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Abstract

Satisfiability is considered the canonical NP-complete problem and is used as a starting
point for hardness reductions in theory, while in practice heuristic SAT solving algorithms
can solve large-scale industrial SAT instances very efficiently. This disparity between theory
and practice is believed to be a result of inherent properties of industrial SAT instances that
make them tractable. Two characteristic properties seem to be prevalent in the majority of
real-world SAT instances, heterogeneous degree distribution and locality. To understand
the impact of these two properties on SAT, we study the proof complexity of random
k-SAT models that allow to control heterogeneity and locality. Our findings show that
heterogeneity alone does not make SAT easy as heterogeneous random k-SAT instances have
superpolynomial resolution size. This implies intractability of these instances for modern
SAT-solvers. On the other hand, modeling locality with an underlying geometry leads to
small unsatisfiable subformulas, which can be found within polynomial time.

A key ingredient for the result on geometric random k-SAT can be found in the complexity
of higher-order Voronoi diagrams. As an additional technical contribution, we show an
upper bound on the number of non-empty Voronoi regions, that holds for points with
random positions in a very general setting. In particular, it covers arbitrary p-norms, higher
dimensions, and weights affecting the area of influence of each point multiplicatively. Our
bound is linear in the total weight. This is in stark contrast to quadratic lower bounds for
the worst case.

1 Introduction

Propositional satisfiability (SAT) is arguably among the most-studied problems for both theoret-
ical and practical research. Nonetheless, the gap between theory and practice is huge. In theory,
SAT is the prototypical hard problem and hardness of other problems is shown via reductions
from SAT. Achieving even a running time of O(2cn) for any c < 1 and n variables would be a
major breakthrough and a somewhat surprising one at that. On the contrary, reductions to
SAT are used to solve various problems appearing in practice, as state-of-the-art SAT solvers
can easily handle industrial instances with millions of variables.

This theory–practice gap does not come from the lack of a sufficiently precise theoretical
analysis of modern SAT solvers. They are actually provably slow on most instances, i.e., drawing
an instance uniformly at random yields a hard instance with probability tending to 1 for n → ∞,
if the clause-variable ratio is not too low or way too high [9, 21]. Instead, the discrepancy comes
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from the fact that industrial instances have properties that make them easier than worst-case
instances. In 2014, Vardi [59] wrote that “we have no understanding of why the specific sets of
heuristics employed by modern SAT solvers are so effective in practice” and that we need this
understanding to successfully advance SAT solving further.

In recent years, scientists have been studying properties of industrial SAT instances to gain
this understanding. By modeling SAT instances as graphs, e.g., with edges indicating inclusion of
variables in clauses, one can benefit from the extensive research conducted in the field of network
science. Two properties commonly observed in real-world networks are heterogeneity and locality.
Heterogeneity refers to the degree distribution, meaning that vertices have strongly varying
degrees. In fact, one usually observes a heavy-tailed distribution with many vertices of low
degree and few vertices of high degree. A common assumption is a power-law distribution [60],
where the number of vertices of degree k is roughly proportional to k−β . The constant β is called
the power-law exponent. Locality refers to the fact that edges tend to connect vertices that are
close in the sense that they remain well connected even when ignoring their direct connection.
This can also be seen as having strong community structures, with high connectivity within
communities and loose ties between communities.

With respect to these two properties, industrial SAT instances are similar to real-world
networks. In many cases, the variable frequencies are heterogeneous [1] and there is a high
level of locality [2]. The latter is often measured in terms of modularity. Inspired by network
science, researchers have studied models that resemble industrial instances with respect to these
properties. Particularly, Ansótegui et al. [3] introduced a power-law SAT model for heterogeneous
instances, which has been theoretically studied in terms of satisfiability thresholds [33–35]. A
different model with heterogeneous degree distributions has been studied by Cooper et al. [22],
Ansótegui et al. [4], and Omelchenko and Bulatov [52]. Moreover, Giráldez-Cru and Levy [40]
introduced a model in which variable weights lead to heterogeneity while an underlying geometry
facilitates locality. Comparing this to network models, the former model [3] is the SAT-variant
of Chung-Lu graphs [19, 20]. The latter [40] is based on the popularity-similarity model [53],
which is closely related to hyperbolic random graphs [44] and geometric inhomogeneous random
graphs [18].

Besides serving as somewhat realistic benchmarks for SAT competitions [39], these SAT
models can be used to study solver behavior depending on heterogeneity and locality. One can
experimentally observe that a high level of heterogeneity improves the performance of SAT solvers
that also perform well on industrial instances [3, 13]. Moreover, locality seems very beneficial as
solvers appear to implicitly use the locality of a given instance [40]. This coincides with the
findings of experiments on actual industrial instances that show that the locality (measured
using modularity) of an instance is a good predictor for solver performance [51, 62, 63].

Up to date, there are no theoretical results supporting these experimental observations.
On the contrary, it has been shown that instances generated by the community attachment
model [38], which enforces a community structure, are hard for modern SAT solvers [49]. With
this paper, we provide a theoretical foundation that matches the observations in practice by
studying the proof complexity of k-SAT instances (for constant k) drawn from the power-law SAT
model, and from a very general model with underlying geometry. The former was introduced by
Ansótegui et al. [3], the latter is a generalization of the geometric model by Giráldez-Cru and
Levy [40] in the same way as geometric inhomogeneous random graphs [18] are a generalization
of hyperbolic random graphs [44]. Our findings are that heterogeneous instances are hard
asymptotically almost surely1 in that modern SAT solvers require superpolynomial or even
exponential running time to refute unsatisfiable instances. On the contrary, instances with a
high level of locality facilitated by an underlying geometry are a. a. s. easy to solve. Our results

1Asymptotically almost surely (a. a. s.) refers to a probability that tends to 1 for n → ∞. With high probability
(w. h. p.) refers to the stronger requirement that the probability is in 1−O(1/n). Additionally, we say that an
event holds with overwhelming probability, if for every c > 0 it holds with probability at least 1−O(n−c).
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focus on unsatisfiable instances, i.e., on the case where a solver has to prove that no satisfying
assignment exists. This is typically much harder than finding a satisfying assignment, making
the unsatisfiable regime arguably more relevant. Besides these results on SAT, we provide
insights on the complexity of weighted higher-order Voronoi diagrams in higher dimensions,
which is of independent interest.

