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Abstract. We study matching problems with the notion of proportional
fairness. Proportional fairness is one of the most popular notions of group
fairness where every group is represented up to an extent proportional
to the final selection size. Matching with proportional fairness or more
commonly, proportionally fair matching, was introduced in [Chierichetti
et al., AISTATS, 2019]. In this problem, we are given a graph G whose
edges are colored with colors from a set C. The task is for given 0 ≤
α ≤ β ≤ 1, to find a maximum (α, β)-balanced matching M in G, that
is a matching where for every color c ∈ C the number of edges in M of
color c is between α|M | and β|M |. Chierichetti et al. initiated the study
of this problem with two colors and in the context of bipartite graphs
only. However, in many practical applications, the number of colors—
although often a small constant—is larger than two. In this work, we
make the first step towards understanding the computational complexity
of proportionally fair matching with more than two colors. We design
exact and approximation algorithms achieving reasonable guarantees on
the quality of the matching as well as on the time complexity, and our
algorithms work in general graphs. Our algorithms are also supported by
suitable hardness bounds.

Keywords: Matching · Fairness · Parameterized Algorithms.

1 Introduction

In this paper, we consider the proportionally fair matching problem in general
graphs. Matching is one of the most fundamental notions in graph theory whose
study can be traced back to the classical theorems of Kőnig [33] and Hall [23].
The first chapter of the book of Lovász and Plummer [38] devoted to matching
contains a nice historical overview of the development of the matching prob-
lem. The problems of finding a maximum size or a perfect matching are the
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classical algorithmic problems; an incomplete list of references covering the his-
tory of algorithmic improvements on these problems is [17,24,29,37,41,42,45,53],
see also the book of Schrijver [48] for a historical overview of matching algo-
rithms. Matchings appear naturally in various applications, e.g., kidney trans-
plant matching [47] or numerous assignment problems like assigning products
to customers [46]; students to schools [34]; reviewers to manuscripts [7]; and
workers to firms [1]. There are scores of works that study fair versions of match-
ings [9,25,20,27,31,19,51]. Among these distinct notions of matchings, our work
is most relevant to the work on (α, β)-balanced matching of Chierichetti et al.
[9]. The notion of (α, β)-balanced matching was formulated in [9] by bringing
proportional fairness and maximum cardinality matching together. Proportional
fairness is based on the concept of disparate impact [18], which in the context of
matching is defined as follows. A matching is (α, β)-balanced or proportionally
fair if the ratio between the number of edges from each group (a color) and the
size of the matching is at least α and at most β.

As a motivating example of proportionally fair matching, consider the prod-
uct recommendation problem in e-commerce. With the advancement of digital
marketing and advertising, nowadays companies are interested in more fine-
tuned approaches that help them reach the target groups of customers. These
groups may be representative of certain underlying demographic categorizations
based on gender, age group, geographic location etc. Thus, the number of groups
is often a small constant. In particular, in this contemporary setting, one is in-
terested in finding assignments that involve customers from all target groups
and have a balanced impact on all these groups. This assignment problem can
be modeled as the proportionally fair matching problem between customers and
products. In a realistic situation, one might need to assign many products to a
customer and many customers to a product. This can be achieved by computing
multiple matchings in an iterative manner while removing the edges from the
input graph that are already matched.

In a seminal work, Chierichetti et al. [9] obtained a polynomial-time 3/2-
approximation for the size of the matching, when the input graph is bipartite
and the number of groups is 2. However, in many real-world situations, like in the
above example, it is natural to assume that the number of target groups is more
than 2. Unfortunately, the algorithm of [9] strongly exploits the fact that the
number of groups ℓ = 2. It is not clear how to adapt or extend their algorithm
when we have more than two groups. The only known algorithm for ℓ > 2 groups
is an nO(ℓ)-time randomized exact algorithm [9,13], which also works for general
graphs. The running time of this algorithm has a “bad” exponential dependence
on the number of groups, i.e., the running time is not a fixed polynomial in n.
Thus, this algorithm quickly becomes impractical if ℓ grows. Our research on
proportionally fair matching is driven by the following question. Do there exist
efficient algorithms with guaranteed performance for proportionally fair matching
when the number of groups ℓ is more than two?
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1.1 Our results and contributions

In this work, we obtain several results on the Proportionally Fair Matching
problem in general graphs with any arbitrary ℓ number of groups.

– First, we show that the problem is extremely hard for any general ℓ number
of groups, in the sense that it is not possible to obtain any approximation
algorithm in 2o(ℓ)nO(1) time even on path graphs, unless the Exponential
Time Hypothesis (ETH) [26] is false.

