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Abstract. Matching problems are some of the most well-studied prob-
lems in graph theory and combinatorial optimization, with a variety of
theoretical as well as practical motivations. However, in many applica-
tions of optimization problems, a “solution” corresponds to real-life de-
cisions that have major impact on humans belonging to diverse groups
defined by attributes such as gender, race, or ethnicity. Due to this moti-
vation, the notion of algorithmic fairness has recently emerged to promi-
nence. Depending on specific application, researchers have introduced
several notions of fairness.
In this paper, we study a problem called Socially Fair Matching,
which combines the traditional Minimum Weight Perfect Match-
ing problem with the notion of social fairness that has been studied in
clustering literature [Abbasi et al., and Ghadiri et al., FAccT, 2021]. In
our problem, the input is an edge-weighted complete bipartite graph,
where the bipartition represent two groups of entities. The goal is to find
a perfect matching as well as an assignment that assigns the cost of each
matched edge to one of its endpoints, such that the maximum of the
total cost assigned to either of the two groups is minimized.
Unlike Minimum Weight Perfect Matching, we show that Socially
Fair Matching is weakly NP-hard. On the positive side, we design a
deterministic PTAS for the problem when the edge weights are arbitrary.
Furthermore, if the weights are integers and polynomial in the number
of vertices, then we give a randomized polynomial-time algorithm that
solves the problem exactly. Next, we show that this algorithm can be
used to obtain a randomized FPTAS when the weights are arbitrary.
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1 Introduction

Matching is a ubiquitous problem in computer science, since many optimization
problems in practice can be interpreted as assignment problems, and matchings
in (bipartite) graphs are a natural candidate for modeling such problems. The
polynomial-time Blossom algorithm of Edmonds [9] for computing a maximum
matching is one of the cornerstones of algorithmic graph theory and combina-
torial optimization. Traditionally, optimization problems have focused on opti-
mizing a single objective function subject to certain constraints based on the
problem. In this viewpoint, all the different aspects of a solution are condensed
into a single number, called the cost of the solution. This model allows for a
clean abstraction of the problem, which is useful for studying the problem from
theoretical point of view.

In many real-world applications, however, an optimization problem inher-
ently involves different tradeoffs. For example, suppose there are two possible
locations for building a new school in a community – one location is cheap, but
the location is extremely inconvenient for students of one demographic group in
the community over the other; on the other hand the second location is rela-
tively expensive, but is easily accessible to students of all demographic groups.
In such a situation, it is vastly preferable to choose the second location for the
school. Researchers have considered several approaches to alleviate this issue.
One approach is the problem of multi-objective optimization (see [3, 21]), which
adds several objective functions to an optimization problem. Another related
approach is to model the fairness aspect directly into the problem, where the
notion of fairness may be specific to the problem at hand. In this paper, we
follow the second approach.

We study Socially Fair Matching, which introduces a notion of fairness
called social fairness in the classical Minimum Weight Perfect Matching
problem. Social fairness was introduced very recently in the context of clustering
problems [1, 12, 20], which is useful to balance the total clustering cost over all
groups. In this work, we introduce the Socially Fair Matching problem.
To put it in the context, let us consider the classical edge-weighted bipartite
matching problem, where the goal is to find a minimum cost perfect matching
in a complete bipartite graph between two groups R and B each containing n
vertices. Now, for any matched edge (u, v) with u ∈ R and v ∈ B, depending
on the application, the cost might be paid by either u or v. Thus, the total cost
for the two groups R and B might not be well-balanced. To address a similar
issue in the context of clustering problems, Abbasi et al. [1], and Ghadiri et al.
[12] proposed the notion of social fairness. We adopt this notion in the context
of matching. Thus, in Socially Fair Matching, the goal is to find a perfect
matching in a complete bipartite graph as well as an assignment that assigns
the cost of each matched edge to one of its endpoints, such that the maximum
of the total cost assigned to either of the two groups is minimized.

