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Abstract
Given a bipartite graph G, we consider the decision problem called BicliqueCover for a fixed
positive integer parameter k where we are asked whether the edges of G can be covered with
at most k complete bipartite subgraphs (a.k.a. bicliques). In the BicliquePartition problem,
we have the additional constraint that each edge should appear in exactly one of the k bicliques.
These problems are both known to be NP-complete but fixed parameter tractable. However, the
known FPT algorithms have a running time that is doubly exponential in k, and the best known
kernel for both problems is exponential in k. We build on this kernel and improve the running
time for BicliquePartition to O∗(22k2+k log k+k) by exploiting a linear algebraic view on this
problem. On the other hand, we show that no such improvement is possible for BicliqueCover
unless the Exponential Time Hypothesis (ETH) is false by proving a doubly exponential lower
bound on the running time. We achieve this by giving a reduction from 3SAT on n variables to
an instance of BicliqueCover with k = O(logn). As a further consequence of this reduction,
we show that there is no subexponential kernel for BicliqueCover unless P = NP . Finally, we
point out the significance of the exponential kernel mentioned above for the design of polynomial-
time approximation algorithms for the optimization versions of both problems. That is, we show
that it is possible to obtain approximation factors of n

logn for both problems, whereas the previous
best approximation factor was n√

logn
.
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1 Introduction

The problems of covering or partitioning the edge set of bipartite graphs have a long history.
It was shown by Orlin in 1977 that the covering problem, i.e., to decide for a given bipartite
graph G and given integer k, whether the edges of G can be covered by at most k complete
bipartite subgraphs (also known as bicliques), is NP-complete [13]. He conjectured the
partitioning problem, i.e., where each edge of G must appear in exactly one of the k bicliques,
to also be NP-complete, which has since been answered in the affirmative in [10].

The minimum number of bicliques to cover the edges of a graph is also called the bipartite
dimension [5], and Orlin called the minimum k that admits a partition of the edge set into k
bicliques the bicontent [13]. We prefer the terms biclique cover number and biclique partition
number, respectively, to avoid any confusion.

There are numerous applications for biclique covering and partitioning. Related work
can be found in the areas of bioinformatics [11, 12], computer security [3], database tiling [7],
finite automata [9], and graph drawing [4].
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Besides these applications, computing a biclique cover of a graph is equivalent to other
important notions in mathematics: Given an m-by-n matrix A, the Boolean rank of A is
the minimum k for which there exist two 0-1 matrices B and C of dimensions m× k and
k × n, respectively, such that A = B � C, where � denotes the matrix product over boolean
arithmetic. It has been shown that computing the Boolean rank of a matrix is equivalent to
computing the biclique cover number of a bipartite graph (see [8]). Similarly, the binary rank
of a matrix A ∈ {0, 1}m×n is defined as the minimum k for which there are B ∈ {0, 1}m×k
and C ∈ {0, 1}k×n such that A = B · C using the standard arithmetic over the reals. It can
be shown that the binary rank of the adjacency matrix of a bipartite graph is equal to its
biclique partition number.

Low-rank decompositions are of particular interest in Data Analytics. However, it is
even NP-hard to distinguish bipartite graphs or binary matrices that allow k ∈ O(nε)
from ones that require k ∈ Ω(n1−ε) for all ε > 0 for both BicliqueCover as well as
BicliquePartition [1]. In the same paper, only approximation factors of n√

logn
were

obtained with polynomial time algorithms.
From the parameterized complexity point of view, the picture is much brighter: Biclique-

Cover and BicliquePartition are in FPT when parameterized with k [6], which even
holds when the input graph is not bipartite. The authors obtain this result by providing
rules for obtaining kernels with at most 3k vertices for general graphs and with at most 2k+1

vertices for bipartite graphs. We will use this kernel to obtain some of our results.

1.1 Our contribution

We present an algorithm that decides whether a given bipartite graph has a BicliqueParti-
tion of size at most k in time O∗(22k2+k log k+k). This drastically improves the previous best
bound [6], which is O∗(222k log k+3k) [12].1 In contrast to this result, we prove that Biclique-
Cover seems to be much harder, i.e., there is no algorithm running in O∗(22o(k)) unless the
Exponential Time Hypothesis (ETH) is false. This almost closes the gap between lower and
best known upper bound, which is O∗(22k log k+2k+log k/k!) for the latter [12]. Moreover, we
prove an exponential lower bound for kernels for BicliqueCover that holds unless P = NP .
We conclude by showing how the kernel for BicliqueCover and BicliquePartition
improves the best known approximation factors for these two problems to O(n/ logn).

1.2 Preliminaries

For a bipartite graph G, we denote the two vertex bipartitions by U(G) and V (G). The
edges are denoted by E(G). For a subgraph H of G, U(H) denotes the set of vertices of H
that are in U(G) and V (H) denotes the set of vertices of H that are in V (G). All edges in
this paper are undirected edges, and we may use uv or vu to denote an edge between vertices
u and v. For a graph G and vertex v, we use NG(v) to denote the set of all the vertices that
are adjacent to v in G. We may choose to omit the subscript G when the graph is clear from
the context. A domino graph is the graph G with U(G) = {u1, u2, u3}, V (G) = {v1, v2, v3}
and E(G) = {u1v1, u1v2, u2v1, u2v2, u2v3, u3v2, u3v3} (See Si in Figure 1). Two vertices w1
and w2 in graph G are said to be twins of each other iff N(w1) = N(w2). For a matrix A,
we say that the ith row is aTi , the jth column is Aj , and the entry corresponding to the ith

1 Note that the bound reported in [6] is inaccurate as also observed in [12].
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row and jth column is aij . For a prime number p, we use GF (p) to denote the Galois Field
over {0, 1, . . . , p− 1} with modulo p multiplication and addition.

