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Abstract

We study a natural problem in graph sparsification, the Spanning Tree Congestion (STC) prob-
lem. Informally, the STC problem seeks a spanning tree with no tree-edge routing too many of
the original edges. The root of this problem dates back to at least 30 years ago, motivated by ap-
plications in network design, parallel computing and circuit design. Variants of the problem have
also seen algorithmic applications as a preprocessing step of several important graph algorithms.

For any general connected graph with n vertices and m edges, we show that its STC is at
most O(

√
mn), which is asymptotically optimal since we also demonstrate graphs with STC at

least Ω(
√
mn). We present a polynomial-time algorithm which computes a spanning tree with

congestion O(
√
mn · logn). We also present another algorithm for computing a spanning tree

with congestion O(
√
mn); this algorithm runs in sub-exponential time when m = ω(n log2 n).

For achieving the above results, an important intermediate theorem is generalized Győri-
Lovász theorem, for which Chen et al. [14] gave a non-constructive proof. We give the first ele-
mentary and constructive proof by providing a local search algorithm with running time O∗ (4n),
which is a key ingredient of the above-mentioned sub-exponential time algorithm. We discuss a
few consequences of the theorem concerning graph partitioning, which might be of independent
interest.

We also show that for any graph which satisfies certain expanding properties, its STC is at
most O(n), and a corresponding spanning tree can be computed in polynomial time. We then
use this to show that a random graph has STC Θ(n) with high probability.
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1 Introduction

Graph Sparsification/Compression generally describes a transformation of a large input graph
into a smaller/sparser graph that preserves certain feature (e.g., distance, cut, congestion,
flow) either exactly or approximately. The algorithmic value is clear, since the smaller
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graph might be used as a preprocessed input to an algorithm, so as to reduce subsequent
running time and memory requirement. In this paper, we study a natural problem in graph
sparsification, the Spanning Tree Congestion (STC) problem. Informally, the STC problem
seeks a spanning tree with no tree-edge routing too many of the original edges. The problem
is well-motivated by network design applications, where designers aim to build sparse
networks that meet traffic demands, while ensuring no connection (edge) is too congested.
Indeed, the root of this problem dates back to at least 30 years ago under the name of
“load factor” [8, 36], with natural motivations from parallel computing and circuit design
applications. The STC problem was formally defined by Ostrovskii [30] in 2004, and since
then a number of results have been presented. The probabilistic version of the STC problem,
coined as probabilistic capacity mapping, also finds applications in several important graph
algorithm problems, e.g., the Min-Bisection problem.

Two canonical goals for graph sparsification problems are to understand the trade-off
between the sparsity of the output graph(s) and how well the feature is preserved, and to
devise (efficient) algorithms for computing the sparser graph(s). These are also our goals for
the STC problem. We focus on two scenarios: (A) general connected graphs with n vertices
and m edges, and (B) graphs which exhibit certain expanding properties:

For (A), we show that the spanning tree congestion (STC) is at most O(
√
mn), which is

a factor of Ω(
√
m/n) better than the trivial bound of m. We present a polynomial-time

algorithm which computes a spanning tree with congestion O(
√
mn · logn). We also

present another algorithm for computing a spanning tree with congestion O(
√
mn); this

algorithm runs in sub-exponential time when m = ω(n log2 n). For almost all ranges of
average degree 2m/n, we also demonstrate graphs with STC at least Ω(

√
mn).

For (B), we show that the expanding properties permit us to devise polynomial-time
algorithm which computes a spanning tree with congestion O(n). Using this result,
together with a separate lower-bound argument, we show that a random graph has Θ(n)
STC with high probability.

For achieving the results for (A), an important intermediate theorem is generalized
Győri-Lovász theorem, which was first proved by Chen et al. [14]. Their proof uses advanced
techniques in topology and homology theory, and is non-constructive.

I Definition 1. In a graph G = (V,E), a k-connected-partition is a k-partition of V into
∪kj=1Vj , such that for each j ∈ [k], G[Vj ] is connected.

I Theorem 2 ([14, Theorems 25, 26]). Let G = (V,E) be a k-connected 1 graph. Let w be a
weight function w : V → R+. For any U ⊂ V , let w(U) :=

∑
v∈U w(v). Given any k distinct

terminal vertices t1, · · · , tk, and k positive integers T1, · · · , Tk such that for each j ∈ [k],
Tj ≥ w(tj) and

∑k
i=1 Ti = w(V ), there exists a k-connected-partition of V into ∪kj=1Vj , such

that for each j ∈ [k], tj ∈ Vj and w(Vj) ≤ Tj + maxv∈V w(v)− 1.

One of our main contributions is to give the first elementary and constructive proof by
providing a local search algorithm with running time O∗ (4n):2

I Theorem 3. (a) There is an algorithm which given a k-connected graph, computes a
k-connected-partition satisfying the conditions stated in Theorem 2 in time O∗ (4n).

1 For brevity, we say “k-connected” for “k-vertex-connected” henceforth.
2 O∗ notation hides all polynomial factors in input size.
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(b) If we need a (bk/2c+ 1)-partition instead of k-partition (the input graph remains assumed
to be k-connected), the algorithm’s running time improves to O∗(2O((n/k) log k)).

We make three remarks. First, the O∗(2O((n/k) log k))-time algorithm is a key ingredient
of our algorithm for computing a spanning tree with congestion O(

√
mn). Second, since

Theorem 2 guarantees the existence of such a partition, the problem of computing such a
partition is not a decision problem but a search problem. Our local search algorithm shows
that this problem is in the complexity class PLS [20]; we raise its completeness in PLS as an
open problem. Third, the running times do not depend on the weights.

The STC Problem, Related Problems and Our Results. Given a connected graph
G = (V,E), let T be a spanning tree. For an edge e = (u, v) ∈ E, its detour with respect
to T is the unique path from u to v in T ; let DT(e, T ) denote the set of edges in this
detour. The stretch of e with respect to T is |DT(e, T )|, the length of its detour. The
dilation of T is maxe∈E |DT(e, T )|. The edge-congestion of an edge e ∈ T is ec(e, T ) :=
|{f ∈ E : e ∈ DT(f, T )}|, i.e., the number of edges in E whose detours contain e. The
congestion of T is cong(T ) := maxe∈T ec(e, T ). The spanning tree congestion (STC) of the
graph G is STC(G) := minT cong(T ), where T runs over all spanning trees of G.

We note that there is an equivalent cut-based definition for edge-congestion, which we
will use in our proofs. For each tree-edge e ∈ T , removing e from T results in two connected
components; let Ue denote one of the components. Then ec(e, T ) := |E(Ue, V \ Ue)|.

Various types of congestion, stretch and dilation problems are studied in computer science
and discrete mathematics. In these problems, one typically seeks a spanning tree (or some
other structure) with minimum congestion or dilation. We mention some of the well-known
problems, where minimization is done over all the spanning trees of the given graph:
1. The Low Stretch Spanning Tree (LSST) problem is to find a spanning tree which minimizes

the total stretch of all the edges of G. [3] It is easy to see that minimizing the total stretch
is equivalent to minimizing the total edge-congestion of the selected spanning tree.

2. The STC problem is to find a spanning tree of minimum congestion. [30]
3. Tree Spanner Problem is to find a spanning tree of minimum dilation. [13] The more

general Spanner problem is to find a sparser subgraph of minimum distortion. [4]
There are other congestion and dilation problems which do not seek a spanning tree, but
some other structure. The most famous among them is the Bandwidth problem and the
Cutwidth problem; see the survey [34] for more details.

Among the problems mentioned above, several strong results were published in connection
with the LSST problem. Alon et al. [3] had shown a lower bound of Ω(max{n logn,m}).
Upper bounds have been derived and many efficient algorithms have been devised; the
current best upper bound is Õ(m logn). [3, 15, 1, 22, 2] Since total stretch is identical to
total edge-congestion, the best upper bound for the LSST problem automatically implies
an Õ(mn logn) upper bound on the average edge-congestion. But in the STC problem, we
concern the maximum edge-congestion; as we shall see, for some graphs, the maximum
edge-congestion has to be a factor of Ω̃(

√
n3/m) larger than the average edge-congestion.

In comparison, there were not many strong and general results for the STC Problem,
though it was studied extensively in the past 13 years. The problem was formally proposed
by Ostrovskii [30] in 2004. Prior to this, Simonson [36] had studied the same parameter
under a different name to approximate the cut width of outer-planar graph. A number of
graph-theoretic results were presented on this topic [31, 25, 24, 23, 10]. Some complexity
results were also presented recently [29, 9], but most of these results concern special classes
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of graphs. The most general result regarding STC of general graphs is an O(n
√
n) upper

bound by Löwenstein, Rautenbach and Regen in 2009 [27], and a matching lower bound by
Ostrovskii in 2004 [30]. Note that the above upper bound is not interesting when the graph
is sparse, since there is also a trivial upper bound of m. In this paper we come up with a
strong improvement to these bounds after 8 years:

Theorem (informal): For a connected graph G with n vertices and m edges, its spanning
tree congestion is at most O(

√
mn). In terms of average degree davg = 2m/n, we can state

this upper bound as O(n
√
davg). There is a matching lower bound.