– To complement our hardness result, we design a 1/4ℓ-approximation algo-
rithm that runs in 2O(ℓ)nO(1) time. Our algorithm might violate the lower (α)
and upper (β) bounds by at most a multiplicative factor of (1 + 4ℓ/|OPT|)
if |OPT| is more than 4ℓ2, where OPT is any optimum solution. Thus, the
violation factor is at most 1+ 1/ℓ, and tends to 1 with asymptotic values of
|OPT|.

– We also consider a restricted case of the problem, referred to as the β-limited
case in [9], where we only have the upper bound, i.e., no edges might be
present from some groups. In this case, we could improve the approximation
factor to 1/2ℓ and running time to polynomial.

– Lastly, we show that the parameterized version of the problem where one
seeks for a proportionally fair matching of size k, can be solved exactly in
2O(k)nO(1) time. Thus the problem is fixed-parameter tractable parameter-
ized by k.

All of our algorithms are based on simple schemes. Our approximation algo-
rithms use an iterative peeling scheme that in each iteration, extracts a rainbow
matching containing at most one edge from every group. The exact algorithm
is based on a non-trivial application of the celebrated color-coding scheme [2].
These algorithms appear in Sections 3, 4, and 5, respectively. The hardness proof
is given in Section 6.

1.2 Related work

In recent years, researchers have introduced and studied several different no-
tions of fairness, e.g., disparate impact [18], statistical parity [52,28], individual
fairness [14] and group fairness [15]. Kleinberg et al. [32] formulated three no-
tions of fairness and showed that it is theoretically impossible to satisfy them
simultaneously. See also [11,10] for similar exposures.

The notion of proportional fairness with multiple protected groups is widely
studied in the literature, which is based on disparate impact [18]. Bei et al. [3]
studied the proportional candidate selection problem, where the goal is to select
a subset of candidates with various attributes from a given set while satisfying
certain proportional fairness constraints. Goel et al. [21] considered the problem
of learning non-discriminatory and proportionally fair classifiers and proposed
the weighted sum of logs technique. Proportional fairness has also been consid-
ered in the context of Federated learning [55]. Additionally, proportional fairness
has been studied in the context of numerous optimization problems including
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voting [16], scheduling [30,39], kidney exchange [4,49], and Traveling Salesman
Problem [44].

Several different fair matching problems have been studied in the literature.
Huang et al. [25] and Boehmer et al. [6] studied fair b-matching, where matching
preferences for each vertex are given as ranks, and the goal is to avoid assigning
vertices to high ranked preferences as much as possible. Fair-by-design-matching
is studied in [20], where instead of a single matching, a probability distribution
over all feasible matchings is computed which guarantees individual fairness. See
also [27,31].

Apart from the fair versions of matchings, many constrained versions are also
studied [50,5]. [50] studied the Bounded Color Matching (BCM) problem where
edges are colored and from each color class, only a given number of edges can
be chosen. BCM is a special case of 3-set packing and, hence, admits a 3/4-
approximation [50]. We note that the β-limited case of Proportionally Fair
Matching is a special case of BCM and, thus, a 3/4-approximation follows in
this case where the upper bound might be violated by 3/4 factor. One should
compare this factor with our violation factor, which asymptotically tends to 1.

Finally, we note that when the input graph is bipartite, a matching has a
natural interpretation as an intersection of two matroids. Matroid intersection
has a rich literature containing work on both exact [36,40] and approximation
algorithms [35]. However, these algorithms do not consider fairness constraints.

2 Preliminaries

For an integer ℓ ≥ 1, let [ℓ] := {1, 2, . . . , ℓ}. Consider any undirected n-vertex
graph G = (V,E) such that the edges in E are colored by colors in C = {1, . . . , ℓ}.
The function χ : E → C describes the color assignment. For each color c ∈ C,
let Ec be the set of edges colored by the color c, i.e., Ec = χ−1(c). A subset
E′ ⊆ E is a matching in G if no two edges in E′ share a common vertex.

Definition 1. (α, β)-balanced matching. Given 0 ≤ α ≤ β ≤ 1, a matching
M ⊆ E is called (α, β)-balanced if for each color c ∈ C, we have that α ≤
|M ∩ Ec|

|M |
≤ β.

Thus a matching is (α, β)-balanced if it contains at least α and at most β fraction
of edges from every color. In the Proportionally Fair Matching problem,
the goal is to find a maximum-sized (α, β)-balanced matching. In the restricted
β-limited case of the problem, α = 0, i.e., we only have the upper bound.