Twinning of cities is a legal or social agreement between two geographically
and politically distinct cities to promote cultural and commercial ties [23]. This
phenomenon goes back centuries, but in modern history, cities in two different
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countries are twinned as an alternative channel for diplomacy. Consider the
situation where 2n cities from two different countries desire to be twinned with
each other, such that each city of one country is twinned with a city of another
country. For each pair of twin cities, the headquarters may be located in one
of the two cities, which must bear the administrative cost that depend on the
specific parameters for twinning the specific pair of cities. In this application, it
might be desirable that we come up with a pairing, such that the total expenses
born by cities of each country is minimized. Note that this can be modeled as an
instance of Socially Fair Matching, where the weight of each edge represents
the administrative cost of twinning two cities.

Our results and contributions. We first observe that Socially Fair Match-
ing is weakly NP-hard, when the edge weights are arbitrary integers. The reduc-
tion is via the well-known Partition problem, which asks whether it is possible
to partition a given set of integers into two parts with equal weights. In contrast,
we show when the edge weights are integers and polynomial in n, the problem
can be solved exactly in polynomial time using a randomized algorithm. For
this result, we reduce Socially Fair Matching to the problem of polynomial
identity testing, which can be solved in randomized polynomial time via an ap-
plication of the Schwartz-Zippel Lemma. For the case of general weights, we show
how to obtain a (1 + ϵ)-approximation using two different approaches. First, we
show that the case of general weights can be reduced to that with polynomial
integer weights at a small loss in the approximation guarantee. Thus, we can
obtain a randomized FPTAS 5 via the previous result. In a different direction,
we show that one can also obtain a deterministic PTAS 6 in this case. Despite
having a worse running time as compared to the previous FPTAS, we believe
that this result is interesting for a few reasons. First, the PTAS is determin-
istic, unlike the inherently randomized nature of the previous FPTAS due to
its reliance on the Schwartz-Zippel lemma. Another reason is that the PTAS is
entirely combinatorial – we first guess (i.e., enumerate) a subset of heavy edges
of an optimal solution, and essentially reduce the problem to classical Minimum
Weight Perfect Matching. Thus, another advantage is that it does not rely
on any sophisticated algebraic machinery such as polynomial identity testing.

Related work. So-called Partitioned Min-Max Weighted Matching (PMMWM),
has been studied in the operations research literature [19]. In this problem, we
are given an edge weighted bipartite graph G = (R ⊎ B,E), and an integer
m ≤ |R|. The goal is to find a partition R1, R2, . . . , Rm of R, and a matching M
saturating R, such that the maximum total weight of matched edges (i.e., edges
of M) incident to all vertices in Ri is minimized. Furthermore, it is required
that for every 1 ≤ i ≤ m, |Ri| ≤ u, where u is an upper bound given in the
input. Kress et al. [19] establish hardness results and approximation algorithms

5 FPTAS stands for Fully Polynomial-Time Approximation Scheme, i.e., for any ϵ > 0,
an algorithm that returns a (1 + ϵ)-approximation in time (n/ϵ)O(1).

6 PTAS stands for Polynomial-Time Approximation Scheme, i.e., for any ϵ > 0, an
algorithm that returns a (1 + ϵ)-approximation in time nf(1/ϵ).
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for PMMWM in general case. Even though seemingly unrelated to Socially
Fair Matching, note that if for the input to PMMWM, it holds that (i) G
is a complete bipartite graph with |R| = |B| = n, (ii) m, the number of parts
of the partition is equal to 2, and (iii) the upper bound u is equal to |R| (i.e.,
there is no upper bound on the size of any part), then the resulting problem is
equivalent to Socially Fair Matching. To the best of our knowledge, for this
special case of PMMWM, no improved approximation results are known. An-
other problem related to PMMWM is the so-called Min-Max Weighted Match-
ing (MMWM) problem [2, 6], where the only difference from PMMWM is that
partition of R into R1, R2, . . . , Rm is given in the input, G is complete, and
n = |R| = |B|. Duginov [6] establishes several results for this problem. Among
these, they observe that MMWM is related to the well-known Exact Perfect
Matching problem, which has a randomized polynomial-time algorithm, but
obtaining a deterministic one is a long-standing open problem. Although the
setting of MMWM appears more similar to Socially Fair Matching as com-
pared to PMMWM, the fact that the partition R1, R2, . . . , Rm is given in the
input in MMWM, makes the two problems quite different.