Our proof for achieving the O(
√
mn) upper bound is constructive. It runs in exponential

time in general; for graphs with m = ω(n log2 n) edges, it runs in sub-exponential time. By
using an algorithm of Chen et al. [14] for computing single-commodity confluent flow from
single-commodity splittable flow, we improve the running time to polynomial, but with a
slightly worse upper bound guarantee of O(

√
mn · logn).

Motivated by an open problem raised by Ostrovskii [32] concerning STC of random graphs,
we formulate a set of expanding properties, and prove that for any graph satisfying these
properties, its STC is at most O(n). We devise a polynomial time algorithm for computing
a spanning tree with congestion O(n) for such graphs. This result, together with a separate
lower-bound argument, permit us to show that for random graph G(n, p) with 1 ≥ p ≥ c logn

n

for some small constant c > 1,3 its STC is Θ(n) with high probability, thus resolving the
open problem raised by Ostrovskii completely.

Min-Max Graph Partitioning and the Generalized Győri-Lovász Theorem. It
looks clear that the powerful Theorem 2 can make an impact on graph partitioning. We
discuss a number of its consequences which might be of wider interest.

Graph partitioning/clustering is a prominent topic in graph theory/algorithms, and has a
wide range of applications.A popular goal is to partition the vertices into sets such that the
number of edges across different sets is small. While the min-sum objective, i.e., minimizing
the total number of edges across different sets, is more widely studied, in various applications,
the more natural objective is the min-max objective, i.e., minimizing the maximum number
of edges leaving each set. The min-max objective is our focus here.

Depending on applications, there are additional constraints on the sets in the partition.
Two natural constraints are (i) balancedness: the sets are (approximately) balanced in sizes,
and (ii) induced-connectivity: each set induces a connected subgraph. The balancedness
constraint appears in the application of domain decomposition in parallel computing, while the
induced-connectivity constraint is motivated by divide-and-conquer algorithms for spanning
tree construction. Imposing both constraints simultaneously is not feasible for every graph;
for instance, consider the star graph with more than 6 vertices and one wants a 3-partition.
Thus, it is natural to ask, for which graphs do partitions satisfying both constraints exist.
Theorem 2 implies a simple sufficient condition for existence of such partitions.

By setting the weight of each vertex in G to be its degree, and using the elementary fact
that the maximum degree ∆(G) ≤ n ≤ 2m/k for any k-connected graph G on n vertices and
m edges, we have

I Proposition 4. If G is a k-connected graph with m edges, then there exists a k-connected-

3 Note that the STC problem is relevant only for connected graphs. Since the threshold function for graph
connectivity is log n

n , this result applies for almost all of the relevant range of values of p.
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partition, such that the total degree of vertices in each part is at most 4m/k. Consequently,
the min-max objective is also at most 4m/k.

Due to expander graphs, this bound is optimal up to a small constant factor. This proposition
(together with Lemma 9) implies the following crucial lemma for achieving some of our results.

I Lemma 5. Let G be a k-connected graph with m edges. Then STC(G) ≤ 4m/k.

Proposition 4 can be generalized to include approximate balancedness in terms of number of
vertices. By setting the weight of each vertex to be cm/n plus its degree in G, we have
I Proposition 6. Given any fixed c > 0, if G is a k-connected graph with m edges and n
vertices, then there exists a k-connected-partition such that the total degree of vertices in
each part is at most (2c+ 4)m/k, and the number of vertices in each part is at most 2c+4

c ·
n
k .

Further Related Work. Concerning STC problem, Okamoto et al. [29] gave an O∗(2n)
algorithm for computing the exact STC of a graph. The probabilistic version of the STC prob-
lem, coined as probabilistic capacity mapping, is an important tool for several graph algorithm
problems, e.g., the Min-Bisection problem. Räcke [33] showed that in the probabilistic
setting, distance and capacity are interchangeable, which briefly says a general upper bound
for one objective implies the same general upper bound for the other. Thus, due to the
above-mentioned results on LSST, there is an upper bound of Õ(logn) on the maximum
average congestion. Räcke’s result also implies an O(logn) approximation algorithm to the
Min-Bisection problem, improving upon the O(log3/2 n) approximation algorithm of Feige
and Krauthgamer [16]. However, in the deterministic setting, such interchanging phenomenon
does not hold: there is a simple tight bound Θ(n) for dilation, but for congestion it can be
as high as Θ(n

√
n). For the precise definitions, more background and key results about the

concepts we have just discussed, we recommend the writing of Andersen and Feige [5].
Graph partitioning/clustering is a prominent research topic with wide applications, so

it comes no surprise that a lot of work has been done on various aspects of the topic; we
refer readers to the two extensive surveys by Schaeffer [35] and by Teng [41]. Kiwi, Spielman
and Teng [21] formulated the min-max k-partitioning problem and gave bounds for classes of
graphs with small separators, which are then improved by Steurer [38]. On the algorithmic
side, many of the related problems are NP-hard, so the focus is on devising approximation
algorithms. Sparkled by the seminal work of Arora, Rao and Vazirani [6] on sparsest cut
and of Spielman and Teng [37] on local clustering, graph partitioning/clustering algorithms
with various constraints have attracted attention across theory and practice; we refer readers
to [7] for a fairly recent account of the development. The min-sum objective has been
extensively studied; the min-max objective, while striking as the more natural objective
in some applications, has received much less attention. The only algorithmic work on this
objective (and its variants) are Svitkina and Tardos [40] and Bansal et al. [7]. None of the
above work addresses the induced-connectivity constraint.

The classical version of Győri-Lovász Theorem (i.e., the vertex weights are uniform) was
proved independently by Győri [17] and Lovász [26]. Lovász’s proof uses homology theory
and is non-constructive. Győri’s proof is elementary and is constructive implicitly, but he did
not analyze the running time. Polynomial time algorithms for constructing the k-partition
were devised for k = 2, 3 [39, 42], but no non-trivial finite-time algorithm was known for
general graphs with k ≥ 4.4 Recently, Hoyer and Thomas [19] provided a clean presentation

4 In 1994, there was a paper by Ma and Ma in Journal of Computer Science and Technology, which
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of Győri’s proof by introducing their own terminology, which we use for our constructive
proof of Theorem 2.

Notation. Given a connected graph G = (V,E), an edge set F ⊆ E and two disjoint vertex
subsets V1, V2 ⊂ V , we let F (V1, V2) := { e = {v1, v2} ∈ F | v1 ∈ V1 and v2 ∈ V2 }.

2 Technical Overview

To prove the generalized Győri-Lovász theorem constructively, we follow the same framework
of Győri’s proof [17], and we borrow terminology from the recent presentation by Hoyer
and Thomas [19]. But it should be emphasized that proving our generalized theorem is not
straight-forward, since in Győri’s proof, at each stage a single vertex is moved from one set
to other to make progress, while making sure that the former set remains connected. In our
setting, in addition to this we also have to ensure that the weights in the partitions do not
exceed the specified limit; and hence any vertex that can be moved from one set to another
need not be candidate for being transferred. The proof is presented in Section 3.

As discussed, a crucial ingredient for our upper bound results is Lemma 5, which is a
direct corollary of the generalized Győri-Lovász theorem. The lemma takes care of the highly-
connected cases; for other cases we provide a recursive way to construct a low congestion
spanning tree; see Section 4 for details. For showing our lower bound for general graphs, the
challenge is to maintain high congestion while keeping density small. To achieve this, we
combine three expander graphs with little overlapping between them, and we further make
those overlapped vertices of very high degree. This will force a tree-edge adjacent to the
centroid of any spanning tree to have high congestion; see Section 5 for details.

We formulate a set of expanding properties which permit constructing a spanning tree
of better congestion guarantee in polynomial time. The basic idea is simple: start with a
vertex v of high degree as the root. Now try to grow the tree by keep attaching new vertices
to it, while keeping the invariant that the subtrees rooted at each of the neighbours of v
are roughly balanced in size; each such subtree is called a branch. But when trying to grow
the tree in a balanced way, we will soon realize that as the tree grow, all the remaining
vertices may be seen to be adjacent only to a few number of “heavy” branches. To help
the balanced growth, the algorithm will identify a transferable vertex which is in a heavy
branch, and it and its descendants in the tree can be transferred to a “lighter” branch.
Another technique is to use multiple rounds of matching between vertices in the tree and the
remaining vertices to attach new vertices to the tree. This will tend to make sure that all
subtrees do not grow uncontrolled. By showing that random graph satisfies the expanding
properties with appropriate parameters, we show that a random graph has STC of Θ(n) with
high probability.