2 FPT algorithm for BicliquePartition

This section is dedicated to the proof of the following theorem.

I Theorem 1. BicliquePartition has an algorithm which runs in O∗(22k2+k log k+k)-time.

As mentioned above, the biclique partition number of a bipartite graph is equal to the binary
rank of its adjacency matrix. Moreover, the binary decomposition B ·C of a binary matrix A
with A ∈ {0, 1}m×n, B ∈ {0, 1}m×k, and C ∈ {0, 1}k×n also gives the set of bicliques in the
corresponding biclique partition of the graph represented by A. Therefore, we consider the
following problem in the remainder of this section: Given a binary matrix A, does A have
binary rank at most k? We develop an O∗(22k2+k log k+k)-time algorithm for this problem.
Moreover, our algorithm also returns the binary decomposition BC of A if A is a YES
instance.

Let A be the given m × n binary matrix. If A has binary rank k, then there exist an
m × k binary matrix B and a k × n binary matrix C such that BC = A. Let p be the
smallest prime that is greater than k. It is a well-known fact that p is at most 2k and can be
found in time polynomial in k. We will work with arithmetic over the prime field GF (p).
We know that BC = A holds even over GF (p). We can assume that m,n ≤ 2k because of
the kernel given in [6]. Let s be the rank of B over GF (p). Clearly, s is at most k. Thus, we
can guess the value of s. Observe that permuting rows do not change the binary rank of A.
Moreover, the binary decomposition BC still holds, provided we permute the rows of B with
the same permutation used for rows of A. We guess a permutation of the rows of B such
that the first s rows of B are linearly independent over GF (p). Then, we apply the same
permutation to the rows of A. Note that it suffices to try

(
m
s

)
possibilities to find one such

permutation. Since m ≤ 2k due to the kernel in [6] and s ≤ k, we get that
(
m
s

)
≤ 2k2 , and

hence, this step is fine with respect to the running time that we want to achieve. Now, we
guess the entries of the first s rows of B. Since each row only has 2k possibilities, there are
only at most (2k)s ≤ 2k2 possibilities for this guess.

I Lemma 2. For each i ∈ [m], there exists a vector λ(i) ∈ {0, 1, . . . , p − 1}s such that∑s
t=1 λ(i)tat ≡ ai (mod p) and

∑s
t=1 λ(i)tbt (mod p) is a 0-1 vector.

Proof. For an arbitrary i, we exhibit a λ(i), which satisfies the conditions stated in the
statement of the lemma. Since the first s rows of B span all its rows over GF (p), there
exists λ(i) ∈ {0, 1, . . . , p− 1}s such that

∑s
t=1 λ(i)tbt ≡ bi (mod p), which is a 0-1 vector.

Furthermore,
∑s
t=1 λ(i)taTt ≡

∑s
t=1 λ(i)tbTt C ≡ bTi C ≡ aTi (mod p). J

For each i ∈ [m], we find a vector λ(i) as given by Lemma 2 and let b′i be the corresponding
0-1 vector given by

∑s
t=1 λ(i)tbt. For each i ∈ [m], this can be done by trying all possibilities

of λ(i)1, . . . , λ(i)s and takes only O(ps) = O(2k log k+k) time. Hence, finding all the λ(i) for
all i ∈ [m] takes only O(2k log k+km) time. We would like to highlight that the choice of λ(i)
is done independently for each i ∈ [m]. Note that since we do not yet know the value of
bi for i > s, the λ(i) that we fix is not guaranteed to be the one exhibited in the proof of
Lemma 2, i.e., b′i could differ from bi, but they are the same for i ≤ s.

Let B′ be the matrix whose rows are b′T1 , . . . , b′Tm . Let B̃ be the matrix B restricted to its
first s rows, and let Ã be the matrix A restricted to its first s rows. For each j ∈ [n], we find
a vector C ′j ∈ {0, 1}

k such that B̃C ′j = Ãj . For each j ∈ [n], this can be done by iterating
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over all possible binary vectors of length k, which only takes O(2k) time. Note that such a
C ′j should exist for all j ∈ [n] if A has binary rank k, provided that our guess about the s
linearly independent rows in B is correct. Again, we would like to highlight that the choice
of C ′j is done independently for each j ∈ [n]. Let C ′ denote the matrix whose columns are
C ′1, C

′
2, . . . , C

′
n.

The following lemma is the core idea that our algorithm uses. The lemma essentially says
that although we choose the b′i’s and C ′j ’s independently, they actually combine to give a
binary decomposition of A over GF (p).

I Lemma 3. For each i ∈ [m] , j ∈ [n], b′Ti C ′j ≡ aij (mod p).