The power-law and geometric models both mimic specific properties observed in industrial
instances while trying to make as little additional assumptions as possible. Though this makes
the resulting instances arguably more realistic than, e.g., instances drawn uniformly at random,
we want to stress that even the geometric model is far from a perfect representation of industrial
instances. Thus, our results do not claim to completely explain the efficiency of modern SAT
solvers on industrial instances. However, to the best of our knowledge, we provide the first
theoretical result that links a high level of locality to provably more tractable instances, which
we believe to be a first step towards closing the theory–practice gap.

Outline

We state and discuss our main results and technical contributions in Section 2. Formal definitions
are in Section 3. A short outline of our core arguments is in Section 4, followed by the formal
proofs: lower bounds for the power-law model in Section 5, upper bounds on the complexity of
Voronoi diagrams in Section 6, and upper bounds for the geometric SAT model in Section 7.
To not distract from the core arguments, results we use that were either known before or are
straight-forward to prove are outsourced to Appendix A.

2 Results, Technical Contribution, Discussion

In this section, we state our results and discuss the contribution, also in context to previous
results. To make the results understandable, we briefly discuss, e.g., the probability distributions
over SAT formulas we study. These are short and not meant to be formal definitions. For
complete definitions, see Section 3.

2.1 Power-Law SAT

The power-law SAT model has four parameters: the number of variables n, the number of
clauses m, the number k of variables appearing in each clause, and a power-law exponent β. To
draw a formula, power-law weights with exponent β are assigned to the variables and then each
clause is generated independently by drawing k variables without repetition using probabilities
proportional to the weights. Each literal is negated with probability 1/2.

To discuss our first main contribution, let Φ be a formula drawn from the power-law model
with density at or above the satisfiability threshold, i.e., Φ is unsatisfiable at least with constant
probability. We show that, although it is likely that Φ is unsatisfiable, it is highly unlikely that
modern SAT solvers can figure that out in polynomial time. We prove this using resolution
proof complexity.

Resolution is a refutation technique for propositional and first-order logic introduced by [24].
If an application of resolution steps leads to a contradiction, the formula is unsatisfiable. The
sequence of resolved clauses then serves as a proof for unsatisfiability, also called a refutation
of the formula. The resolution proof system exhibits a strong connection to modern Davis–
Putnam–Logemann–Loveland (DPLL) and conflict-driven clause learning (CDCL) SAT solvers:
DPLL is polynomially equivalent to tree-like resolution [58] and CDCL with unlimited restarts
is polynomially equivalent to resolution [7, 54]. Thus, the minimum number of steps necessary
to derive a contradiction also yields a lower bound on the running time of solvers simulating
the same process. This number of steps is also called the resolution size of a formula, i. e.
the minimum number of resolution steps necessary to arrive at a contradiction. Equivalently,
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the width of a resolution proof is the size of the largest clause appearing in the proof and
the resolution width of a formula is the smallest width of any proof refuting that formula.
Interestingly, a lower bound w on the resolution width of a formula also implies a lower bound on
its resolution size [9]: every resolution proof of a formula in k-CNF has size exp(Ω((w − k)2/n))
and every tree-like resolution proof has size 2w−k.

We will show a lower bound for the resolution width of unsatisfiable formulas drawn from
the power-law model. Our results translate to lower bounds on the resolution size and thus to
matching lower bounds on the running time of conflict-driven clause learning (CDCL) solvers.
For DPLL solvers, which use tree-like resolution, the bounds are even stronger. We only consider
the resolution width of unsatisfiable instances. Thus, the probability bound we get is actually a
conditional probability conditioned on instances being unsatisfiable. Note that our bound does
not only hold above the satisfiability threshold, where a random formula Φ is a. a. s. unsatisfiable,
but also at the threshold, where it is unsatisfiable with constant probability.

Theorem 5.8. Let Φ be an unsatisfiable random power-law k-SAT formula with n variables,
m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent β > 2k−1

k−1 . Let ∆ = m/n be large enough so
that Φ is unsatisfiable at least with constant probability. Let ε, ε1, . . . , ε3 be constants with ε > 0,
ε1 = k−ε

2 − 1 > 0, ε2 = (k − ε) · β−2
β−1 − 1 > 0, and 0 < ε3 < (k2 − 1) · β−2

β−1 − 1. For the resolution
width w of Φ, it holds a. a. s. that:

(i) If β ∈
(
2k−1
k−1 , 3

)
and ∆ ∈ o (nε2), then w ∈ Ω

(
nε2/ε1∆−1/ε1

)
.

(ii) If β = 3 and ∆ ∈ o
(
nε1/ log1+ε1 n

)
, then w ∈ Ω

(
n ·∆−1/ε1/ log1+1/ε1 n

)
.

(iii) If β > 3 and ∆ ∈ o (nε1), then w ∈ Ω
(
n ·∆−1/ε1

)
.

(iv) If β > 2k−2
k−2 and ∆ ∈ o

(
nε3/ logε3 n

)
, then w ∈ Ω

(
n ·∆−1/ε3

)
.
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Figure 1: Exponent of the bound
(i) in Theorem 5.8. Dashed vertical
lines show where the bound (iv) takes
over.

