other hand, for a pair of databases r and s over the the
same schema R, we represent any subset X ⊆ R by its characteristic vector of
length |R|. We then define the indicator function f(r,s) : {0, 1}|R| → {0, 1} by
requiring that f(r,s)(X) = 1 holds if and only if X is an inclusion dependency
(with the identity mapping between the columns).

We claim that for any formula φ that is antimonotone and 3-normalized,
there is a pair (r, s) of databases computable in polynomial time such that
fφ = f(r,s). Clearly, this gives a parameterized reduction from WA3NS to
the Inclusion DependencyIdentity problem. The remainder of this section
is dedicated to proving this claim. Recall that the top level connective of a
3-normalized formula is a conjunction. We start by demonstrating how to
model this using databases.

Lemma 12. Let (r(1), s(1)) and (r(2), s(2)) be two pairs of databases, all over
the same schema R, with indicator functions f (1) and f (2), respectively. There
exists a polynomial time computable pair (r, s) over R of size |r| = |r(1)|+|r(2)|
and |s| = |s(1)| + |s(2)|, having indicator function f(r,s) = f (1) ∧ f (2).
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Proof. Without loosing generality, the values appearing in r(1) and s(1) are
disjoint from those in r(2) and s(2). We straightforwardly construct (r, s) as
r = r(1) ∪ r(2) and s = s(1) ∪ s(2), which matches the requirements on both the
computability and size. We still need to show f(r,s) = f (1) ∧ f (2).

Equivalently, we prove that a set X ⊆ R is an inclusion dependency in
(r, s) if and only if it is one in both pairs (r(1), s(1)) and (r(2), s(2)). Let X be
an IND in (r(1), s(1)) as well as (r(2), s(2)). That means, for every row r ∈ r(1),
there exists some s ∈ s(1) with r[X] = s[X]; same for r(2) and s(2). As all
those rows are also present in (r, s), X is an IND there as well. Conversely,
suppose X is not an inclusion dependency in, say, (r(1), s(1)). Then, r(1) has a
row r that disagrees with every s ∈ s(1) on some attribute in X. The record r
is also in present in r and all rows in s belong either to s(1) or have completely
disjoint values. This results in r[X] ̸= s[X] for every record s ∈ s.

One could hope that there is a similar method treating disjunctions. How-
ever, we believe that there is none that is both computable in FPT-time and
compatible with a complementing method representing conjunctions (for ex-
ample, the one above). The reason is as follows. Negative literals are easily
expressible by pairs of single-row databases. Together with FPT-time proce-
dures of constructing conjunctions as well as disjunctions, one could encode
antimonotone Boolean formulas of arbitrary logical depth. The Antimono-
tone Collaps Theorem [25], states that the Weighted Antimonotone t-
normalized Satisfiability problem is W[t]-complete for every odd t ≥ 3.
This would then render Inclusion DependencyIdentity to be hard for all
classes W[t] and, as a consequence of Lemmas 10 and 11, the W-hierarchy
would collapse to its third level. That being said, there is a method specifi-
cally tailored to antimonotone DNF formulas.
Lemma 13. Let φ be an antimonotone formula in disjunctive normal form.
There are relational databases r and s over the same schema computable in
time polynomial in the size of φ such that fφ = f(r,s).
Proof. Let x1, . . . , xn be the variables of φ. Define schema R = {a1, . . . , an}
by identifying variable xi with attribute ai. We first describe how to obtain r
and subsequently construct a matching database s. Let M1, . . . , Mm denote
the m constituting conjunctive clauses of the DNF formula φ. For each Mj,
we define the row rj, similarly as in the proof of Lemma 6, as

rj[ai] =

j, if variable xi occurs in Mj;
0, otherwise.
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ϕ = M1 ∨M2 ∨M3

M1 = (¬x1 ∧ ¬x2 ∧ ¬x3)
M2 = (¬x2 ∧ ¬x4 ∧ ¬x5)
M3 = (¬x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x6)