Proof. b′Ti C ′j ≡ (
∑s
t=1 λ(i)tbt)

T
C ′j (mod p) ≡

∑s
t=1 λ(i)tatj (mod p) ≡ aij (mod p) J

It only remains to eliminate the GF (p) arithmetic, which is done by the following Lemma.

I Lemma 4. For each i ∈ [m] , j ∈ [n], b′Ti C ′j = aij.

Proof. From Lemma 3, we have that b′Ti C ′j ≡ aj (mod p). Since b′i and C ′j are 0-1 vectors
of length k < p, we have bTi C ′j = (b′Ti C ′j mod p) = aij . J

From Lemma 4, we have that B′C ′ = A. Since B′ is an m× k binary matrix and C ′ is a
k × n binary matrix, we have a binary factorization of A with binary rank k. A pseudocode
for the algorithm is given in Algorithm 1, and in Lemma 5, we prove that its running time is
O∗(22k2+k log k+k).

Algorithm 1: FPT algorithm for BicliquePartition
Input :An m× n binary matrix A and positive integer k such that m,n ≤ 2k.
Output :Either report that binary rank of A is greater than k or output m× k binary

matrix B′ and k × n binary matrix C ′ such that B′C ′ = A

1 Find p, the smallest prime greater than k.
2 foreach s ∈ [k],{i1, i2, · · · , is} ⊆ [m], and B̃ ∈ {0, 1}s×k do // loop 1
3 Permute the rows of A such that rows i1, i2, · · · , is become the first s rows of A.

Let this permutation be σ;
4 for i← 1 to m do
5 Find a λ(i) ∈ {0, 1, · · · , p− 1}s such that

∑s
t=1 λ(i)tat ≡ ai (mod p) and∑s

t=1 λ(i)tbt (mod p) is a 0-1 vector; if there is no such λ(i), then go to the
next iteration of loop 1;

6 b′i ←
∑s
t=1 λt(i)b̃t;

7 end
8 for j ← 1 to n do
9 Find C ′j ∈ {0, 1}

k such that B̃C ′j = Ãj where Ã is the matrix A restricted to
first s rows; if there is no such C ′j , then go to the next iteration of loop 1;

10 end
11 let B′ be the matrix with b′T1 , b′T2 , · · · , b′Tm as the rows and C ′ be the matrix with

C ′1, C
′
2, · · · , C ′n as the columns;

12 Apply the inverse permutation of σ to the rows of B′;
13 output B′ and C ′ and terminate.
14 end
15 report that binary rank of A is greater than k.
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I Lemma 5. The running time of Algorithm 1 is O∗(22k2+k log k+k).

Proof. The number of iterations of the outer loop is at most k ·
(
m
s

)
· 2sk = O∗(22k2),

which follows from m ≤ 2k and s ≤ k. The two inner loops only have n iterations at
most. Step 5 takes O∗(ps) = O∗(2k+k log k) time, and step 9 takes O∗(2k) time. All other
steps take time polynomial in m and n. Hence, the total time taken by the algorithm is
O∗(22k2 · (2k+k log k + 2k)) = O∗(22k2+k log k+k). J

3 FPT and kernel lower bounds for BicliqueCover

In this section, we prove the following theorem, which has consequences for the complexity
of BicliqueCover as stated in the corollaries below.

I Theorem 6. There exists a polynomial time reduction that, given a 3-SAT instance ψ on
n variables and m clauses, produces a bipartite graph G with |U(G)|+ |V (G)| = O(n+m)
such that there exists a positive integer k = O(logn) for which G has a biclique cover of size
at most k if and only if ψ is satisfiable.

I Corollary 7. BicliqueCover cannot be solved in time O∗(22o(k))-time unless the Expo-
nential Time Hypothesis is false.

Proof. Follows directly from Theorem 6. J

I Corollary 8. There exists a constant δ > 0 such that, unless P = NP , there is no
polynomial time algorithm that produces a kernel for BicliqueCover of size less than 2δk.

Proof. We give a proof sketch and refer to [2] for the details where the authors prove a similar
statement for EdgeCliqueCover. By Theorem 6, we have an algorithm A that takes
an instance of 3-SAT and gives an equivalent instance of BicliqueCover with parameter
k = O(logn). Suppose there is a kernelization algorithm B that produces a kernel with less
than 2δk size for some δ to be fixed later. Since BicliqueCover is NP-complete, there
exists an algorithm C that takes an instance of BicliqueCover and gives an equivalent
instance of 3-SAT in polynomial time. By composing the algorithms A, B, and C and fixing
the parameter δ appropriately , we get an algorithm D that, given a 3-SAT instance as input,
produces an equivalent smaller 3-SAT instance as output. We can apply D repeatedly to
solve 3-SAT. Hence, algorithm B cannot exist. J

The proof of Theorem 6 gives a reduction from 3-SAT to BicliqueCover, which is a
modification of the one given in [2] from 3-SAT to EdgeCliqueCover.2 The main difference
is that we introduce an additional gadget consisting of log2 n domino graph gadgets in order
to make the reduction work for BicliqueCover, where n is the number of variables in the
input 3-SAT formula. This gadget replaces the independent set of size log2 n used in [2], i.e.,
we replace each vertex there by a domino graph here. We also modify some of the adjacencies
in the construction such that the graph becomes bipartite. Moreover, we have simplified
the reduction of [2] by using a simple trick. The trick is to make one of the domino graphs
special by adding edges between this domino graph and clause gadgets so that the biclique
covering this domino graph corresponds to a satisfying assignment. For EdgeCliqueCover,
this corresponds to making one of the vertices in the independent set special by adding edges

2 A parameter preserving reduction from EdgeCliqueCover to BicliqueCover would have been better
than having to redo the whole reduction from scratch. We could not find any such reduction.
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from it to the clause gadgets. We give the complete reduction for BicliqueCover here for
being self-contained.

