
Theoretical Computer Science 609 (2016) 306–315
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A new perspective on clustered planarity as a combinatorial
embedding problem ✩,✩✩

Thomas Bläsius ∗, Ignaz Rutter ∗,1

Karlsruhe Institute of Technology (KIT), Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 March 2015
Received in revised form 14 August 2015
Accepted 6 October 2015
Available online 22 October 2015
Communicated by A. Marchetti-Spaccamela

Keywords:
Graph drawing
Clustered planarity
Constrained planar embedding
Characterization
Algorithms

The clustered planarity problem (c-planarity) asks whether a hierarchically clustered graph
admits a planar drawing such that the clusters can be nicely represented by regions. We
introduce the cd-tree data structure and give a new characterization of c-planarity. It
leads to efficient algorithms for c-planarity testing in the following cases. (i) Every cluster
and every co-cluster (complement of a cluster) has at most two connected components.
(ii) Every cluster has at most five outgoing edges.
Moreover, the cd-tree reveals interesting connections between c-planarity and planarity
with constraints on the order of edges around vertices. On one hand, this gives rise to a
bunch of new open problems related to c-planarity, on the other hand it provides a new
perspective on previous results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When visualizing graphs whose nodes are structured in a hierarchy, one usually has two objectives. First, the graph
should be drawn nicely. Second, the hierarchical structure should be expressed by the drawing. Regarding the first objective,
we require drawings without edge crossings, i.e., planar drawings (the number of crossings in a drawing of a graph is a
major aesthetic criterion). A natural way to represent a set of hierarchically aggregated vertices, usually called cluster, is
a simple region containing exactly the vertices in the cluster. To express the hierarchical structure, the boundaries of two
regions must not cross and edges of the graph can cross region boundaries at most once, namely if only one of its endpoints
lies inside the cluster. Such a drawing is called c-planar; see Section 2 for a formal definition. Testing a clustered graph for
c-planarity (i.e., testing whether it admits a c-planar drawing) is a fundamental open problem in the field of Graph Drawing.

C-planarity was first considered by Lengauer [1] in a completely different context. He gave an efficient algorithm for the
case that every cluster is connected. Feng et al. [2], who coined the name c-planarity, rediscovered the problem and gave
a similar algorithm. Cornelsen and Wagner [3] showed that c-planarity is equivalent to planarity when every cluster and
every co-cluster is connected.

✩ Partly done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003.
✩✩ A preliminary version of this work has been published as T. Bläsius and I. Rutter: A New Perspective on Clustered Planarity as a Combinatorial
Embedding Problem, Proceedings of the 22th International Symposium on Graph Drawing (GD’14), pages 440–451, LNCS, Springer, 2014.

* Corresponding authors.
E-mail addresses: blaesius@kit.edu (T. Bläsius), rutter@kit.edu (I. Rutter).

1 Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).
http://dx.doi.org/10.1016/j.tcs.2015.10.011
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.10.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:blaesius@kit.edu
mailto:rutter@kit.edu
http://dx.doi.org/10.1016/j.tcs.2015.10.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.10.011&domain=pdf

T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315 307
Fig. 1. Construction of a graph G where the edge-orderings of v in embeddings of G are represented by a given PQ-tree T . The boundary vertices of the
wheel representing the Q-node are shown as squares.

Relaxing the condition that every cluster must be connected, makes testing c-planarity surprisingly difficult. Efficient
algorithms are known only for very restricted cases and many of these algorithms are very involved. One example is the
efficient algorithm by Jelínek et al. [4,5] for the case that every cluster consists of at most two connected components while
the planar embedding of the underlying graph is fixed. Another efficient algorithm by Jelínek et al. [6] solves the case that
every cluster has at most four outgoing edges.

A popular restriction is to require a flat hierarchy, i.e., every pair of clusters has empty intersection. For example, Di Bat-
tista and Frati [7] solve the case where the clustering is flat, the graph has a fixed planar embedding and the size of the
faces is bounded by five. Section 4.1.1 and Section 4.2.1 contain additional related work viewed from the new perspective.

1.1. Contribution and outline

We first present the cd-tree data structure (Section 3), which is similar to a data structure used by Lengauer [1]. We use
the cd-tree to characterize c-planarity in terms of a combinatorial embedding problem. We believe that our definition of the
cd-tree together with this characterization provides a very useful perspective on the c-planarity problem and significantly
simplifies some previous results.

In Section 4 we define different constrained-planarity problems. We use the cd-tree to show in Section 4.1 that these
problems are equivalent to different versions of the c-planarity problem on flat-clustered graphs. We also discuss which
cases of the constrained embedding problems are solved by previous results on c-planarity of flat-clustered graphs. Based
on these insights, we derive a generic algorithm for testing c-planarity with different restrictions in Section 4.2 and discuss
previous work in this context.

In Section 5, we show how the cd-tree characterization together with results on the problem Simultaneous PQ-

Ordering [8] leads to efficient algorithms for the cases that (i) every cluster and every co-cluster consists of at most
two connected components; or (ii) every cluster has at most five outgoing edges. The latter extends the result by Jelínek et
al. [6], where every cluster has at most four outgoing edges.

2. Preliminaries

We denote graphs by G with vertex set V and edge set E . We implicitly assume graphs to be simple, i.e., they do not
have multiple edges or loops. Sometimes we allow multiple edges (we never allow loops). We indicate this with the prefix
multi-, e.g., a multi-cycle is a graph obtained from a cycle by multiplying edges.

A (multi-)graph G is planar if it admits a planar drawing (no edge crossings). The edge-ordering of a vertex v is the
clockwise cyclic order of its incident edges in a planar drawing of G . A (planar) embedding of G consists of an edge-ordering
for every vertex such that G admits a planar drawing with these edge-orderings.

A PQ-tree [9] is a tree T (in our case unrooted) with leaves L such that every inner node is either a P-node or a
Q-node. When embedding T , one can choose the (cyclic) edge-orderings of P-nodes arbitrarily, whereas the edge-orderings
of Q-nodes are fixed up to reversal. Every such embedding of T defines a cyclic order on the leaves L. The PQ-tree T
represents the orders one can obtain in this way. A set of orders is PQ-representable if it can be represented by a PQ-tree.
It is not hard to see that the valid edge-orderings of non-cutvertices in planar graphs are PQ-representable (e.g., [8]).
Conversely, adding wheels around the Q-nodes of a PQ-tree T and connecting all leaves with a vertex v yields a planar
graph G where the edge-orderings of v in embeddings of G are represented by T (e.g., [1]); see Fig. 1.

