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Abstract

We survey the most important results regarding the domination chain param-
eters, including the characterisation of the domination sequence, complexity of
exact and parametersid algorithms, and approximation and inapproximability
ratios. We provide a number of new results for the upper and lower irredun-
dance and their complements, and a few results for other domination chain
problems. In particular, we analyse the structure of maximum irredundant
sets and we provide new bounds on the upper irredundance number. We show
several approximability results for upper and lower irredundance and their com-
plements on general graphs; all four problems remain NP-hard even on planar
cubic graphs and APX-hard on cubic graphs. Finally, we give some results on
everywhere dense graphs, and study some related extension problems.

Keywords: Domination chain, Classical complexity, Parameterized
complexity, Approximation complexity, Special graph classes

1. Introduction

In this paper, we present a comparative study on domination, independence
and irredundance in graphs. We focus both on combinatorial and computational
aspects of the domination chain and provide several new results regarding com-
binatorial bounds on the domination parameters, as well as the approximability
and parameterised complexity of the corresponding problems.

Throughout the paper, we use G = (V,E) to denote an undirected graph
with the set of vertices V and the set of edges E. For any subset of vertices
V ′ ⊆ V we define a subgraph G[V ′] of G induced by V ′ as a graph G[V ′] =
(V ′, E′) such that for any pair of vertices u, v with v ∈ V ′ and u ∈ V ′, there is
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an edge (u, v) ∈ E′ if and only if (u, v) ∈ E. We use N(v) and N [v] to denote
the open and closed neighbourhood of the vertex v ∈ V , respectively;
formally, N(v) = {u ∈ V : (u, v) ∈ E} and N [v] = N(v) ∪ {v}. Similarly,
we use N(V1) and N [V1] to denote the open and closed neighbourhood of
the subset of vertices V1 ⊆ V , respectively, where N(V1) =

⋃
v∈V1

N(v) and
N [V1] =

⋃
v∈V1

N [v].
We define the dominating, independent and irredundant sets as follows.

An independent set is a subset I ⊆ V of vertices of G = (V,E) such that
G[I] has no edges, that is, G[I] = (I, ∅).

A dominating set is a subset D ⊆ V of vertices of G = (V,E) such that
every vertex in V is either in D or has a neighbour in D; formally, D ⊆ V
is a dominating set if and only if N [D] = V .

An irredundant set is a subset S ⊆ V of vertices in G = (V,E) such that for
all s ∈ S, N [s]−N [S − {s}] 6= ∅.

In 1978, Cockayne, Hedetniemi and Miller [33] introduced the well-known
domination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G) (1)

that links parameters related to the fundamental notions of independence, dom-
ination and irredundance in graphs. The domination chain was further studied
by Bollobas and Cockayne [21], and later by Haynes, Hedetniemi and Slater [53]
and many others [19, 32, 63, 69].

In the domination chain, α(G) and i(G) are used to denote the maximum
and minimum cardinalities over all maximal independent sets in G, γ(G) and
Γ(G) the minimum and maximum cardinalities over all minimal dominating
sets in G, and IR(G) and ir(G) the maximum and minimum cardinality over all
maximal irredundant sets in G.

For the ease of reference, the six parameters of the domination chain are
defined in Table 1. Over time, other parameters were added to the domination
chain (see, for example, [51]).

An interesting question that one can ask is whether the parameters of the
domination chain can be arbitrary positive integers satisfying only the above
inequalities. To answer this question we first define a ‘domination sequence’.

A sequence of positive integers a1, a2, a3, a4, a5, a6 is called a domination
sequence if and only if there exists a graph G such that ir(G) = a1, γ(G) = a2,
i(G) = a3, α(G) = a4, Γ(G) = a5 and IR(G) = a6. In 1993, Cockyane and
Mynhardt [34] gave a necessary and sufficient condition for a sequence to be a
domination sequence as stated in the following theorem.

Theorem 1. [34] Positive integers a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 form a
domination sequence if and only if

1. a2 ≤ 2a1 − 1,

2. if a1 = 1 then a2 = a3 = 1, and

3. if a4 = 1 then a1 = a2 = a3 = a4 = a5 = a6 = 1.

.
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Parameter Name Description

ir(G) Lower irredundance number The size of the minimum maximal
irredundant set in a graph G.

γ(G) (Lower) Domination number The size of the minimum
dominating set in a graph G.

i(G) Lower independence number The size of the minimum maximal
independent set in a graph G.

α(G) (Upper) Independence number The size of the maximum
independent set in a graph G.

Γ(G) Upper domination number The size of the maximum minimal
dominating set in a graph G.

IR(G) Upper irredundance number The size of the maximum
irredundant set in a graph G.

Table 1: The six parameters in the domination chain.

In 2005, Zverovich and Zverovich [72] obtained a somewhat weaker result
for cubic graphs.

Theorem 2. [72] For any non-negative integers k1, k2, k3, k4 and k5, there
exists a cubic graph G satisfying the following conditions: γ(G) − ir(G) ≥ k1,
i(G)−γ(G) ≥ k2, α(G)− i(G) ≥ k3, Γ(G)−α(G) ≥ k4 and IR(G)−Γ(G) ≥ k5.

In the next subsection, we give the notations and define the problems related
to the parameters featuring in the original domination chain in Equation (1).

1.1. Definitions

Throughout this paper, we use standard terminology from graph theory.
Given a graph G = (V,E), we use n(G) to denote the order of G, that is,
n(G) = |V |. We use d(v) to denote the degree of a vertex v. We use ∆(G) and
δ(G) to denote the maximum and minimum degree in G, respectively, and for
simplicity we often write just ∆ and δ when G is clear from the context.

A graph G is planar if there exists an embedding of G in the plane such
that no two edges cross in a point other than an end vertex of one of the edges.
A graph G is outerplanar, or 1-outerplanar, if there exists an embedding of
G in the plane such that all the vertices of G are adjacent to the outer planer.
A graph G is k-outerplanar if it has a planar embedding such that removing
all the vertices to the outerplaner results in a k − 1-outerplanar graph. For
every planar graph G there is some k, such that G is a k-outerplanar. There
is a polynomial time algorithm that can take as input a planar graph G, and
produce a k-outerplanar embedding of G for which k is minimum [18].

For any 0 < ε < 1− 1
n , a graph G = (V,E) with |V | = n is called everywhere-

ε-dense if every vertex in G has at least ε|V | neighbours; similarly, for every
0 < ε < 1

2 −
1

2n , a graph G = (V,E) with |V | = n is called average-ε-dense if
|E| ≥ εn2.
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For any set S ⊆ V and v ∈ S we define the private neighbourhood of v
with respect to S as pn(v, S) = N [v]−N [S − {v}]. Any w ∈ pn(v, S) is called
a private neighbour of v with respect to S. We sometimes omit “with respect to
S” if S is clear from the context.

Independence and domination in graphs are very well known and studied
concepts in graph algorithms, while irredundance is much less investigated. We
next restate the definition of an irredundant set using the concept of private
neighbourhood.

A subset S ⊆ V of vertices in G is called an irredundant set if every
vertex v ∈ S has a private neighbour with respect to S; formally, S ⊆ V is an
irredundant set if and only if for each vertex v ∈ S, |pn(v, S)| > 0.

In Table 2, we define the six problems of finding the six parameters in the
domination chain for a given graph G.

Parameter Problem Question
(Alternative names)

ir(G) Lower Irredundance Does G have a maximal
Minimum Maximal Irredundant set irredundant set S

such that |S| ≤ k?

γ(G) Lower Domination Does G have a
Minimum Dominating set dominating set D

such that |D| ≤ k?

i(G) Lower Independence Does G have a maximal
Minimum Independent Dominating Set independent set I
Minimum Maximal Independent set such that |I| ≤ k?

α(G) Upper Independence Does G have an
Maximum Independent set independent set I

such that |I| ≥ k?

Γ(G) Upper Domination Does G have a minimal
Maximum Minimal dominating set dominating set D

such that |D| ≥ k?

IR(G) Upper Irredundance Does G have an
Maximum Irredundant set irredundant set S

such that |S| ≥ k?

Table 2: The six problems in the domination chain. The input is the same for all the problems:
a graph G(V,E) and a non-negative integer k. For each problem, the alternative name used
in this paper is given in bold.

The domination chain is largely due to the following combinatorial properties:

1. Every maximal independent set is a inimal dominating set [13].
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2. A dominating set D is minimal if and only if |pn(v,D)| > 0 for every
v ∈ D [33].

Observe that v can be a private neighbour of itself, i.e., a dominating set
is minimal if and only if it is also an irredundant set. Actually, every minimal
dominating set is also a maximal irredundant set [21].