1 1 1 0 0 0
0 2 0 2 2 0
3 0 3 3 0 3

0 0 0
2 2 0
3 0 3

1 1 0
0 0 0
3 3 3

1 0
2 2
0 0

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

× × × ×
× × × ×
× × × ×

a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6

Figure 5: Illustration of Lemma 13. The antimonotone DNF formula φ on the left has
the three conjunctive clauses M1, M2, M3. The equivalent instance of Inclusion Depen-
dencyIdentity consists of database r in the center and s on the right. There are three
maximal inclusion dependencies {a4, a5, a6}, {a1, a3, a6}, and {a2, a5}. Adding any more
attributes to either of them would create a hitting set for the conjunctive clauses, corre-
sponding to an unsatisfying assignment.

See Figure 5 for an example.
The second database s is constructed by first creating m copies of r. Let

× be a new symbol not appearing anywhere in r. In the j-th copy of r, we
set the value for attribute ai to × whenever xi occurs in Mj. (See Figure 5
again.) Note that |R| = n equals the number of variables of φ and |r| is linear
in the number m of conjunctive clauses, while |s| is quadratic. The time to
compute the pair (r, s) is linear in their combined size and polynomial in the
size of φ. It is left to show that the indicator function satisfies fφ = f(r,s).

First, suppose fφ(X) = 1 for some length-n binary vector X or, equiva-
lently, for some subset X ⊆ R. We show that f(r,s)(X) = 1, meaning that
X is an inclusion dependency in (r, s). Necessarily, we have fMj

(X) = 1 for
at least one conjunctive clause Mj. Since Mj contains only negative literals,
all of its variables evaluate to false. This is equivalent to X not containing
any attribute that corresponds to a variable in Mj. In the j-th copy of r in
the database s, the values were changed to × for exactly those attributes.
Thus, the projection s[X] contains an exact copy of r[X] and X is indeed an
IND, resulting in f(r,s)(X) = 1.

For the opposite direction, suppose fφ(X) = 0. Each conjunctive clause
thus contains a variable corresponding to some attribute in X. Consequently,
in each row of s, there is an attribute in X whose value was replaced by ×. As
r does not contain the symbol × at all, X is not an IND and f(r,s)(X) = 0.
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Lemmas 12 and 13 imply that, given an antimonotone, 3-normalized for-
mula φ, we can build an instance (r, s) of Inclusion DependencyIdentity in
FPT-time (even polynomial) such that fφ = f(r,s). Together with the findings
of Section 4.2, this finishes the proof of Theorem 2.

4.4. Discovery
As we did with minimal unique column combinations and functional depen-
dencies, we can lift our results from detecting a single inclusion dependency
to discovering all of them. It turns out that there is a parsimonious equiv-
alence with the enumeration of assignments to antimonotone, 3-normalized
formulas, as detailed in Theorem 4. The key observations to prove this are
once again that the reductions above are polynomial time computable, inde-
pendently of the parameter, and that they preserve inclusions.

Lemmas 12 and 13 describe how to turn the formula φ in polynomial time
into a pair of databases over the common schema R, which is effectively the
same as Varφ, such that the inclusion dependencies X ⊆ R are in canonical
correspondence with the satisfying assignments A ⊆ Varφ. Moreover, the
parameterized reduction preserves inclusion relations between the solutions
such that the maximal dependencies also correspond to the maximal assign-
ments. In other words, Lemmas 12 and 13 induce a parsimonious reduction
from Enumerate Maximal Satisfying WA3NS Assignments to Enu-
merate Maximal INDsIdentity. It is also easy to see that Lemma 10 implies
a parsimonious reduction from the enumeration of such restricted inclusion
dependencies to the general Enumerate Maximal INDs problem. The
lemma does nothing else but invalidating all non-identity mappings between
the columns. Finally, Lemma 11 shows how to translate general inclusion
dependencies back to an antimonotone, 3-normalized formula φ. Observe
that the (inclusion-wise) maximal satisfying assignments of the resulting for-
mula correspond exactly to the notion of maximality for general INDs (see
Sections 2.2 and 4.1 for details). This shows the equivalence of all the enu-
meration problems involved. Again, the space complexity is preserved up to
polynomial factors by the parsimonious reductions.