2.1. C-planarity on the plane and on the sphere

A clustered graph (G, T) is a graph G together with a rooted tree T whose leaves are the vertices of G (we also say that G
itself is a clustered graph). Let μ be a node of T . The tree Tμ is the subtree of T consisting of all successors of μ together
with the root μ. The graph induced by the leaves of Tμ is a cluster in G . We identify this cluster with the node μ. We call
a cluster proper if it is neither the whole graph (root cluster) nor a single vertex (leaf cluster).

A c-planar drawing of (G, T) is a planar drawing of G in the plane together with a simple (= simply-connected) region Rμ

for every cluster μ satisfying the following properties. (i) Every region Rμ contains exactly the vertices of the cluster μ in

308 T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315
its interior. (ii) Two regions have non-empty intersection only if one contains the other. (iii) Edges cross the boundary of a
region at most once. A clustered graph is c-planar if and only if it admits a c-planar drawing.

The above definition of c-planarity relies on embeddings in the plane using the term “contains”, and thus relies on
concepts like “outside” and “inside”. Instead, one can consider drawings on the sphere by considering the tree T to be
unrooted instead of rooted, using cuts instead of clusters, and simple closed curves instead of simple regions. Let ε be an
edge in T . Removing ε splits T in two connected components. As the leaves of T are the vertices of G , this induces a
corresponding cut (Vε, V ′

ε) with V ′
ε = V \ Vε on G . For a c-planar drawing of G on the sphere, we require a planar drawing

of G together with a simple closed curve Cε for every cut (Vε, V ′
ε) with the following properties. (i) The curve Cε separates

Vε from V ′
ε . (ii) No two curves intersect. (iii) Each edge of G cross Cε at most once.

Note that using clusters instead of cuts corresponds to orienting the cuts, using one side as the cluster and the other side
as the cluster’s complement (the co-cluster). This notion of c-planarity on the sphere is equivalent to the one on the plane;
one simply has to choose an appropriate point on the sphere to lie in the outer face. The unrooted view has the advantage
that it is more symmetric (i.e., there is no difference between clusters and co-clusters), which is sometimes desirable. We
use the rooted and unrooted view interchangeably.

To clarify the interplay between the rooted and the unrooted view, consider an edge {μ1, μ2} in the tree T and let
(V 1, V 2) be the corresponding cut. Assume for a moment that T is rooted such that μ2 is the parent of μ1. Then the leaves
that are descendants of μ1 in T are exactly the vertices V 1. Thus, the cluster μ1 and the cut (V 1, V 2) do more or less the
same thing: they both separate V 1 from V 2 (with V 1 being the interior, i.e., the cluster, and V 2 being the exterior, i.e., the
co-cluster). Now assume that we choose a different root such that μ1 is the parent of μ2. Then the cluster μ2 includes the
vertices V 2 and V 1 forms the corresponding co-cluster. Thus, which of the clusters μ1 or μ2 matches the cut corresponding
to {μ1, μ2} depends on the root. This makes sense as changing the root potentially changes the subtree Tμ below a node μ.
Note that the root of T plays a special role. Let μ be an arbitrarily chosen root of T . As μ has no parent, there is no edge
in T whose corresponding cut separates the vertices in the cluster μ from the vertices in the co-cluster. However, this also
makes sense, as μ is the root cluster containing the whole graph (as every vertex of G is a leaf in T and thus a descendant
of μ).

3. The CD-tree

Let (G, T) be a clustered graph. We introduce the cd-tree (cut- or cluster-decomposition-tree) by enhancing each node of T
with a multi-graph that represents the decomposition of G along its cuts corresponding to edges in T ; see Figs. 2a–b for an
example. We note that Lengauer [1] uses a similar structure. Our notation is inspired by SPQR-trees [10].

Let μ be a node of T with neighbors μ1, . . . , μk and incident edges εi = {μ, μi} (for i = 1, . . . , k). Removing μ separates
T into k subtrees T1, . . . , Tk . Let V 1, . . . , Vk ⊆ V be the vertices of G represented by leaves in these subtrees. The skeleton
skel(μ) of μ is the multi-graph obtained from G by contracting each subset V i into a single vertex νi (the resulting graph
has multiple edges but we remove loops). These vertices νi are called virtual vertices. Note that skeletons of inner nodes of T
contain only virtual vertices, while skeletons of leaves consist of one virtual and one non-virtual vertex. The virtual vertex
νi in skel(μ) corresponds to μi ; this node represents the set V i . Likewise, there is a virtual node ν in skel(μi) corresponding
to μ; this node represents the set of vertices V \ V i . We say that ν and νi are twins, and we write twin(ν) = νi and
twin(νi) = ν . Note that twin(twin(νi)) = νi .

The edges incident to νi are exactly the edges of G crossing the cut corresponding to the tree edge εi . Thus, the same
edges of G are incident to νi and twin(νi). This gives a bound on the total size c of the cd-tree’s skeletons (which we
shortly call the size of the cd-tree). The total number of edges in skeletons of T is twice the total size of all cuts represented
by T . As edges might cross a linear number of cuts (but obviously not more), the cd-tree has at most quadratic size in the
number of vertices of G , i.e., c ∈ O (n2).

Note that the above definition does not rely on a root. However, sometimes a root is useful as it serves as reference point
in the tree. Assume the cd-tree is rooted. Recall that in this case every node μ represents a cluster of G . In analogy to the
notion for SPQR-trees, we define the pertinent graph pert(μ) of the node μ to be the cluster represented by μ. Note that
one could also define the pertinent graph recursively, by removing the virtual vertex corresponding to the parent of μ (the
parent vertex) from skel(μ) and replacing each remaining virtual vertex by the pertinent graph of the corresponding child
of μ. Clearly, the pertinent graph of a leaf of T is a single vertex and the pertinent graph of the root is the whole graph G .
A similar concept, also defined for unrooted cd-trees, is the expansion graph. The expansion graph exp(νi) of a virtual vertex
νi in skel(μ) is the pertinent graph of its corresponding neighbor μi of μ, when rooting T at μ. One can think of the
expansion graph exp(νi) as the subgraph of G represented by νi in skel(μ). As mentioned before, we use the rooted and
unrooted points of view interchangeably.