The above lower bounds allow the density ∆ to be
super-constant (even polynomial), which is asymptotically
above the satisfiability threshold. For the sake of simplic-
ity, assume ∆ to be constant in the following. Starting
at the bottom (iii, iv), we get a linear bound for w if β is
sufficiently large, i.e., greater than 3 or (2k − 2)/(k − 2).
For β = 3 (ii), the bound is still almost linear. Note that
these results in particular imply exponential lower bounds
on the resolution size and thus on the running time of
CDCL and DPLL. For smaller β (i), we get a polynomial
bound for the width with exponent ε2/ε1; see Figure 1
for a plot with ε close to 0.

Interestingly enough, our bounds only hold for power
law exponents β > 2k−1

k−1 . This is complemented by a
previous result [34], which shows that the satisfiability threshold of power-law random k-SAT is
at density ∆ = Θ(1) for power law exponents β > 2k−1

k−1 and that asymptotically almost surely
instances with constant constraint densities are trivially unsatisfiable for power law exponents
β < 2k−1

k−1 . Thus, the resolution width is constant in the latter case.
Part iv of Theorem 5.8 is derived via lower bounds on the bipartite expansion of the clause-

variable incidence graph of these instances. These results can be of independent interest for
hypergraphs with edge size k and for random (0, 1)-matrices. Additionally, these expansion
properties yield lower bounds for the clause space complexity, which in turn gives lower bounds
on the tree-like resolution size of such formulas (Section 5.2). More precisely, this results in an
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exponential lower bound on the tree-like resolution size for β > 2k−3
k−2 . This is an improvement

of the bound obtained via resolution width.
It is interesting to note that this result on the non-geometric model supports the claim that

locality is a crucial factor for easy SAT instances. The lower bounds for the power-law model
are solely based on the fact that every set of clauses covers a comparatively large set of variables.
In other words, we only use that there are no clusters of clauses with similar variables, i.e., we
explicitly use the lack of locality.

2.2 Geometric SAT

The geometric model has the following parameters: n, m, and k have the same meaning as for
the power-law model. Moreover, w is a weight function assigning each variable v a weight wv

and T is the so-called temperature that controls the strength of locality by varying the impact
of the geometry. As underlying geometric space, we use the d-dimensional torus Td = Rd/Zd

(see Section 3) equipped with a p-norm with p ∈ N+ ∪∞. To draw a formula, the variables
and clauses are assigned random positions in Td. Then, for each clause, k variables are drawn
without repetition with probabilities depending on the variable weight and on the geometric
distance between clause and variable. In the extreme case of T = 0, each clause deterministically
includes the k closest variables (where closeness is a combination of geometric distance and
weight), while increasing the temperature T increases the probability for the inclusion of more
distant variables. For T → ∞, the model converges to uniform random SAT. Note that the
weights are a parameter of the model and not drawn randomly. We have the following theorem,
where W denotes the sum of all variable weights. The condition on the weights is in particular
satisfied by power-law distributed weights.

Theorem 7.12. Let Φ be a formula with n variables and m ∈ Θ(n) clauses drawn from the
weighted geometric model with ground space Td equipped with a p-norm, temperature T < 1,
W ∈ O(n), and wv ∈ O(n1−ε) for every v ∈ V and any constant ε > 0. Then, Φ contains a. a. s.
an unsatisfiable subformula of constant size, which can be found in O(n log n) time.

To briefly explain how we prove this, consider a simplified version where variables and clauses
are points in the Euclidean plane and each clause contains the k variables geometrically closest
to it (temperature T = 0). Now consider the equivalence relation obtained by defining two
points of the plane equivalent if and only if they have the same set of k closest variables. The
equivalence classes of this relation are the regions of the order-k Voronoi diagram of the variable
positions. With this connection, we can use upper bounds on the complexity of order-k Voronoi
diagrams [46] to prove the existence of small and easy to find unsatisfiable subformulas. We note
that this result is of asymptotic nature. In particular for small densities, the number of variables
n has to be very large before the instances actually get as easy as stated in Theorem 7.12.
Nevertheless, this results strongly suggests that an underlying geometry makes SAT instances
more tractable.

To extend the above argument to the general statement in Theorem 7.12, we extend the
complexity bounds for order-k Voronoi diagrams in various ways; see next section for more
details. Moreover, for non-zero temperatures, clauses no longer include exactly the k closest
variables but can, in principle, consist of any set of k variables. However, we can show that,
with high probability, a linear fraction of clauses behaves as in the T = 0 case. We note that
analyses of similar structures, such as hyperbolic random graphs, are often restricted to the
simpler but less realistic T = 0 case, e.g., [11, 12, 14, 48]. We believe that our analysis provides
insights on the non-zero temperature case that can be helpful for such related questions.

We note that our results seem to contradict the results of Mull et al. [49], stating that
(i) a strong community structure is not sufficient to have tractable SAT instances and that
(ii) the community attachment model [38], which enforces a community structure, generates
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hard instances. However, at a closer look, this is not a contradiction at all. Though measuring
the community structure, e.g., via modularity, is a good indicator for locality, the concept of
locality goes deeper. If the instance can be partitioned such that there are strong ties within
each partition and loose ties between partitions, then the instance has a strong community
structure. However, to have a high level of locality, this concept has to hierarchically repeat on
different levels of magnitude, i.e., there needs to be community structure within each partition
and between the partitions. To state this slightly differently, consider locality based on a notion
of similarity between objects (here: variables or clauses). In this paper, we use distances between
random points in a geometric space as a measure for similarity, which gives us a continuous
range of more or less similar objects. In contrast to that, in the above mentioned papers focusing
on a flat community structure [38, 49], similarity is a binary equivalence relation: two objects
are either similar or they are not.

2.3 Voronoi Diagrams

Consider a finite set of points, called sites, in a geometric space. The most commonly studied
type of Voronoi diagram assumes the 2-dimensional Euclidean plane as ground space and has one
Voronoi region for each site, containing all points closer to this site than to any other site. We
deviate from this default setting in four ways: (i) We allow an arbitrary constant dimension d,
where the ground space is the torus or a hypercube in Rd. (ii) We consider the order-k Voronoi
diagram, which has for every subset A of sites with |A| = k a (possibly empty) Voronoi region
containing all points for which A are the k nearest sites. The number of non-empty order-k
Voronoi regions is called the complexity of the diagram. (iii) The sites have multiplicative
weights that scale the influence of the different sites. Without loss of generality, we assume
the weights to be scaled such that the minimum is 1. (iv) We allow the p-norm for arbitrary
p ∈ N+ ∪∞.