For γ ≤ 1 and ∆ ≥ 1, a (γ,∆)-approximation algorithm for Proportion-
ally Fair Matching computes a matching of size at least γ · |OPT|, where
every color appears in at least α/∆ fraction of the edges and in at most β · ∆
fraction. OPT is an optimum (α, β)-balanced matching.

A matching is called a rainbow matching if all of its edges have distinct colors.
We will need the following result due to Gupta et al. [22].
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Theorem 1 (Theorem 2 in [22]). For some integer k > 0, suppose there is
a rainbow matching in G of size k. There is a 2k · nO(1) time algorithm that
computes a rainbow matching of size k.

3 A ( 1
4ℓ
, 1 + 4ℓ

|OPT |)-Approximation for Proportionally
Fair Matching

In this section, we design an approximation algorithm for Proportionally
Fair Matching. Let OPT be an optimum (α, β)-balanced matching, OPTc =
OPT ∩ Ec. We design two algorithms: one for the case when α > 0 and the
other for the complementary β-limited case. In this section, we slightly abuse
the notation, and use OPT (resp. OPTc for some color c ∈ C) to refer to |OPT|
(resp. |OPTc|). The intended meaning should be clear from the context; however
we will disambiguate in case there is a possibility of confusion.

First, we consider the α > 0 case. Immediately, we have the following obser-
vation.

Observation 1 For any color c ∈ C, OPT contains at least one edge of color c
and, hence, G contains a rainbow matching of size ℓ.

Our algorithm runs in rounds. In the following, we define a round. The input
in each round is a subgraph G′ = (V ′, E′) of G.

Round. Initially M = ∅. For every color 1 ≤ c ≤ ℓ, do the following in an
iterative manner. If there is no edge of color c in G′, go to the next color or
terminate and return (G′,M) if c = ℓ. Otherwise, pick any edge e of color c
from G′ and add e to the already computed matching M . Remove all the edges
(including e) from G′ that share a common vertex with e. Repeat the process for
the next color with the current (or updated) graph G′ or terminate and return
(G′,M) if c = ℓ. Thus in each round, we find a rainbow matching in a greedy
manner.

Next, we describe our algorithm. The most challenging part of our algorithm
is to ensure that the final matching computed is (α, β)-balanced modulo a small
factor, i.e., we need to ensure both the lower and the upper bounds within a
small factor for each color. Note that just the above greedy way of picking edges
might not even ensure that at least one edge is selected from each color. We use
the algorithm of [22] in the beginning to overcome this barrier. However, the rest
of our algorithm is extremely simple.

The Algorithm. We assume that we know the size of OPT. We describe later
how to remove this assumption. Apply the algorithm in Theorem 1 on G to
compute a rainbow matching M ′ of size ℓ. If OPT ≤ 4ℓ2, return M := M ′ as
the solution and terminate. Otherwise, remove all the edges of M ′ and the edges
adjacent to them from G to obtain the graph G0. Initialize M to M ′. Greedily
pick matched edges in rounds using the Round procedure and add them to M
until exactly ⌈OPT/(4ℓ)⌉ edges are picked in total. In particular, the graph G0
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is the input to the 1-st round and G1 is the output graph of the 1-st round. G1 is
the input to the 2-nd round and G2 is the output graph of the 2-nd round, and
so on. Note that it might be the case that the last round is not completed fully
if the size of M is reached to ⌈OPT/(4ℓ)⌉ before the completion of the round.

Note that the above algorithm is oblivious to α and β in the sense that it
never uses these values. Nevertheless, we prove that the computed matching is
(α, β)-balanced modulo a small factor. Now we analyze our algorithm.

3.1 The Analysis

Let Mc = M ∩Ec. Also, let c∗ be a color c ∈ C such that |OPTc| is the minimum
at c = c∗. The proof of the following observation is fairly straightforward and is
in appendix.

Observation 2 α ≤ 1/ℓ ≤ β.

First we consider the case when OPT ≤ 4ℓ2. In this case the returned match-
ing M is a rainbow matching of size exactly ℓ. The existence of such a matching
follows by Observation 1. Thus, we immediately obtain a 4ℓ-approximation. As
|Mc|/|M | = 1/ℓ in this case, by Observation 2, α ≤ |Mc|/|M | ≤ β. Thus we
obtain the desired result. In the rest of the proof, we analyze the case when
OPT > 4ℓ2. We start with the following lemma.