The leaves of a cd-tree represent singleton clusters that exist only due to technical reasons. It is often more convenient
to consider cd-trees with all leaves removed as follows. Let μ be a node with virtual vertex ν in skel(μ) that corresponds
to a leaf. The leaf contains twin(ν) and a non-virtual vertex v ∈ V in its skeleton (with an edge between twin(ν) and v
for each edge incident to v in G). We replace ν in skel(μ) with the non-virtual vertex v and remove the leaf containing v .
Clearly, this preserves all clusters except for the singleton cluster. Moreover, the graph G represented by the cd-tree remains
unchanged as we replaced the virtual vertex ν by its expansion graph exp(ν) = v . In the following we always assume the
leaves of cd-trees to be removed.

T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315 309
Fig. 2. (a) A c-planar drawing of a clustered graph. (b) The corresponding (rooted) cd-tree (without leaves). The skeletons are drawn inside their corre-
sponding (gray) nodes. Note that each cluster/cut in the graph corresponds to an edge of the cd-tree as indicated by the colors. Every pair of twins (boxes
with the same color) has the same edge-ordering. (c) Construction of a c-planar drawing from the cd-tree. (For interpretation of the colors in this figure,
the reader is referred to the web version of this article.)

3.1. The CD-tree characterization

We show that c-planarity testing can be expressed in terms of edge-orderings in embeddings of the skeletons of T .

Theorem 1. A clustered graph is c-planar if and only if the skeletons of all nodes in its cd-tree can be embedded planarly such that
every virtual vertex and its twin have the same edge-ordering.

Proof. Assume G admits a c-planar drawing � on the sphere. Let μ be a node of T with incident edges ε1, . . . , εk connecting
μ to its neighbors μ1, . . . , μk , respectively. Let further νi be the virtual vertex in skel(μ) corresponding to μi and let V i
be the nodes in the expansion graph exp(νi). For every cut (V i, V ′

i) (with V ′
i = V \ V i), � contains a simple closed curve

Ci representing it. Since the sets V i are disjoint, we can choose a point on the sphere to be the “outside” such that V i lies
inside Ci for i = 1, . . . , k. Since � is a c-planar drawing, the Ci do not intersect and only the edges of G crossing the cut
(V i, V ′

i) cross Ci exactly once. Thus, one can contract the inside of Ci to a single point while preserving the embedding
of G . Doing this for each of the curves Ci yields the skeleton skel(μ) together with a planar embedding. Moreover, the
edge-ordering of the vertex νi is the same as the order in which the edges cross the curve Ci , when traversing Ci in
clockwise direction. Applying the same construction for the neighbor μi corresponding to νi yields a planar embedding of
skel(μi) in which the edge-ordering of twin(νi) is the same as the order in which these edges cross the curve Ci , when
traversing Ci in counter-clockwise direction. Thus, in the resulting embeddings of the skeletons, the edge-orderings of every
virtual vertex and its twin are the reverse of each other. To make them the same one can choose a 2-coloring of T and
mirror the embeddings of all skeletons of nodes in one color class.

Conversely, assume that all skeletons are embedded such that every virtual vertex and its twin have the same edge-
ordering. Let μ be a node of T . Consider a virtual vertex νi of skel(μ) with edge-ordering e1, . . . , e� . We replace νi by a
cycle Ci = (ν1

i , . . . , ν�
i) and attach the edge e j to the vertex ν j

i ; see Fig. 2c. Recall that twin(νi) has in skel(μi) the same
incident edges e1, . . . , e� and they also appear in this order around twin(νi). We also replace twin(νi) by a cycle of length �.
We say that this cycle is the twin of Ci and denote it by twin(Ci) = (twin(ν1

i), . . . , twin(ν�
i)) where twin(ν

j
i) denotes the

new vertex incident to the edge e j . As the interiors of Ci and twin(Ci) are empty, we can glue the skeletons skel(μ) and
skel(twin(μ)) together by identifying the vertices of Ci with the corresponding vertices in twin(Ci) (one of the embeddings
has to be flipped). Applying this replacement for every virtual vertex and gluing it with its twin leads to an embedded
planar graph G+ with the following properties. First, G+ contains a subdivision of G as a subgraph. Second, for every cut
corresponding to an edge ε = {μ, μi} in T , the graph G+ contains the cycle Ci , whose vertices are the subdivision vertices
of exactly those edges of G whose endpoints are separated by the cut corresponding to ε. Third, no two of these cycles
share a vertex. The planar drawing of G+ gives a planar drawing of G . Moreover, the drawings of the cycles can be used as
curves representing the cuts, yielding a c-planar drawing of G . �
3.2. Cutvertices in skeletons

We show that cutvertices in skeletons correspond to different connected components in a cluster or in a co-cluster.
More precisely, a cutvertex directly implies disconnectivity, while the opposite is not true. Consider the example in Fig. 2.
The cutvertex in the skeleton containing the vertices 7 and 8 corresponds to the two connected components in the blue
cluster (containing 7 and 8). However, the two connected components in the orange cluster (containing 6–8) do not yield a
cutvertex in the skeleton containing the vertex 6. The following lemma in particular shows that requiring every cluster to
be connected implies that the parent vertices of skeletons cannot be cutvertices.

310 T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315
Lemma 1. Let ν be a virtual vertex that is a cutvertex in its skeleton. The expansion graphs of virtual vertices in different blocks incident
to ν belong to different connected components in exp(twin(ν)).

Proof. Let μ be the node whose skeleton contains ν . Recall that one can obtain the graph exp(twin(ν)) by removing ν from
skel(μ) and replacing all other virtual vertices of skel(μ) with their expansion graphs. Clearly, the removal of the cutvertex
ν yields (at least) one different connected component for each of the blocks incident to ν . �

While the converse of Lemma 1 is generally not true, it holds if the condition is satisfied for all parent vertices in all
skeletons simultaneously.

Lemma 2. Every cluster in a clustered graph is connected if and only if in every node μ of the rooted cd-tree the parent vertex is not a
cutvertex in skel(μ).

Proof. By Lemma 1, the existence of a cutvertex implies a disconnected cluster. Conversely, let pert(μ) be disconnected and
assume without loss of generality that pert(μi) is connected for every child μ1, . . . , μk of μ in the cd-tree. One obtains
skel(μ) without the parent vertex ν by contracting in pert(μ) the child clusters pert(μi) to virtual vertices νi . As the
contracted graphs pert(μi) are connected while the initial graph pert(μ) is not, the resulting graph must be disconnected.
Thus, ν is a cutvertex in skel(μ). �
4. Clustered and constrained planarity

We first describe several constraints on planar embeddings, each restricting the edge-orderings of vertices. We then show
the relation to c-planarity.