Theorem 6.9. Let S be a set of n sites with minimum weight 1, total weight W , and random
positions on the d-dimensional torus equipped with a p-norm, for constant d. For every fixed k,
the expected number of regions of the weighted order-k Voronoi diagram of S is in O(W ). The
same holds for random sites in a hypercube.

To set this result into context, we briefly discuss previous work on the complexity of Voronoi
diagrams in different settings. See the book by Aurenhammer et al. [6] for a general overview on
Voronoi diagrams. To this end, we use the following theorem that relates the complexity in terms
of Voronoi regions (which is what we are concerned with in this paper) with the complexity in
terms of vertices.2

Theorem 6.2. Let S be a set of n weighted sites in general position in Rd equipped with a
p-norm. If the order-k Voronoi diagram has ℓ vertices, then the order-(k + d) Voronoi diagram
has Ω(ℓ) non-empty regions.

We note that, using insights from previous work, this theorem is not hard to prove. One
basically has to generalize the result by Lê [45] bounding the number of d-spheres going through
d+1 points in d-dimensional space to weighted sites, and then observe how the Voronoi diagram
changes in the construction by Lee [46] for d = 2, when going from order-k to order-(k + 1).
However, we are not aware of previous work stating this connection between vertices and
non-empty regions in higher orders explicitly.

2Although the Voronoi regions are not necessarily polytopes in the weighted setting, we adopt the notion
for polytopes and call the corners of Voronoi regions vertices. I.e., vertices are the 0-dimensional elements
(a.k.a. points) of the boundary, where higher-dimensional elements (a.k.a. edges, faces, etc.) intersect. They are
represented as small black dots in Figure 2.
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Figure 2: (a) Weighted Voronoi diagram (order-1) of the colored sites. Continuing the construc-
tion with n/2 high-weight sites on the left and n/2 low-weight sites towards the right yields
Θ(n2) vertices (small black dots). Note that each vertex lies on the boundary of three regions
and has thus equal weighted distance to its three closest sites. (b) The order-3 Voronoi diagram
for the same sites (excluding one). The colored boxes indicate the three closet sites. The order-1
diagram is shown in the background. Each order-1 vertex lies in the interior of an order-3 region
as it has equal weighted distance to its three closest sites. As at most two order-1 vertices share
an order-3 region, we get Ω(n2) order-3 regions. Theorem 6.2 generalizes this observation.

The four above-mentioned generalizations of the basic Voronoi diagram (higher dimension,
higher order, multiplicative weights, and different p-norms) have all been considered before.
However, to the best of our knowledge, not all of them together.

Higher-order Voronoi diagrams have been introduced by Shamos and Hoey [57]. Lee [46]
showed that the order-k Voronoi diagram in the plane (unweighted with Euclidean metric) has
complexity O(k (n− k)) (in terms of number of regions), which is linear for constant k. For the
1- and ∞-norm, Liu et al. [47] improved this bound to O(min{k (n − k), (n − k)2}). Closely
related to the 1-norm, Gemsa et al. [37] showed similar complexity bounds for higher-order
Voronoi diagrams on transportation networks of axis-parallel line segments. Bohler et al. [15]
show an upper bound of 2k (n − k) for the much more general setting of abstract Voronoi
diagrams. There, the metric is replaced by curves separating pairs of sites such that certain
natural (but rather technical) conditions are satisfied. One obtains normal Voronoi diagrams
when using perpendicular bisectors for these curves. This in particular shows that the 2k (n− k)
bound on the number of regions in the order-k Voronoi diagram holds for arbitrary p-norms in
2-dimensional space and for the hyperbolic plane. As the hyperbolic plane is closely related to
1-dimensional space with sites having multiplicative power-law weights [18], we suspect that the
bound by Bohler et al. [15] also covers this case.

In general one can say that higher-order Voronoi diagrams of unweighted sites in 2-dimensional
space are well-behaved in that they have linear complexity. This still holds true for arbitrary
p-norms. However, this picture changes for weighted sites or higher dimensions.

Voronoi diagrams with multiplicative weights were first considered by Boots [17]3 due to
applications in economics. Beyond that, multiplicatively weighted Voronoi diagrams have
applications in sensor networks [23], logistics [36] and the growth of crystals [25]. However,
even in the most basic setting of 2-dimensional Euclidean space and order 1, weighted Voronoi
diagrams can have quadratic complexity [5] (in terms of number of vertices). This comes from
the fact that Voronoi cells are not necessarily connected; see Figure 2a for the construction
of Aurenhammer and Edelsbrunner [5] that proves the lower bound. With Theorem 6.2, and
as illustrated in Figure 2, this implies that even the order-3 Voronoi diagram of weighted
sites in 2-dimensional Euclidean space has a quadratic number of non-empty regions. As a
special case, Theorem 6.9 shows that this complexity is only linear in the total weight for sites
positioned randomly in the unit square. Moreover, this also implies that the number of vertices
of the corresponding order-1 Voronoi diagram is linear. This nicely complements the result by
Har-Peled and Raichel [42], who show that the expected complexity of order-1 Voronoi diagrams

3In this paper, Voronoi regions are called Thiessen polygons.
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of sites in 2-dimensional Euclidean space with random weights is O(n polylog n). Only recently,
Fan and Raichel [32] showed that sites with weights chosen randomly form a constant-sized
set of possible weights yield Voronoi diagrams with linear complexity. Moreover, more closely
related, they show that the Voronoi diagram of sites with arbitrary weights and with random
positions chosen in the unit square has linear complexity in expectation. We are not aware
of any results concerning the complexity of Voronoi diagrams when combining multiplicative
weights with higher dimension, higher order or other norms.