Given a graphG = (V,E), we use ζ(G) to denote any of the domination chain
parameters in Table 1, where ζ(G) ∈ {ir(G), γ(G), i(G), α(G),Γ(G), IR(G)}. We
define co−ζ(G) = n(G)−ζ(G). Then, we can state the following complementary
domination chain:

co− IR(G) ≤ co− Γ(G) ≤ co− α(G) ≤ co− i(G) ≤ co− γ(G) ≤ co− ir(G) .

Sometimes, the complement problems have received their own names, such as
Nonblocker, Maximum Enclaveless Set, or Maximum Spanning Star
Forest, which all refer to the complement problem of Minimum Domination,
or, most likely better known, Minimum Vertex Cover which refers to the
complement problem of Maximum Independent Set. We will also use τ(G)
instead of co− α(G) to refer to this graph parameter.

In Table 3, we define the six problems of finding the six co-parameters in
the complementary domination chain for a given graph G.

For the basic definitions on classical complexity, approximation and param-
eterised algorithms we refer to standard texts like [9, 41]. As most of our results
are on approximation complexity, we shortly revise some basic notions.

Given an optimisation problem in NPO and an instance I of this problem,
we use |I| to denote the size of I, opt(I) to denote the optimum value of I, and
val(I, S) to denote the value of a feasible solution S of instance I. The perfor-

mance ratio of S (or approximation factor) is r(I, S) = max
{
val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
.

The error of S, ε(I, S), is defined by ε(I, S) = r(I, S)− 1.

For a function f , an algorithm is an f(|I|)-approximation, if for every in-
stance I of the problem, it returns a solution S such that r(I, S) ≤ f(|I|).

For providing hardness proofs in the area of approximation algorithms,
L-reductions and E-reductions have become de facto standard. We use an
approximation-preserving reduction, called L-reduction introduced by Papadim-
itriou and Yannakakis in [68], in order to show that a problem does not admit a
ptas (polynomial-time approximation scheme). Let A and B be two optimisa-
tion problems. Then A is said to be L-reducible to B if there exist polynomial
time computable functions f , g and two constants a, b > 0 such that

1. f maps an instance I of A to an instance f(I) of B such that optB(f(I)) ≤
a · optA(I) for all instances I of A.

2. g maps for any instance I of A a solution S′ for instance f(I) to a solution
S for I such that |val(I, S)− optA(I)| ≤ b · |val(f(I), S′)− optB(f(I))|.

For us, the important property of this reduction is that if A is L-reducible to B
and A has no ptas then B has no ptas.

The notion of an E-reduction (error-preserving reduction) was introduced
by Khanna et al. [57]. A problem A is called E-reducible to a problem B, if
there exist polynomial time computable functions f , g and a constant b > 0
such that
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Parameter Problem Question
(Alternative names)

co− ir(G) Co-Lower Irredundance Does G have a maximal
Maximum minimal co-irredundant set irredundant set S

such that |S| ≤ n− k?

co− γ(G) Co-Lower Domination
Maximum co-dominating set Does G have a

Nonblocker dominating set D
Maximum Enclaveless Set such that |D| ≤ n− k?

Maximum Spanning Star Forest

co− i(G) Co-Lower Independence Does G have a maximal
Maximum minimal co-independent set independent set I
Maximum minimal Vertex Cover such that |I| ≤ n− k?

co− α(G) Co-Upper Independence Does G have an
= τ(G) Minimum co-independent set independent set I

Minimum vertex cover such that |I| ≥ n− k?

co− Γ(G) Co-Upper Domination Does G have a minimal
Minimum maximal co-dominating set dominating set D

such that |D| ≥ n− k?

co− IR(G) Co-Upper Irredundance Does G have an
Minimum co-irredundant set irredundant set S

such that |S| ≥ n− k?

Table 3: The six problems in the complementary domination chain. The input is the same
for all the problems: a graph G(V,E) and a non-negative integer k. For each problem, the
alternative name used in this paper is given in bold.

• f maps an instance I of A to an instance f(I) of B such that opt(I) and
opt(f(I)) are related by a polynomial factor, i.e. there exists a polynomial
p such that opt(f(I)) ≤ p(|I|) · opt(I).

• g maps for any instance I of A any solution S′ of f(I) to a solution S of
I such that ε(I, S) ≤ b · ε(f(I), S′).

An important property of an E-reduction is that it can be applied uniformly
to all levels of approximability; that is, if A is E-reducible to B and B belongs
to C then A belongs to C as well, where C is a class of optimisation problems
with any kind of approximation guarantee (see also [57]).

1.2. Previous work / main contributions and organisation of the paper

Our main contributions and the paper organisation are as follows.
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• In this subsection we give a summary of the complexity results for the
six problems in the domination chain, both for the previous results and
the ones proved in this paper. We include results on exact, parameterised
and approximation algorithms, as well as (in)approximability results and
special classes of graphs. For readability, we summarise all the results in
tables and for each result we provide either a reference to another paper
or a theorem (corollary, observation) in this paper.

• In Section 2, we give a brief overview of the known relationships between
the parameters of the domination chain. We then analyse the structure
of maximum irredundant sets and provide new bounds on the upper irre-
dundance number IR(G) in terms of α(G).

• In Section 3, we give several (in)approximability results on general graphs,
for lower and upper irredundance and their complements.

• In Section 4, we prove NP-hardness of the lower and upper irredundance
problem on planar cubic graphs, which also implies the hardness of the
complement problems on planar cubic graphs.

• In Section 5 we consider graphs with bounded degree. We show APX-
hardness on cubic graphs for minimum domination, minimum independent
domination, and lower and upper irredundance, as well as the their com-
plements. We also provide some simple algorithmic results to complement
the hardness results.

• In Section 6, we present some approximability results on everywhere dense
graphs, for upper irredundance, upper domination, minimum maximal
independent set and their complements.

• In Section 7, we study some less known problems related to the domination
chain, and we show that both Minimal Vertex Cover Extension, and
the Minimal Co-Irredundant Extension are NP-hard, the former
even when restricted to planar cubic graphs.

• Finally in Section 8, we give some concluding remarks and open problems.

In Tables 4, 5 and 6, we sumarise the known algorithmic and complexity
aspects of the domination chain parameters, as well as some of the new re-
sults obtained in this paper. Clearly, the classical complexity results for the
problems of the domination chain in Tables 4 and 5 also apply to their com-
plements and are hence not repeated in Table 6. However, observe that the
status of parameterised complexity and approximation of these problems and
their complementary versions indeed differ. In order to distinguish the problem
parameters of the two tables, we use k in Tables 4, 5 and ` in Table 6.

2. Notes on the structure of the maximal irredundant set, and the
relationship between the domination chain parameters

There are several known relationships between the parameters of the domi-
nation chain. The next theorem relates the lower irredundance number to the
(lower) domination number.
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Exact Algorithm Parameterised Compl. Tight Inapprox. ratio
w.r.t n = |V | standard parameterisation under assumption P 6= NP

ir O∗(1.99914n) [19] W[2]-complete [19] c log(n) Prop. 13

γ O∗(1.4864n) [55] W[2]-complete [40] c log(n) [44, 39, 66]

i O∗(1.3351n) [23] W[2]-complete [40] n1−ε [52]

α O∗(1.2002n) [70] W[1]-complete [40] n1−ε [71]

Γ O∗(1.7159n) [12] W[1]-hard, in W[2] [12] n1−ε [11]

IR O∗(1.9369n) [19] W[1]-complete [42] n1−ε Thm. 14

Table 4: Table of known results for general graphs on the six problems in the domination
chain.

Theorem 3. [21] For any graph G:

γ(G) ≤ 2ir(G)− 1 (2)

The previous bound was further strengthened in [5].
The following theorem relates the (lower) domination and the lower inde-

pendence numbers of graphs with no isolated vertices.

Theorem 4. [21] For any graph G with minimum degree δ(G) ≥ 1:

i(G) ≤ n− γ(G) + 1−
⌈
n− γ(G)

γ(G)

⌉
(3)

The following theorem provides a stronger result for claw-free graphs.

Theorem 5. [4] For any graph G that does not have an induced subgraph iso-
morphic to K1,3:

γ(G) = i(G) (4)

Finally, the following two theorems relate the upper domination number to
the (upper) independence number of a graph.

Lemma 6. [11] For any connected graph G with n > 0 vertices we have:

α(G) ≤ Γ(G) ≤ max

{
α(G),

n

2
+
α(G)

2
− 1

}
(5)

Lemma 7. [11] For any connected graph G with n > 0 vertices, minimum
degree δ and maximum degree ∆, we have:

8



Vertex-Kernel Apx-Ratio APX-C NP-C non-apx
∆ = 3 planar cubic dense

3
2∆k 3

2∆
ir (Cor. 29) (Thm. 20) ?