Lemma 1. The algorithm successfully computes a matching of size exactly
⌈OPT/(4ℓ)⌉. Moreover, for each color c with OPTc > 4ℓ and round i ∈ [1,
⌈OPTc/(4ℓ)⌉ − 1], Gi−1 contains an edge of color c.

Proof. Note that by Observation 1, the algorithm in Theorem 1 successfully
computes a rainbow matching M ′ of size ℓ. Now consider any color c such that
OPTc ≤ 4ℓ. For such a color, M already contains at least 1 ≥ ⌈OPTc/(4ℓ)⌉
edge. Now consider any other color c with |OPTc| > 4ℓ. Consider the rainbow
matching M ′ computed in the beginning. As |M ′| = ℓ, the edges of M ′ can be
adjacent to at most 2ℓ edges from OPT, since it is a matching. In particular, the
edges of M ′ can be adjacent to at most 2ℓ edges from the set OPTc. Hence, G0

contains at least OPTc − 2ℓ edges of the set OPTc. Now consider the execution
of round i ≥ 1. At most ℓ edges are chosen in this round. Hence, these edges
can be adjacent to at most 2ℓ edges of OPTc. It follows that at most 2ℓ fewer
edges of the set OPTc are contained in Gi compared to Gi−1. As G0 has at least
OPTc−2ℓ edges from the set OPTc of color c and OPTc > 4ℓ, for each of the first
⌈(OPTc−2ℓ)/(2ℓ)⌉ = ⌈OPTc/(2ℓ)⌉−1 rounds, the algorithm will be able to pick
an edge of color c. Thus from such a color c with OPTc > 4ℓ, it can safely pick
at least ⌈OPTc/(2ℓ)⌉ ≥ ⌈OPTc/(4ℓ)⌉ edges in total. Now, as OPT =

∑
c OPTc,∑

c∈C⌈OPTc/(4ℓ)⌉ ≥ ⌈OPT/(4ℓ)⌉. It follows that the algorithm can pick at least
⌈OPT/(4ℓ)⌉ edges. As we stop the algorithm as soon as the size of M reaches to
⌈OPT/(4ℓ)⌉, the lemma follows.
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Note that the claimed approximation factor trivially follows from the above
lemma. Next, we show that M is (α, β)-balanced modulo a small factor that
asymptotically tends to 1 with the size of OPT.

Lemma 2. For each color c ∈ C, |Mc| ≥ |OPTc∗ |/(4ℓ).

Proof. If OPTc∗ ≤ 4ℓ, |Mc| ≥ 1 ≥ OPTc∗/(4ℓ). So, assume that OPTc∗ > 4ℓ.
Now suppose |Mc| < OPTc∗/(4ℓ) for some c. By Lemma 1, for each of the
first ⌈OPTc/(4ℓ)⌉ − 1 ≥ ⌈OPTc∗/(4ℓ)⌉ − 1 rounds, Gi−1 contains an edge of
color c. It follows that the algorithm was forcibly terminated in some round
i ≤ (OPTc∗/(4ℓ))− 1. Thus, the number of edges chosen from each color c′ ̸= c
is at most OPTc∗/(4ℓ). Hence,

|M | =
∑
c′ ̸=c

|Mc′ |+ |Mc| < (ℓ− 1) · (OPTc∗/(4ℓ)) + (OPTc∗/(4ℓ)) ≤ ⌈OPT/(4ℓ)⌉.

This contradicts Lemma 1, which states that we select exactly ⌈OPT/(4ℓ)⌉ edges.

Corollary 1. For each color c ∈ C, (|Mc|/|M |) ≥ α
(1+4ℓ/OPT) .

Proof. By Lemma 2, |Mc| ≥ OPTc∗/(4ℓ).

|Mc|
|M |

≥ (OPTc∗/(4ℓ))

⌈OPT/(4ℓ)⌉
≥ (OPTc∗/(4ℓ))

(OPT/(4ℓ)) + 1

=
(OPTc∗)/(OPT)

(1 + 4ℓ/OPT)
≥ α

(1 + 4ℓ/OPT)
.

The last inequality follows as OPT satisfies the lower bound for all colors.

Now we turn to proving the upper bound. Let α∗ = OPTc∗/OPT.

Lemma 3. For each color c ∈ C, |Mc| ≤ β
α∗ · (OPTc∗/(4ℓ)) + 1.