Further related work on fairness and matching. In recent years, researchers
have introduced and studied several different notions of fairness, e.g., disparate
impact [10], statistical parity [15, 22], individual fairness [7] and group fairness
[8]. Kleinberg et al. [18] formulated three notions of fairness and showed that
it is theoretically impossible to satisfy them simultaneously. See also [4, 5] for
similar exposures.

Several different fair matching problems have been studied in the literature.
Huang et al. [13] studied fair b-matching, where matching preferences for each
vertex are given as ranks, and the goal is to avoid assigning vertices to high
ranked preferences as much as possible. Fair-by-design-matching is studied by
Garcia-Soriano and Bonchi [11], where instead of a single matching, a probability
distribution over all feasible matchings is computed which guarantees individual
fairness. See also [14, 17].

Organization. In Section 2, we formally define our problem. The deterministic
PTAS is discussed in Section 3. Section 4 contains the randomized polynomial-
time algorithm, the FPTAS, and the hardness result. Finally, in Section 5, we
conclude with some interesting open questions.

2 Preliminaries

For an integer ℓ ≥ 1, we use the notation [ℓ] := {1, 2, . . . , ℓ}.

Socially Fair Matching. In Socially Fair Matching, the input is a com-
plete bipartite graph G = (R⊎B,E), where R⊎B is a bipartiton of V (G), with
|R| = |B| = n. We will often refer to the vertices of R and B as red and blue re-
spectively. Each edge in E(G) has a non-negative weight. The goal is to compute
a perfect matching M ⊆ E(G), and an assignment f : M → {red, blue}, such
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that max
{∑

e∈M(red) w(e),
∑

e∈M(blue) w(e)
}

is minimized, where M(red) is the
set of edges in M such that f(e) = red, and M(blue) is defined analogously.

Fields, Polynomials, Vectors and Matrices

Here, we review some definitions from linear algebra. We refer to any graduate
textbook on algebra for more details. For a finite field F and a set of variables
X = {x1, . . . , xn}, F[X] denotes the ring of polynomials in X over F. The char-
acteristic of a field is defined as least positive integer m such that

∑m
i=1 1 = 0.

A vector v over a field F is an array of values from F. The matrix is said to
have dimension n×m if it has n rows and m columns. For a vector v, we denote
its transpose by vT . The the rank of a matrix is the maximum number k such
that there is a k × k submatrix whose determinant is non-zero.

3 A Deterministic PTAS for Arbitrary Weights

Let M be a perfect matching, and f : M → {red, blue} be an arbitrary assign-
ment. Then, for a vertex r ∈ R, we define

µM,f (r) :=

{
0 if e = {r, b} ∈M with f(e) = red

w(e) if e = {r, b} ∈M with f(e) = blue

and for b′ ∈ B, we define

µM,f (b
′) :=

{
0 if e = {r′, b′} ∈M with f(e) = blue

w(e) if e = {r′, b′} ∈M with f(e) = red
.

For a subset R′ ⊆ R (resp. B′ ⊆ B), we define µM,f (R
′) :=

∑
r∈R′ µM,f (r) (resp.∑

b∈B′ µM,f (b)).
Fix an optimal solution M∗ ⊆ E(G), and the corresponding assignment

f∗ : M∗ → {red, blue}. Define M∗(red) and M∗(blue) as the sets of edges assigned
red and blue by f∗ respectively. For v ∈ V (G), we use the shorthand µ∗(v) :=
µ∗
M∗,f∗(v). Note that OPT = max{µ∗(R), µ∗(B)}.

Let t = 1 + ⌈1/ϵ⌉. Let R1 ⊆ R be the set of vertices incident to the heaviest
max{t, |M∗(red)|} edges in M∗(red). Similarly, let B1 ⊆ B be the set of vertices
incident on the heaviest max{t, |M∗(blue)|} edges in M∗(blue). Here, we assume
that the ties are broken arbitrarily in the previous definitions.