(Obs. 26) [35]

(∆+1)k log(∆)+1 APX-H on

γ [3] [48] avg dense

(Obs. 25) [30] [50]

(∆+1)k ∆+1 n1 ε

i (Cor. 31) [63]
(Obs. 25) (Obs. 25) (Thm. 36)

∆k
∆+3

5
n1 ε

α [3] [47]
(Obs. 24) [14] (Prop. 35)

∆k
6∆2+2∆−3

10∆
n1 ε

Γ [11] [11]
(Obs. 24) [11] (Cor. 34)

∆k
6∆2+2∆−3

10∆
n1 ε

IR (Cor. 30) (Thm. 21)

(Obs. 24) (Obs. 23) (Thm. 33)

Table 5: Table of (currently best known) results for the six problems in the domination chain
on graphs with degree restrictions, where dense denotes everywhere-ε-dense.

α(G) ≤ Γ(G) ≤ max

{
α(G),

n

2
+
α(G)(∆− δ)

2∆
− ∆− δ

∆

}
(6)

In this paper, we show that the bounds on Γ given by Lemmas 6 and 7 also
hold for the upper irredundance number IR. In order to do that, we first need
to analyse the structure of maximal irredundant sets in a graph.

Any maximal irredundant set S for a graph G = (V,E) can be associated
with a partition of the set of vertices V into five sets F, I, P,O,R given by:
I := {v ∈ S : v ∈ pn(v, S)}, F := S− I, P ∈ {B ⊆ N(F ) \S : |pn(v, S)∩B| = 1
for all v ∈ F} with |F | = |P |, O = N [S] − (S ∪ P ), R = V − N [S]. This
representation is not necessarily unique since there might be different choices
for the sets P and O, but for every partition of this kind, the following properties
hold:

9



Apx-Ratio Non-Apx Vertex-Kernel FPT APX-H
O∗-Alg. dense

co− ir(G) 2 (Obs. 15) ? 2`− 1 [19] 3.841` [19] ?

co− γ(G)
240

193
[8]

260

259
[67] 5

3`+ 3 [38] 2.0226` [38] ?

co− i(G)
√
n [22] n

1
2−ε [22] `2 [45](Sec.4.3) 1.5874` [22] (Thm. 36)

co− α(G) 2 (folklore) 2 (UGC) [58] 2` [27, 41] 1.2738` [29] [31]

co− Γ(G) 4 [11] ? `2 + ` [11] 4.3077` [11] (Cor. 34)

co− IR(G) 4 (Thm. 16) ? 3` [19] 2.8752` [19] (Thm. 33)

Table 6: Table of (currently best known) results for the six problems in the complementary
domination chain, dense denotes everywhere-ε-dense.

1. Every vertex v ∈ F has at least one neighbour in F , called a friend.

2. The set I is an independent set in G.

3. The subgraph induced by the vertices F ∪P has an edge cut set separating
F and P that is, at the same time, a perfect matching; hence, P can serve
as the set of private neighbours for F .

4. The neighbourhood of a vertex in I is always a subset of O, which are
otherwise the outsiders.

5. Each vertex in R has at least one neighbour in P .

Lemma 8. For any connected graph G with n > 0 vertices and a maximum
irredundant set S with an associated partition (F, I, P,O,R) as defined above,
if |S| = IR(G) > α(G) then |I| ≤ α(G)− 2.

Proof. Let G be a connected graph with n > 0 vertices and let S be a maximum
irredundant set with an associated partition (F, I, P,O,R). We first show that
if IR > α(G) then |F | ≥ 2 (in fact, one can show that then |F | ≥ 3 but
that is not necessary for our proof). Indeed, if |F | = 0, then S is also an
independent set, and thus IR(G) = α(G), and according to our definition of
partition (F, I, P,O,R), we have |F | 6= 1 (see Property 1 of this partition).

Now, if |F | ≥ 2 then the subgraph of G induced by F ∪ P contains an
independent set of size 2 consisting of a vertex in F , say v, and a vertex in P ,
say u, such that v and u are not adjacent. Since in the original graph G, there
are no edges between the vertices in I and the vertices in F ∪ P (Property 4),
I ∪ {u, v} forms an independent set of size |I|+ 2. This sets a lower bound on
the independence number and we have α(G) ≥ |I|+ 2.

From the above, it follows that if IR(G) > α(G) then |I| ≤ α(G)− 2.
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Lemma 9. For any connected graph G with n > 0 vertices we have:

α(G) ≤ IR(G) ≤ max

{
α(G),

n

2
+
α(G)

2
− 1

}
(7)

Proof. We consider a graph G with n > 0 vertices and let D be a maximum
irredundant set with associated partition (F, I, P,O,R). We examine separately
the following two cases:

1. IR(G) = α(G). Then we trivially have IR(G) ≤ α(G).

2. IR(G) > α(G).

From the fact that |F | = |P | (from Property 3) we have |F | = n−|I|−|O|−|R|
2 ≤⌊

n−|I|
2

⌋
and thus

IR(G) = |F |+ |I| ≤
⌊
n+ |I|

2

⌋
From the above and Lemma 8 we have

IR(G) ≤
⌊
n+ |I|

2

⌋
≤
⌊
n+ α(G)− 2

2

⌋
≤ n

2
+
α(G)

2
− 1

This concludes the proof of the claim.

Lemma 10. For any connected graph G with n > 0 vertices, minimum degree
δ and maximum degree ∆, we have:

α(G) ≤ IR(G) ≤ max

{
α(G),

n

2
+
α(G)(∆− δ)

2∆
− ∆− δ

∆

}
(8)

Proof. Let G be a connected graph with n > 0 vertices, maximum degree ∆ and
let S be a maximum irredundant set with associated partition (F, I, P,O,R).
Our argument is similar to the one in Lemma 9, as the case IR(G) = α(G) is
again trivial, assume IR(G) > α(G). Again, we obtain:

IR(G) = |F |+ |I| = n+ |I| − |O| − |R|
2

We next derive an improved lower bound on |O|. Let e be the number of
edges adjacent with vertices from I. As G is of minimum degree δ, we have
e ≥ δ|I|. As the vertices in I are only adjacent with the vertices in O, there are
at least e edges that have exactly one end vertex in O. Since G has maximum

degree ∆, we have that |O| ≥
⌈
e
∆

⌉
≥
⌈
δ|I|
∆

⌉
.

From the above and Lemma 8 we have

IR(G) ≤
⌊
n+|I|−d δ|I|∆ e−|R|

2

⌋
≤

n+ |I| − δ|I|
∆

2
=
n+ (∆−δ)|I|

∆

2

≤ n+
(∆−δ)

∆ (α(G)−2)

2 =
n

2
+

∆− δ
2∆

α(G)− ∆− δ
∆
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This lemma generalises [54, Proposition 12], which states the property for
∆-regular graphs, where, in particular, δ = ∆. Equation (7) immediately yields:

Lemma 11. Let G be a connected graph. Then,

τ(G)

2
+ 1 ≤ co− IR(G) ≤ τ(G) (9)

We also like to point the reader to [73], where another interesting combina-
torial bound was shown, namely

IR(G)− α(G) ≤
⌈

∆− 2

2∆
n

⌉
.

3. Approximability on general graphs

In this section, we discuss approximability on general graphs. For some
problems from the domination chain, the assumption P 6= NP yields strong
inapproximability results; more precisely, it is known that under this assumption
there is no n1−ε-approximation for Minimum Independent Domination [52],
Maximum Independent Set [71] and Upper Domination [11]. We will show
in this section that this inapproximability also holds for Upper Irredundance
but first we like to comment on the status of the inapproximability of Minimum
Domination.

Remark 12. There seems to be no explicit reference for the inapproximabil-
ity of Minimum Domination, at least under the assumption P 6= NP. The
standard reference is to Feige [44], but even this is a bit indirect, as he only
considers Set Cover explicitly, but as the sizes of the universe and of the set
system are polynomially related, the standard reduction from Set Cover to
Minimum Domination gives the desired inapproximability result, yet under a
non-standard complexity assumption. Dinur and Steuer developed techniques
further and showed [39] that Set Cover is hard to approximate within some
logarithmic factor under the assumption that P 6= NP. From the proof given by
Moshkovitz [66], it becomes clear that the sizes of the universe and of the set
system are polynomially related, so that the claimed inapproximability result
for Minimum Domination can be deduced. More specifically, the proof is via
Label Cover, where instances are given as bipartite graphs (A,B;E). Now,
the number of elements in the derived Set Cover instance is a small polyno-
mial in |B|, and the number of sets is a small polynomial in |A|, and the degree
of the vertices in B is bounded by some constant D. In particular, the number
of sets in the constructed Set Cover instance is bounded by a polynomial in
the number of elements of that instance.