Proof. Suppose for some c ∈ C, |Mc| > β
α∗ · (OPTc∗/(4ℓ))+1. Then the number

of rounds is strictly greater than β
α∗ · (OPTc∗/(4ℓ)). Now, for any c′, OPTc′ ≥

α∗ · OPT and OPTc′ ≤ β · OPT. Thus, by the definition of α∗, β
α∗ · OPTc∗ ≥

OPTc′ . It follows that, for each c′, the number of rounds is strictly greater than
OPTc′/(4ℓ). Hence, for each c′ ∈ C, more than (OPTc′/(4ℓ)) + 1 edges have
been chosen. Thus, the total number of edges chosen is strictly larger than∑

c′∈C

((OPTc′/(4ℓ)) + 1) ≥ ⌈OPT/(4ℓ)⌉.

This contradicts Lemma 1, which states that we select exactly ⌈OPT/(4ℓ)⌉ edges.

Corollary 2. For each color c ∈ C, (|Mc|/|M |) ≤ β · (1 + 4ℓ
OPT ).
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Proof. By Lemma 3,

|Mc|
|M |

≤ (β/α∗) · (OPTc∗/(4ℓ)) + 1

⌈OPT/(4ℓ)⌉

≤ (β/α∗) · (OPTc∗/(4ℓ)) + (β/α∗)

OPT/(4ℓ)

=
β

α∗ · OPTc∗

OPT
·
(
1 +

4ℓ

OPT

)
=

β

α∗ · α∗
(
1 +

4ℓ

OPT

)
= β ·

(
1 +

4ℓ

OPT

)
.

The second inequality follows, as α∗ ≤ β or β/α∗ ≥ 1.

Now let us remove the assumption that we know the size of an optimal
solution. Note that ℓ ≤ OPT ≤ n. We probe all values between ℓ and n, and
for each such value T run our algorithm. For each matching M returned by the
algorithm, we check whether M is ( α

(1+4ℓ/T ) , β · (1 + 4ℓ
T ))-balanced. If this is the

case, then we keep this solution. Otherwise, we discard the solution. Finally, we
select a solution of the largest size among the ones not discarded. By the above
analysis, with T = OPT, the matching returned satisfies the desired lower and
upper bounds, and has size exactly ⌈OPT/(4ℓ)⌉. Finally, the running time of
our algorithm is dominated by 2ℓnO(1) time to compute a rainbow matching
algorithm, as stated in Theorem 1.

Theorem 2. There is a 2ℓ ·nO(1) time (1/4ℓ, 1+4ℓ/OPT)-approximation algo-
rithm for Proportionally Fair Matching with α > 0.

4 A Polynomial-time Approximation in the β-limited
Case

In the β-limited case, again we make use of the Round procedure. But, the
algorithm is slightly different. Most importantly, we do not apply the algorithm
in Theorem 1 in the beginning. Thus, our algorithm runs in polynomial time.

The Algorithm. Assume that we know the size of OPT. If OPT ≤ 2ℓ, we pick
any edge and return it as the solution. Otherwise, we just greedily pick matched
edges in rounds using the Round procedure with the following two cautions. If
for a color, at least β ·OPT/(2ℓ) edges have already been chosen, do not choose
any more edge of that color. If at least (OPT/2ℓ) − 1 edges have already been
chosen, terminate.

Now we analyze the algorithm. First note that if OPT ≤ 2ℓ, the returned
matching has only one edge. The upper bound is trivially satisfied and also
we obtain a 2ℓ-approximation. Henceforth, we assume that OPT > 2ℓ. Before
showing the correctness and analysis of the approximation factor, we show the
upper bound for each color. Again let M be the computed matching and Mc =
M ∩ Ec. Later we prove the following lemma in the appendix.
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Lemma 4. Algorithm always returns a matching of size at least (OPT/2ℓ)− 1.

Assuming this we have the following proposition.

Proposition 1. For each color c ∈ C, |Mc|/|M | ≤ β · (1 + 2ℓ
|OPT| ).

Proof. By Lemma 4 and the threshold put on each color in the algorithm, |Mc|
|M | ≤

β·OPT/(2ℓ)
(OPT/2ℓ)−1 ≤ β · (1 + 2ℓ

OPT ) The last inequality follows, as OPT > 2ℓ.

Theorem 3. There is a polynomial time algorithm for Proportionally Fair
Matching in the β-limited case that returns a matching of size at least (OPT/2ℓ)−
1 where every color appears in at most β · (1 + 2ℓ/OPT) fraction of the edges.