Let R′
1 denote the matched endpoints of vertices in B1, i.e., R′

1 := {r ∈
R : ∃b ∈ B1 such that {r, b} ∈ M∗}. Similarly, define B′

1 := {b ∈ B : ∃r ∈
R1 such that {r, b} ∈ M∗}. Note that |R1| + |R′

1| = |B1| + |B′
1| ≤ 2t. Now,

define R′ = R \ (R1 ∪R′
1), and B′ = B \ (B1 ∪B′

1).
The following observation is easy to follow.

Observation 1 For any r ∈ R′, let {r, b} ∈ M∗ be the matched edge incident
on r. Then, b ∈ B′. For any b′ ∈ B′, let {r′, b′} ∈ M∗ be the matched edge
incident on b′. Then, r ∈ R′.
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We also have the following observation.

Observation 2 For any r ∈ R′, µ∗(r) ≤ ϵ · µ∗(R) ≤ ϵ · OPT . For any b ∈ B′,
µ∗(b) ≤ ϵ · µ∗(B) ≤ ϵ ·OPT .

Proof. Suppose for contradiction that there is some r′ ∈ R′ ̸= ∅ (wlog) such
that µ∗(r′) > ϵ · µ∗(R). Then, by the definition of R1, for all r ∈ R1, µ∗(r) ≥
µ∗(r′) > ϵ · µ∗(R). This implies that µ∗(R1) > ⌈1/ϵ⌉ · ϵ · µ∗(R) ≥ OPT , which is
a contradiction. The proof is exactly the same for any b′ ∈ B′.

Let M̃∗ ⊆M∗ be the subset of edges of an optimal solution that are incident
on V ′ := R1∪R′

1∪B1∪B′
1. The first step is to guess M̃∗ and the partial optimal

assignment f∗ : M̃∗ → {red, blue}. Note that since |M̃∗| ≤ 2t = O(1/ϵ), we
can enumerate all nO(t) = nO(1/ϵ) possible choices. We are left with a smaller
instance R′ ∪B′, such that |R′| = |B′| = n− 2t, where R′ = R \ (R1 ∪R′

1) and
B′ = B \ (B1 ∪ B′

1). Assuming we are working with the correct guess, we also
have an upper bound of U ≤ ϵ · OPT , which can be inferred from the smallest
distance in the partial solution already guessed.

Let OPT ′ = max {µ∗(R′), µ∗(B′)} denote the optimal assignment cost in the
remaining instance. Henceforth, wlog assume that OPT ′ = µ∗(R′) = 1

δµ
∗(B′)

for some δ ∈ [0, 1]. The other case is symmetric, and we can run the algorithm by
exchanging the roles of red and blue points, and select the solution with smaller
cost.

Let G′ = (R′∪B′, E′) be the subgraph of G[R′∪B′], where we delete all edges
with weight greater than U . Let M denote a minimum weight perfect matching
in G′. We know such a perfect matching exists, because we are working with
the correct guess, which implies that the assignment corresponding to OPT ′ is
a perfect matching such that the weight of any edge is at most U ≤ ϵ ·OPT .

Lemma 1. OPT ′ ≤ w(M) ≤ µ∗(R′) + µ∗(B′) = (1 + δ) · OPT ′. Furthermore,
there is an assignment f ′ : M → {red, blue} such that max{µM,f ′(R′), µM,f ′(B′)} ≤
(1 + δ) ·OPT ′.

Proof. Let M ′ be a matching corresponding to the optimal solution OPT ′. Then,

w(M) ≤ w(M ′) = µ∗(R′) + µ∗(B′) = (1 + δ) · µ∗(R′)

Now, we construct an arbitrary assignment f ′ : M → {red, blue}, and note that

max{µM,f ′(R′), µM,f ′(B′)} ≤ w(M) = (1 + δ) · µ∗(R′) = (1 + δ) ·OPT ′.