The standard reduction from Set Cover to Minimum Domination creates
a split-graph as an instance for Minimum Domination. Since ir(G) = γ(G)
for all split-graphs G by [61], this standard reduction also yields:

Proposition 13. For any ε > 0, there is no (1 − ε) log(n)-approximation for
Lower Irredundance, where n is the number of vertices of the input graph,
unless P = NP, even when the inputs are restricted to split graphs.
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The inapproximability for Minimum Domination is tight as it is well known
that a greedily build minimum dominating set yields an approximation with a
ratio in O(log(n)). Equation (2) together with the relation ir(G) ≤ γ(G) and
the fact that each minimal dominating set is a minimal irredundant set transfers
this approximability of Minimum Domination to Lower Irredundance.

For Upper Irredundance we consider induced matchings to investigate
approximability. An induced matching of a graph G = (V,E) is a subset
M ⊆ V such that all vertices in the induced subgraph G[M ] have degree one.
We consider the following optimisation problem in this context:

Parameter Problem Question

im(G) Maximum Induced Matching Does G have an induced
matching M with |M | ≥ k?

In [25], Chalermsook et al. state that there is no |V |1−ε-approximation for
Maximum Induced Matching even when restricted to bipartite graphs, unless
NP ⊆ ZPP. Their reduction yields this hardness by a gap-preserving reduction
from Maximum Independent Set. In combination with the approximation-
hardness from [71] for Maximum Independent Set this reduction also yields
the stated inapproximability under the stronger assumption P 6= NP.

Theorem 14. For any ε > 0, Upper Irredundance is not n1−ε-approximable,
where n is the number of vertices of the input graph, unless P = NP, even when
the inputs are restricted to co-bipartite graphs.

Proof. Given a bipartite graph G = (V1, V2, E) as input for Maximum Induced
Matching restricted to bipartite graphs, we construct an instance G′ of Up-
per Irredundance, simply by turning both V1 and V2 into cliques. Any two
vertices u ∈ V1 and v ∈ V2 are already dominating for G′, which implies that
any irredundant set S for G′ which has cardinality more than two is completely
contained in either V1 or V2. In any associated partition (F, I, P,O,R), I is
empty and S is consequently equal to F . Since F ∪P has a matching cut in G′

by definition of the partition (F, I, P,O,R) it is clear that F ∪ P is an induced
matching in G which yields im(G) ≥ 2IR(G′) .

Conversely, consider any induced matching M in G. For the set S = M ∩V1,
we know that each vertex in S has exactly one neighbour in M and that this
neighbour is not adjacent to any other vertex in S. In the graph G′, this implies
that M ∩N [v] ⊆ pnG′(v, S) for all v ∈ S and |M ∩N [v]| = 1, which means that
S is irredundant in G′ and hence im(G) ≤ 2IR(G′).

Overall, we have and E-reduction since im(G) = 2IR(G′) and |VG| = |VG′ |,
which transfers the approximation-hardness from Maximum Induced Match-
ing restricted to bipartite graphs to Upper Irredundance (even restricted to
co-bipartite graphs).

As an interesting aside, let us mention that the relation between Upper
Irredundance and Maximum Induced Matching is also useful in a reverse
direction. Namely, in [19, Sec. 6], the exact algorithm developed for Upper
Irredundance was obtained by first translating the graph into an instance
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of Maximum Induced Matching on bipartite graphs (called Bipartite In-
duced Matching in that paper) and then solving the parameterized version
of that problem in time O∗(1.7k).

For the little studied complement of Lower Irredundance we observe:

Observation 15. For any graph G without isolated vertices one can compute a
minimal dominating set of cardinality at most n

2 in polynomial time by comput-
ing Minimum Domination for an arbitrary spanning forest of G. The comple-
ment of this dominating set is consequently a 2-approximation for Co-Lower
Irredundance.

Using Lemma 11, one can use known exact or approximation algorithms for
Minimum Vertex Cover to deduce:

Theorem 16. Co-Upper Irredundance is 4-approximable in polynomial
time and 2-approximable in O∗(1.2738τ(G)) or O∗(1.2002n) time.

Proof. Given a graph G on n vertices, we first find a vertex cover C in G using
any 2-approximation algorithm, and define S′ = V \C. Set S′ is an independent
set and let S be a maximal independent set containing S′. The set V \ S is a
vertex cover of size |V \ S| ≤ |C| ≤ 2τ(G) ≤ 4(n − IR(G)), see Lemma 11.
Moreover, V \ S is the complement of a maximal independent set which also
makes it the complement of a maximal irredundant set, so overall a feasible so-
lution for Co-Upper Irredundance with |V \S| ≤ 4(n−IR(G)). The claimed
running time for the factor-2 approximation stems from the best parameterised
and exact algorithms for Minimum Vertex Cover by [29] and [59].

We could also use some results from parameterised approximation. For in-
stance, by [24], we can conclude:

Corollary 17. Co-Upper Irredundance is 3-approximable in time O∗(1.0883τ(G)).

4. Planar graphs

While approximability and fixed parameter tractability for all problems of
the domination chain are rather unsuccessful, the situation improves for the
restriction to planar graphs.

It is known that any planar graph G has treewidth in O(
√
γ(G)) [2] which

by Equation (2) means that the treewidth can also bounded by ir(G). Since the
properties irredundance, independence and domination can all be expressed in
monadic second order logic, all problems of the domination chain are in FPT
for the restriction to planar graphs by Courcelle’s theorem [36].

In combination with the concept of outerplanarity, these results for bounded
treewidth can be used to develop ptas as initially shown for a series of problems
including Maximum Independent Set and Minimum Vertex Cover in [10].
There it was also sketched how to solve Minimum Domination same way as
Minimum Vertex Cover; this idea however turned out to need more adjust-
ment and a detailed approach with the flaws in the initial sketch is shown in
[64]. In [11] it is shown that this concept can also be adapted for Upper Dom-
ination. The problematic part for this approximation scheme is to show that
dominating the separators can be done without eliminating too many private
neighbourhoods which requires a careful analysis.
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It is not hard to see that the approach from [11] can also be adapted for
Upper Irredundance without these problems.

Proposition 18. Upper Irredundance admits a ptas on planar graphs.

Proof. The approximation scheme is built as usual within Baker’s approach [10].
We only explain the main ingredients in the following. (a) Observe that given
two irredundant sets S1 and S2 for two disjoint subgraphs G1 and G2 of G,
respectively (where ‘disjoint’ here means that the vertices from G1 are in G
not adjacent to the vertices from G2), the set S1 ∪ S2 is irredundant in G and
can greedily be extended to a maximal irredundant set for G. (b) Conversely,
given any irredundant set S for G = (V,E) and any subset V ′ ⊂ V , the set
{v ∈ S : pn(v, S) 6⊆ V ′} \ V ′ is irredundant in G[V \ V ′] and has cardinality
at least |S| − |V ′|. (c) The upper irredundance number IR(G) ≥ n

4 for any
planar graph G of order n (due to the Four-Colour-Theorem). (d) Since every
k-outerplanar graph has the treewidth at most 3k − 1, see [20], it follows from
Courcelle’s Theorem [36] (or [37] for a more algorithmic exposition) that the
upper irredundance number on a k-outerplanar graph can be found in the time
f(k)n, where n is the number of vertices in the graph. (e) Then one can show
that solving Upper Irredundance exactly on the graph built from G by
deleting every i-th layer of a planar embedding yields an approximation ratio
of (1 + 4

i−1 ) as follows.

1. When deleting every i-th layer, by pigeon hole, it is possible to select layers
so as not to delete more than n

i vertices.

2. The remaining graph G′ is a collection of (i− 1)-outerplanar graphs, and
thus can be solved optimally in time f(i− 1)n, see (d).

3. Let IR′ be the upper irredundance number for the remaining graph G′;

then IR′ ≥ n (i−1)
4i , see (c) and item 1.

4. Let X = IR− IR′; note that X ≤ n
i .

5. The approximation ratio is then IR′+X
IR′ = 1 + X

IR′ ≤ 1 +
n
i

n(i−1)
4i

= 1 + 4
i−1 .

By a suitable choice of i, every desired approximation factor can be achieved. (a)
and (b) together guarantee the correctness of the decomposition approach.

In [67], it is shown how to use an approximation scheme for Minimum Dom-
ination to solve Nonblocker. The idea can be generalised as follows. Here,
by graph parameter we mean the cardinality of a set of vertices satisfying some
property. We further assume that we can associate a natural optimisation prob-
lem to this parameter. Hence, the discussion below applies in particular to the
graph parameters of the (complementary) domination chain.

Proposition 19. Let G be some graph class and let ζ(G) be some graph param-
eter that corresponds to some minimisation problem MIN. Further assume that
there exists some constant c > 1 such that c ·ζ(G) ≤ n(G) for all G ∈ G. If MIN
admits a ptas on G, then also the maximisation problem MAX corresponding to
the parameter co− ζ(G) possesses a ptas.