5 An Exact Algorithm for Proportionally Fair
Matching

Theorem 4. There is a 2O(k)nO(1)-time algorithm that either finds a solution
of size k for a Proportionally Fair Matching instance, or determines that
none exists.

Proof. We present two different algorithms using the well-known technique of
color coding: one for the case α = 0 (β-limited case), and one for the case α > 0.
β-limited case. We aim to reduce the problem to finding a rainbow matching
of size k, which we then solve via Theorem 1. The graph G remains the same,
however the coloring is going to be different. Namely, for each of the original
colors c ∈ C we color the edges in Ec uniformly and independently at random
from a set of k′ new colors, where k′ = ⌊βk⌋. Thus, the new instance I ′ is colored
in ℓ · k′ colors. We use the algorithm of Theorem 1 to find a rainbow matching
of size k in the colored graph in I ′. Clearly, if a rainbow matching M of size
k is found, then the same matching M is a β-limited matching of size k in the
original coloring. This holds since by construction for any original color c ∈ C,
there are k′ new colors in the edge set Ec, and therefore no more than k′ edges
in |M ∩ Ec|.

In the other direction, we show that if there exists a β-limited matching M
of size k with respect to the original coloring, then with good probability M is
a rainbow matching of size k in the new coloring. Assume the original colors c1,
. . . , ct, for some 1 ≤ t ≤ ℓ, have non-empty intersection with M , and for each
j ∈ [t] denote kj = |M ∩ Ecj |. Observe that

∑t
j=1 kj = k, and for each j ∈ [t],

1 ≤ kj ≤ k′.

Claim. There exists some δ > 0 such that for each j ∈ [t]:

Pr

[
M ∩

(
j⋃

i=1

Eci

)
is a rainbow matching in I ′

]
≥ exp

(
−δ

j∑
i=1

ki

)
, (1)
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Proof. We prove the claim by induction on j. For the base case, clearly (1) holds
for j = 0. Now, fix j ∈ [t] and assume the statement holds for each j′ < j, we
show that (1) also holds for j. Consider the kj edges of M ∩Ecj , they are colored
uniformly and independently in k′ ≥ kj colors. By counting possible colorings of
M ∩ Ecj , it follows that

Pr
[
M ∩ Ecj is a rainbow matching

]
≥ (k′)!/(k′ − kj)!

(k′)kj
≥ kj !

k
kj

j

≥ 2−δkj ,

where the last bound is by Stirling’s formula. Now, since colors used for Ecj do
not appear anywhere else, using the inductive hypothesis we get

Pr

[
M ∩

(
j⋃

i=1

Eci

)
is a rainbow matching

]

=Pr

[
M ∩

(
j−1⋃
i=1

Eci

)
is a rainbow matching

]
· Pr

[
M ∩ Ecj is a rainbow matching

]
≥2−δ

∑j−1
i=1 ki · 2−δkj = 2−δ

∑j
i=1 ki .

□

Applying (1) with j = t, we obtain that M is a rainbow matching with proba-
bility at least 2−δk. By repeating the reduction above 2O(k) times independently,
we achieve that the algorithm succeeds with constant probability.

The case α > 0. We observe that in this case, if a matching is fair it necessarily
contains at least one edge from each of the groups. Thus, if the number of groups
ℓ is greater than k, we immediately conclude there cannot be a fair matching of
size k. Otherwise, we guess how the desired k edges are partitioned between the
ℓ groups C = {c1, . . . , cℓ}. That is, we guess the numbers kj for j ∈ [ℓ] such that∑ℓ

j=1 kj = k, and αk ≤ kj ≤ βk for each j ∈ [ℓ]. From now on, the algorithm is
very similar to the β-limited case. For each group cj , we color the edges of Ecj

from a set of kj colors uniformly and independently at random, where the colors
used for each Ecj are non-overlapping. Now we use the algorithm of Theorem 1
to find a rainbow matching of size k. If there is a rainbow matching M of size k,
the same matching is a fair matching of size k for the original instance, since in
each Ecj exactly kj edges are chosen, which is at least αk and at most βk. In the
other direction, if there is a fair matching M of size k in the original instance, by
(1) the matching M is a rainbow matching in the new instance with probability
at least 2−δk. Again, by repeating the coloring subprocess independently 2O(k)

times, we achieve a constant probability of success. Since there are 2O(k) options
for partitioning k edges into at most ℓ ≤ k groups, the running time of the whole
algorithm is 2O(k)nO(1).