Consider a finite set S (e.g., edges incident to a vertex). Denote the set of all cyclic orders of S by O S . An order-constraint
on S is a subset of O S (only the orders in the subset are allowed, e.g., all orders given by a fixed PQ-tree). A family of
S-order-constraints is a set of order constraints for the set S , i.e., a subset of the power set of O S (e.g., all order-constraints
that can be described by PQ-trees with leaf set S). A family of order-constraints (independent of the set S) contains for each
set S a family of S-order constraints (e.g., for each set S all orders that can be specified by PQ-trees with leaf set S). We say
that a family of order-constraints has a compact representation, if for every set S one can specify every order-constraint in its
family of S-order-constraints with polynomial space in |S| (e.g., because it can be described by a PQ-tree). In the following
we describe families of order-constraints with compact representations.

A PQ-constraint requires that the order of elements in S is represented by a given PQ-tree with leaves S . A full-constraint
contains only one order, i.e., the order of S is completely fixed. Given a partition S = S1 ·∪ . . . ·∪ Sk , a partition-constraint
is an order-constraint composed of all elements o of O S such that no two partitions Si and S j alternate in o. Note that a
PQ-tree can specify an order only up to reversal and thus a full-constraint is not a special case of a PQ-constraint. Moreover,
a partition-constraint of a set of six elements partitioned into three sets of size two each cannot be represented by a
PQ-tree. Thus partition-constraints and PQ-constraints are different concepts.

It is further possible to combine these types of constraints. A partitioned full-constraint restricts the orders of elements
in S according to a partition-constraint (partitions must not alternate) and additionally completely fixes the order within
each partition. Similarly, partitioned PQ-constraints require the elements in each partition to be ordered according to a PQ-
constraint. Clearly, this combination of partition-constraints with other order-constraints can be defined for any type of
order-constraints. Note that the families of order constraints of all given examples have compact representations as they
can be described by giving an ordering (full-constraint), a partition (partition-constraint), a PQ-tree (PQ-constraint) or a
partition together with either orders of total linear size (partitioned full-constraints) or a set of PQ-trees with total linear
size (partitioned PQ-constraints).

Consider a planar graph G . By constraining a vertex v of G , we mean that there is an order-constraint on the edges
incident to v . We then only allow planar embeddings of G where the edge-ordering of v is allowed by the order-constraint.
By constraining G , we mean that several (or all) vertices of G are constrained.

4.1. Flat-clustered graph

Consider a flat-clustered graph, i.e., a clustered graph where the cd-tree is a star. We choose the center μ of the star
to be the root. Let ν1, . . . , νk be the virtual vertices in skel(μ) corresponding to the children μ1, . . . , μk of μ. Note that
skel(μi) contains exactly one virtual vertex, namely twin(νi). The possible ways to embed skel(μi) restrict the possible
edge-orderings of twin(νi) and thus, by the characterization in Theorem 1, the edge-orderings of νi in skel(μ). Hence, the
graph skel(μi) essentially yields an order-constraint for νi in skel(μ). We consider c-planarity with differently restricted
instances, leading to different families of order-constraints. To show that testing c-planarity is equivalent to testing whether
skel(μ) is planar with respect to order-constraints of a specific family, we have to show two directions. First, the embeddings
of skel(μi) only yield order-constraints of the given family. Second, we can get every possible order-constraint of the given
family by choosing an appropriate graph for skel(μi).

T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315 311
Fig. 3. (a) A graph with a single cluster consisting of isolated vertices together with an illustration of its cd-tree. An edge-ordering of twin(νi) corresponds
to a planar embedding of skel(μi) if and only if no two partitions of the partitioning {{a, b}, {c, d, f }, {e}} alternate. (b) A graph with a single connected
cluster and its cd-tree. The valid edge-orderings of twin(νi) are represented by the shown PQ-tree.

Theorem 2. Testing c-planarity of flat-clustered graphs (i) where each proper cluster consists of isolated vertices; (ii) where each
cluster is connected; (iii) with fixed planar embedding; (iv) without restriction is linear-time equivalent to testing planarity of
a multi-graph with (i) partition-constraints; (ii) PQ-constraints; (iii) partitioned full-constraints; (iv) partitioned PQ-constraints,
respectively.

Proof. We start with case (i); see Fig. 3a. Consider a flat-clustered graph G and let μi be one of the leaves of the cd-tree. As
pert(μi) is a proper cluster, it consists of isolated vertices. Thus, skel(μi) is a set of vertices v1, . . . , v� , each connected (with
multiple edges) to the virtual vertex twin(νi). The vertices v1, . . . , v� partition the edges incident to twin(νi) into � subsets.
Clearly, in every planar embedding of skel(μi) no two partitions alternate. Moreover, every edge-ordering of twin(νi) in
which no two partitions alternate gives a planar embedding of skel(μi). Thus, the edges incident to νi in skel(μ) are
constrained by a partition-constraint, where the partitions are determined by the incidence of the edges to the vertices
v1, . . . , v� . One can easily construct the resulting instance of planarity with partition-constraints problem in linear time in
the size of the cd-tree. Note that for flat-clustered graphs the cd-tree has size linear in the size of G .

Conversely, given a planar multi-graph H with partition-constraints, we set skel(μ) = H . For every vertex of H we have
a virtual vertex νi in skel(μ) with corresponding cluster μi . We can simulate every partitioning of the edges incident to νi

by connecting edges incident to twin(νi) (in skel(μi)) with vertices such that two edges are connected to the same vertex
if and only if they belong to the same partition. Clearly, this construction can be performed in linear time.

Case (ii) is illustrated in Fig. 3b. By Lemma 2 the condition of connected clusters is equivalent to requiring that the
virtual vertex twin(νi) in the skeleton of any leaf μi of the cd-tree is not a cutvertex. The statement of the theorem follows
from the fact that the possible edge-orderings of non-cutvertices are PQ-representable and that any PQ-tree can be achieved
by choosing an appropriate planar graph in which twin(νi) is not a cutvertex (see Section 2).

In case (iii) the embedding of G is fixed. As in case (i), the blocks incident to twin(νi) in skel(μi) partition the edges
incident to νi in skel(μ) such that two partitions must not alternate. Moreover, the fixed embedding of G fixes the edge-
ordering of non-virtual vertices and thus it fixes the embeddings of the blocks in skel(μi). Hence, we get partitioned
full-constraints for νi . Conversely, we can construct an arbitrary partitioned full-constraint as in case (i).