For higher dimensions, even normal (first order, unweighted) Voronoi diagrams in 3-
dimensional Euclidean space can have Θ(n2) [43, 56] vertices. Theorem 6.2 thus implies
that the order-4 Voronoi diagram has a quadratic number of non-empty regions. Moreover, the
complexity of higher-order Voronoi diagrams in higher dimensions has been considered before
by Mulmuley [50], who obtains polynomial bounds with the degree of the polynomial depending
on the dimension. Our Theorem 6.9 in particular shows that this complexity is much lower,
namely linear, for the hypercube with randomly positioned sites. Moreover, via Theorem 6.2
this gives a linear bound on number of vertices in the normal order-1 Voronoi diagram in higher
dimensions. We note that this special case of our result coincides with a previous result by
Bienkowski et al. [10]. Similarly, Dwyer [28] showed that sites drawn uniformly from a higher
dimensional unit sphere (instead of a hypercube) yield Voronoi diagrams of linear complexity in
expectation. Moreover, due to Golin and Na [41] and Driemel et al. [26], the same is true for
random sites on 3-dimensional polytopes and random sites on polyhedral terrains, respectively.
Thus, though higher dimensional Voronoi diagrams can be rather complex in the worst case, these
results indicate that one can expect most instances to be rather well behaved. An alternative
explanation of why the complexity of practical instances is lower than the worst-case indicates
is given by Erickson [29, 30], who studies the complexity of 3-dimensional Voronoi diagrams
depending on the so-called spread of the sites.

The above results for higher dimensional Voronoi diagrams consider the Euclidean norm.
For general p-norms, Lê [45] showed that the complexity of the Voronoi diagram is bounded
by O(nc), where c is a constant independent of p but dependent on the dimension d. With the
same argument as above, Theorem 6.9 together with Theorem 6.2 implies a linear bound for this
complexity that holds in expectation. Moreover, Boissonnat et al. [16] show more precise bounds
of Θ(n⌈d/2⌉) and Θ(n2) for the ∞- and the 1-norm, respectively. Again, our result implies linear
bounds for random sites in this setting.

3 Formal Definitions

Here we provide formal definitions for all concepts we use throughout the paper, including the
power-law and geometric random SAT models, Resolution, and Voronoi diagrams.

k-SAT

We let x1, x2, . . . , xn denote Boolean variables that can be either true or false. A clause is a
disjunction of literals ℓ1 ∨ . . . ∨ ℓk, where each literal assumes a (possibly negated) variable.
For a literal ℓi let |ℓi| denote the variable of the literal. A formula Φ in conjunctive normal
form (CNF) is a conjunction of clauses c1 ∧ . . . ∧ cm and a formula in k-CNF is a conjunction of
clauses, where each clause contains exactly three distinct literals. We conveniently interpret a
Boolean formula in CNF as a set of clauses and a clause c both as a Boolean formula and as a
set of literals. We say that Φ is satisfiable if there exists an assignment of variables x1, . . . , xn
such that the formula evaluates to true.
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Power-Law Random k-SAT

The power-law model can be defined via the more general non-uniform model. To draw a k-SAT
formula from the non-uniform model, let n and m be the number of variables and clauses,
respectively, and let w1, . . . , wn be variable weights. We sample m clauses independently at
random. Each clause is sampled by drawing k variables without repetition with probabilities
proportional to their weights. Then each of the k variables is negated independently at random
with probability 1/2.

The power-law model for a power-law exponent β > 2 is an instantiation of the non-uniform
model with discrete power-law weights

wi = i
− 1

β−1 .

Resolution

The resolution proof system uses two rules, the resolution rule and the weakening rule. Given
two clauses a∨ x and b∨ x, where a and b are clauses and x is a Boolean variable, the resolution
rule states

a ∨ x b ∨ x

a ∨ b
,

i. e. the clause a ∨ b is a logical consequence of the two given clauses. The weakening rule states
that for any two clauses a and b it holds that

a

a ∨ b
,

i. e. if a holds, then a ∨ b holds as well. For a formula Φ = {c1, c2, . . . , cm} in CNF a resolution
derivation of a clause c from Φ is a sequence of clauses (d1, d2, . . . , c) such that each clause di
is either one of the initial clauses c1, . . . , cm or derived from previous clauses with either the
resolution rule or the weakening rule. A resolution refutation is a resolution derivation of the
empty clause. The size of a derivation is the number of clauses it contains. The size of a formula
in CNF is the size of a smallest refutation for it. The width of a derivation is the size of the
largest clause in it. The width of a formula in CNF is the smallest width of any refutation for it.

Graph Representation and Expansion

Let Φ be a SAT-formula with variable set V and clause set C. The clause-variable incidence
graph G(Φ) of Φ has vertex set C ∪V , with an edge between a clause and a variable if and only if
the clause contains the variable. Clearly, G(Φ) is bipartite. It is an (r, c)-bipartite expander if for
all C ′ ⊂ C with |C ′| ≤ r it holds that |N(C ′)| ≥ (1 + c) · |C ′|, where N(C ′) is the neighborhood
of C ′.

Geometric Ground Space

We regularly deal with points with random positions in some geometric space. With random
point, we refer to the uniform distribution in the sense that the probability for a point to lie in a
region A is proportional to its volume vol(A). For this to work, the volume of the ground space
has to be bounded. Canonical options are, e.g., a unit-hypercube or a unit-ball. These, however,
lead to the necessity of special treatment for points close to the boundary, which makes the
analysis more tedious without giving additional insights. To circumvent this, we use a torus as
ground space, which is completely symmetric.