3 Generalized Győri-Lovász Theorem

We prove Theorem 3 in this section. Observe that the classical Győri-Lovász Theorem follows
from Theorem 2 by taking w(v) = 1 for all v ∈ V and Tj = nj for all j ∈ [k]. We note that a

claimed a poly-time algorithm for all k. However, according to a recent study [18], Ma and Ma’s
algorithm can fall into an endless loop. Also, Győri said the algorithm should be wrong (see [28]).
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perfect generalization where one requires that w(Vj) = Tj is not possible — think when all
vertex weights are even integers, while some Tj is odd.

Let G = (V,E) be a k-connected graph on n vertices and m edges, and w : V → R+ be a
weight function. For any subset U ⊆ V , w(U) :=

∑
u∈U w(u). Let wmax := maxv∈V w(v).

3.1 Key Combinatorial Notions

We first highlight the key combinatorial notions used for proving Theorem 3; see Figures 1
and 2 for illustrations of some of these notions.

Fitted Partial Partition. First, we introduce the notion of fitted partial partition (FPP).
An FPP A is a tuple of k subsets of V , (A1, . . . , Ak), such that the k subsets are pairwise
disjoint, and for each j ∈ [k]:
1. tj ∈ Aj ,
2. G[Aj ] is connected and
3. w(Aj) ≤ Tj + wmax − 1 (we say the set is fitted for satisfying this inequality).
We say an FPP is a Strict Fitted Partial Partition (SFPP) if A1∪· · ·∪Ak is a proper subset of
V . We say the set Aj is light if w(Aj) < Tj , and we say it is heavy otherwise. Note that there
exists at least one light set in any SFPP, for otherwise w(A1 ∪ · · · ∪Ak) ≥

∑k
j=1 Tj = w(V ),

which means A1 ∪ · · · ∪Ak = V . Also note that by taking Aj = {tj}, we have an FPP, and
hence at least one FPP exists.

Configuration. For a set Aj in an FPP A and a vertex v ∈ Aj \{tj}, we define the reservoir
of v with respect to A, denoted by RA(v), as the vertices in the same connected component
as tj in G[Aj ] \ {v}. Note that v /∈ RA(v).

For a heavy set Aj , a sequence of vertices (z1, . . . , zp) for some p ≥ 0 is called a cascade
of Aj if z1 ∈ Aj \ {tj} and zi+1 ∈ Aj \ RA(zi) for all 1 ≤ i < p. The cascade is called a
null cascade if p = 0, i.e., if the cascade is empty. Note that for light set, we do not need to
define its cascade since we do not use it in the proof. (See Figure 1.)

A configuration CA is defined as a pair (A,D), where A = (A1, · · · , Ak) is an FPP, and
D is a set of cascades, which consists of exactly one cascade (possibly, a null cascade) for
each heavy set in A. A vertex that is in some cascade of the configuration is called a
cascade vertex.

Given a configuration, we define rank and level inductively as follows. Any vertex in a
light set is said to have level 0. For i ≥ 0, a cascade vertex is said to have rank i+ 1 if it
has an edge to a level-i vertex but does not have an edge to any level-i′ vertex for i′ < i. A
vertex u is said to have level i, for i ≥ 1, if u ∈ RA(v) for some rank-i cascade vertex v, but
u /∈ RA(w) for any cascade vertex w such that rank of w is less than i. A vertex that is not
in RA(v) for any cascade vertex v is said to have level ∞.

A configuration is called a valid configuration if for each heavy set Aj , rank is defined
for each of its cascade vertices and the rank is strictly increasing in the cascade, i.e., if
{z1, . . . , zp} is the cascade, then rank(z1) < · · · < rank(zp). Note that by taking Aj = {tj}
and taking the null cascade for each heavy set (in this case Aj is heavy if w(tj) = Tj), we
get a valid configuration. (See Figure 2.)

Configuration Vectors and Their Total Ordering. For any vertex, we define its
neighborhood level as the smallest level of any vertex adjacent to it. A vertex v of level `
is said to satisfy maximality property if each vertex adjacent on it is either a rank-(`+ 1)
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z1

z2

z3

RA(z1)

RA(z2)

tj

RA(z3)

Figure 1 Given a configuration (A, D) and a heavy set Aj in A, the figure shows a cascade
(z1, z2, z3) for the heavy set Aj and several reservoirs of the cascade vertices.
For any z`, z` /∈ RA(z`). A cascade vertex z` is a cut-vertex of G[Aj ], i.e., G[Aj \{z`}] is disconnected.
The removal of z` from Aj will lead to at least two connected components in G[Aj \ {z`}], and the
connected component containing tj is the reservoir of z`.
We identify tj = z0, but we clarify that a terminal vertex is never in a cascade. Each epoch between
z` and z`+1, and also the epoch above z3, is a subset of vertices B ⊂ Aj , where B 3 z` and G[B] is
connected. Note that in general, it is possible that there is no vertex above the last cascade vertex.

cascade vertex, has a level of at most `+ 1, or is one of the terminals tj for some j. For any
` ≥ 0, a valid configuration is called an `-maximal configuration if all vertices having level at
most `− 1 satisfy the maximality property. Note that by definition, any valid configuration
is a 0-maximal configuration.

For a configuration CA = ((A1, . . . , Ak) , D), we define SA := V \ (A1 ∪ · · · ∪ Ak). An
edge uv is said to be a bridge in CA if u ∈ SA, v ∈ Aj for some j ∈ [k], and level(v) 6=∞.

A valid configuration CA is said to be `-good if the highest rank of a cascade vertex in
CA is exactly ` (if there are no cascade vertices, then we take the highest rank as 0), CA is
`-maximal, and all bridges uv in CA (if any) are such that u ∈ SA and level(v) = `. Note that
taking Aj = {tj} and taking the null cascade for each heavy set gives a 0-good configuration.

For each configuration CA = (A,D), we define a configuration vector as below:

( LA , N0
A , N1

A , N2
A , . . . , Nn

A ),

where LA is the number of light sets in A, and N `
A is the total number of all level-` vertices

in CA.
Next, we define ordering on configuration vectors. Let CA and CB be configurations. We

say CA >0 CB if
LA < LB , or
LA = LB , and N0

A > N0
B .
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Vertices in all light sets
Level = 0

t1 t3t2

z11, rank = 1 z21, rank = 3 z31, rank = 1

L = 1 L = 1

L = ∞ L = ∞

z12, rank = 2

L = 2

L = 3

z32, rank = 4

L = 4

z22, rank = 5

L = 5

Figure 2 An instance of a valid configuration. Every blue segment/curve represent an edge from
a cascade vertex to a vertex in some reservoir or light set.
Every cascade vertex connected to a light set has rank 1, and all vertices in the epoch immediately
below a rank 1 cascade vertex are of level 1. Inductively, every cascade vertex connected to a vertex
of level i has rank i + 1, and all vertices in the epoch immediately below a rank i cascade vertex are
of level i. All vertices above the last cascade vertex of each cascade has level ∞.

We say CA =0 CB if LA = LB and N0
A = N0

B. We say CA ≥0 CB if CA =0 CB or CA >0 CB.
We say CA =` CB if LA = LB , and N `′

A = N `′

B for all `′ ≤ `.
For 1 ≤ ` ≤ n, we say CA >` CB if

CA >`−1 CB , or
CA =`−1 CB , and N `

A > N `
B .

We say CA ≥` CB if CA =` CB or CA >` CB . We say CA > CB (CA is strictly better than CB)
if CA >n CB .

3.2 Proof of Theorem 3

We use two technical lemmas about configuration vectors and their orderings to prove
Theorem 3(a). The proof of Theorem 3(b) follows closely with the proof of Theorem 3(a),
but makes use of an observation about the rank of a vertex in the local search algorithm, to
give an improved bound on the number of configuration vectors navigated by the algorithm.

I Lemma 7. Given any `-good configuration CA = (A = (A1, . . . , Ak), DA)) that does not
have a bridge, we can find an (`+ 1)-good configuration CB = (B = (B1, B2, . . . , Bk) , DB)
in polynomial time such that CB > CA.
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Proof. Since CA is `-maximal, any vertex that is at level `′ < ` satisfies maximality property.
So, for satisfying (`+ 1)-maximality, we only need to worry about the vertices that are at
level `. Let Xj be the set of all vertices x ∈ Aj such that x is adjacent to a level-` vertex,
level(x) ≥ `+ 1 (i.e., level(x) =∞ as the highest rank of any cascade vertex is `), x 6= tj ,
and x is not a cascade vertex of rank `.