Finally, since this is a valid solution of cost at most w(M), the cost of optimal
solution OPT ′ must be at most w(M).

As a first step, we try to obtain an assignment f : M → {red, blue} that
achieves the red to blue cost ratio approximately equal to 1/δ. Since we do not
know the exact value of δ, we will try the ratios 1/(1 + ϵ)s, for s = 0, 1, . . . , q.
In order to upper bound q, let us consider a simpler case when δ is very small.
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Case 1: δ < 2ϵ. If µ∗(B′) < 2ϵ ·OPT , then for every edge e ∈M , we define the
assignment f ′(e) = B. We construct the assignment f : M ∪ M̃∗ → {red, blue}
by defining f(e) = f ′(e) if e ∈M ; and f(e) = f∗(e) otherwise. Note that,

Blue cost =
∑
b∈B′

µM,f ′(b) +
∑
b∈B1

µ∗(b)

= 0 + µ∗(B1) ≤ µ∗(B) ≤ OPT,

And,

Red cost =
∑
r∈R′

µM,f ′(r) +
∑
r∈R1

µ∗(r)

= w(M) + µ∗(R1)

≤ µ∗(R′) + µ∗(B′) + µ∗(R1) (From Lemma 1)
≤ µ∗(R) + 2ϵ ·OPT

≤ (1 + 2ϵ) ·OPT.

Case 2: 2ϵ ≤ δ ≤ 1. In this case, have that µ∗(B′) = δOPT ′ ≥ 2ϵOPT ≥
2ϵOPT ′. By trying s = 1, 2, . . . , q, we want to find a value s such that (1 +
ϵ)−(s+1) ≤ δ

1+δ < (1 + ϵ)−s. Note that δ
1+δ ≥

2ϵ
2 = ϵ, since 2ϵ ≤ δ ≤ 1. This

implies that q ≤ −⌈log1+ϵ

(
δ

1+δ

)
⌉ ≤ −⌈ log ϵ

log(1+ϵ)⌉ = g(ϵ) for some g. Furthermore,
this implies that the weight of any non-removed edge is at most ϵ · OPT ≤
(1 + ϵ)−s ·OPT for any value of s we will consider.

Lemma 2. When 2ϵ ≤ δ ≤ 1, we can obtain an assignment f : Mc → {red, blue},
where Mc = M ∪M∗ such that,

max

{∑
r∈R

µMc,f (r),
∑
b∈B

µMc,f (b)

}
≤ (1 + 2ϵ) ·OPT.

Proof. Order the edges in the matching M in an arbitrary order, and let the
weight of edge ei be wi. Let j be the index such that

∑j
i=1 wi < (1+ϵ)−s ·w(M),

but
∑j+1

i=1 wi ≥ (1 + ϵ)−s · w(M).
Note that such an index i always exists, since the weight of any non-removed

edge – in particular that of e1 – is at most ϵ · OPT ≤ (1 + ϵ)−qOPT , which
corresponds to the largest value of s we consider.

Now, let RC denote the red endpoints of edges e1, e2, . . . , ej+1, and let BC

denote the blue endpoints of edges ej+2, ej+3, . . . , ek′ . We construct the assign-
ment f : M → {red, blue} as follows. For each edge e ∈ {e1, . . . , ej+1}, we let
f(e) = red, and for each edge e′ ∈ {ej+2, . . . , ek

′}, we let f(e′) = blue. Finally, we
extend this assignment to M̃∗ by assigning for each edge e ∈ M̃∗ as f(e) = f∗(e).
Thus, now f is an assignment from M ∪ M̃∗ to {red, blue}. Now we analyze the
cost of this assignment.
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Consider the following,

j∑
i=1

wi ≤ (1 + ϵ)−sw(M)

≤ (µ∗(R′) + µ∗(B′))

(1 + ϵ)s

= (1 + ϵ) · (1 + ϵ)−(s+1) ·
(
δ + 1

δ

)
· µ∗(B′)

≤ (1 + ϵ) · µ∗(B′) (1)

k′∑
i=j+2

wi = w(M)−
j+1∑
i=1

wi

≤ w(M)− w(M)