For case (iv) the arguments from case (iii) show that we again get partitioned order-constraints, while the arguments
from case (ii) show that these order-constraints (for the blocks) are PQ-constraints. �

Recall that we assume the embedding of a graph to be fixed if the edge-ordering of every vertex is given. For discon-
nected graphs, this deviates from the commonly used notion of an embedding, where not only the edge-orderings but also
the relative positions of different connected components to each other are fixed. Assume that the graph G itself is discon-
nected and not only the edge-orderings but also the relative positions are fixed. Consider a leaf μi of the cd-tree. Then the
fixed relative positions for the components of G may prescribe how two blocks incident to the virtual vertex in skel(μi)

have to be nested. Thus, the partitioned full-constraints we get in case (iii) of the above theorem are further restricted.

4.1.1. Related work
Biedl [11] proposes different drawing-models for graphs whose vertices are partitioned into two subsets. The model

matching the requirements of c-planar drawings is called HH-drawings. Biedl et al. [12] show that one can test for the
existence of HH-drawings in linear time. Hong and Nagamochi [13] rediscovered this result in the context of 2-page book
embeddings. These results solve c-planarity for flat-clustered graphs if the skeleton of the root node contains only two
virtual vertices. By Theorem 2, this is equivalent to testing planarity with partitioned PQ-constraints for multi-graphs with
only two vertices. Thus, to solve c-planarity for flat-clustered graphs, one needs to solve an embedding problem on general
planar multi-graphs that is so far only solved (with an absolutely non-trivial algorithm) on a set of parallel edges. This
indicates that we are still far away from solving the c-planarity problem even for flat-clustered graphs.

312 T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315
Cortese et al. [14] give a linear-time algorithm for testing c-planarity of a flat-clustered cycle (i.e., G is a simple cycle)
if the skeleton of the cd-tree’s root is a multi-cycle. The requirement that G is a cycle implies that the skeleton of each
non-root node μ of T has the property that in skel(μ) the blocks incident to the parent vertex are simple cycles or double
edges. Thus, in terms of constrained planarity, they show how to test planarity of multi-cycles with partition-constraints
where each partition has size two. The result can be extended to a special case of c-planarity where the clustering is not
flat. However, the cd-tree fails to have easy-to-state properties in this case, which shows that the cd-tree perspective of
course has some limitations. Later, Cortese et al. [15] extended this result to the case where G is still a cycle, while the
skeleton of the root can be an arbitrary planar multi-graph that has a fixed embedding up to the ordering of parallel edges.
This is equivalent to testing planarity of such a graph with partition-constraints where each partition has size two.

Jelínková et al. [16] consider the case where each cluster contains at most three vertices (with additional restrictions).
Consider a cluster containing only two vertices u and v . If u and v are connected, then the region representing the cluster
can always be added, and we can omit the cluster. Otherwise, the region representing the cluster in a c-planar drawing
implies that one can add the edge uv to G , yielding an equivalent instance. Thus, one can assume that every cluster has
size exactly 3, which yields flat-clustered graphs. In this setting they give efficient algorithms for the cases that G is a cycle
and that G is 3-connected. Moreover, they give an FPT-algorithm for the case that G is an Eulerian graph with k nodes,
i.e., a graph obtained from a 3-connected graph of size k by multiplying and then subdividing edges. We now discuss the
relationship between our model and these results.

In case G is 3-connected, its planar embedding is fixed and thus the edge-ordering of non-virtual vertices is fixed.
Hence, given that each cluster has size three, one obtains partitioned full-constraints with the restriction that there are
only three partitions. Clearly, the requirement that G is 3-connected also restricts the possible skeletons of the root of the
cd-tree. It is an interesting open question whether planarity with partitioned full-constraints with at most three partitions
can be tested efficiently for arbitrary planar graphs. In case G is a cycle, one obtains partition-constraints with only three
partitions and each partition has size two. Note that this in particular restricts the skeleton of the root to have maximum
degree 6. Although this kind of constraints seem pretty simple to handle, the algorithm by Jelínková et al. is quite involved.
It seems like one barrier where constrained embedding problems become difficult is when there are partition-constraints
with three or more partitions (see also Theorem 4). The result about Eulerian graphs in a sense combines the cases where
G is 3-connected and a cycle. A vertex has either degree two and thus yields a partition of size two or it is one of the
constantly many vertices with higher degree, for which the edge-ordering is partly fixed.

Chimani et al. [17] give a polynomial-time algorithm for embedded flat-clustered graphs with the additional requirement
that each face is incident to at most two vertices of the same cluster. This basically solves planarity with partitioned full-
constraints with some additional requirements. We do not describe how these additional requirements exactly restrict the
possible instances of constrained planarity. However, we give some properties that shed a light on why these requirements
make planarity with partitioned full-constraints tractable.

Consider the skeleton skel(μ) of a (non-root) node μ of the cd-tree. As G is a flat-clustered graph, skel(μ) has a
single virtual vertex. Assume we choose planar embeddings with consistent edge orderings for all skeletons (i.e., we have
a c-planar embedding of G). Two non-virtual vertices u and v in skel(μ) that are incident to the same face of skel(μ) are
then also incident to the same face of G . Note that the converse is not true, as two vertices that share a face in G may be
separated in skel(μ) due to the contraction of disconnected subgraphs. As the non-virtual vertices of skel(μ) belong to the
same cluster μ, at most two of them can be incident to a common face of skel(μ). Thus, every face of skel(μ) has at most
two non-virtual vertices on its boundary.

This implies that the possible ways how the blocks incident to the virtual vertex of skel(μ) can be nested into each
other is heavily restricted. In particular, embedding multiple blocks next to each other into the same face of another block
is not possible, as this would result in a face of skel(μ) with more than two non-virtual vertices on its boundary. In
a sense, this enforces a strong nesting of the blocks. Thus, one actually obtains a variant of planarity with partitioned
full-constraints, where the way how the partitions can nest is restricted beyond forbidding two partitions to alternate.
These and similar restrictions on how partitions are allowed to be nested lead to a variety of new constrained planarity
problems. We believe that studying these restricted problems can help to deepen the understanding of the more general
partitioned full-constraints or even partitioned PQ-constraints.

4.2. General clustered graphs

Expressing c-planarity for general clustered graphs (not necessarily flat) in terms of constrained planarity problems is
harder for the following reason. Consider a leaf μ in the cd-tree. The skeleton of μ is a planar graph yielding (as in the
flat-clustered case) partitioned PQ-constraints for its parent μ′ . This restricts the possible embeddings of skel(μ′) and thus
the order-constraints one obtains for the parent of μ′ are not necessarily again partitioned PQ-constraints.