We claim that there exists at least one j for which Xj is not empty. If that is not the
case, then we exhibit a cut set of size at most k − 1. For each j such that Aj is a heavy set
with a non-null cascade, let yj be the highest ranked cascade vertex in Aj . For each j such
that Aj is a heavy set with a null cascade, let yj be tj . Let Y be the set of all yj such that
Aj is a heavy set. Note that |Y | ≤ k − 1 as A is an SFPP and hence has at least one light
set. Let Z∞ be the set of all vertices in V \ Y that have level ∞ and Z be the remaining
vertices in V \ Y . Since A is an SFPP, SA 6= ∅, and since all vertices in SA have level ∞,
we have that Z∞ 6= ∅. Z is not empty because there exists at least one light set in A and
the vertices in a light set have level 0. We show that there is no edge between Z∞ and Z in
G. Suppose there exists an edge uv such that u ∈ Z∞ and v ∈ Z. If u ∈ SA, then uv is a
bridge which is a contradiction by our assumption that CA does not have a bridge. Hence
u ∈ Aj for some j ∈ [k]. Note that Aj has to be a heavy set, otherwise u has level 0. We
have that u is not a cascade vertex (as all cascade vertices with level ∞ are in Y ) and u 6= tj
(as all tj such that level(tj) =∞ are in Y ). Also, v is not of level ` as otherwise, u ∈ Xj but
we assumed Xj is empty. But then, v has level at most `− 1, u has level ∞, and there is
an edge uv. This means that CA was not `-maximal, which is a contradiction. Thus, there
exists at least one j for which Xj is not empty.

For any j such that Xj 6= ∅ , there is at least one vertex xj such that Xj \ {xj} ⊆ RA(xj).
Now we give the configuration CB as follows. We set Bj = Aj for all j ∈ [k]. For each heavy
set Aj such that Xj 6= ∅, we take the cascade of Bj as the cascade of Aj appended with xj .
For each heavy set Aj such that Xj = ∅, we take the cascade of Bj as the cascade of Aj . It
is easy to see that CB is (`+ 1)-maximal as each vertex that had an edge to level-` vertices
in CA is now either a rank `+ 1 cascade vertex or a level-(`+ 1) vertex or is tj for some j.
Also, notice that all the new cascade vertices that we introduce (i.e., the xj ’s) have their
rank as `+ 1 and there is at least one rank `+ 1 cascade vertex as Xj is not empty for some
j. Since there were no bridges in CA, all bridges in CB has to be from SB to a vertex having
level `+ 1. Hence, CB is (`+ 1)-good. All vertices that had level at most ` in CA retained
their levels in CB . And, at least one level-∞ vertex of CA became a level-(`+ 1) vertex in CB
because the cascade vertex that was at rank ` becomes level-(`+ 1) vertex now in at least
one set. Since CA had no level-(`+ 1) vertices, this means that CB > CA. J

I Lemma 8. Given an `-good configuration CA = (A = (A1, . . . , Ak), DA) having a bridge,
we can find in polynomial time a valid configuration CB = (B = (B1, . . . , Bk) , DB) such that
one of the following holds:

CB >` CA, and CB is an `-good configuration, or
CB ≥`−1 CA, there is a bridge u′v′ in CB such that u′ ∈ SB and level(v′) ≤ ` − 1, and
CB is an (`− 1)-good configuration.

Proof. Let uv be a bridge where u ∈ SA. Let Aj∗ be the set containing v. Note that
level(v) = ` because CA is `-good. We keep Bj = Aj for all j 6= j∗. But we modify Aj∗ to
get Bj∗ as described below. We maintain that if Aj is a heavy set then Bj is also a heavy
set for all j, and hence maintain that LB ≤ LA.
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Case 1: Aj∗ is a light set (i.e., when ` = 0). We take Bj∗ = Aj∗ ∪ {u}. For all j such
that Bj is a heavy set, cascade of Bj is taken as the null cascade. We have w(Aj∗) ≤ Tj − 1
because Aj∗ is a light set. So, w(Bj∗) = w(Aj∗) + w(u) ≤ (Tj − 1) + wmax, and hence Bj∗
is fitted. Also, G[Bj∗ ] is connected and hence (B1, . . . , Bk) is an FPP. We have CB >0 CA
because either Bj∗ became a heavy set in which case LB < LA, or it is a light set in which
case LB = LA and N0

B > N0
A. It is easy to see that CB is 0-good.

Case 2: Aj∗ is a heavy set i.e., when ` ≥ 1.
Case 2.1: w(Aj∗ ∪{u}) ≤ Tj +wmax− 1. We take Bj∗ = Aj∗ ∪{u}. For each j such that

Bj is a heavy set (Aj is also heavy set for such j), the cascade of Bj is taken as the cascade
of Aj . G[Bj∗ ] is clearly connected and Bj∗ is fitted by assumption of the case that we are in.
Hence B is indeed an FPP. Observe that all vertices that had level `′ ≤ ` in CA still has level
`′ in CB . Since level(v) was ` in CA by `-goodness of CA, u also has level ` in CB ; and u had
level ∞ in CA. Hence, CB >` CA. It is also easy to see that CB remains `-good.

Case 2.2: w(Aj∗ ∪ {u}) ≥ Tj +wmax. Let z be the cascade vertex of rank ` in Aj∗ . Note
that Aj∗ should have such a cascade vertex as v ∈ Aj∗ has level `. Let R̄ be Aj∗ \ (RA(z)∪z),
i.e., R̄ is the set of all vertices in Aj∗ \ {z} with level ∞. We initialize Bj∗ := Aj∗ ∪ {u}.
Now, we delete vertices one by one from Bj∗ in a specific order until Bj∗ becomes fitted.
We choose the order of deleting vertices such that G[Bj∗ ] remains connected. Consider a
spanning tree τ of G[R̄∪{z}]. τ has at least one leaf, which is not z. We delete this leaf from
Bj∗ and τ . We repeat this process until τ is just the single vertex z or Bj∗ becomes fitted. If
Bj∗ is not fitted even when τ is the single vertex z, then delete z from Bj∗ . If Bj∗ is still not
fitted then delete u from Bj∗ . Note that at this point Bj∗ ⊂ Aj∗ and hence is fitted. Also,
note that G[Bj∗ ] remains connected. Hence (B1, . . . , Bk) is an FPP. Bj∗ does not become
a light set because Bj became fitted when the last vertex was deleted from it. Before this
vertex was deleted, it was not fitted and hence had weight at least Tj∗ + wmax before this
deletion. Since the last vertex deleted has weight at most wmax, Bj∗ has weight at least Tj∗
and hence is a heavy set. Now we branch into two subcases for defining the cascades.

Case 2.2.1: z ∈ Bj∗ (i.e, z was not deleted from Bj∗ in the process above). For each j
such that Bj is a heavy set, the cascade of Bj is taken as the cascade of Aj . Since a new `

level vertex u is added and all vertices that had level at most ` retain their level, we have
that CB >` CA. It is also easy to see that CB remains `-good.

Case 2.2.2: z /∈ Bj∗ (i.e, z was deleted from Bj∗). For each j such that Bj is a heavy set,
the cascade of Bj is taken as the cascade of Aj but with the rank ` cascade vertex (if it has
any) deleted from it. CB ≥`−1 CA because all vertices that were at a level of `′ = `− 1 or
smaller, retain their levels. Observe that there are no bridges in CB to vertices that are at a
level at most `− 2, all vertices at a level at most `− 2 still maintain the maximality property,
and we did not introduce any cascade vertices. Hence, CB is (`− 1)-good. It only remains to
prove that there is a bridge u′v′ in CB such that level(v′) ≤ `− 1. We know z ∈ SB . Since z
was a rank ` cascade vertex in CA, z had an edge to z′ such that z′ had level ` − 1 in CA.
Observe that level of z′ is at most `− 1 in CB as well. Hence, taking u′v′ = zz′ completes
the proof. J

Proof of Theorem 3(a): We always maintain a configuration CA = (A,DA) that is `-good
for some ` ≥ 0. If the FPP A is not an SFPP at any point, then we are done. So assume A
is an SFPP.

We start with the 0-good configuration where Aj = {tj} and the cascades of all heavy
sets are null cascades. If our current configuration CA is an `-good configuration that has
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no bridge, then we use Lemma 7 to get a configuration CB such that CB > CA and B is
(`+ 1)-good. We take CB as the new current configuration CA. If our current configuration
CA is an `-good configuration with a bridge, then we get an `′-good configuration CB for some
`′ ≥ 0 such that CB > CA by repeatedly applying Lemma 8 at most ` times. So in either
case, we get a strictly better configuration that is `′-good for some `′ ≥ 0 in polynomial time.
We call this an iteration of our algorithm.

Notice that the number of iterations possible is at most the number of distinct configuration
vectors possible. It is easy to see that the number of distinct configuration vectors with
highest rank at most r is at most

(
n+r−1
n

)
. Since rank of any point is at most n, the number

of iterations of our algorithm is at most (k + 1) ·
(2n
n

)
, which is at most n · 4n. Since each

iteration runs in polynomial time as guaranteed by the two lemmas, the required running
time is O∗(4n).