(1 + ϵ)s

≤ µ∗(R′) + δµ∗(R′)

δ + 1

≤ µ∗(R′). (2)

Here, the last inequality in (1) and the second-last inequality in (2) fol-
low from the definition of s, i.e., (1 + ϵ)−(s+1) ≤ δ

1+δ < (1 + ϵ)−s. Therefore,

Blue cost =
j+1∑
i=1

wi + µ∗(B1)

≤ (1 + ϵ) · µ∗(B′) + µ(B1) + wj+1

≤ (1 + ϵ) · µ∗(B) + ϵ ·OPT

Red cost =
j+2∑
i=1

wi + µ∗(R1)

≤ µ∗(R′) + µ∗(R1)

= µ∗(R).
Since the cost of the solution returned is the maximum of red cost and the

blue cost, it is easy to show that the cost of our solution is upper bounded by
(1 + 2ϵ) ·OPT .

Theorem 1. There exists a deterministic PTAS for Socially Fair Matching
for arbitrary weights. In other words, for any ϵ > 0, there exists a deterministic
algorithm that returns a (1 + ϵ)-approximation for Socially Fair Matching
in time nO(1/ϵ).

4 Randomized Polynomial Time algorithm for
Polynomial Weights

First, we assume that the weights are all integers in the range [0, N ], where N is
an integer that is at least n (if not, a simple scaling ensures this property). We
will describe an exact randomized algorithm that runs in time polynomial in n
and N in this case.
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Let F be a field of characteristic 2 containing at least 4(N +1)2 ≥ n2 distinct
elements. If X = {x1, x2, . . . , xt} is a set of t variables, then we use F[X] to
denote the ring of polynomials in X.

Let Z = {zij : 1 ≤ i, j ≤ n} be a set of n2 variables, and let X = {x, y} ∪ Z,
where a variable zij corresponds to the edge eij = {i, j} ∈ E(G). We define a
matrix A = (Aij), where

Aij =

{
0 if {i, j} ̸∈ E(G)

(xwij + ywij ) · zij if {i, j} ∈ E(G) with weight wij

First, we observe that the permanent of the matrix A computed in F[X] is
equal to the determinant of A, which is a polynomial in X. Let Π be the set of
permutations of n. Then, we have the following equality:

Q = det(A) =
∑
σ∈Π

n∏
q=1

Aq,σ(q) =

N∑
i=0

xiPi(y, Z) =

N∑
i=0

xi
N∑
j=0

yj · Pi,j(Z)

where Q = Q(x, y, Z) is a polynomial in variables x, y and Z, each Pi(y, Z) is
a polynomial in y and Z, and Pi,j(Z) is a polynomial in variables Z. Note that
the degree of each polynomial Pi,j(Z), which is equal to the maximum degree of
any of its monomials, is at most n.

Observation 3 There exists a perfect matching M and an assignment f :
M → {red, blue} such that µM,f (R) = wr and µM,f (B) = wb iff the polyno-
mial Pwr,wb

(z) is not identically equal to zero.

Next, using the definition of polynomial Q, the following equalities are easy
to see: (

1 x . . . xN
)
·
(
P0(y, Z) P1(y, Z) . . . PN (y, Z)

)⊤
= Q(x, y, Z) (3)

and for each 0 ≤ i ≤ N , we have that(
1 y . . . yN

)
·
(
Pi,0(Z) Pi,1(y, Z) . . . Pi,N (Z)

)⊤
= Pi(y, Z) (4)

Computing Polynomials at Specified Values. For a set P = {p1, p2, . . . , pk+1} ⊆ F
of size k+1, let V (P ) ∈ F(k+1)×(k+1) be the Vandermonde matrix, whose entries
are given by V (P )ij = (pi)

j−1. That is, V (P ) looks as follows:

V (P ) =


p01 p11 p21 . . . pk1
p02 p12 p22 . . . pk2
...