The d-dimensional torus Td is defined as the d-dimensional hypercube [0, 1]d in which
opposite borders are identified, i.e., a coordinate of 0 is identical to a coordinate of 1.4 It

4For convenience reasons, we sometimes work with [−0.5, 0.5]d instead of [0, 1]d.
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is equipped with the p-norm as metric, for arbitrary but fixed p ∈ N+ ∪ {∞}. To define it
formally for the torus, let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two points in Td. The circular
difference between the ith coordinates is |pi − qi|◦ = min{|pi − qi|, 1− |pi − qi|}. With this, the
distance between p and q is

∥p− q∥ =

 p

√∑
i∈[d] |pi − qi|p◦ for p ̸= ∞,

maxi∈[d]{|pi − qi|◦} for p = ∞.

Random Points

We obtain the uniform distribution for a point p = (p1, . . . , pd) by drawing each coordinate pi
uniformly at random from [0, 1]. For two random points p and q, their distance ∥p− q∥ is a
random variable. Let Fdist(x) be its cumulative distribution function (CDF), i.e., Fdist(x) =
Pr
[
∥p− q∥ ≤ x

]
. To determine Fdist(x), fix the position of p. Then, for x ≤ 0.5, the set of

points of distance at most x to p is simply the ball Bp(x) of radius x around p, yielding

Fdist(x) = vol(Bp(x)) (1)

= Πd,p · xd for 0 ≤ x ≤ 0.5,

with Πd,p =

(
2Γ
(
1/p+ 1

))d
Γ
(
d/p+ 1

) ,

where Γ is the gamma function. Note that Πd,p only depends on d and p but is constant in x.
Moreover Π2,2 = π (thus the name Π), and Πd,∞ = limp→∞Πd,p = 2d. For distances x > 0.5,
the formula for Fdist(x) is more complicated (we basically have to subtract the parts reaching
out of the hypercube). However, for our purposes, it suffices to know Fdist(x) for x ≤ 0.5 and
use the obvious bound Fdist(x) ≤ 1 for x > 0.5.

Weighted Points and Distances

We regularly consider a fixed set of n points equipped with weights, which we call sites. For a

site si with weight wi, the weighted distance of a point p to si is ∥si − p∥/w1/d
i . For a fixed

value x, the set of points with weighted distance at most x are the points with ∥si−p∥ ≤ xw
1/d
i .

Note that the volume of this set is proportional to wi. Intuitively, the region of influence of a
site is thus proportional to its weight. To simplify notation in some places, we define normalized

weights ωi = w
1/d
i .5

Geometric Random k-SAT

In the geometric model, we sample positions for the variables and clauses uniformly at random
in the d-dimensional torus Td. For v ∈ V and c ∈ C, we use v and c to denote their positions,
respectively. Let w1, . . . , wn be variable weights that are normalized such that the smallest
weight is 1. Moreover, let W =

∑n
v=1wv. For a clause c and a variable v, define the connection

weight

X(c, v) =

(
wv

∥c− v∥d

)1/T

.

This is the reciprocal of the weighted distance between v and c raised to the power d/T . The k
variables for the clause c are drawn without repetition with probabilities proportional to X(c, v).

5We note, in the context of weighted Voronoi diagrams, it is common to only use the normalized weights (just
calling them “weights”). In the context of random networks, however, the non-normalized weights are more
common. As both notions have their advantages in different situations, we use both.
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Among all possible combinations, we choose which of the k variables to negate uniformly at
random, without repetition if possible, i.e., we only get the same clause twice if we have more
than 2k clauses with the same variable set. For T → 0 the model converges to the threshold
case where c contains the k variables with smallest weighted distance.

The connection weight X(c, v) is a random variable. We denote the CDF of X(c, v) with
FX(x). With the CDF for the distance between two random points in Equation (1), we obtain
the following; see Lemma A.2 for a proof:

FX(x) = 1−Πd,pwvx
−T for x ≥

(
2dwv

)1/T
. (2)

Voronoi Diagrams

Let S = {s1, . . . , sn} be a set of sites with weights w1, . . . , wn. A point p belongs to the (open)
Voronoi region of a site si if its weighted distance to si is smaller than its weighted distance
to any other site. The collection of all Voronoi regions is the Voronoi diagram of S. Order-k
Voronoi regions are defined analogously for subsets A ⊆ S with |A| = k, i.e., the region of A
contains a point p if and only if the weighted distances of p to all sites in A is smaller than
the weighted distance to any site not in A. More formally, p belongs to the order-k Voronoi
region of A if there exists a radius r such that ∥si − p∥ ≤ ωir for si ∈ A and ∥si − p∥ > ωir for
si /∈ A. Note that the order-k Voronoi region of A is potentially empty. The order-k Voronoi
diagram is the collection of all non-empty order-k Voronoi regions. Its complexity is the number
of such non-empty regions.

4 Core Arguments

Before delving into the technical details of our proofs in the subsequent sections, we briefly
discuss the core arguments.

4.1 Power-Law SAT

We use a framework that Ben-Sasson and Wigderson [9] introduced for the uniform SAT model.
We prove lower bounds for the resolution width, which imply lower bounds for the resolution
size and the tree-like resolution size, which then imply lower bounds for the running times of
CDCL and DPLL solvers, respectively.

To bound the resolution width, we essentially have to show that different clauses do not
overlap too heavily. Specifically, a formula has resolution width Ω(w) if (1) every set S of at
most w clauses contains at least |S| different variables and (2) every set S of 1

3w ≤ |S| ≤ 2
3w

clauses contains at least a constant fraction of unique variables.
We achieve the bounds in Theorem 5.8 (i–iii) by showing the above two properties directly.

For the bound in Theorem 5.8 (iv), we first observe that both properties are fulfilled if the
clause-variable incidence graph of a k-CNF formula Φ has high enough bipartite expansion.
Recall the definition of bipartite expansion from Section 3 and note how the requirement that
the neighborhood of clause vertices is large resembles the requirement that clauses do not overlap
too heavily. We show that G(Φ) is a bipartite expander asymptotically almost surely if Φ is
drawn from the power-law model, which yields the lower bound of Theorem 5.8 (iv).