In [2], the authors use cocktail party graphs as the main gadget in their reduction. We use
the bipartite analogue called crown graphs. A crown graph is basically a complete bipartite
graph minus a perfect matching. It is formally defined as follows.

I Definition 9 (Crown Graph, Hr). A crown graph on 2r vertices denoted by Hr is a bipartite
graph with bipartitions U(G) = {u1, u2, . . . , ur} and V (G) = {v1, v2, . . . , vr} such that there
is an edge from ui to vj iff i 6= j. In other words, the edges missing between U(Hr) and
V (Hr) form a perfect matching given by {uivi : i ∈ [r]}. (See H = Hn in Figure 1.)

If we pick exactly one vertex from each of the edges of the missing perfect matching of the
crown graph, then we get a maximal biclique provided that we pick at least one vertex from
each of the bipartitions. The complement of this vertex set also forms a maximal biclique.
These pair of bicliques are called duplex bicliques, formally defined as follows.

I Definition 10 (Duplex Biclique3). A duplex biclique of a crown graph Hr is defined
as a pair of bicliques {B1, B2} such that U(B1) ∩ U(B2) = ∅, V (B1) ∩ V (B2) = ∅, and
U(B1) ∪ U(B2) = U(Hr), and V (B1) ∪ V (B2) = V (Hr).

We go on to define a duplex biclique cover as follows.

I Definition 11 (Duplex Biclique Cover). A duplex biclique cover of a crown graph is defined
as a set of duplex bicliques that together cover all the edges of the graph. When we say size
of a duplex biclique cover, we mean the number of bicliques in the cover, which is twice the
number of duplex bicliques.

We prove the following two lemmas about crown graphs.

I Lemma 12. Hr has a duplex biclique cover of size 2dlog re that can be found in time
polynomial in n.

Proof. We exhibit such a biclique cover. Let ` = dlog re. For any x ∈
{

0, . . . , 2` − 1
}

and j ∈ [`], let 〈x〉j denote the j-th bit of the `-bit binary representation of x. For
each j ∈ [`], we define the j-th duplex biclique {T 1

j , T
2
j } as follows: T 1

j is the subgraph
induced by {ui : 〈i− 1〉j = 1} ∪ {vi : 〈i− 1〉j = 0}, and T 2

j is the subgraph induced by
{ui : 〈i− 1〉j = 0} ∪ {vi : 〈i− 1〉j = 1}, where ui and vi are defined as in Definition 9. It is
easy to see that {T 1

j , T
2
j } is indeed a duplex biclique. It is also easy to see that any pair of

vertices ui, vj such that i 6= j should be present in at least one of the ` duplex bicliques. J

I Lemma 13. Given a duplex biclique {B1, B2} of Hr such that |U(B1)| = |V (B1)|, we can
in polynomial time find a duplex biclique cover of Hr with size 2dlog2 re such that {B1, B2}
is one of the duplex bicliques forming the biclique cover.

Proof. Using the definition of duplex bicliques and |U(B1)| = |V (B1)|, it follows that [r] can
be partitioned into 2 sets

J1 = {j ∈ [r] : uj ∈ U(B1) ∧ vj ∈ V (B2)} and J2 = {j ∈ [r] : uj ∈ U(B2) ∧ vj ∈ V (B1)}

which are each of size r
2 . We can reorder the indices of the vertices such that J1 =

{
1, 2, · · · r2

}
and J2 =

{
r
2 + 1, r2 + 2, · · · , r

}
. Let ` = log2 r. We define the duplex biclique {T 1

i , T
2
i }

3 Duplex Bicliques correspond to Twin Cliques in [2]. We use this name to avoid confusion with twin
vertices.
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for all i ∈ [`] the same way as in the proof of Lemma 12. It is clear that the duplex
biclique {B1, B2} is the same as the duplex biclique {T 1

1 , T
2
1 }. Thus, the set of bicliques{

T 1
1 , T

1
2 , . . . , T

1
`

}
∪
{
T 2

1 , T
2
2 , . . . , T

2
`

}
gives the required duplex biclique cover. J

Now, we state the following fact about twin vertices.

I Fact 1. If a1 and a2 are twins and E(G \ a2) can be covered with k bicliques, then E(G)
can be covered with k bicliques by adding a2 to all the bicliques containing a1.

When we say we apply twin-reduction to a pair of twin vertices, we mean the operation of
deleting one of the twin vertices from the graph. When we say we apply twin-reduction to a
graph, we mean to repeatedly apply twin-reduction until there are no more twins in the graph.