Finally, we note that the coloring part in both cases can be derandomized in
the standard fashion by using perfect hash families [43], leading to a completely
deterministic algorithm.
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6 Hardness of Approximation for Proportionally Fair
Matching

In this section, we show an inapproximability result for Proportionally Fair
Matching under the Exponential Time Hypothesis (ETH) [26]. ETH states
that 2Ω(n) time is needed to solve any generic 3SAT instance with n variables.
For our purpose, we need the following restricted version of 3SAT.

3SAT-3
INPUT: Set of clauses T = {C1, . . . , Cm} in variables x1, . . . , xn, each clause
being the disjunction of 3 or 2 literals, where a literal is a variable xi or its
negation x̄i. Additionally, each variable appears 3 times.
QUESTION: Is there a truth assignment that simultaneously satisfies all the
clauses?

3SAT-3 is known to be NP-hard [54]. We need the following stronger lower
bound for 3SAT-3 proved in [12].

Proposition 2 ([12]). Under ETH, 3SAT-3 cannot be solved in 2o(n) time.

We reduce 3SAT-3 to Proportionally Fair Matching which rules out
any approximation for the latter problem in 2o(ℓ)nO(1) time. Our reduction is
as follows. For each clause Ci, we have a color i. Also, we have n− 1 additional
colors m+ 1, . . . ,m+ n− 1. Thus, the set of colors C = {1, . . . ,m+ n− 1}. For
each variable xi, we construct a gadget, which is a 3-path (a path with 3 edges).
Note that xi can either appear twice in its normal form or in its negated form, as
it appears 3 times in total. Let Ci1 , Ci2 and Ci3 be the clauses where xi appears.
Also, suppose it appears in Ci1 and Ci3 in one form, and in Ci2 in the other form.
We construct a 3-path Pi for xi where the j-th edge has color ij for 1 ≤ j ≤ 3.
Additionally, we construct n − 1 3-paths Qi,i+1 for 1 ≤ i ≤ n − 1. All edges of
Qi,i+1 is of color m + i. Finally, we glue together all the paths in the following
way to obtain a single path. For each 1 ≤ i ≤ n−1, we glue Qi,i+1 in between Pi

and Pi+1 by identifying the last vertex of Pi with the first vertex of Qi,i+1 and
the last vertex of Qi,i+1 with the first vertex of Pi+1. Thus we obtain a path P
with exactly 3(n+n− 1) = 6n− 3 edges. Finally, we set α = β = 1/(m+n− 1).

Lemma 5. There is a satisfying assignment for the clauses in 3SAT-3 if and
only if there is an (α, β)-balanced matching of size at least m+ n− 1.

Proof. Suppose there is a satisfying assignment for all the clauses. For each
clause Cj , consider a variable, say xi, that satisfies Cj . Then there is an edge
of color j on Pi. Add this edge to a set M . Thus, after this step, M contains
exactly one edge of color j for 1 ≤ j ≤ m. Also, note that for each path Pi, if the
middle edge is chosen, then no other edge from Pi can be chosen. This is true,
as the variable xi can either satisfy the clauses where it appears in its normal
form or the clauses where it appears in its negated form, but not both types of
clauses. Hence, M is a matching. Finally, for each path Qi,i+1, we add its middle
edge to M . Note that M still remains a matching. Moreover, M contains exactly
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one edge of color j for 1 ≤ j ≤ m+ n− 1. As α = β = 1/(m+ n− 1), M is an
(α, β)-balanced matching.

Now suppose there is an (α, β)-balanced matching M of size at least m+n−1.
First, we show that |M | = m+n−1. Note that if |M | > m+n−1, then the only
possibility is that |M | = 2(m+n−1), as α = β and at most 2 edges of color j can
be picked in any matching for m+1 ≤ j ≤ m+n−1. Suppose |M | = 2(m+n−1).
Then from each Qi,i+1, M contains the first and the third edge. This implies,
from each Pt, 1 ≤ t ≤ n, we can pick at most one edge. Thus, total number of
edges in M is at most 2(n− 1) + n. It follows that 2m+ 2n− 2 ≤ 2n− 2 + n or
n ≥ 2m. Now, in 3SAT-3 the total number of literals is 3n and at most 3m, as
each variable appears 3 times and each clause contains at most 3 literals. This
implies n ≤ m, and we obtain a contradiction. Thus, |M | = m + n − 1. Now,
consider any Pi. In the first case, the first and third edges of Pi are corresponding
to literal xi and, hence, the middle edge is corresponding to the literal x̄i. If the
middle edge is in M , assign 0 to xi, otherwise, assign 1 to xi. In the other case,
if the middle edge is in M , assign 1 to xi, otherwise, assign 0 to xi. We claim
that the constructed assignment satisfies all the clauses. Consider any clause Cj .
Let e ∈ Pi be the edge in M of color j for 1 ≤ j ≤ m. Note that e can be the
middle edge in Pi or not. In any case, if e is corresponding to x̄i, we assigned 0
to xi, and if e is corresponding to xi, we assigned 1 to xi. Thus, in either case,
Cj is satisfied. This completes the proof of the lemma.