Compared to the uniform case, the weights make the properties required for the lower bounds
less likely. Variables with high weight appear in many clauses, making the clauses less diverse.
Thus, it is less likely that every clause set covers a large variety of variables.
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4.2 Geometric SAT

To explain the core idea of our proof, consider the following simplified geometric model. Map n
variables and m clauses to distinct points in the 2-dimensional Euclidean plane (randomly or
deterministically). Build the SAT instance by including in each clause c the k variables with
the smallest geometric distance to c. Now consider the order-k Voronoi diagram defined by
the positions of the n variables. As a clause c contains the k closest variables, the k variables
contained in c are exactly the k variables defining the Voronoi region of c’s position. Independent
of the positions of the n variables, there are only at most 2k (n − k) regions in the order-k
Voronoi diagram [15]. Thus, if we have at least 2k2k (n− k) clauses, then, by the pigeonhole
principle, at least one Voronoi region contains 2k clauses. As k is considered to be a constant,
this number of clauses is linear in n, i.e., we still have constant density. Moreover, as repeating
the same clause (with the same variable negations) is avoided whenever possible, there is a set
of k variables that has a clause for every combination of literals. Thus, we have an unsatisfiable
subformula of constant size 2k, which implies low proof complexity.

This result can be varied and strengthened in multiple ways, e.g., by allowing weighted
variables, a higher dimensional ground space, or by softening the requirement that every clause
contains the k closest variables (model with higher temperature). In the following, we briefly
discuss how these generalizations can be achieved.

Abstract Geometric Spaces

The result by Bohler et al. [15] on the complexity of order-k Voronoi diagrams is very general
in the sense that it holds for abstract Voronoi diagrams. Roughly speaking, abstract Voronoi
diagrams are based on separating curves between pairs of points that take the role of perpendicular
bisectors. In this way, one can abstract from the specific geometric ground space. Whether a
point p is closer to site s1 or to site s2 is no longer determined by comparing distances ∥s1 − p∥
and ∥s2 − p∥ but by the curve separating s1 from s2. For this to work, the separating curves
have to satisfy a handful of basic axioms. These are for example satisfied by perpendicular
bisectors in the Euclidean or the hyperbolic plane. Thus, the above argumentation for low proof
complexity directly carries over to the hyperbolic plane, or more generally, to any abstract
geometric space satisfying the axioms.

Lower Density Via Random Clause Positions

Assume the variable positions are fixed. Now choose random positions for the clauses and observe
in which regions of the order-k Voronoi diagram they end up. We want to know whether there
is a region that contains at least 2k clauses. This comes down to a balls into bins experiment.
Each Voronoi region is a bin and each clause is a ball. Thus, there are O(n) bins and m balls.
Moreover, we are interested in the maximum load, i.e., the maximum number of balls that
land in a single bin. Due to a result by Raab and Steger [55], the maximum load is a. a. s. in
Ω( logn

log logn) if we throw Ω( n
polylogn) balls. Thus, even for a slightly sublinear number of balls, the

maximum load is superconstant. We note that this result holds for uniform bins. In our case, we
have non-uniform bins, as the probability for a clause to end up in a particular Voronoi region
is proportional to the area of the region. However, it is not hard to see that the result by Raab
and Steger [55] remains true for non-uniform bins; see Section A.5. Thus, even if the number
of clauses m is slightly sublinear in the number of variables n, we get a small unsatisfiable
subformula asymptotically almost surely if the Voronoi diagram has low complexity.

Positive or Negative Literals with Repetition

Above we assumed that we get the exact same clause with coinciding negations twice only if we
already have more than 2k clauses with the same set of k variables. Although this is arguably
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a reasonable assumption for the model, we can make a similar argument without it. Assume
instead that for each variable, we choose the positive and negative literal uniformly at random,
independently of all other choices. Moreover, assume for an increasing function f , that there are
f(n) clauses that have the same set of k variables. With the above balls into bins argument, we,
e.g., have f(n) ∈ Ω( logn

log logn). Then the probability that there is a combination of positive and

negative literals that we did not see at least once is at most 2k(1− 2−k)f(n). This probability
goes to 0 for n → ∞, i.e., a. a. s., there is an unsatisfiable subformula of constant size 2k.

Higher Dimension and Weighted Variables

At the core of our argument lies the fact that order-k Voronoi diagrams have linear complexity
in the plane. As already mentioned in Section 2.3, this is no longer true for order-k Voronoi
diagrams in higher dimensions or if the variables have multiplicative weights. A formal argument
for why this property breaks is in Section 6.1. However, for sites distributed uniformly at
random, we show in Section 6.2 that the complexity can be expected to be linear in the total
weight, even in the more general setting. Thus, using that the variables have random positions
(a requirement we did not need before), we can apply the above argument to obtain low proof
complexity.

Non-Zero Temperature

Non-zero temperatures make it so that clauses do not necessarily contain the k closest variables.
Instead, variables are included with probabilities depending on the distance. Thus, we cannot
simply look at the order-k Voronoi diagram to determine which variables are contained in a
given clause. We resolve this issue in Section 7. For this, we call a clause nice, if it behaves as
it would in the T = 0 case, i.e., if it includes the k closest variables. In Section 7.1 we show
that, in expectation, a constant fraction of clauses is actually nice. Moreover, in Section 7.2, we
show that the number of nice clauses is concentrated around its expectation. With this, we can
apply the same arguments as before to only the nice clauses, of which we have linearly many, to
obtain a low proof complexity.

4.3 Voronoi Diagrams

The worst-case lower bounds for the complexity of order-k Voronoi diagrams follow from existing
lower bounds on the number of vertices together with Theorem 6.2, which connects the complexity
in terms of regions with the complexity in terms of vertices. This connection is obtained by
observing how the order-k Voronoi diagram changes when increasing k.