We complete the proof of Theorem 4 by showing that the problems are
at least as hard as Transversal Hypergraph. This is an easy exercise
using the structure of antimonotone CNFs.

32



Lemma 14. The enumeration of maximal satisfying assignments of an-
timonotone Boolean formulas in conjunctive normal form is equivalent to
Transversal Hypergraph under parsimonious reductions. In particu-
lar, Enumerate Maximal Satisfying WA3NS Assignments is at least
as hard as the Transversal Hypergraph problem.

Proof. For the reductions, in both directions, we identify the (disjunctive)
clauses of an antimonotone CNF formula φ with the sets of variables they
contain. To spell it out, let Varφ be the set of all variables of φ and
C1, . . . , Cm ⊆ Varφ the clauses. Since the the formula is antimonotone, any
Ci is satisfied iff there is a variable x ∈ Ci that is assigned false. In other
words, an assignment A ⊆ Varφ (the set of true variables) is satisfying iff its
complement A = Varφ\A is a hitting set of the hypergraph {Ci}i∈[m]. Assign-
ment A is maximal in that regard iff A ∈ Tr({Ci}i) is a minimal transversal.
In the very same fashion, we can construct from any hypergraph (H, V ) an
antimonotone CNF formula on the variable set {xv | v ∈ V } by setting
φ = ∧

E∈H
∨

v∈E ¬xv. Complementing the maximal satisfying assignments of
φ recovers the minimal hitting sets of H.

The second part of the lemma follows from any CNF formula being also
3-normalized by viewing literals as conjunctive clauses of length 1.

5. Conclusion

We have determined the complexity of the detection problems for various
types of multi-column dependencies, parameterized by the solution size. Our
results imply that these problems do not admit FPT-algorithms unless the
W-hierarchy at least partially collapses. In fact, the detection of inclusion
dependencies turned out to be surprisingly hard in that it is W[3]-complete.
Therefore, a small solution size alone is not enough to explain the good per-
formance in practice. This is unfortunate as the choice of parameter appears
to be very natural in the sense that the requirement of a small solution size
is regularly met in practice. Of course, our results do not preclude FPT-
algorithms for other parameters. As an example, Unique Column Combi-
nation on databases over schema R are trivially in FPT with respect to the
parameter |R| by checking all subsets. This is of course not very satisfying
since assuming the schema to be small is much stronger than assuming the
solutions to be small. Similarly, one could consider the maximum number
d of attributes on which two rows in the data disagree as parameter. Using
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the standard bounded search tree of height k with nodes of degree at most
d gives an FPT-algorithm with respect to the parameter d + k. Again, the
assumption that any two rows in a relation differ only on a few columns
seems to be unrealistic for most practical data sets.

More structural research into relational databases is needed to bridge
the gap between the worst-case hardness and empirical tractability of de-
pendency detection problems. One needs to identify properties of realistic
instances that explain the good performance of practical methods. In turn,
such properties can then be exploited, for example, by designing multivariate
algorithms with more than one parameter. This may even lead to further
improvements in the running time.

On the other hand, our results regarding the discovery of all dependen-
cies of a certain type in a database are indeed able to explain the good run
times in practice. We proved that the profiling of relational data at its core
is closely related to the transversal hypergraph problem. Although the ex-
act complexity of the latter is still open, there are many empirically efficient
algorithms known for it. Most importantly, modern algorithms for the enu-
meration of hitting sets have the advantage that their space complexity is
only linear in the input size, this is a feature many data profiling algorithms
are still lacking today [1, 46, 53]. Even more than large run times, prohibitive
memory consumption still puts certain databases out of reach for data pro-
filing today. The relations shown here may therefore be a way to improve
the current state of the art algorithms in that direction.
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