One can express this issue in the following, more formal way; also see Fig. 4. Let G be a planar multi-graph with
vertices v1, . . . , vn and designated vertex v = vn . The map ϕv

G maps a tuple (C1, . . . , Cn) where Ci is an order-constraint
on the edges incident to vi to an order-constraint C on the edges incident to v . The order-constraint C = ϕv

G(C1, . . . , Cn)

contains exactly those edge-orderings of v that one can get in a planar embedding of G that respects C1, . . . , Cn . Note that
C is empty if and only if there is no such embedding. Note further that testing planarity with order-constraints is equivalent
to deciding whether ϕv evaluates to the empty set. We call such a map ϕv a constrained-embedding operation.
G G

T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315 313
Fig. 4. A graph G with vertices {1, . . . , 4} and edges {a, . . . , f } (left). The constrained-embedding operation ϕ4
G (for the graph G with the designated

vertex 4) evaluated for the order constraints C1, . . . C4, resulting in the order constraint C of the designated vertex 4 (right). The constraint C1 allows both
possible edge-orderings for the vertex 1; for vertex 2, only one of the two orders is allowed; vertex 3 has a unique edge-ordering; C4 allows all 4! = 24
edge-orderings of the vertex 4. When embedding G , respecting the order constraints C1, . . . , C4, the edges a, c, d, and e have either the cyclic (clockwise)
order aedc or eadc. The edge f can be added at an arbitrary position in these orders, resulting in the eight possible edge-orderings for the vertex 4 allowed
by C .

The issue mentioned above (with constraints iteratively handed to the parents) boils down to the fact that partitioned
PQ-constraints are not closed under constrained-embedding operations. On the positive side, we obtain a general algo-
rithm for solving c-planarity as follows. Assume we have a family of order-constraints C with compact representations
that is closed under constrained-embedding operations. Assume further that we can evaluate the constrained embedding
operations in polynomial time on order-constraints in C . Then one can simply solve c-planarity by traversing the cd-tree
bottom-up, evaluating for a node μ with parent vertex ν the constrained-embedding operation ϕν

skel(μ)
on the constraints

one computed in the same way for the children of μ.
Clearly, when restricting the skeletons of the cd-tree or requiring properties for the parent vertices in these skeletons,

these restrictions carry over to the constrained-embedding operations one has to consider. More precisely, let R be a set of
pairs (G, v), where v is a vertex in G . We say that a clustered graph is R-restricted if (skel(μ), ν) ∈R holds for every node
μ in the cd-tree with parent vertex ν . Moreover, the R-restricted constrained-embedding operations are those operations
ϕv

G with (G, v) ∈ R. The following theorem directly follows.

Theorem 3. One can solve c-planarity of R-restricted clustered graphs in polynomial time if there is a family C of order-constraints
such that

• C has a compact representation,
• C is closed under R-restricted constrained-embedding operations, and
• every R-restricted constrained-embedding operation on order-constraints in C can be evaluated in polynomial time.

When dropping the requirement that C has a compact representation the algorithm becomes super-polynomial only in
the maximum degree d of the virtual vertices (the number of possible order-constraints for a set of size d depends only
on d). Moreover, if the input of ϕv

G consists of only k order constraints (whose sizes are bounded by a function of d),
then ϕv

G can be evaluated by iterating over all combinations of orders, applying a planarity test in every step. This gives an
FPT-algorithm with parameter d + k (running time O (f (d + k)p(n)), where f is a computable function depending only on
d + k and p is a polynomial). In other words, we obtain an FPT-algorithm where the parameter is the sum of the maximum
degree of the tree T and the maximum number of edges leaving a cluster. Note that this generalizes the FPT-algorithm by
Chimani and Klein [18] with respect to the total number of edges connecting different clusters.

Moreover, Theorem 3 has the following simple implication. Consider a clustered graph where each cluster is connected.
This restricts the skeletons of the cd-tree such that none of the parent vertices is a cutvertex (Lemma 1). Thus, we have
R-restricted clustered graphs where (G, v) ∈ R implies that v is not a cutvertex in G . We choose C as the PQ-constraints,
which are closed under R-restricted constrained-embedding operations as the valid edge-orderings of non-cutvertices are
PQ-representable and planarity with PQ-constraints is basically equivalent to planarity (one can model a PQ-tree with a
simple gadget; see Section 2). Thus, Theorem 3 directly implies that c-planarity can be solved in polynomial time if each
cluster is connected.

4.2.1. Related work
The above algorithm for clustered graphs with connected clusters resulting from Theorem 3 is more or less the one

described by Lengauer [1]. The algorithm was later rediscovered by Feng et al. [2] who coined the term “c-planarity”. The
algorithm runs in O (c) ⊆ O (n2) time (recall that c is the size of the cd-tree). Dahlhaus [19] improves the running time to
O (n). Cortese et al. [20] give a characterization that also leads to a linear-time algorithm.

Goodrich et al. [21] consider the case where each cluster is either connected or extrovert. Let μ be a node in the cd-tree
with parent μ′ . The cluster pert(μ) is extrovert if the parent cluster pert(μ′) is connected and every connected component
in pert(μ) is connected to a vertex not in the parent pert(μ′). They show that one obtains an equivalent instance by

314 T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315
replacing the extrovert cluster pert(μ) by one cluster for each of its connected components while requiring additional
PQ-constraints for the parent vertex in the resulting skeleton. In this instance every cluster is connected and the additional
PQ-constraints clearly do no harm.

Another extension to the case where every cluster must be connected is given by Gutwenger et al. [22]. They give an
algorithm for the case where every cluster is connected with the following exception. Either the disconnected clusters form
a path in the tree or for every disconnected cluster the parent and all siblings are connected. This has basically the effect
that at most one order-constraint in the input of a constrained-embedding operation is not a PQ-tree.

Jelínek et al. [5,4] assume each cluster to have at most two connected components and the underlying (connected) graph
to have a fixed planar embedding. Thus, they consider R-restricted clustered graphs where (G, v) ∈ R implies that v is
incident to at most two different blocks. The fixed embedding of the graph yields additional restrictions that are not so easy
to state within this model.