Let ψ be the input 3-SAT formula with n variables and m clauses. Let x1, . . . , xn be
the variables of ψ and C1, . . . , Cm be the clauses. Let C1

i , C
2
i , and C3

i denote the 3 literals
of clause Ci. For 1 ≤ a ≤ 3, we say that Cai = (xj , 1) if the ath literal in clause Ci is the
variable xj appearing in positive form, and we say Cai = (xj , 0) if the ath literal in Ci is the
variable xj appearing in negated form.

Assumptions about the input 3-SAT formula: We assume that the number of variables
is a power of 2. We also assume that if the instance is satisfiable, then there is a satisfying
assignment A such that half of the variables are assigned true in A and the other half false.
These assumptions can be handled easily by introducing some extra variables as shown in [2].
Note that this increases the number of variables by at most 4 times.
Let ` be such that 2` = n. We have that ` ∈ Z since n was assumed to be a power of 2.
Before giving the reduction, we give the following useful definition.

I Definition 14 (Bisimplicial Edge). An edge uv is said to be bisimplicial with respect to a
biclique B iff N(u) ∪N(v) = U(B) ∪ V (B).

Now, we give the reduction from 3-SAT to BicliqueCover.
Construction: Given ψ, we construct a bipartite graph G. See Figure 1 for an illustration
of the construction. A vertex with superscript u indicates that it belongs to U(G), and a
superscript v indicates that it belongs to V (G). The edges of G are divided into two sets, a
set of important edges Eimp and a set of free edges Efree. The number of bicliques required
to cover Eimp will be different depending on whether ψ is satisfiable or not, whereas the
number of bicliques required to cover Efree will depend only on the number of variables and
clauses of ψ but not on whether ψ is satisfiable or not. There are 5 main gadgets in our
construction of G as given below.
1. A graph H isomorphic to the crown graph Hn: Let the vertices of U(H) be hu1 , hu2 , . . . , hun

and that of V (H) be hv1, hv2, . . . , hvn. The edges of H are in Eimp. The vertices hui and
hvi correspond to the i-th variable of ψ. hui corresponds to the variable in positive form
and the vertex hvi corresponds to the variable in negative form.

2. A set P of clause gadgets P1, . . . , Pm: Each Pi is an induced matching of size 3. Let
U(Pi) = {pui1, pui2, pui3} and V (Pi) = {pvi1, pvi2, pvi3} and let the 3 edges of Pi be pui1pvi1, pui2pvi2,
and pui3pvi3. These edges are in Eimp. For all i ∈ [m], Pi corresponds to the clause Ci
in ψ, and the 3 edges in Pi correspond to the 3 literals in the clause, i.e., edge puiapvia
corresponds to literal Cai for a ∈ {1, 2, 3}.

3. A set S of ` domino graphs S1, S2, . . . , S` that are disconnected with each other: Let
U(Si) = {sui1, sui2, sui3} and V (Si) = {svi1, svi2, svi3}. The edges within each Si are in Eimp.
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Figure 1 Illustration of the construction of G. The black nodes denote the vertices in U(G), and
the white nodes denote the vertices in V (G). The solid edges represent edges in Eimp, and the
dashed edges denote edges in Efree. The edges between P and H and those between Y and G \ Y

are not shown. The edges shown between Si and H are present for all i ∈ [`− 1], whereas the edges
shown between S1 and P are only present for S1 and not for any Si for i ≥ 2.
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4. An induced matching Y of size kf where kf = O(logn) will be fixed later in Lemma 15:
Y consists of edges yu1 yv1 , . . . , yukf

yvkf
, which are in Efree. For all i ∈ [kf ], the edge yui yvi

will be made bisimplicial with respect to the biclique B̃fi , which will be defined later.
This is done to ensure that we need kf bicliques to cover the free edges.

We also have the following edges between gadgets.
Between H and S: For all i ∈ [`] and j ∈ [n], we add the following edges: sui2hvj and svi2huj
to Eimp; and, sui1hvj , sui3hvj , svi1huj , and svi3huj to Efree.
Between Pi and Pj : For all i 6= j ∈ [m], add edges between all pairs of vertices u, v such
that u ∈ U(Pi) and v ∈ V (Pj). These edges are in Efree.
Between P and Q: For all i ∈ [m], add edges between all pairs of vertices u, v such that
u ∈ U(Q) and v ∈ V (Pi). Similarly, for all i ∈ [m], add edges between all pairs of vertices
u, v such that u ∈ U(Pi) and v ∈ V (Q). These edges are in Efree.
Between H and P : For all i ∈ [m] and a ∈ [3], add edges between puia and hvj unless
Cai = (xj , 1) and between pvia and huj unless Cai = (xj , 0). These edges are in Efree.
Between S and P : The only vertices in S that will have edges to any Pi are the 4 vertices
su11, s

u
12, s

v
11, and sv12. From su11 and su12, add edges to all vertices in V (Pi) for all i ∈ [m].

Similarly, from sv11 and sv12, add edges to all vertices in U(Pi) for all i ∈ [m]. These edges
are in Efree.
Between Y and G \Y : These edges are added in such a way that edge yui yvi is bisimplicial
w.r.t. a biclique that will be defined later. We will give the exact description of these
edges after we define the bicliques Bfi for i ∈ [kf ]. These edges belong to Efree.