Proof. Let Aε be an algorithm that returns on input G ∈ G, G = (V,E) with
n vertices, some solution Sε ⊆ V such that |Sε| ≤ (1 + ε)ζ(G). Then, we can
design an algorithm A′ε that on input G ∈ G, G = (V,E) with n vertices, returns
some solution S′ε ⊆ V such that |S′ε| ≥ (1− ε)co− ζ(G) as follows.
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1. Let ε̄ = (c− 1)ε.

2. Let Sε̄ be the solution returned by Aε̄ on input G.

3. Return S′ε := V \ Sε̄.

By definition, S′ε is a feasible solution. The claimed approximation factor is
seen as follows:

|S′ε| = n(G)− |Sε̄|
≥ n(G)− (1 + ε̄)ζ(G)

= (n(G)− ζ(G))− ε̄ζ(G)

= (n(G)− ζ(G))− (c− 1)εζ(G)

≥ (n(G)− ζ(G))− n(G)ε+ εζ(G)

= (1− ε)(n(G)− ζ(G))

= (1− ε) · co− ζ(G)

This shows the claim.

For instance, if G is the class of planar graphs without isolates, then 2γ(G) ≤
n(G) is known, which means that the ptas for Minimum Domination on planar
graphs transfers to a ptas for Nonblocker, as isolates can be easily dealt with
by preprocessing.

A similar transfer of ptas results is also possible from maximisation to min-
imisation problems. Interestingly enough, in the chain of inequalities we (again)
need c · ζ(G) ≤ n(G) for the parameter ζ now pertaining to the maximisation
problem. This is in fact a problem, as usually such a c > 1 does not exist.
Therefore, we refrained from explicitly stating this result here. For instance,
although there is a ptas for Upper Domination and hence for Upper Irre-
dundance, as sketched above, we see no way how to transfer this to a ptas result
for Co-Upper Irredundance. We can only conclude that the known ptas for
Minimum Vertex Cover can be used to get some (2 + ε)-approximation for
Co-Upper Irredundance on planar graphs, based on the computations from
Theorem 16.

So, unfortunately, we are not aware of any ptas results for any other of the
parameters in the (complementary) domination chain. This is particularly true
for Lower Irredundance and for Minimum Independent Domination.

Despite the above improvements on approximability and fixed parameter
tractability for the restriction to planarity, it is known that most problems from
the domination chain remain NP-hard even when restricted to cubic planar
graphs. In fact this is known for all problems except for Upper and Lower
Irredundance; we will show in the following that this hardness also holds
for these two problems. These results then also imply that the corresponding
complementary versions are NP-hard on planar cubic graphs.

Theorem 20. Lower Irredundance is NP-hard on planar cubic graphs.

Proof. We use the same construction as in [63], where Minimum Domination
on planar cubic graphs is reduced to Minimum Independent Domination,
as follows: Given a planar cubic graph G = (V,E), construct G′ from G by
replacing every (u, v) ∈ E by the following planar cubic subgraph with four new
vertices uv, vu, pu,v, qu,v:
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u uv

pu,v

qu,v

vu v

In [63], it is proved that i(G′) = γ(G) + |E|, which gives us ir(G′) ≤ γ(G) + |E|
(domination chain). We will now prove that ir(G′) ≥ γ(G) + |E|, which implies
that ir(G′) = γ(G) + |E|, that is, G has a dominating set of cardinality at most
k if and only if G′ has a lower irredundant set of cardinality at most k + |E|.
Suppose S is a maximal irredundant set for G′. Consider the sets D := S ∩ V
and Vu,v := S ∩ {uv, pu,v, qu,v, vu} for all (u, v) ∈ E and perform the following
two modification steps (no changes on S):

1. For every edge (u, v) in E such that S ∩ {uv, vu, pu,v, qu,v} = ∅, delete
u from D and add uv to Vu,v. Maximality of S implies u, v ∈ S and
pn(u, S) = {uv} and pn(v, S) = {vu}. For all edges (u,w) ∈ E with w 6= v,
consequently we have uw /∈ pn(u, S), which means S∩{uw, pu,w, qu,w} 6= ∅.
This especially ensures that for all such edges (u, v), one of the vertices
u, v remains in S.

2. For all w ∈ V such that NG[w] ∩D = ∅, we know that w was not deleted
by step one, since otherwise its neighbour from the edge which triggered
step one would be in D. This means w /∈ S, so by maximality there is a
vertex v ∈ S ∪ {w} such that pn(v, S ∪ {w}) = ∅. Since S is irredundant,
such a vertex v is either in {wz, pw,z, qw,z : z ∈ NG(w)} or v = w. While
there exists a vertex w ∈ V such that NG[w]∩D = ∅, apply modifications
according to the following cases for v:

(a) If v = wz for some z ∈ NG(w), irredundance of S yields pn(wz, S) ⊆
{w,wz}, so especially qw,z /∈ pn(wz, S), so that |Vw,z| = 2.
Delete wz from Vw,z and add w to D.

(b) If v = qw,z for some z ∈ NG(w) (symmetrically for pw,z), irredun-
dance of S yields pn(qw,z, S) = {wz}, which means zw ∈ S.
Delete zw from Vw,z and add z to D.

(c) If v = w, especially w /∈ pn(w, S ∩ {w}), so there is a vertex x ∈
NG(w) such that wx ∈ S.
If |Vw,x| = 2, delete wx from Vw,x and add w to D.
Otherwise, {xw, px,w, qx,w} ∩ S = ∅, so x was not deleted in step
one, so x /∈ S. Maximality requires pn(v′, S ∪ {xw}) = ∅ for some
v′ ∈ S ∪ {xw}. Since xw /∈ N [S], this means v′ = xy for some
y ∈ NG(x) and pn(xy, S) = {x}. This implies S ∩{qx,y, px,y} 6= ∅, so
especially |Vx,y| = 2.
Delete xy from Vx,y and add x to D.

Observe that this process of deleting a vertex from some Vx,y is not done twice
for the same edge (x, y). For every such Vx,y we always either delete xy and
add x to D or delete yx and add y to D. The first two cases (a) and (b)
are only considered if neither x nor y are in D, so clearly no exchange has
happened in a previous step. In the third case, S only contains xy or yx, so
Vx,y will be used at most once to add x or y, respectively. After these steps,
clearly D is a dominating set for G. Since |Vx,y| ≥ 1 for all (x, y) ∈ E and
|S| = |D| +

∑
(x,y)∈E |Vx,y|, this dominating set has a cardinality of at most
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|S| − |E|. With the choice of S as a maximal irredundant set for G′ being
arbitrary, we can conclude that ir(G′) ≥ γ(G) + |E|.

Interesting side note to this proof is that ir, γ and i coincide on G′. Since
especially ir and i are known to differ arbitrarily even on cubic graphs [72],
this is obviously due to the special structure of G′. It contains induced K1,3

(every original vertex with its neighbourhood), so the result for ir = γ = i from
[43] does not apply. This makes this construction an interesting candidate to
study the characterisation of the graph class for which ir = i. With a different
construction, we can show the same type of result for Upper Irredundance.

Theorem 21. Upper Irredundance is NP-hard on planar cubic graphs.

Proof. The proof of this result is split into two parts: in (A), we prove NP-
hardness on subcubic planar graphs, and then in (B) we show how to modify
the construction to get NP-hardness also in the case of cubic graphs.

(A) We reduce from Maximum Independent Set on subcubic planar graphs,
proved NP-hard in [49, 47]. Let G = (V,E) be a subcubic planar input graph
for Maximum Independent Set. Construct a subcubic planar graph G′ from
G by replacing every edge (u, v) ∈ E by the following subgraph with the set of
six new vertices Vu,v := {u′, u1, u2, v1, v2, v

′}.

u u′
u1

u2

v1

v2

v′ v

Any maximum independent set S of G can be extended to a maximum inde-
pendent set in G′ of cardinality |S|+ 3|E|, since for every edge (u, v) ∈ E either
u /∈ S or v /∈ S, so either {u′, v1, v2} or {v′, u1, u2} can be added to S with-
out violating independence. The resulting maximal independent set is also a
maximal irredundant set in G′.

Let, on the other hand, S be a maximal irredundant set for G′. For the
induced C6 of an edge-gadget, one can easily verify by checking all possibilities
that S can contain at most three out of the six vertices in Vu,v without violating
irredundance. If {u, v} ⊂ S for an edge (u, v) ∈ E, S can contain at most
two vertices from Vu,v. Consider the sets S′ = S ∩ V and R = ∅. While
there is an edge (u, v) ∈ E with {u, v} ⊂ S′, delete u from S′ and add it
to R. When this deleting-process ends, S′ is an independent set in G. With
E1 := {(u, v) : {u, v} ⊂ S} and E2 = E − E1, the cardinality of S′ can be
estimated by:

|S′| = |S| −
∑

(u,v)∈E

|Vu,v ∩ S| − |R| ≥ |S| − 3|E2| − 2|E1| − |E1| = |S| − 3|E|.