When the algorithm terminates, the FPP given by the current configuration is not an
SFPP and this gives the required partition. J

Proof of Theorem 3(b): Since any k-connected graph is also (bk/2c+1)−vertex connected,
the algorithm will give the required partition due to Theorem 3(a). We only need to prove
the better running time claimed by Theorem 3(b). For this, we show that the highest rank
attained by any vertex during the algorithm is at most 2n/(k − 2). Since the number of
distinct configuration vectors with highest rank r is at most

(
n+r−1
n

)
, we then have that the

running time is O∗
(
n+ 2n

k−2−1
n

)
, which is O∗(2O((n/k) log k)), as claimed. Hence, it only remains

to prove that the highest rank is at most 2n/(k − 2).
For this, observe that in an `-good configuration, for each 0 ≤ i < `, the union of all

vertices having level i and the set of (bk/2c+ 1) terminals together forms a cutset. Since the
graph is k-connected, this means that for each 0 ≤ i < `, the number of vertices having level
i is at least k/2− 1. The required bound on the rank easily follows. J

4 Upper Bounds for Spanning Tree Congestion

We first state the following easy lemma, which together with Proposition 4, implies Lemma 5.

I Lemma 9. In a graph G = (V,E), let t1 be a vertex, and let t2, · · · , t` be any (` − 1)
neighbours of t1. Suppose that there exists a `-connected-partition ∪`j=1V` such that for all
j ∈ `, tj ∈ Vj, and the sum of degree of vertices in each Vj is at most D. Let τj be an
arbitrary spanning tree of G[Vj ]. Let ej denote the edge {t1, tj}. Let τ be the spanning tree
of G defined as τ :=

(
∪`j=1 τj

) ⋃ (
∪`j=2 ej

)
. Then τ has congestion at most D.

I Theorem 10. For any connected graph G = (V,E), there is an algorithm which computes

a spanning tree with congestion at most 8
√
mn in time O∗

(
2O
(
n logn/

√
m/n

))
.

I Theorem 11. For any connected graph G = (V,E), there is a polynomial time algorithm
which computes a spanning tree with congestion at most 16

√
mn · logn.

The two algorithms follow the same framework, depicted in Algorithm 1. It is a recursive
algorithm; the parameter m̂ is a global parameter, which is the number of edges in the input
graph G in the first level of the recursion; let n̂ denote the number of vertices in this graph.

The only difference between the two algorithms is in Line 15 on how this step is executed,
with trade-off between the running time of the step T (m̂, n

H
,m

H
), and the guarantee
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D(m̂, n
H
,m

H
). For proving Theorem 10, we use Theorem 3(b), Proposition 4 and Lemma 9,

yielding D(m̂, n
H
,m

H
) ≤ 8m

H

√
n
H
/m̂ and T (m̂, n

H
,m

H
) = O∗

(
2O(nH logn

H
/
√
m̂/n

H )
)
.

For proving Theorem 11, we make use of an algorithm in Chen et al. [14], which yields
D(m̂, n

H
,m

H
) ≤ 16m

H

√
n
H
/m̂ · logn

H
and T (m̂, n

H
,m

H
) = poly(n

H
,m

H
).

Algorithm 1: FindLCST(H, m̂)
Input : A connected graph H = (VH , EH) on n

H
vertices and m

H
edges

Output : A spanning tree τ of H

1 if m
H
≤ 8
√
m̂n

H
then

2 return an arbitrary spanning tree of H
3 end
4 k ←

⌈√
m̂/n

H

⌉
5 Y ← a global minimum vertex cut of H
6 if |Y | < k then
7 X ← the smallest connected component in H[VH \ Y ] (See Figure 3)
8 Z ← VH \ (X ∪ Y )
9 τ1 ← FindLCST( H[X], m̂ )

10 τ2 ← FindLCST( H[Y ∪ Z], m̂); (H[Y ∪ Z] is connected as Y is a global min cut)
11 return τ1 ∪ τ2 ∪ (an arbitrary edge between X and Y )
12 else
13 t1 ← an arbitrary vertex in VH
14 Pick bk/2c neighbours of t1 in the graph H; denote them by t2, t3, · · · , tbk/2c+1.

Let ej denote edge t1tj for 2 ≤ j ≤ bk/2c+ 1. (See Figure 4)
15 Compute a (bk/2c+ 1)-connected-partition of H, denoted by ∪bk/2c+1

j=1 Vj , such that
for each j ∈ [bk/2c+ 1], tj ∈ Vj , and the total degree (w.r.t. graph H) of vertices in
each Vj is at most D(m̂, n

H
,m

H
). Let the time needed be T (m̂, n

H
,m

H
).

16 For each j ∈ [bk/2c+ 1], τj ← an arbitrary spanning tree of G[Vj ]
17 return

(
∪bk/2c+1
j=1 τj

) ⋃ (
∪bk/2c+1
j=2 ej

)
18 end

Figure 3 The scenario in Algorithm 1 when the graph has low connectivity. The vertex set Y is
a global minimum vertex cut of the graph. The vertex set X is the smallest connected component
after the removal of Y , and Z is the union of all the other connected components.
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Figure 4 The scenario in Algorithm 1 when the graph has high connectivity.

In the rest of this section, we first discuss the algorithm in Chen et al., then we prove
Theorem 11. The proof of Theorem 10 is almost identical, and is deferred to Appendix A.2.

Single-Commodity Confluent Flow and The Algorithm of Chen et al. In a single-
commodity confluent flow problem, the input includes a graph G = (V,E), a demand function
w : V → R+ and ` sinks t1, · · · , t` ∈ V . For each v ∈ V , a flow of amount w(v) is routed
from v to one of the sinks. But there is a restriction: at every vertex u ∈ V , the outgoing
flow must leave u on at most 1 edge, i.e., the outgoing flow from u is unsplittable. The
problem is to seek a flow satisfying the demands which minimizes the node congestion, i.e.,
the maximum incoming flow among all vertices. Since the incoming flow is maximum at one
of the sinks, it is equivalent to minimize the maximum flow received among all sinks. (Here,
we assume that no flow entering a sink will leave.)

Single-commodity splittable flow problem is almost identical to single-commodity confluent
flow problem, except that the above restriction is dropped, i.e., now the outgoing flow at u
can split along multiple edges. Note that here, the maximum incoming flow might not be at
a sink. It is known that single-commodity splittable flow can be solved in polynomial time.
For brevity, we drop the phrase “single-commodity” from now on.

I Theorem 12 ([14, Section 4]). Suppose that given graph G, demand w and ` sinks, there
is a splittable flow with node congestion q. Then there exists a polynomial time algorithm
which computes a confluent flow with node congestion at most (1 + ln `)q for the same input.

I Corollary 13. Let G be a k-connected graph with m edges. Then for any ` ≤ k and for
any ` vertices t1, · · · , t` ∈ V , there exists a polynomial time algorithm which computes an
`-connected-partition ∪`j=1V` such that for all j ∈ `, tj ∈ Vj , and the total degrees of vertices
in each Vj is at most 4(1 + ln `)m/`.

Corollary 13 follows from Theorem 12 and Proposition 4. See Appendix A.1 for details.

Congestion Analysis. We view the whole recursion process as a recursion tree. There is no
endless loop, since down every path in the recursion tree, the number of vertices in the input
graphs are strictly decreasing. On the other hand, note that the leaf of the recursion tree is
resulted by either (i) when the input graph H to that call satisfies m

H
≤ 8

√
m̂n

H
, or (ii)

when Lines 13–17 are executed. An internal node appears only when the vertex-connectivity
of the input graph H is low, and it makes two recursion calls.
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We prove the following statement by induction from bottom-up: for each graph which
is the input to some call in the recursion tree, the returned spanning tree of that call has
congestion at most 16

√
m̂n

H
logn

H
.

We first handle the two basis cases (i) and (ii). In case (i), FindLCST returns an arbitrary
spanning tree, and the congestion is bounded by m

H
≤ 8
√
m̂n

H
. In case (ii), by Corollary 13

and Lemma 9, FindLCST returns a tree with congestion at most 16m
H

√
n
H
/m̂ · logn

H
≤

16
√
m̂n

H
· logn

H
.

Next, let H be the input graph to a call which is represented by an internal node of the
recursion tree. Recall the definitions of X,Y, Z, τ1, τ2 in the algorithm.

Let |X| = x. Note that 1 ≤ x ≤ n
H
/2. Then by induction hypothesis, the congestion of

the returned spanning tree is at most

max{ congestion of τ1 in H[X] , congestion of τ2 in H[Y ∪ Z] } + |X| · |Y |

≤ 16
√
m̂(n

H
− x) log(n

H
− x) +

(√
m̂/n

H
+ 1
)
· x. (1)

Viewing x as a real variable, by taking derivative, it is easy to see that the above expression
is maximized at x = 1. Thus the congestion is at most

16
√
m̂(n

H
− 1) log(n

H
−1)+

√
m̂/n

H
+1 ≤ 16

√
m̂n

H
logn

H
, as desired by Theorem 11.

Runtime Analysis. At every internal node of the recursion tree, the algorithm makes two
recursive calls with two vertex-disjoint and strictly smaller (w.r.t. vertex size) inputs. The
dominating knitting cost is in Line 5 for computing a global minimum vertex cut, which is
well-known that it can be done in polynomial time. Since at every leaf of the recursion tree
the running time is polynomial, by standard analysis on divide-and-conquer algorithms, the
running time of the whole algorithm is polynomial, which completes the proof of Theorem 11.