Summary of Eimp: All the edges within H,S, and Q; all edges within each Pi; edges sui2hvj
and svi2huj for all i ∈ [`− 1], j ∈ [n].
Summary of Efree: All the edges between Pi and Pj for i 6= j; all edges within Y ; all edges
between Y and G \Y ; edges sui1hvj , sui3hvj , svi1huj , and svi3huj for all i ∈ [`− 1], j ∈ [n]; all edges
between P and Q, between H and P , and between S1 and P .

First, we show how to take care of the edges in Efree without interfering with the budget of
Eimp. Let Ey be the set of all edges of G with at least one end point in U(Y ) ∪ V (Y ).

I Lemma 15. The edges in Efree \ Ey can be covered using kf = 4 log2 n+ 2dlog2 me+ 6
bicliques of G such that none of these bicliques contains an edge from Eimp, and these
bicliques can be found in time polynomial in n+m.

Proof. According to our construction, there are the following types of edges in Efree \Ey.
For each of these types, we show how to cover it in polynomial time using bicliques that do
not contain any edges from Eimp such that the total number of bicliques used is at most kf .

Edges between H and S: These edges can be covered with 2 bicliques, BHS1 and BHS2
defined as follows. U(BHS1 ) = U(H), V (BHS1 ) = {svi1 : 1 ≤ i ≤ `} ∪ {svi3 : 1 ≤ i ≤ `},
U(BHS2 ) = {sui1 : 1 ≤ i ≤ `}∪{sui3 : 1 ≤ i ≤ `}, and V (BHS2 ) = V (H). From the construc-
tion of G, it is easy to see that both BHS1 and BHS2 are indeed bicliques, and none of
them contains an edge in Eimp.
E(P )∩Efree: These edges can be covered with 2dlog2 me bicliques. Consider the subgraph
of G given by the edges E(P ) \ Eimp. Let this graph be G1. The vertices pui1, pui2, and
pui3 are twins of each other in G1 for all i ∈ [m]. Similarly, the vertices pvi1, pvi2, and pvi3
are twins of each other in G1 for all i ∈ [m]. Let G2 be the graph obtained by applying
twin-reduction to G1. It is clear that G2 is isomorphic to the crown graph Hm. Hence,
E(G2) can be covered by d2 log2 me bicliques in polynomial time by Lemma 12. Then,
by using Fact 1, we can find d2 log2 me bicliques that cover E(G1) = E(P ) \ Eimp.
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Edges between P and Q: We can cover these edges with 2 bicliques BPQ1 and BPQ2 ,
defined as U(BPQ1 ) = U(P ), V (BPQ1 ) = V (Q); and, U(BPQ2 ) = U(Q), V (BPQ2 ) = V (P ).
Edges betweenH and P : We cover these edges with 4 log2 n bicliques. We will show how to
cover the edges between U(H) and V (P ) with 2 log2 n bicliques. Symmetrically, the edges
between V (H) and U(P ) can be covered with another 2 log2 n bicliques. Let 〈j〉i denote the
ith bit in the binary representation of j. We will now give the description of a set of 2 log2 n

bicliques BHP = {BHP1 , . . . , BHPlog2 n
} ∪ {B̃HP1 , . . . , B̃HPlog2 n

} covering the edges between
U(H) and V (P ). We define U(BHPi ) = {huj : 〈j〉i = 1}, U(B̃HPi ) =

{
huj : 〈j〉i = 0

}
,

V (BHPi ) =
⋂
u∈U(BHP

i
) N(u) ∩ V (P ), V (B̃HPi ) =

⋂
u∈U(B̃HP

i
) N(u) ∩ V (P ). It is clear

that these are indeed bicliques from the definitions of V (BHPi ) and V (B̃HPi ). Since there
are no edges of Eimp between U(H) and V (P ), we do not cover any edges in Eimp. We
now show that we have covered every edge between U(H) and V (P ). Suppose for the
sake of contradiction that the edge huj pvia was not covered. Let pvia correspond to variable
xt. Recall that the only vertex in U(H) that can possibly not have edge to pvia is hut .
Edge huj pvia not being covered by any biclique in B can happen only if every biclique in
BHP that contains huj also contains hut and if there is no edge between hut and pvia. But
if every biclique in B containing huj also contains hut , then j = t. This means that there
is no edge between huj and pvia, which is a contradiction.
Edges between S and P : These edges can be covered with 2 bicliques BPS1 and BPS2 ,
which is defined as follows. U(BPS1 ) = U(P ), V (BPS1 ) = {sv11, s

v
12}, U(BPS2 ) = {su11, s

u
12}

and V (BPS2 ) = V (P ).

J

We fix kf as given by Lemma 15. By Lemma 15, we know that there are kf bicliques that
together cover all edges in Efree \Ey and do not cover any edges in Eimp. We will call these
bicliques Bf1 , . . . , B

f
kf
.

Now, we give the description of the edges from Y to G \ Y . Recall that these edges are
contained in Ey ⊂ Efree. For each i ∈ [kf ], we add edges from yui to all the vertices in
V (Bfi ) and from yvi to all vertices in U(Bfi ). Observe that now the edge yui yvi is bisimplicial
with respect to Bfi . This together with Lemma 15 gives the following Lemma about the edge
set Efree.