In conclusion, for any k ∈ N, G has an independent set of cardinality at least
k if and only if G′ has an irredundant set of cardinality at least k+ 3|E|. With
a planar (sub)cubic input graph G, the constructed input graph G′ is planar
and subcubic.
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(B) In the previous construction, the resulting graph G′ is already subcubic and
planar and does not contain degree-one vertices. For every vertex of degree two
in G′, add the following subgraph:

v

Any choice of two vertices within such a new subgraph dominates all of its
new vertices, so any irredundant set for the new graph contains at most two
vertices from any of the new subgraphs. If the original vertex v chooses its new
neighbour to be a private neighbour in some irredundant set S, then S can only
contain one of the new vertices this subgraph. Deleting v from S and choosing,
for example, the two black vertices in the above picture to belong to S instead
does neither violate irredundance nor change the cardinality of S. Let T be
the set of degree-two vertices in G′ and let G′′ denote the graph build from G′

by adding the above subgraph to every vertex v ∈ T . The graph G′′ is planar,
cubic and has an irredundant set of cardinality k+ 2|T | if and only if G′ has an
irredundant set of cardinality k.

Remark 22. As already noted by Manlove [63], the exact reference proving that
Maximum Independent Set is NP-hard on cubic graphs is not that easy to
chase down. The best reference seems to be the constructions from [49, 47],
but this gives only subcubic (planar) instances. However, with the help of the
little gadget from part (B) of the previous proof, any subcubic instance can be
easily turned into a cubic one, preserving planarity. Observe that both the full
gadget graph and the graph that is obtained by deleting v contains at most two
independent vertices.

5. Graphs of bounded degree

Bounded degree also improves the fixed parameter tractability and approx-
imability of the problems from the domination chain and their complements.
In this section we first present some observations about possible approximation
ratios and kernels for graphs of maximum degree ∆. We complement these
positive results by L-reductions for Upper and Lower Irredundance and a
scheme of proving approximation-hardness for cubic graphs which, together with
previously known results, show that all problems from the domination chain and
the complementary domination chain remain APX-hard on cubic graphs.

Observation 23. The approximation-results for Upper Domination restricted
to graphs of bounded degree from [11] are based on Equation (8) and the fact
that every maximal independent set is an upper dominating set which is also
true for Upper Irredundance. The approximation by a suitable independent
set yields the same approximation-ratio here which especially means that Upper

Irredundance can be approximated within factor at most 6∆2+2∆−3
10∆ for any

graph G of bounded degree ∆.

Observation 24. With Brooks’ Theorem one can always find an independent
set of cardinality at least n

∆ for any graph G of bounded degree ∆. From a
parameterised point of view, this immediately gives a ∆k-kernel for Maximum
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Independent Set, Upper Domination and Upper Irredundance for the
natural parameter k of these problems, since any bounded-degree graph with
more than ∆k vertices is a trivial “yes”-instance.

Observation 25. Bounded degree ∆ implies γ ≥ n
∆+1 , which means that any

greedy solution yields a (∆ + 1)-approximation for Minimal Maximum Inde-
pendent Set (i(G) in domination chain) and Minimum Domination. For
standard parameterisation this also yields a (∆ + 1)k kernel for these problems
since graphs with more than (∆ + 1)k vertices are trivial “no”-instances.

Lower Irredundance is the only problem for which these consequences
of bounded degree are less obvious. A more thorough investigation of lower
irredundant sets in [35] yields the bound ir(G) ≥ 2n

3∆ .

Observation 26. The bound from [35] implies that any greedy maximal irredun-
dant set for a graph of bounded degree ∆ is a 1.5∆-approximation for Lower
Irredundance. Parameterised by k = ir(G), any graph with more than 1.5∆k
vertices is a trivial “no”-instance which yields a 1.5∆k kernel.

Notice that, although the kernel results indicated in the previous two obser-
vations look weak at first glance, they allow for lower bound results based on
the assumption that P 6= NP according to [28].

There is a kind of methodology to link optimisation problems related to
the domination chain to those related to the complementary domination chain,
which can be stated as follows.

Theorem 27. Assume that the optimisation problem associated to some graph
parameter ζ of the domination chain is APX-hard on cubic graphs. Then, the
optimisation problem associated to the complement problem of ζ is also APX-
hard on cubic graphs.

Proof. We claim that the reduction that acts as the identity on graph (instances)
and complements solution sets is an L-reduction. Given a cubic graph G =
(V,E) of order n with m = 3

2n edges as an instance of the optimisation problem
belonging to ζ (and also to the complement problem). Let us distinguish the two
optima by writing optζ(G) and optco−ζ(G), respectively. Then, optco−ζ(G) =
n−optζ(G). Similarly, if S′ is a solution to G in the complement problem, then
n− |S′| is the size of the solution S := V \ S′ of the original problem. Hence,∣∣optζ(G)− |S|

∣∣ =
∣∣(n− optco−ζ(G))− (n− |S′|)

∣∣ =
∣∣optco−ζ −|S′|

∣∣ .
Moreover, as ir(G) ≥ 2n

9 according to [35], which yields optζ(G) ≥ 2n
9 by the

domination chain,

optco−ζ(G) ≤ n ≤ 9

2
optζ(G),

which proves the claim.

As a matter of fact, Cockayne and Mynhardt [35] provide a lower bound
on ir(G) for any graph of maximum degree ∆. Hence, the reasoning of the
preceding proof allows to transfer APX hardness results for all graph classes
with bounded maximum degree ∆ from a domination chain parameter to the
complementary parameter, not only for (sub)cubic graphs.

Theorem 3.3 in [3] shows that Minimum Domination, restricted to cubic
graphs, is APX-hard. We can use Theorem 27 to immediately deduce:
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Corollary 28. The complement problem corresponding to Minimum Domina-
tion is APX-hard when restricted to cubic graph instances.

This sharpens earlier results [15] that only considered the subcubic case.

Corollary 29. Lower Irredundance restricted to cubic graphs is APX-hard.
Similarly, Co-Lower Irredundance is APX-hard on cubic graphs.

Proof. The reduction from Theorem 20 can be seen as an L-reduction from
the APX-hard Minimum Domination problem on cubic graphs [3] to Lower
Irredundance on cubic graphs. Observe that γ(G) ≥ n

4 and |E| = 3
2n for

any cubic graph G, which gives ir(G′) = γ(G) + |E| ≤ 7γ(G). Furthermore,
any maximal irredundant set of cardinality val′ for G′ can be used to compute
a dominating set for G of cardinality val = val′ − |E|, which yields val −
γ(G) = val′ − ir(G′). Together with Theorem 27 the result for Co-Lower
Irredundance follows.

The computations in the previous proof can be carried out completely anal-
ogously for Upper Irredundance and Co-Upper Irredundance.

Corollary 30. Upper Irredundance is APX-hard on cubic graphs. Simi-
larly, Co-Upper Irredundance is APX-hard on cubic graphs.

Proof. The reductions from Theorem 21 can be seen as L-reductions and since
the composition of L-reductions is an L-reduction and from the APX-hard Max-
imum Independent Set problem on cubic graphs we obtain the APX-hardness
of Upper Irredundance on cubic graphs. Observe that α(G) ≥ n

4 and
|E| = 3

2n for any cubic graph G, which gives IR(G′) = α(G) + 3|E| ≤ 19α(G).
Furthermore, any maximal irredundant set of cardinality val′ for G′ can be
used to compute a dominating set for G of cardinality val = val′ − 3|E|,
which yields val − α(G) = val′ − IR(G′). Moreover, IR(G′′) = IR(G′) + 8|E|
and IR(G′) ≥ 19n

4 , gives IR(G′′) ≤ 67IR(G′)
19 . Furthermore, any maximal ir-

redundant set of cardinality val′′ for G′′ can be used to compute a maxi-
mal irredundant set for G′ of cardinality val′ = val′′ − 8|E|, which yields
val′ − IR(G′) = val′′ − IR(G′′). Together with Theorem 27, the result for
Co-Upper Irredundance follows.

Another problem in the domination chain that was kind of neglected so
far with respect to approximation in cubic graphs is Minimum Independent
Domination. David Manlove has obtained an NP-hardness result for Minimum
Independent Domination on cubic planar graphs [63]. By making use of the
according reduction, which turns out to be an L-reduction and is very much the
same as the one we showed in Theorem 20, we can conclude:

Corollary 31. Minimum Maximal Independence is APX-hard on cubic
graphs.