. . .
...

p0k+1 p1k+1 p2k+1 . . . pkk+1


Note that if P consists of k + 1 distinct non-zero elements of F, then V (P ) is
invertible over F. In this case, we let W (P ) = V −1(P ) be its inverse.
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Next, we observe the following:
Let T = {y1, y2, . . . , yN+1} be a set of distinct non-zero values of F, then (4)

implies that for any 0 ≤ i ≤ N , the following holds:

V (T ) ·


Pi,0(Z)
Pi,1(Z)

...
Pi,N (y, Z)

 =


Pi(y1, Z)
Pi(y2, Z)

...
Pi(yN , Z)

 (5)

which implies that 
Pi,0(Z)
Pi,1(Z)

...
Pi,N (y, Z)

 = W (T )


Pi(y1, Z)
Pi(y2, Z)

...
Pi(yN , Z)

 (6)

In particular, the polynomials Pi,j(Z) at the given values Z ← Z ′ can be
evaluated in time polynomial in N using the computation above, assuming we
can evaluate the polynomial Pi(y, Z) at values y ← y′, and Z ← Z ′. Next, we
show how to do this computation.

From (3), we get that if S = {x1, x2, . . . , xN+1} are distinct non-zero values
of F, then:

V (S) ·


P0(y, Z)
P1(y, Z)

...
PN (y, Z)

 =


Q(x1, y, Z)
Q(x2, y, Z)

...
Q(xN , y, Z)

 =⇒


P0(y, Z)
P1(y, Z)

...
PN (y, Z)

 = W (S) ·


Q(x1, y, Z)
Q(x2, y, Z)

...
Q(xN , y, Z)


In particular, given the values y ← y′, and zij ← z′ij , where y′, z′ij ∈ F, the
polynomials Pi(y

′, Z ′) can be evaluated in time polynomial in N , assuming the
polynomial Q(x, y, Z) can be evaluated at the specified values x ← x′, y ← y′

and Z ← Z ′. However, note that the polynomial Q is equal to the determinant
of the matrix A. Thus, this can be implemented in polynomial time.

Recall that we want to determine whether the polynomial Pwr,wb
(Z) is iden-

tically equal to zero (cf. Proposition 3). To this end, we sample the values
Z ′ = {z′ij} from F – note that F contains at least 4(N + 1)2 ≥ n2 distinct
elements, and the degree of the polynomial Pwr,wb

is at most n. Therefore, by
Schwartz-Zippel lemma, the probability that the polynomial is non-zero, when
evaluated at Z ′ is equal to zero is at most n/(N + 1) ≤ 1/n. Thus, we obtain
the following theorem.

Theorem 2. There exists a randomized algorithm that, given an Socially
Fair Matching instance on n vertices, and where all edge weights are inte-
gers in range [0, N ], with N ≥ n, runs in time (n+N)O(1), and finds an optimal
solution with probability at least 1− 1/n.
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4.1 FPTAS For General Weights via Reduction to Polynomial
Integer Weights.

Let 0 < ϵ ≤ 1 be a fixed constant. By appropriately scaling, we assume that
the smallest positive weight is at least 3/ϵ. Then, we round all weights of all the
edges up to the nearest integer. Note that the weight of any edge is increased by
strictly smaller than 1, which is at most ϵ/3 factor of its original weight. Thus,
assume that all weights are non-negative integers. Say, this is preprocessing step
A.

By iterating over all edges, we “guess” the largest weight of an edge (after
rounding up) that is part of an optimal solution. Let L denote a guess for the
largest weight, and note that L is an integer. Then, we delete all the edges
with weight larger than L. Suppose L ≤ 2n/ϵ. Then, we skip the following
preprocessing step B, and directly use Theorem 2 as described subsequently.

Now, suppose that L > 2n/ϵ. Then, for each edge with weight (after prepro-
cessing step A) w, we define its weight to be ⌈ w

L/(2n/ϵ)⌉ ·
L

2n/ϵ . We say that this
is preprocessing step B.

Claim. Suppose we guess the maximum weight L of an edge in an optimal so-
lution correctly. Then, after preprocessing step A, and step B in the iteration
corresponding to L, the optimal solution w.r.t. new weights is at most 1+ϵ times
the original optimal weight.