5 Lower Bound for Spanning Tree Congestion

Here, we give a lower bound on spanning tree congestion which matches our upper bound.

I Theorem 14. For any sufficiently large n, and for any m satisfying n2/2 ≥ m ≥
max{16n logn, 100n}, there exists a connected graph with N = (3 − o(1))n vertices and
M ∈ [m, 7m] edges, for which the spanning tree congestion is at least Ω (

√
mn).

We start with the following lemma, which states that for a random graph G(n, p), when
p is sufficiently large, its edge expansion is Θ(np) with high probability. The proof of the
lemma uses only fairly standard arguments and is deferred to Appendix A.3.

I Lemma 15. For any integer n ≥ 4 and 1 ≥ p ≥ 32 · logn
n , let G(n, p) denote the random

graph with n vertices, in which each edge occurs independently with probability p. Then with
probability at least 1−O(1/n), (i) the random graph is connected, (ii) the number of edges
in the random graph is between pn2/4 and pn2, and (iii) for each subset of vertices S with
|S| ≤ n/2, the number of edges leaving S is at least p

2 · |S| · (n− |S|).

In particular, for any sufficiently large integer n, when n2/2 ≥ m ≥ 16n logn, by setting
p = 2m/n2, there exists a connected graph with n vertices and [m/2, 2m] edges, such that
for each subset of vertices S with |S| ≤ n/2, the number of edges leaving S is at least
m
2n · |S| = Θ(m/n) · |S|. We denote such a graph by H(n,m).
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V1 V3

V2

H(n,m)

H(n,m)

H(n,m)

v1

v3

Figure 5 Our lower-bound construction for spanning tree congestion. V1, V2, V3 are three vertex
subsets of the same size. In each of the subsets, we embed expander H(n, m). There is a small
overlap between V2 and V1, V3, while V1, V3 are disjoint. For any vertex v1 ∈ V1 ∩ V2, we add edges
between it and any other vertex in V1 ∪ V2; similarly, for any vertex v3 ∈ V3 ∩ V2, we add edges (not
shown in figure) between it and any other vertex in V3 ∪ V2.

We discuss our construction here (see Figure 5) before delving into the proof. The
vertex set V is the union of three vertex subsets V1, V2, V3, such that |V1| = |V2| = |V3| = n,
|V1 ∩ V2| = |V2 ∩ V3| =

√
m/n, and V1, V3 are disjoint. In each of V1, V2 and V3, we

embed H(n,m). The edge sets are denoted E1, E2, E3 respectively. Up to this point, the
construction is similar to that of Ostrovskii [30], except that we use H(n,m) instead of a
complete graph.

The new component in our construction is adding the following edges. For each vertex
v ∈ V1 ∩ V2, add an edge between v and every vertex in (V1 ∪ V2) \ {v}. The set of these
edges are denoted F1. Similarly, for each vertex v ∈ V3 ∩ V2, add an edge between v and
every vertex in (V3 ∪ V2) \ {v}. The set of these edges are denoted F3. This new component
is crucial: without it, we could only prove a lower bound of Ω(m/

√
n) = Ω(

√
mn ·

√
m
n ).

Proof of Theorem 14: Let G = (V,E) be the graph constructed as above. The whole
graph has 3n− 2

√
m/n vertices. The number of edges is at least m (due to edges in E1 and

E3), and is at most 6m+ 2
√
m/n · 2n = 6m+ 4

√
mn, which is at most 7m for all sufficiently

large n.
It is well known that for any tree on n vertices, there exists a vertex x called a centroid

of the tree such that, removing x decomposes the tree into connected components, each of
size at most n/2. Now, consider any spanning tree of the given graph, let u be a centroid of
the tree. Without loss of generality, we can assume that u /∈ V1; otherwise we swap the roles
of V1 and V3. The removal of u (and its adjacent edges) from the tree decomposes the tree
into a number of connected components. For any of these components which intersects V1, it
must contain at least one vertex of V1 ∩ V2, thus the number of such components is at most√
m/n, and hence there exists one of them, denoted by Uj , such that

b1 := |Uj ∩ V1| ≥ n/(
√
m/n) = n

√
n/m.

Let ej denote the tree-edge that connects u to Uj . Then there are three cases:

Case 1: n
√
n/m ≤ b1 ≤ n− n

√
n/m. Due to the property of H(n,m), the congestion

of ej is at least Θ(m/n) ·min{b1, n− b1} ≥ Θ(
√
mn).
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Case 2: b1 > n− n
√
n/m and |Uj ∩ V1 ∩ V2| ≤ 1

2 ·
√
m/n. Let W := (V1 ∩ V2) \ Uj .

Note that by this case’s assumption, |W1| ≥ 1
2 ·
√
m/n. Due to the edge subset F1, the

congestion of ej is at least∣∣∣F1(W , V1 \W )
∣∣∣ ≥ (

1
2 ·
√
m/n

)
· n2 = Θ

(√
mn
)
.

Case 3: b1 > n− n
√
n/m and |Uj ∩ V1 ∩ V2| > 1

2 ·
√
m/n. Let W ′ := Uj ∩ V1 ∩ V2,

and let Z := (V2 \ V1) ∩ Uj .
Note that b1 > n− n

√
n/m ≥ 9n/10. Suppose |Z| ≥ 6n/10, then |Uj | > 9n/10 +

6n/10 > |V |/2, a contradiction to the assumption that u is a centroid. Thus, |Z| < 6n/10.
Due to the edge subset F2, the congestion of ej is at least∣∣∣F2(W ′ ∪ Z , V2 \ (W ′ ∪ Z))

∣∣∣ ≥ |W ′| · (n− |W ′| − |Z|)
≥
(

1
2 ·
√
m/n

)
·
(
n−

√
m/n− 6n

10

)
= Θ(

√
mn). J

6 Graphs with Expanding Properties

For any vertex subset U,W ⊂ V , let NW (U) denote the set of vertices in W which are
adjacent to a vertex in U . Let N(U) := NV \U (U).

I Definition 16. A graph G = (V,E) on n vertices is an (n, s, d1, d2, d3, t)-expanding graph
if the following four conditions are satisfied:
(1) for each vertex subset S with |S| = s, |N(S)| ≥ d1n;
(2) for each vertex subset S with |S| ≤ s, |N(S)| ≥ d2|S|;
(3) for each vertex subset S with |S| ≤ n/2 and for any subset S′ ⊂ S, |NV \S(S′)| ≥ |S′|− t.
(4) For each vertex subset S, |E(S, V \ S)| ≤ d3|S|.

I Theorem 17. For any connected graph G which is an (n, s, d1, d2, d3, t)-expanding graph,
there is a polynomial time algorithm which computes a spanning tree with congestion at most

d3 ·

[
4 ·max

{
s+ 1 ,

⌈
3d1n

d2

⌉}
·
(

1
2d1

)log(2−δ) 2
+ t

]
, where δ = t

d1n
.

Next, we present the polynomial time algorithm in Theorem 17 and its analysis.

Algorithm. Let G be an (n, s, d1, d2, d3, t)-expanding graph. By Condition (2), every
vertex has degree at least d2. Let v0 be a vertex of degree d ≥ d2, and let v1, · · · , vd be
its d neighbours. We maintain a tree T rooted at v0 such that T = T1 ∪ T2 ∪ · · · ∪ Td ∪
{v0v1, v0v2, . . . , v0vd} where T1, T2, · · · , Td are trees rooted at v1, v2, . . . , vd respectively. We
call the T ′is as branches. (See Figure 6). We start with each branch Ti = vi. In order to
minimize congestion, we grow T in a balanced way, i.e., we maintain that the Ti’s are roughly
of the same size. A branch is saturated if it contains at least max

{
s+ 1 , 3d1n

d2

}
vertices.

At any point of time, let VT be the set of vertices in T and VT be the vertices not in
T . Often, we will move a subtree of a saturated branch Ti to an unsaturated branch Tj to
ensure balance. For any x ∈ VT , let Tx denote the subtree of T rooted at x. A vertex x of a
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v1 v2 vd

T1 T2 Td

v0

VT

Figure 6 The tree T and its branches

y

x
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x

Ti∗ Tj Ti∗ Tj

v0 v0

Figure 7 Transfer of a subtree from a saturated branch to an unsaturated branch

saturated branch Ti is called transferable (to branch Tj) if x has a neighbour y in Tj and
the tree Tj ∪ {xy} ∪ Tx is unsaturated. (See Figure 7.)

The algorithm is divided into two phases which are described below. Throughout the
algorithm, whenever a branch Ti gets modified, T gets modified accordingly, and whenever
T gets modified VT and VT gets modified accordingly.