I Lemma 16. Let kf = 4 log2 n+ 2dlog2 me+ 6.
1. The edge set Efree can be covered using kf bicliques of G such that none of these bicliques

contains an edge from Eimp, and these bicliques can be found in time polynomial in n+m.
2. Any set of bicliques covering Efree has kf bicliques that do not contain any edges from

Eimp.

Proof. From Lemma 15, we know that Efree \Ey can be covered by kf bicliques that do not
cover any edges from Eimp. Given these kf bicliques Bf1 , . . . , B

f
kf
, we extend them to the

bicliques B̃fi , . . . , B̃
f
kf

as follows to cover all the edges of Efree : U(B̃fi ) = U(Bfi )∪{yui }, and
V (B̃fi ) = V (Bfi ) ∪ {yvi }. It is clear that B̃

f
1 , . . . , B̃

f
n are all indeed bicliques, they together

cover all edges of Efree, and do not cover any edges of Eimp.
Since the edges within Y form an induced matching of size kf , no two of them can be present
in the same biclique. Hence, we need at least kf bicliques to cover the edges in Efree. We now
show that if a biclique contains an edge from Eimp, it cannot have an edge from Y , which will
complete the proof of the lemma. Suppose the edge yui yvi and an important edge zuzv ∈ Eimp
are in the same biclique for the sake of contradiction. But since N(yui ) = V (Bfi ) ∪ {yvi }, we
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have that zv ∈ V (Bfi ). Symmetrically, we can argue that zu ∈ U(Bfi ). Then, however, Bfi
contains the important edge zuzv, which is a contradiction. J

We set our budget k as kf + 2`+ 2, which means a budget of 2`+ 2 for the edges in Eimp
due to Lemma 16. Now, we argue the completeness of the reduction in the following Lemma.

I Lemma 17. If ψ is satisfiable, then the edges in Eimp can be covered by 2`+ 2 bicliques
of G.(These bicliques might contain some edges from Efree as well.)

Proof. We know that there exists a satisfying assignment A of ψ such that exactly half of
the variables are assigned true in A. Each clause Ci has at least one literal which satisfies
the clause. For each clause Ci, we fix one such literal. This literal corresponds to one of the
3 edges of Pi. Let us denote this edge by ei.

We use two bicliques, Bg1 and Bg2 , to cover the 2 guard edges of Q and 2 edges from each
Pi. Each of Bg1 and Bg2 covers 1 edge from Q and 1 edge from each Pi. It is clear that this
can be done. Now, each Pi has one edge still to be covered. We will assign Bg1 and Bg2 such
that the edge left uncovered in Pi is ei, i.e., the literal corresponding to this edge evaluates
to true in A.

Let B1 be the biclique defined as follows: U(B1) = {hui : A(xi) = true, i ∈ [n]} and
V (B1) = {hvi : A(xi) = false, i ∈ [n]}. Also, define B̄1 as the biclique defined by the vertex
sets U(B̄1) = U(H)\U(B1) and V (B̄1) = V (H)\V (B1). B1 and B̄1 are indeed bicliques of H
because no literal evaluates to both true and false, and thus, the missing edges corresponding
to the missing perfect matching in H are avoided. Likewise, they are duplex bicliques due
to the manner in which B̄1 is defined. Moreover, |U(B1)| = |V (B1)| since A has half of
the variables assigned true and the other half false. Therefore, by Lemma 13, there exist
` − 1 other duplex bicliques

{
B2, B̄2

}
, . . . ,

{
B`, B̄`

}
such that B1, B̄1, B2, B̄2, . . . , B`, and

B̄` together cover E(H). Now we extend these bicliques with additional vertices so that
these bicliques together with Bg1 and Bg2 cover Eimp, which is done as follows. For 2 ≤ j ≤ `,
we define biclique B′j as U(B′j) = U(Bj) ∪

{
suj1, s

u
j2
}
and V (B′j) = V (Bj) ∪

{
svj1, s

v
j2
}
. For

1 ≤ j ≤ `, we define B̄′j as U(B̄′j) = U(B̄j) ∪
{
suj2, s

u
j3
}
and V (B̄′j) = V (Bj) ∪

{
svj2, s

v
j3
}
. B′1

is defined as U(B′1) = U(B1) ∪ {su11, s
u
12} ∪

⋃
i∈[m] U(ei) and V (B′1) = V (B1) ∪ {sv11, s

v
12} ∪⋃

i∈[m] V (ei). It is clear that each B′i and B̄′i is indeed a biclique of G and that the bicliques
B′1, B

′
2, . . . , B

′
`, B̄

′
1, B̄

′
2, . . . , B̄

′
`, B

g
1 , and B

g
2 together cover Eimp. Hence, Eimp can be covered

by 2`+ 2 bicliques of G. J

Now, we argue the soundness of our reduction in the next Lemma.

I Lemma 18. If Eimp can be covered by using 2`+ 2 bicliques of G, then ψ is satisfiable.