5. Cutvertices with two non-trivial blocks

The input of the Simultaneous PQ-Ordering problem consists of several PQ-trees together with child-parent relations
between them (the PQ-trees are the nodes of a directed acyclic graph) such that the leaves of every child form a subset of
the leaves of its parents. Simultaneous PQ-Ordering asks whether one can choose orders for all PQ-trees simultaneously in
the sense that every child-parent relation implies that the order of the leaves of the parent are an extension of the order of
the leaves of the child. In this way one can represent orders that cannot be represented by a single PQ-tree. For example,
adding one or more children to a PQ-tree T restricts the set of orders represented by T by requiring the orders of different
subsets of leaves to be represented by some other PQ-tree. Moreover, one can synchronize the orders of different trees that
share a subset of leaves by introducing a common child containing these leaves.

Simultaneous PQ-Ordering is NP-hard but efficiently solvable for so-called 2-fixed instances [8]. For every biconnected
planar graph G , there exists an instance of Simultaneous PQ-Ordering, the PQ-embedding representation, that represents all
planar embeddings of G [8]. It has the following properties.

• For every vertex v in G there is a PQ-tree T (v), the embedding tree, that has the edges incident to v as leaves.
• For every solution of the PQ-embedding representation, setting the edge-ordering of every vertex v to the order given

by T (v) yields a planar embedding. Moreover, one can obtain every embedding of G in this way.
• The instance remains 2-fixed when adding up to one child to each embedding tree.

A PQ-embedding representation still exists if every cutvertex in G is incident to at most two non-trivial blocks (blocks that
are not just bridges) [23].

Theorem 4. C-planarity can be tested in O (c2) ⊆ O (n4) time if every virtual vertex in the skeletons of the cd-tree is incident to at
most two non-trivial blocks.

Proof. Let G be a clustered graph with cd-tree T . For the skeleton of each node in T , we get a PQ-embedding representation
with the above-mentioned properties. Let μ be a node of T and let ν be a virtual vertex in skel(μ). By the above properties,
the embedding representation of μ contains the embedding tree T (ν) representing the valid edge-orderings of ν . Moreover,
for twin(ν) there is an embedding tree T (twin(ν)) in the embedding representation of the skeleton containing twin(ν).
To ensure that ν and twin(ν) have the same edge-ordering, one can simply add a PQ-tree as a common child of T (ν)

and T (twin(ν)). We do this for every virtual node in the skeletons of T . Due to the last property of the PQ-embedding
representations, the resulting instance remains 2-fixed and can thus be solved efficiently.

Every solution of this Simultaneous PQ-Ordering instance D yields planar embeddings of the skeletons such that every
virtual vertex and its twin have the same edge-ordering. Conversely, every such set of embeddings yields a solution for D . It
thus follows by the characterization in Theorem 1 that solving c-planarity is equivalent to solving D . The size of D is linear
in the size c of the cd-tree T . Moreover, solving Simultaneous PQ-Ordering for 2-fixed instances can be done in quadratic
time [8], yielding the running time O (c2). �

Theorem 4 includes the following interesting cases. The latter extends the result by Jelínek et al. [6] from four to five
outgoing edges per cluster.

Corollary 1. C-planarity can be tested in O (c2) ⊆ O (n4) time if every cluster and every co-cluster has at most two connected compo-
nents.

Proof. Note that the expansion graphs of nodes in skeletons of T are exactly the clusters and co-clusters. Thus, the expan-
sion graphs consist of at most two connected components. By Lemma 1 the cutvertices in skeletons of T are incident to at
most two different blocks. Thus, we can simply apply Theorem 4. �

T. Bläsius, I. Rutter / Theoretical Computer Science 609 (2016) 306–315 315
Corollary 2. C-planarity can be tested in O (n2) time if every cluster has at most five outgoing edges.

Proof. Let μ be a node with virtual vertex ν in its skeleton. The edges incident to ν in skel(μ) are exactly the edges that
separate exp(ν) from the rest of the graph exp(twin(ν)). Thus, if every cluster has at most five outgoing edges, the virtual
vertices in skeletons of T have maximum degree 5. With five edges incident to a vertex ν , one cannot get more than two
non-trivial blocks incident to ν . It follows from Theorem 4 that we can test c-planarity in O (c2) time. As we have a linear
number of cuts, each of constant size (at most 5), we get c ∈ O (n). �
6. Conclusion

In this paper we have introduced the cd-tree and we have shown that it can be used to reformulate the classic c-planarity
problem as a constrained embedding problem. Afterwards, we interpreted several previous results on c-planarity from this
new perspective. In many cases the new perspective simplifies these algorithms or at least gives a better intuition why
the imposed restrictions are helpful towards making the problem tractable. In some cases, the new view allowed us to
generalize and extend previous results to larger sets of instances.

We believe that the constrained embedding problems we defined provide a promising starting point for further research,
e.g., by studying restricted variants to further deepen the understanding of the c-planarity problem.

References

[1] T. Lengauer, Hierarchical planarity testing algorithms, J. ACM 36 (3) (1989) 474–509.
[2] Q.-W. Feng, R.F. Cohen, P. Eades, Planarity for clustered graphs, in: P. Spirakis (Ed.), Proceedings of the 3rd Annual European Symposium on Algorithms,

ESA’95, in: Lecture Notes in Computer Science, vol. 979, Springer, Berlin/Heidelberg, 1995, pp. 213–226.
[3] S. Cornelsen, D. Wagner, Completely connected clustered graphs, Discrete Appl. Math. 4 (2) (2006) 313–323.
[4] V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický, Clustered planarity: embedded clustered graphs with two-component clusters (extended abstract), in:

I.G. Tollis, M. Patrignani (Eds.), Proceedings of the 16th International Symposium on Graph Drawing, GD’08, in: Lecture Notes in Computer Science,
vol. 5417, Springer, Berlin/Heidelberg, 2009, pp. 121–132.

[5] V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický, Clustered planarity: embedded clustered graphs with two-component clusters, manuscript, http://
kam.mff.cuni.cz/~bernard/pub/flat.pdf, 2009.

[6] V. Jelínek, O. Suchý, M. Tesař, T. Vyskočil, Clustered planarity: clusters with few outgoing edges, in: I.G. Tollis, M. Patrignani (Eds.), Proceedings of
the 16th International Symposium on Graph Drawing, GD’08, in: Lecture Notes in Computer Science, vol. 5417, Springer, Berlin/Heidelberg, 2009,
pp. 102–113.

[7] G. Di Battista, F. Frati, Efficient c-planarity testing for embedded flat clustered graphs with small faces, J. Graph Algorithms Appl. 13 (3) (2009) 349–378.
[8] T. Bläsius, I. Rutter, Simultaneous PQ-ordering with applications to constrained embedding problems, in: Proceedings of the 24th Annual ACM–SIAM

Symposium on Discrete Algorithms, SODA’13, Society for Industrial and Applied Mathematics, 2013, pp. 1030–1043.
[9] K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci.