Notice that the construction provided in the proof of [56], Theorem A.2,
only shows APX-hardness for graphs of maximum degree four, or any other
bigger maximum degree. Likewise, this is true for the complement problem,
also known as Maximum Minimal Vertex Cover, due to Theorem 27.

Corollary 32. Maximum Minimal Vertex Cover is APX-hard on cubic
graphs.
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This improves on earlier results for Maximum Minimal Vertex Cover,
for instance, the APX-hardness shown in [65] for graphs of maximum degree
bounded by five.

6. Everywhere dense graphs

In [7], Arora et al. presented a unified framework for proving polynomial time
approximation schemes for (average) dense graphs, mainly for Max Cut type
problems, and for Min Bisection for everywhere dense graphs. Concerning
the problems from the domination chain Minimum Vertex Cover and Min-
imum Domination were studied; in [31], Minimum Vertex Cover is proved
APX-hard on everywhere dense graphs and in [50], it is proved that Minimum
Domination is NP-hard on (average) dense graphs. We will show inapproxima-
tion results for more domination-chain problems on everywhere dense graphs.
Interestingly, we can make use of our reductions for sparse (cubic) graphs:

Theorem 33. For any ε > 0, Co-Upper Irredundance is APX-hard and
Upper Irredundance is not n1−δ-approximable for any δ > 0, if P 6= NP, for
everywhere-ε-dense graphs.

Proof. We construct an E-reduction from Upper Irredundance to Upper
Irredundance on everywhere-ε-dense graphs. Given a connected graph G =
(V,E) of order n, we construct a dense graph G′ by joining a clique C of d εn1−εe
new vertices to G. Any vertex v ∈ V has at least d εn1−εe ≥ εd n

1−εe many
neighbours in G′ and any vertex in the added clique has an even higher degree
if n ≥ 4. The minimum degree of G′ is hence at least εn′, where n′ = n+d εn1−εe =
d n

1−εe is the number of vertices of G′. As any maximal irredundant set of G′

that contains a vertex of C is a singleton set, opt(G′) = opt(G) and, w.l.o.g.,
any maximum irredundant set in G′ is a subset of V which makes it a maximal
irredundant set of G. Since by Theorem 14 Upper Irredundance on general
graphs is not n1−δ-approximable for any δ > 0, if P 6= NP, this reduction yields
the same inapproximability for the restriction to everywhere-ε-dense graphs.

For Co-Upper Irredundance we reduce from Co-Upper Irredundance
on cubic graphs and use the same construction for G′ which yields opt(G′) =
opt(G) + d εn1−εe. Given any solution S′ in G′, we can transform it into a new
one containing all new vertices and some vertices from V . The set S′ ∩ V is
a solution for G. In a cubic graph, the optimum value of the complement of
an upper irredundant set is at least n/4 using inequality (9) and the fact that
τ(G) ≥ n/2 (as G is connected and non-trivial) and thus opt(G) ≥ n/4. Thus:

opt(G′) ≤ opt(G) +

⌈
εn

1− ε

⌉
≤ opt(G) +

⌈
4ε opt(G)

1− ε

⌉
≤
⌈

1 + 4ε

1− ε

⌉
opt(G)

which makes this reduction an L-reduction from Co-Upper Irredundance
to Co-Upper Irredundance on cubic graphs and hence transfers the APX-
hardness from Corollary 30 to Co-Upper Irredundance restricted to every-
where-ε-dense graphs.

Observe that the arguments and the computations of the previous proof
are also valid for (Co-)Upper Domination, since Co-Upper Domination
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is also APX-hard on cubic graphs [11] and Upper Domination is not n1−δ-
approximable for any δ > 0 on general graphs [11] (if P 6= NP), so that we can
conclude a similar result.

Corollary 34. For any ε > 0, Co-Upper Domination is APX-hard and
Upper Domination is not n1−δ-approximable for any δ > 0, if P 6= NP, for
everywhere-ε-dense graphs.

The inapproximability result from [71] with the above reduction yields:

Proposition 35. For any ε > 0, Maximum Independent Set is not n1−δ-
approximable for any δ > 0, if P 6= NP, for everywhere-ε-dense graphs. 2

Theorem 36. For any ε > 0, Maximum Minimal Vertex Cover is APX-
hard and Minimum Maximal Independent Set is not n1−δ-approximable for
any δ > 0, if P 6= NP, for everywhere-ε-dense graphs.

Proof. We give an E-reduction from Minimum Maximal Independent Set
on general graphs to Minimum Maximal Independent Set on everywhere-
ε-dense graphs. Consider for a graph G the family {Gj : j ∈ N}, recursively
defined by G0 := G and Gj+1 := Gj +Gj (”+” denotes graph join). If the order
of G is n, the order of Gj is 2jn for every j ∈ N. Also every v ∈ Gj has degree
at least n(2j−1) which means that Gj is (1−1/2j)-dense. Let V be the vertices
of G and V ∪ V ′ be the vertices of G+G. For any independent set S of G+G
either S ⊆ V or S ⊆ V ′, which means that independent sets in G + G always
yield equivalent independent sets in G and hence i(G) = i(G+G). Inductively,
this argument implies i(G) = i(Gj) for all j ∈ N. For j = dlog2(1/(1− ε))e, the
graph Gj hence yields the aforementioned E-reduction since any independent
set in Gj yields an independent set in G of the same size.

Starting with a cubic graph G, Gj yields an L-reduction from Maximum
Minimal Vertex Cover on cubic graphs, which is APX-hard by Corollary 32,
to Maximum Minimal Vertex Cover on everywhere-ε-dense graphs, since
for cubic graphs co− i(G) ≥ n

2 and hence co− i(Gj) < 2jn ≤ 2j+1co− i(G).

Remark 37. The reductions from this section are especially polynomial time re-
ductions which preserve the optimal value which makes them FPT-reductions.
As a consequence, Minimum Independent Domination remains W[2]-hard
and Maximum Independent Set, Upper Domination and Upper Irre-
dundance remain W[1]-hard on everywhere-ε-dense graphs.

7. A special flavour of minimax / maximin problems

Half of the parameters in the domination chain can be defined as either, in
case of minimax problems, looking for the smallest of all (inclusion-wise) maxi-
mal vertex sets with a certain property (i(G) is the size of the smallest maximal
independent set; similarly, ir(G) is defined), or, in case of maximin problems,
looking for the largest of all minimal vertex sets with a certain property (Γ(G)
is an example). Also, the complementary problems share this flavour; for in-
stance, co − i(G) can be seen as looking for the largest of all minimal vertex
covers. Further discussions can be found in [62].

2We were informed about this fact by Marek Karpiński.
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Typical exact algorithms for maximisation problems fix certain subsets to
be part of the solution. In the decision variant, when a parameter value that
lower-bounds the size of the solution is part of the input, we might have a
sufficient number of vertices in our partial solution and now want to (rather
immediately) announce that a sufficiently large solution exists. This is not a
problem for determining α(G) or IR(G), but this may become problematic in the
case of maximin problems. In the following we consider the extension-problem
for the other two maximin problems related to the domination-chain: co− i(G)
and co−ir(G). The problem of computing a solution for co−i(G) which contains
a certain given subset of vertices can formally be stated as follows:

Minimal Vertex Cover Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a minimal vertex cover S′ with S′ ⊇ S?

Observe that this extension problem can also be seen as a kind of subset prob-
lem for independent sets by rephrasing the question to: Is there a maximal
independent set S′ for G with S′ ⊆ V − S? In more general terms, one can
view the extension-version of some maximin problem as exclusion-version of the
complementary minimax problem.

Theorem 38. Minimal Vertex Cover Extension is NP-hard even re-
stricted to planar cubic graphs.

Proof. Consider the following simple reduction from Satisfiability: For a
formula c1∧ · · · ∧ cm over variables x1, . . . , xn, let G = (V,E) be the graph with
vertices vi, v̄i for every i = 1, . . . , n and c1, . . . , cm and edges connecting every
clause with its literals and connecting vi with v̄i for every i. For this graph, the
set S = {c1, . . . , cm} can be extended to a minimal vertex cover if and only if
the formula c1 ∧ · · · ∧ cm is satisfiable.