Proof. As argued previously, step A incurs at most an (1+ϵ/3) factor increase in
the cost of any solution. Consider the iteration corresponding to L, the maximum
weight of an edge in some optimal solution F ⊆ E. By removing edges with
weight larger than L, we do not delete any edge of an optimal solution. Note that
the total increase in the weight of any edge due to step B is at most L

2n/ϵ . Thus,
for any set of edges of size at most n, the total increase in the weight is at most
ϵL
2n ·n ≤

ϵL
2 ≤

ϵ·OPT
2 . Thus, the total increase in the weight due to preprocessing

steps A and B can be upper bounded by (1+ϵ/3) ·(1+ϵ/2)OPT ≤ (1+ϵ) ·OPT .

After preprocessing step B, the weights are of the form t · L
2n/ϵ , where t is an

integer in the range [0, ⌈n/ϵ⌉]. By dividing each weight by a factor of L/(2n/ϵ),
we obtain an instance where all the weights are integers in the range [0, ⌈n/ϵ⌉],
i.e., N = ⌈n/ϵ⌉ ≥ n. Then, the algorithm from Theorem 2 can be used to find an
optimal solution in time (n/ϵ)O(1), with probability at least 1− 1/n. Therefore,
we obtain the following theorem.

Theorem 3. There exists a randomized FPTAS for Socially Fair Matching
for arbitrary weights. In other words, for any ϵ > 0, there exists a randomized
algorithm that returns a (1 + ϵ)-approximation for Socially Fair Matching
in time (n/ϵ)O(1), with probability at least 1− 1/n.

4.2 NP-hardness of Socially Fair Matching

The reduction is from a variant of Partition. The input is a set A = {a1, a2, . . . , an}
of n positive integers, and an integer k. The problem asks whether it is possible
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to partition A into two sets A1 and A2 such that the sum of the integers in A1

and A2 are equal. It is known that Partition is weakly NP-hard, i.e., if the
integers in A are given in binary [16].

We reduce this to Socially Fair Matching as follows. First, let R =
{r1, r2, . . . , rn}, and B = {b1, b2, . . . , bn} be two disjoint sets of 2n vertices. Let
G = (R ∪B) be a complete bipartite graph, i.e., there is an edge between every
ri and bj , 1 ≤ i, j ≤ n. Now we define the weights on the edges. For 1 ≤ i ≤ n,
set w(ri, bi) = ai. For 1 ≤ i ̸= j ≤ n, let w(ri, bj) = n · L, where L =

∑n
i=1 ai.

Note that any solution of cost at most L must output the matching M =
{{ri, bi} : 1 ≤ i ≤ n}. Restricting our attention to such a solution, now the task
is to find an assignment f : M → {red, blue}. It is easy to see that there is a
bijection between an assignment f , and a partition {A1, A2} of the integers A
in the given Partition instance. In particular, deciding whether there exists
an assignment f : M → {red, blue}, such that µM,f (R) = µM,f (B) = L

2 is
equivalent to determining that the input A of Partition can be partitioned
into two sets with equal sum. Therefore, finding an optimal solution to Socially
Fair Matching is weakly NP-hard.

5 Conclusions

In this work, we introduce a well-motivated matching problem, namely Socially
Fair Matching, and systemically study the complexity of the problem in terms
of exact and approximate computation. Our results draw a nearly complete pic-
ture of the computational complexity of the problem. On the one hand, we show
that the problem is weakly NP-hard when the edge weights are arbitrary in-
tegers. On the other hand, we obtain a randomized polynomial-time algorithm
when the weights are polynomially bounded. The latter result leads to a ran-
domized FPTAS for the general problem. We also obtain a deterministic PTAS
in the general case, which is a simple, combinatorial algorithm.

Our work leads to several interesting open questions. An obvious question
is to obtain a deterministic FPTAS for the problem. Also, it would be interest-
ing to see for which subclasses of graphs our problem admits polynomial-time
algorithms. Finally, one might be interested in suitably extending our model to
multiple groups.
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