Phase 1: Repeatedly do one of the following two actions, until |VT | ≥ d1n:
(We will prove that the precondition of at least one of the actions is satisfied if |VT | < d1n)

1. If there exists a b ∈ VT such that b has a neighbour a in some unsaturated branch Ti:
Add the vertex b and the edge ab to branch Ti.

2. If there exists at least one transferable vertex: (see Figure 7)
Find the transferable vertex x such that Tx is the smallest. Let Ti∗ be the branch currently
containing x, Tj be a branch to which it is transferable, and y be an arbitrarily chosen
neighbour of x in Tj .
a. Remove the subtree Tx from Ti∗ and add it to Tj with x as a child of y.
b. Pick a b ∈ VT that has a neighbour a (arbitrarily chosen, if many) either in Ti∗ or in
Tj . (We will show in the analysis that such b exists). We add vertex b and edge ab to
the branch containing a (i.e. to Ti∗ or Tj).
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Phase 2: While VT 6= ∅, repeat:
Find a maximum matching of G[VT , VT ], the bipartite graph formed by edges of G between
VT and VT . Let M be the matching. Add all edges of M to T .

In the analysis below, we say that a tree is saturated if it contains at least A vertices; we
will determine its appropriate value by the end of the analysis.

Analysis of Phase 1. We claim that during Phase 1, i.e. if |VT | < d1n, the precondition
of either step 1 or step 2 is satisfied. We also show the existence of a vertex b as specified in
step 2b, whenever step 2b is reached. Given these and the fact that a vertex in VT is moved
to VT (either in step 1 or in step 2b) during each round of Phase 1, we have that Phase 1
runs correctly and terminates after a linear number of rounds.

During Phase 1, we will also maintain the invariant that each branch has at most A
vertices; thus, each saturated branch has exactly A vertices. We call this invariant the
balancedness. Note that balancedness is not violated due to step 1, as the new vertex is
added to an unsaturated branch. It is not violated during step 2 as the branches Ti∗ and Tj
(as defined in step 2) become unsaturated at the end of the step.

We define the hidden vertices of T (denoted by H ≡ HT ) as follows: they are the vertices
which are not adjacent to any vertices outside the tree, i.e., to any vertex in VT . If there is an
unsaturated branch with a non-hidden vertex, clearly the precondition of step 1 is satisfied.
So, let us assume that all the vertices in all unsaturated branches are hidden. In such a case,
we show that the precondition of step 2 is satisfied if |VT | < d1n.

We argue that in this case |H| ≤ s: otherwise, take a subset H ′ ⊂ H of cardinality
s, then by condition (2), N(H ′), which is contained in VT , has cardinality at least d1n, a
contradiction.

Since |VT | < d1n, the number of saturated branches is at most d1n/A. To ensure that at
least one unsaturated branch exists, we set A such that d1n/A < d2. Let U denote the set of
vertices in all unsaturated branches. Since all vertices in U are hidden vertices, |U | ≤ s. Then
by condition (2), |N(U)| ≥ d2|U |. Note that the vertices in N(U) are all in the saturated
branches. By the pigeon-hole principle, there exists a saturated branch containing at least

N(U)/(d1n/A) ≥ Ad2|U |
d1n

vertices of N(U). By setting A ≥ 3d1n
d2

, the above calculation guarantees the existence of a
saturated branch containing at least 3|U | ≥ |U |+ 2 vertices of N(U); let Ti be such a branch.

In Ti, pick a vertex x ∈ Ti ∩N(U) such that Tx does not contain any vertex in N(U),
except x. Then the size of Tx is at most A− |N(U) ∩ Ti|+ 1 ≥ A− (|U |+ 1). Let y ∈ U be
a vertex which is adjacent to x and Tj be the branch containing y. Since Tj has at most |U |
vertices, x is a transferable vertex (to Tj). Thus precondition of step 2 is satisfied.

We further set A > s so that in each saturated branch, there is at least one unhidden
vertex. In particular, Ti has an unhidden vertex, which is adjacent to some b ∈ VT . The
vertex b is either adjacent to a vertex in Tx, or a vertex in Ti \ Tx as required in step 2b.

Analysis of Phase 2. Since G is connected, M is non-empty in each iteration of Phase 2,
and hence Phase 2 terminates in linear number of rounds. At the end of Phase 2, since VT
is empty, T is clearly a spanning tree. It only remains to estimate the congestion of this
spanning tree. Towards this, we state the following modified Hall’s theorem, which is an easy
corollary of the standard Hall’s theorem.
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I Lemma 18. In a bipartite graph (L,R) with |L| ≤ |R|, for any vertex w ∈ L, let R(w)
denote the neighbours of w in R; then for any W ⊂ L, let R(W ) := ∪w∈WR(w). Suppose
that there exist t ≥ 0 such that for any W ⊂ L, we have |R(W )| ≥ |W |− t. Then the bipartite
graph admits a matching of size at least |L| − t.

Recall that Phase 2 consists of multiple rounds of finding a matching between VT and VT .
As long as |VT | ≤ n/2, condition (3) (with S = VT ) plus the modified Hall’s theorem (with
L = VT and R = VT ) guarantees that in each round, at least

|VT | − t ≥
(

1− t

d1n

)
· |VT | =: (1− δ)|VT |

number of vertices in VT are matched. Thus, after at most
⌈
log(2−δ)

1
2d1

⌉
rounds of matching,

|VT | ≥ n/2. After reaching |VT | ≥ n/2, condition (3) (with S = VT ) plus the modified Hall’s
theorem (with L = VT and R = VT ) guarantees that after one more round of matching, all
but t vertices are left in VT .

By the end of Phase 1, each branch had at most A vertices. After each round of matching,
the cardinality of each branch is doubled at most. Thus, the maximum possible number of
vertices in each branch after running the whole algorithm is at most

A · 2
⌈

log(2−δ)
1

2d1

⌉
+1 + t ≤ 4A ·

(
1

2d1

)log(2−δ) 2
+ t.

and hence the STC is at most

d3 ·

[
4A ·

(
1

2d1

)log(2−δ) 2
+ t

]
.

Recall that we need A to satisfy d1n/A < d2, A ≥ 3d1n
d2

and A > s. Thus we set
A := max

{
s+ 1 ,

⌈
3d1n
d2

⌉}
.

6.1 Random Graph

Let G ∈ G(n, p) where p ≥ c0 logn/n, and c0 = 64. The following lemmas show that with
high probability G is an (n, s, d1, d2, d3, t)-expanding graph with s = Θ(1/p), d1 = Θ(1),
d2 = Θ(np), d3 = Θ(np), t = Θ(1/p) (and hence δ = o(1)). The proof of the lemmas are
deferred to Appendix B.2.

I Lemma 19. For any S ⊆ V (G) such that |S| = d1/pe, we have |N(S)| ≥ c2n with
probability at least 1− e−n/16, where c2 = 1/25.

I Lemma 20. For any S ⊆ V (G) such that |S| ≤ 1/p, we have |N(S)| ≥ c3np|S| with
probability at least 1−O(1/n2), where c3 = 1/16.

I Lemma 21. For all A ⊆ V (G) such that |A| ≤ n/2, and for all S ⊆ A, with probability at
least 1− e−n, S has at least |S| − c4/p neighbors in V (G) \A, where c4 = 12.

I Lemma 22. For all S ⊆ V (G), the cut size |E(S, V (G) \ S)| is at most np|S| with
probability at least 1− n−c0/4.

Plugging the bounds from above lemmas into Theorem 17, together with a separate lower
bound argument (Theorem 25 in Appendix B.1), we have the following theorem; in Ap-
pendix B.1, we also present a non-algorithmic proof of this theorem.
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I Theorem 23. If G ∈ G(n, p) where p ≥ 64 logn/n, then with probability at least 1−O(1/n),
its STC is Θ(n).

7 Discussion and Open Problems

In this paper, we provide thorough understanding, both combinatorially and algorithmically,
on the spanning tree congestion of general graphs and random graphs. On course of doing so,
we also provide the first constructive proof for the generalized Győri-Lovász theorem, which
might be of independent interest. Following are some natural open problems:

Finding the spanning tree with minimum congestion is NP-hard; indeed, Bodlaender
et al. [9] showed a (9/8− ε)-approximation NP-hardness for the STC problem. Does a
constant or a poly-logarithmic factor approximation polynomial time algorithm exist?
We present an algorithm for computing a spanning tree achieving congestion at most
O(
√
mn). The algorithm runs in sub-exponential time when m = ω(n log2 n). Is there a

polynomial time algorithm for constructing such a spanning tree?
For a k-connected graph, a connected k-partition where all parts are of size at most
O((n/k) log k) can be found in polynomial time due to an algorithm of Chen et al. [14].
Can we improve the sizes of parts to O(n/k)?
Is finding Győri-Lovász partition PLS-complete? If not, is it polynomial time solvable?
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A Missing Proofs in Sections 4 and 5

A.1 Proof of Corollary 13

First of all, we set the demand of each vertex in the flow problem to be the the degree of the
vertex in G, and t1, · · · , t` as the sinks in the flow problem.