Proof. The edge set M = {qu1 qv1 , qu2 qv2} ∪
{
suj1s

v
j1 : j ∈ [`]

}
∪
{
suj3s

v
j3 : j ∈ [`]

}
forms an

induced matching of size 2`+ 2 in G. Recall that all these edges are in Eimp. Since no two
edges of an induced matching can be contained in the same biclique, each edge in M has
to be covered by a distinct biclique. Let the biclique that covers qu1 qv1 be Bg1 and the one
that covers qu2 qv2 be Bg2 . Let Bj and B̄j be the bicliques covering the edges suj1svj1 and suj3svj3,
respectively. Since we have already used our budget of 2`+ 2, all the edges in Eimp must be
covered by at least one biclique in B =

{
B1
g , B

2
g

}
∪ {B1, B2, · · ·B`} ∪

{
B̄1, B̄2, · · · , B̄`

}
. The

only possible bicliques in B that can contain suj2 or svj2 are Bj and B̄j . That means, edges
between suj2 and H and edges between svj2 and H have to be covered by {Bj , B̄j}. Moreover,
they have to be partitioned by

{
Bj , B̄j

}
for the following reason: if the edge suj2hvi appears

in both bicliques Bj and B̄j , then the edge svj2hui cannot appear in any of the two bicliques
as there is no edge between hui and hvi ; and symmetrically, if the edge svj2hui appears in
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both bicliques Bj and B̄j , then the edge suj2hvi cannot appear in any of the two bicliques.
Combined with the fact that N(

{
suj2, s

v
j2
}

) = U(H)∪V (H), we get that {B′j , B̄′j} is a duplex
biclique, where B′j and B̄′j are the intersection of the bicliques Bj and B̄j , respectively, with
H.

Bg1 and Bg2 can each cover at most 1 edge from each Pi. Hence, there is at least 1 edge of
each Pi that must be covered by B \

{
B1
g , B

2
g

}
. Let us fix one such edge for each Pi and call

it ei. Since, there are no edges from end points of ei to any Sj for j ≥ 2, we know that each
ei must be covered by B1 or B̄1. But since end points of ei are not adjacent to su13 and sv13,
ei cannot be covered by B̄1. Thus, each ei has to be covered by B1.

Now, we construct an assignment A according to B1 as follows. For each i ∈ [n], since
{B1, B̄1} is a duplex biclique, B1 contains exactly one among hui and hvi . If hui ∈ U(B1),
then we assign xi = true in the assignment A. Otherwise, i.e, if hvi ∈ V (B1), then we assign
xi = false in A. We claim that A must be a satisfying assignment for ψ, which can be
observed as follows. Consider an arbitrary clause Cj . Let xi be the variable corresponding
to ej . Suppose xi occurs in positive form in Cj . From the construction of edges between
H and P , we know that there cannot be an edge from hvi and end points of ej . Hence, B1
cannot contain hvi . But, since B1 should contain one of hui and hvi , it should contain hui .
This means that we assigned xi = true in A and hence A satisfies clause Cj . Symmetrically,
we can argue that if xi occurred in the negative form in Cj , then we would have assigned
xi = false in A. Thus, A satisfies all the clauses of ψ. J

The statement of Theorem 6 follows from Lemmas 16, 17, and 18.

4 Approximation of BicliqueCover and BicliquePartition

In this section, we use the exponential kernel given in [6] to get a polynomial time approxim-
ation algorithm for the optimization versions of BicliqueCover and BicliquePartition,
achieving an approximation ratio of n

log2 n
. In the optimization versions of the problems,

we are required to find the biclique cover/partition with the smallest size. First, we give a
useful definition and then proceed towards describing the algorithm. We give the complete
algorithm including the reduction rule used for kernelization in [6].

I Definition 19 (Star). A star of a vertex w in a graph is the subgraph induced by {w}∪N(w).

Algorithm: Let G be the input graph. If there exist twin vertices w1 and w2 in G, we remove
one of them (say, w2) and the edges incident on it and then recurse by finding the biclique
cover/partition of the remaining graph G \ w2. After finding the biclique cover/partition
of G \ w2, we add w2 to all the bicliques in the solution that contain w1. If G contains no
twins, we output the set of stars of all vertices in U(G) as the biclique cover/partition. We
prove in Theorem 20 that this algorithm achieves an approximation ratio of n/ log2 n.

I Theorem 20. The above algorithm correctly finds a biclique cover/partition of G whose
size is at most n

log2 n
· k, where k is the size of the minimum biclique cover/partition and n is

the number of vertices of G. In other words, the algorithm is a polynomial time approximation
algorithm for the optimization versions of BicliqueCover and BicliquePartition, giving
an approximation ratio of n

log2 n
.

Proof. First let us prove the correctness, i.e, we indeed output a biclique cover/partition
of G. The correctness of reducing twins is clear and is already proven in [6]. In the case
when G does not contain twins, the correctness follows because each star is a biclique, and
each edge of G is present in exactly one of the stars of the vertices in U(G). Let k be the
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number of bicliques in the optimal biclique cover/partition. Since we do not add any extra
bicliques while reducing twins, we need only to consider the case when G has no twins, in
order to estimate the size of the biclique/cover partition output by our algorithm. In this
case, we know that |U(G)|, |V (G)| ≤ 2k from [6]. Hence, the number of bicliques in the
cover/partition that we output is at most min{n, 2k} = min{n,2k}

k · k ≤ n
log2 n

· k. J
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