13 (3) (1976) 335–379.
[10] G. Di Battista, R. Tamassia, On-line maintenance of triconnected components with SPQR-trees, Algorithmica 15 (4) (1996) 302–318.
[11] T. Biedl, Drawing planar partitions I: LL-drawings and LH-drawings, in: Proceedings of the 14th Annual Symposium on Computational Geometry,

SoCG’98, ACM Press, 1998, pp. 287–296.
[12] T. Biedl, M. Kaufmann, P. Mutzel, Drawing planar partitions II: HH-drawings, in: J. Hromkovič, O. Sýkora (Eds.), Proceedings of the 24th Work-

shop on Graph-Theoretic Concepts in Computer Science, WG’98, in: Lecture Notes in Computer Science, vol. 1517, Springer, Berlin/Heidelberg, 1998,
pp. 124–136.

[13] S.-H. Hong, H. Nagamochi, Simpler algorithms for testing two-page book embedding of partitioned graphs, in: Z. Cai, A. Zelikovsky, A. Bourgeois (Eds.),
Proceedings of the 20th International Symposium on Computing and Combinatorics, COCOON’14, in: Lecture Notes in Computer Science, vol. 8591,
Springer, 2014, pp. 477–488.

[14] P.F. Cortese, G. Di Battista, M. Patrignani, M. Pizzonia, Clustering cycles into cycles of clusters, J. Graph Algorithms Appl. 9 (3) (2005) 391–413.
[15] P.F. Cortese, G. Di Battista, M. Patrignani, M. Pizzonia, On embedding a cycle in a plane graph, Discrete Math. 309 (7) (2009) 1856–1869.
[16] E. Jelínková, J. Kára, J. Kratochvíl, M. Pergel, O. Suchý, T. Vyskočil, Clustered planarity: small clusters in cycles and Eulerian graphs, J. Graph Algorithms

Appl. 13 (3) (2009) 379–422.
[17] M. Chimani, G. Di Battista, F. Frati, K. Klein, Advances on testing c-planarity of embedded flat clustered graphs, in: C. Duncan, A. Symvonis (Eds.), Pro-

ceedings of the 22nd International Symposium on Graph Drawing, GD’14, in: Lecture Notes in Computer Science, vol. 8871, Springer, Berlin/Heidelberg,
2014, pp. 416–427.

[18] M. Chimani, K. Klein, Shrinking the search space for clustered planarity, in: W. Didimo, M. Patrignani (Eds.), Proceedings of the 20th International
Symposium on Graph Drawing, GD’12, in: Lecture Notes in Computer Science, vol. 7704, Springer, Berlin/Heidelberg, 2013, pp. 90–101.

[19] E. Dahlhaus, A linear time algorithm to recognize clustered planar graphs and its parallelization, in: C.L. Lucchesi, A.V. Moura (Eds.), Proceedings of the
3rd Latin American Symposium, LATIN’98, in: Lecture Notes in Computer Science, vol. 1380, Springer, Berlin/Heidelberg, 1998, pp. 239–248.

[20] P.F. Cortese, G. Di Battista, F. Frati, M. Patrignani, M. Pizzonia, c-Planarity of c-connected clustered graphs, J. Graph Algorithms Appl. 12 (2) (2008)
225–262.

[21] M.T. Goodrich, G.S. Lueker, J.Z. Sun, c-Planarity of extrovert clustered graphs, in: P. Healy, N.S. Nikolov (Eds.), Proceedings of the 13th International
Symposium on Graph Drawing, GD’05, in: Lecture Notes in Computer Science, vol. 3843, Springer, Berlin/Heidelberg, 2006, pp. 211–222.

[22] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, R. Weiskircher, Advances in c-planarity testing of clustered graphs, in: M.T. Goodrich, S.G.
Kobourov (Eds.), Proceedings of the 10th International Symposium on Graph Drawing, GD’02, in: Lecture Notes in Computer Science, vol. 2528, Springer,
Berlin/Heidelberg, 2002, pp. 220–235.

[23] T. Bläsius, I. Rutter, Simultaneous PQ-ordering with applications to constrained embedding problems, Computing Research Repository, arXiv:1112.0245
[abs], 2011, 46 pp.

http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6C2D687074612D3839s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6663652D7063672D3935s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6663652D7063672D3935s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib63772D636363672D3036s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A6A6B6C2D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A6A6B6C2D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A6A6B6C2D63702D3039s1
http://kam.mff.cuni.cz/~bernard/pub/flat.pdf
http://kam.mff.cuni.cz/~bernard/pub/flat.pdf
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A7374762D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A7374762D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A7374762D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib64662D65637074652D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib62722D73706F616365702D3133s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib62722D73706F616365702D3133s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib626C2D74636F70692D3736s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib626C2D74636F70692D3736s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib64742D6F6D74632D3936s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib622D647070692D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib622D647070692D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib626B6D2D64707069692D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib626B6D2D64707069692D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib626B6D2D64707069692D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib686E2D73617474622D3134s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib686E2D73617474622D3134s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib686E2D73617474622D3134s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib636270702D636363632D3035s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib636270702D656370672D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A6B6B2D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6A6B6B2D63702D3039s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6364666B2D61746370652D3134s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6364666B2D61746370652D3134s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6364666B2D61746370652D3134s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib636B2D73737363702D3133s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib636B2D73737363702D3133s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib642D6C746172632D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib642D6C746172632D3938s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6362662D6370636363672D3038s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib6362662D6370636363672D3038s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib676C732D63706563672D3036s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib676C732D63706563672D3036s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib676A6C2D6163707463672D3032s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib676A6C2D6163707463672D3032s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib676A6C2D6163707463672D3032s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib62722D73706F616365702D3131s1
http://refhub.elsevier.com/S0304-3975(15)00894-4/bib62722D73706F616365702D3131s1

	A new perspective on clustered planarity as a combinatorial embedding problem
	1 Introduction
	1.1 Contribution and outline

	2 Preliminaries
	2.1 C-planarity on the plane and on the sphere

	3 The CD-tree
	3.1 The CD-tree characterization
	3.2 Cutvertices in skeletons

	4 Clustered and constrained planarity
	4.1 Flat-clustered graph
	4.1.1 Related work

	4.2 General clustered graphs
	4.2.1 Related work

	5 Cutvertices with two non-trivial blocks
	6 Conclusion
	References