□

Note that for a 3SAT-3 instance the total numbers of literals is 3n. As each
clause contains at least 2 literals, m ≤ 3n/2. Now, for the instances constructed
in the above proof, the number of colors ℓ = m+n−1 ≤ 3n/2+n−1 = 5n/2−1.
Thus, the above lemma along with Proposition 2 show that it is not possible to
decide whether there is an (α, β)-balanced matching of a given size in time
2o(ℓ)nO(1). Using this, we also show that even no 2o(ℓ)nO(1) time approximation
algorithm is possible. Suppose there is a 2o(ℓ)nO(1) time γ-approximation algo-
rithm, where γ < 1. For our constructed path instances, we apply this algorithm
to obtain a matching. Note that the γ-approximate solution M must contain at
least one edge of every color, as α = β. By the proof in the above lemma, |M | is
exactly m+n− 1. Hence, using this algorithm, we can decide in 2o(ℓ)nO(1) time
whether there is an (α, β)-balanced matching of size m + n − 1. But, this is a
contradiction, which leads to the following theorem.

Theorem 5. For any γ > 1, under ETH, there is no 2o(ℓ)nO(1) time γ-approxim-
ation algorithm for Proportionally Fair Matching, even on paths.

7 Conclusions

In this paper, we study the notion of proportional fairness in the context of
matchings in graphs, which has been studied by Chierichetti et al. [8]. We ob-
tained approximation and exact algorithms for the proportionally fair match-
ing problem. We also complement these results by showing hardness results. It
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would be interesting to obtain a o(ℓ)- or a true O(ℓ)-approximation for Propor-
tionally Fair Matching improving our result. As evident from our hardness
result, there is a lower bound of 2Ω(ℓ)nO(1) on the running time of such an
algorithm.
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A Missing Proofs

Proof (of Observation 2). Let ĉ be a color c ∈ C such that |OPTc| is the max-
imum at c = ĉ. By definition, OPT ≥ ℓ · OPTc∗ , or OPTc∗/OPT ≤ 1/ℓ. Thus,
α ≤ OPTc∗/OPT ≤ 1/ℓ. Similarly, OPT ≤ ℓ · OPTĉ, or OPTĉ/OPT ≥ 1/ℓ.
Thus, β ≥ OPTĉ/OPT ≥ 1/ℓ.

□

Proof (of Lemma 4). Let C1 be the subset of colors such that for each c ∈ C1,
the algorithm picks at least β · OPT/(2ℓ) edges. Note that the algorithm can
terminate in two ways (i) it has already picked at least (OPT/2ℓ)−1 edges, and
(ii) all the edges have been exhausted. Note that if (i) happens, then we are done.
We prove that (ii) cannot happen without (i). Suppose (ii) happens, but not (i).
Let OPT′ be the subset of OPT containing edges of colors in C ′ = C \C1. Recall
that Gi−1 is the input graph to the i-th round and Gi is the output graph for
i ≥ 1. The number of edges chosen in i-th round is at most ℓ. Hence, these edges
can be adjacent to at most 2ℓ edges in Gi−1. In particular, at most 2ℓ less edges
of OPT′ are contained in Gi compared to Gi−1. It follows that the algorithm can
pick at least ⌊OPT′/2ℓ⌋ edges of colors in C ′. As for each color in C ′, less than
β ·OPT/(2ℓ) edges are chosen, the algorithm indeed chooses at least ⌊OPT′/2ℓ⌋
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edges of these colors. The total number of edges chosen by the algorithm is,∑
c∈C1

|Mc|+
∑
c∈C′

|Mc| ≥
∑
c∈C1

β · OPT/(2ℓ) + ⌊OPT′/2ℓ⌋

≥
∑
c∈C1

OPTc/2ℓ+ ⌊OPT′/2ℓ⌋

≥ (OPT/2ℓ)− 1

But, this is a contradiction to our assumption, and hence the lemma follows.

□


	Proportionally Fair Matching with Multiple Groups