By Proposition 4, there exists an `-connected-partition ∪`j=1U` such that for all j ∈ [`],
tj ∈ Uj , and the total degrees of vertices in each Uj is at most 4m/`. With this, by routing
the demand of a vertex in Uj to tj via an arbitrary path in G[Uj ] only, we construct a
splittable flow with node congestion at most 4m/`. By Theorem 12, one can construct a
confluent flow with node congestion at most 4(1 + ln `)m/` in polynomial time.

Obviously, in the confluent flow, all the flow originating from one vertex goes completely
into one sink. Set Vj to be the set of vertices such that the flows originating from these
vertices go into tj . It is then routine to check that ∪`j=1V` is our desired `-connected-partition.

A.2 Proof of Theorem 10

Instead of giving the full proof, we point out the differences from the proof of Theorem 11.
First, in handling the basis case (ii), by Theorem 3(b), Proposition 4 and Lemma 9, we have

an improved upper bound on the congestion of the returned tree, which is 8m
H
/
√
m̂/n

H
≤

8
√
m̂n

H
. Thus, (1) can be improved to

8
√
m̂(n

H
− x) +

√
m̂

n
H

· x.

Again, by viewing x as a real variable and taking derivative, it is easy to see that the above
expression is maximized at x = 1. So the above bound is at most

8
√
m̂(n

H
− 1) +

√
m̂

n
H

≤ 8
√
m̂n

H
, as desired.

Concerning the running time, it is clear that in the worst case, it is dominated by some
calls to the algorithm in Theorem 3(b). Note that the number of such calls is at most n̂,
since each call to the algorithm is on a disjoint set of vertices.

There remains one concern, which is the connectedness of H[Y ∪Z]. Suppose the contrary
that H[Y ∪Z] is not connected. Let C be one of its connected components, so that it contains
the least number of vertices from Y . Then C contains at most b|Y |/2c vertices from Y , i.e.,
|C ∩ Y | < |Y |. Note that C ∩ Y is a vertex cut set of the graph H, thus contradicting that
Y is a global minimum vertex cut set.

A.3 Proof of Lemma 15

It is well known that the requirements (i) and (ii) are satisfied with probability 1−o(1/n). [11]
For each subset S with |S| ≤ n/2, by the Chernoff bound,

P
[ ∣∣∣E(S, V \ S)

∣∣∣ ≤ p

2 · |S| · (n− |S|)
]
≤ e−p|S|(n−|S|)/8 ≤ e−pn|S|/16.
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Since p ≥ 32 · logn
n , the above probability is at most n−2|S|. Then by a union bound, the

probability that (iii) is not satisfied is at most

bn/2c∑
s=1

(
n

s

)
· n−2s ≤

bn/2c∑
s=1

ns · n−2s ≤
bn/2c∑
s=1

n−s ≤ 2
n
.

B Spanning Tree Congestion of Random Graphs

B.1 Non-Algorithmic Proof of Theorem 23

We first present a simple non-algorithmic proof that random graph has STC Θ(n) with high
probability. Theorem 24 gives the upper bound and Theorem 25 gives the lower bound. The
proof of Theorem 24 uses Lemma 5 and the fact that for random graphs, vertex-connectivity
and minimum degree are equal with high probability. Theorem 24 does not give an efficient
algorithm.

I Theorem 24. If G ∈ G(n, p) where p ≥ 8 logn/n, then the spanning tree congestion of G
is at most 16n with probability at least 1− o(1/n).

Proof. It is known that the threshold probability for a random graph being k-connected
is same as the threshold probability for it having minimum degree at least k [12]. Since
p ≥ 8 logn/n, using Chernoff bound and taking union bound over all vertices gives that
G has minimum degree at least np/2 with probability at least 1 − o(1/n). Hence G is
(np/2)-connected with probability at least 1− o(1/n). We also have that the number of edges
in G is at most 2n2p with probability at least 1− o(1/n). Now, by using Lemma 5, we have
that with probability at least 1− o(1/n), the spanning tree congestion is at most 16n. J

I Theorem 25. If G ∈ G(n, p) where p ≥ 32 logn/n, then the spanning tree congestion of G
is Ω(n) with probability 1−O(1/n).

Proof. By using Chernoff Bounds and applying union bound, it is easy to show that with
probability 1 − o(1/n), every vertex of G has degree at most c1np for a sufficiently large
constant c1. Also, by Lemma 15, with probability 1−O(1/n), properties (i) and (iii) of that
lemma holds. In the proof below, we conditioned on the above mentioned highly probable
events.

Take a spanning tree T of G which gives the minimum congestion. Let u be a centroid
of the tree T , i.e., each connected component of T \ {u} has at most n/2 vertices. If there
is a connected component with number of vertices at least n/4, then define this connected
component as T ′. Else, all connected components have at most n/4 vertices. In this case,
let T ′ be the forest formed by the union of a minimum number of connected components of
T \ {u} such that |T ′| ≥ n/4. It is easy to see that |T ′| ≤ n/2. Also, the number of edges in
T from V (T ′) to V (T ) \ V (T ′) is at most degG(u), which is at most c1np.

By property (iii) of Lemma 15, the number of edges between V (T ′) and V (G) \ V (T ′) is
Ω(n2p). Each of these edges in G between V (T ′) and V (G) \ V (T ′) have to contribute to
the congestion of at least one of the edges in T between V (T ′) and V (G) \ V (T ′). Now since
T ′ sends at most c1np tree edges to other parts of T , it follows that there exists one edge in
T with congestion at least Ω(n2p)/(c1np) = Ω(n), as claimed. J



XX:26 Spanning Tree Congestion

B.2 Random Graph Satisfies Expanding Properties

Constants. For easy reference, we list out the constants used.

c0 = 64, c2 = 1/25, c3 = 1/16, c4 = 12

Proof of Lemma 19: Let S = V (G) \ S. The probability that a fixed vertex in S does
not have edge to S is at most (1 − p)|S| ≤ (1 − p)1/p ≤ e−1. Since |S| ≥ n − 2/p ≥
n−2n/(c0 logn) ≥ 31n/32, the expected value of |N(S)| is at least (31/32)n(1− e−1) ≥ n/2.
Hence, using Chernoff bound, the probability that |N(S)| < c2n = n/25 is at most e−n/8.
Since the number of such S is at most n2/p = 22n/c0 ≤ 2n/32, we have the lemma by applying
union bound. J

Proof of Lemma 20: Let S = V (G) \ S. Since |S| ≤ 1/p ≤ n/ logn, we have |S| ≥ n/2 for
sufficiently large n. Divide S into groups of size d1/(p|S|)e. The probability that such a
group does not have edge to S is at most (1− p)|S|(1/(p|S|)) ≤ 1/e. The expected number of
groups having edge to S is at least (np|S|/2)(1− 1/e) ≥ np|S|/4. Thus, by Chernoff bound,
the probability that |N(S)| ≤ np|S|/16 is at most e−np|S|/16 ≤ 2−c0|S| logn/16 ≤ 2−4|S| logn.
The number of sets of size |S| is at most 2|S| logn. Hence, taking union bound over all S with
|S| ≤ 1/p, we get the required lemma. J

Proof of Lemma 21: First, we prove that for all C,D ⊆ V (G) such that |C| ≥ n/4,|D| ≥
c4/p, and C∩D = ∅, there exist at least one edge between C and D with high probability. The
probability that there is no edge between such a fixed C and D is at most (1− p)(n/4)(c4/p) ≤
e−c4n/4. The number of pairs of such C and D is at most 22n. Hence, by taking union bound,
the probability that for all C and D, the claim holds is at least 1− e2n−(c4n/4) ≥ 1− e−n.

Using the above claim, we prove that for all S ⊆ A, S has at least |S| − c4/p neighbors in
A := V (G)\A with high probability. Suppose there is an S which violates the claim. Note that
we can assume |S| ≥ c4/p, because otherwise the claim is vacuously true. Let B := A \N(S).
There cannot be any edges between S and B. Also, |B| ≥ (n/2)− (|S| − (c4/p)). So, |B| is
at least c4/p and when |B| < n/4, |S| is at least n/4. Hence, using the previous claim, there
is an edge between S and B with probability at least 1− e−n. Hence, we get a contradiction,
and hence our claim is true with probability at least 1− e−n. J

Proof of Lemma 22: Let C(S) denote |E(S, V (G) \ S)|. For a fixed vertex subset S, the
expected value of C(S) is at most np|S|. Therefore, probability that C(S) > np|S| ≥
c0|S| logn is at most n−c0|S|/2 using Chernoff bounds. The probability that C(S) ≤ np|S|
for all sets S of size k is at least 1− n−c0k/2+k ≥ 1− n−c0/2+1 using union bound and using
k ≥ 1. The probability that C(S) ≤ np|S| for all vertex subsets S is at least 1− n−c0/2+2 ≥
using union bound over all k ∈ [n]. J
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