If there exists an assignment φ for x1, . . . , xn which satisfies c1 ∧ · · · ∧ cm,
the set S′ := S ∪{vi : φ(xi) = 0}∪ {v̄i : φ(xi) = 1} is a minimal vertex cover for
G. Since for each edge (vi, v̄i) either vi ∈ S′ or v̄i ∈ S′ and all vertices cj are
in S′, every edge is covered. Every vertex vi ∈ S′ (or v̄i ∈ S′) uniquely covers
the edge (vi, v̄i), so S′ − {vi} (or S′ − {v̄i}) is not a vertex cover. Since φ is
satisfying for c1∧· · ·∧ cm, every clause cj has at least one literal which is not in
S′. This means that the edge corresponding to this satisfying literal is uniquely
covered by cj ∈ S′ or, in other words, that S′−{cj} is not a vertex cover, so S′

is minimal.
Let, on the other hand, S′ be a minimal vertex cover for G which extends

S. Every edge (vi, v̄i) has to be covered by S′ which means that S′ ∩ {vi, v̄i} 6=
∅. The setting φ(xi) = 0 if v̄i /∈ S′ and φ(xi) = 1 if vi /∈ S′ is hence not
contradictory. Minimality requires that there is an edge (cj , x) for which x /∈ S′
for each j = 1, . . . ,m. The only possible vertices x for these private edges
are literals of the clause cj which means that there is either a vi /∈ S′ or a
v̄i /∈ S′ which is literal in cj . In terms of Satisfiability, this implies that the
assignment φ can be extended to a satisfying assignment for c1 ∧ · · · ∧ cm.

To prove hardness for the restriction to planar cubic graphs, consider reduc-
ing not from general Satisfiability but from the NP-hard 4-Bounded Pla-
nar 3-Connected SAT (4P3C3SAT) [60]. For a 4P3C3SAT-formula c1∧· · ·∧
cm, the associated graph G = (V,E) with vertex-set {c1, . . . , cm}∪{x1, . . . , xn}
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and edges connecting each clause to the three variables which occur in it is pla-
nar and the vertices xi have degree at most four. Fix some planar embedding of
G and let ci1, c

i
2, c

i
3, c

i
4 be the (possibly not existing) clauses in which xi appears,

arranged in the chosen planar embedding in clockwise order:

xi

ci1

ci3

ci4 ci2

Create the graph G′ from G by replacing each xi according to the following
cases:

(a) If the variable xi appears positively in clauses ci1, c
i
2, c

i
3 and negated in ci4,

replace xi by:

v̄i

vi

v′i

ci1

ci3

ci4 ci2

(b) If the variable xi appears positively in clauses ci1, c
i
2 and negated in ci3, c

i
4,

replace xi by:

vi

v̄i

ci1

ci3

ci4 ci2

(c) If the variable xi appears positively in clauses ci1, c
i
3 and negated in ci2, c

i
4,

replace xi by:

ci1

ci3

ci4 ci2

vi

v′i

v̄i

v̄′i
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All other cases are rotations of the above three cases and/or invert the roles
of vi and v̄i and v′i and v̄′i.

By the same argumentation as above for general Satisfiability, the set
S = {c1, . . . , cm} can be extended to a minimal vertex cover for G′ if and only
if the formula c1 ∧ · · · ∧ cm is satisfiable.

G′ is planar and subcubic. For a planar cubic instance add the following
subgraph to every vertex v of degree two and put the black vertices to S:

v

All new edges introduced by these additional subgraphs are already covered
by the vertices added to S and these new vertices in S obviously do not cover
any original edge. These additional subgraphs consequently do not affect the
possibility to turn S into a minimal vertex cover for G′.

The maximin problem co− ir(G) can also be considered with respect to ex-
tension. Since complements of irredundant sets are rather uncomfortable, we
describe this problem in terms of the complementary problem ir(G):

Minimal Co-Irredundant Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a maximal irredundant set S′ with S′ ⊆ V − S?

Theorem 39. Minimal Co-Irredundant Extension is NP-hard.

Proof. Just like for Minimal Vertex Cover Extension, we reduce from
Satisfiability. Given a formula c1∧· · ·∧cm over variables x1, . . . , xn, construct
a graph G = (V,E) with vertices {k1, . . . , km} ∪ {oi, pi, f1

i , f
2
i , ui, ūi, vi, v̄i : i =

1, . . . , n} and edges connecting kj to vi or v̄i if xi or x̄i is literal in cj respec-
tively. Further, the vertices {oi, pi, f1

i , f
2
i , ui, ūi, vi, v̄i : i = 1, . . . , n} induce i

non-connected subgraphs of the following structure:

oi pi f1
i f2

i

ūi

ui

v̄i

vi

With this construction, c1 ∧ · · · ∧ cm is satisfiable if and only if there is an irre-
dundant set for G which does not contain any vertex from S := {k1, . . . , km} ∪
{oi, pi : 1 ≤ i ≤ m}.

Suppose c1 ∧ · · · ∧ cm is satisfiable by some assignment φ. We claim that
S′ := {ui : φ(xi) = 1} ∪ {ūi : φ(xi) = 0} ∪ {f1

i , f
2
i : i = 1, . . . , n} is a maxi-

mal irredundant set in G. The private neighbourhoods with respect to S′ are:
pn(f1

i , S
′) = {pi}, pn(f2

i , S
′) = {ui, ūi}−S′, pn(ui, S

′) = {vi}, pn(ūi, S
′) = {v̄i},

all of which are non-empty which means that S′ is irredundant. About maxi-
mality, adding a vertex v from V − S′ to S′ means one of the following cases:

1. v = oi or v = pi for some i yields pn(f1
i , S

′ ∪ {v}) = ∅.
2. v = ūi or v = v̄i for some i with φ(xi) = 1 yields pn(f2

i , S
′ ∪ {v}) = ∅.
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3. v = ui or v = vi for some i with φ(xi) = 0 yields pn(f2
i , S

′ ∪ {v}) = ∅.
4. v = vi for some i with φ(xi) = 1 yields pn(ui, S

′ ∪ {v}) = ∅.
5. v = v̄i for some i with φ(xi) = 0 yields pn(ūi, S

′ ∪ {v}) = ∅.
6. v = kj for some j implies pn(ui, S

′ ∪{v}) = ∅ (or pn(ūi, S
′ ∪{v}) = ∅) for

each i with xi (or x̄j) literal in cj . Since φ is a satisfying assignment for
c1∧· · ·∧cm, φ satisfies at least one literal of each cj and the corresponding
ui (or ūi) is consequently in S′.

Overall, any choice of v ∈ V −S′ yields some w ∈ S′ such that pn(w, S′∪{v}) = ∅
which proves maximality of S′.

Let S′ be a maximal irredundant set for G with S′ ∩ S = ∅. Maximality
of S′ requires at least one vertex w for which pn(w, S′ ∪ {oi}) = ∅ for each
i = 1, . . . , n. For any set which does not contain oi or pi, the only possible
choice for such a vertex w is f1

i . pn(f1
i , S

′ ∪ {oi}) = ∅ especially requires that
f1
i has at least one neighbour in S′∪{oi} which means f2

i ∈ S′ for all i = 1, . . . , n.
Irredundance of S′ requires at least one private neighbour for f2

i , which means
that either S′ ∩ {ui, vi} = ∅ or S′ ∩ {ūi, v̄i} = ∅. This allows to define the
(partial) assignment:

φ(xi) =

{
1 if S′ ∩ {ui, vi} 6= ∅
0 if S′ ∩ {ūi, v̄i} 6= ∅

Suppose there is a clause cj which is not satisfied by this assignment. This means
that for all neighbours vi (or v̄i) of kj , S

′ ∩ {vi, ui} = ∅ (or S′ ∩ {v̄i, ūi} = ∅).
This however means that pn(kj , S

′∪{kj}) ⊃ {kj} and further, kj can only affect
private neighbourhodds from vertices in {ui, vi} (or {ūi, v̄i}) for indices i such
that xi (or x̄i) is literal in cj , non of which are in S′. In other words, if cj is
not satisfied by φ, S′ ∪ {kj} is irredundant, a contradiction to the maximality
of S′.

8. Summary, open problems and prospects

We have presented a survey of the complexity landscape of the domination
chain. As can be seen from our tables, the status of most combinatorial prob-
lems has now been solved. However, there are still several question marks in
these tables, and also the positive (algorithmic) results implicitly always ask for
possible improvements. To make one question from [6] explicit in this context:
Do there exist subexponential-time approximation algorithms that improve on
the factor-2 approximation bound for Vertex Cover under UGC? Even more
intriguingly, only surprisingly few ptas results are available. It seems to us as if
general results as given in [46] are not applicable here. Also (not expressed as a
question mark in one of the tables) the question whether Upper Domination
is in W[1] or hard for W[2] is still open.

It is always good to have a rather systematic treatment of matters, as this
helps to understand the nature of these subjects better. For the investigation
of complexity aspects of graph parameters, chains of inequalities like the dom-
ination chain help to unify proofs, but also to find spots that have not been
investigated yet. Also, the idea of looking at the complementary chain should
work out in each case.
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As an example of a similar chain of parameters, we only mention the Roman
domination chain [26]. Our knowledge on the complexity of these parameters
is still very underdeveloped; most of what we know is concerning Roman domi-
nation and its complementary version, which is also called the differential of a
graph; see [1, 15, 16, 17].
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