For the average-case linear upper bound on the number of regions, the argument works
roughly as follows, assuming the unweighted case for the sake of simplicity. For each size-k
subset A of the sites, we devise an upper bound on the probability that A has a non-empty
order-k Voronoi region. This region is non-empty if and only if there are points that have A as
the k closest sites, i.e., if there is a ball that contains the sites of A and no other sites. With
this observation, we can use a win-win-style argument. Either the radius of this ball is small,
which makes it unlikely that all sites of A lie in the ball, or the ball is large, which makes it
unlikely that it contains no other sites.

5 Resolution Size of Power-Law Random k-SAT

5.1 The Direct Approach

As stated in Section 4.1, a formula has resolution width Ω(w) if (1) every set S of at most w
clauses contains at least |S| different variables and (2) every set S of 1

3w ≤ |S| ≤ 2
3w clauses
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contains at least a constant fraction of unique variables. In this section we are going to show
that both conditions are satisfied for power-law exponents β > 2k−1

k−1 and clause-variable ratios
∆ ∈ Ω(1). The first condition can also be interpreted in terms of bipartite expansion. It states
that the clause-variable incidence graph G(Φ) is a (w, 0)-bipartite expander. The following
lemma states bounds on w for which G(Φ) is a (w, 0)-bipartite expander asymptotically almost
surely. These bounds depend on the power-law exponent β as well as on the clause-variable
ratio ∆. Note that our choices of k and β in the lemma ensure ε1, ε2 > 0.

Lemma 5.1. Let Φ be a random power-law k-SAT formula with n variables, ∆ · n = m ∈ Ω(n)
clauses, k ≥ 3, and power-law exponent β > 2k−1

k−1 . Let ε1 = k · β−2
β−1−1 > 0 and ε2 = (k−2)β−2

β−1 >
0. Then G (Φ) has (w, 0)-bipartite expansion a. a. s. if

(i) β ∈
(
2k−1
k−1 , 3

)
, ∆ ∈ o

(
nε1/ logε2(n)

)
, and w ∈ O

(
nε1/ε2 ·∆−1/ε2

)
(ii) β = 3, ∆ ∈ o

(
n(k−2)/2/ log1+(k−2)/2(n)

)
, and w ∈ O

(
n · (∆ · lnn)−2/(k−2)

)
.

(iii) β > 3, ∆ ∈ o
(
nε2/ logε2 n

)
, and w ∈ O

(
n ·∆−1/ε2

)
.

Proof. We are interested in showing |N(C ′)| ≥ |C ′| for all C ′ ⊆ C with |C ′| ≤ w. We consider a
smallest C ′ such that |N(C ′)| ≤ |C ′| − 1 and denote it by Ĉ. Let Ei be the event that |Ĉ| = i.
Thus, Ei implies that for all C ′ ⊆ C with |C ′| < i it holds that |N(C ′)| ≥ |C ′|. This implies
that every variable in N(Ĉ) has to appear at least twice. Otherwise, one could delete a clause
with a unique variable from Ĉ to get a set Ĉ ′ with |Ĉ ′| = i− 1 and |N(Ĉ ′)| ≤ i− 2. This would
violate the minimality of Ĉ. Also, Ĉ must contain exactly i− 1 different variables. Otherwise,
we could remove any clause from Ĉ and violate minimality.

Now we bound
w∑
i=1

Pr (Ei) ≤
w∑
i=1

(
m

i

)
Pi,

where Pi is the probability to draw i clauses which contain at most i− 1 different variables and
all of them at least twice. We can now imagine the k · i variables of the i clauses to be drawn
independently with replacement. This would only increase the probability that the i clauses
contain at most i− 1 different variables and all of them at least twice. Thus, the probability
we consider is an upper bound. Now we consider the i− 1 different variables drawn. Then, we
choose the i− 1 pairs of positions where each variable appears for the first and second time. As
a rough upper bound we have at most((k·i

2

)
i− 1

)
≤

(
(k · i)2 · e
2 · (i− 1)

)i−1

many possibilities by simply choosing i − 1 from all
(
k·i
2

)
possible pairs. Now we bound the

probability that at these pairs of positions the same variables do appear. This is at most
∑n

j=1 p
2
j

per pair of positions. At the remaining k · i− 2 · (i− 1) positions we can only choose from at
most those i− 1 variables. Thus, the probabilities at all other positions are the sum of the i− 1
variable probabilities, which is at most the sum of the i− 1 highest variable probabilities. Let
F (i) be the sum of the i highest variable probabilities. Then it holds that

Pi ≤

(
(k · i)2 · e
2 · (i− 1)

)i−1

·

 n∑
j=1

p2j

i−1

· F (i− 1)k·i−2·(i−1)

≤ κi−1 ·

(
i2

i− 1

)i−1

·

 n∑
j=1

p2j

i−1

·
(
i− 1

n

)(k·i−2·(i−1))β−2
β−1
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for a constant κ = κ(k, β) > 0 that might depend on other parameters, which are fixed to
constants as well. We will use κ to collect all constant factors. According to Lemma A.1

n∑
j=1

p2j =


Θ

(
n
−2β−2

β−1

)
, β < 3;

Θ
(
lnn/n

)
, β = 3;

Θ
(
n−1

)
, β > 3.

Thus, our result depends on the power law exponent β. For β < 3 we get

Pi ≤ κi ·

(
i2

i− 1

)i−1

· n−(i−1)·2β−2
β−1 ·

(
i− 1

n

)(k·i−2·(i−1))β−2
β−1

≤ κi · n−k·i·β−2
β−1 · ii−1 · (i− 1)

(k·i−2·(i−1))β−2
β−1

≤ κi · n−k·i·β−2
β−1 · i(k·i−2·(i−1))β−2

β−1
+(i−1)

= κi · n−k·i·β−2
β−1 · i(k·i−2·i)β−2

β−1
+i+2β−2

β−1
−1

≤ κi · n−k·i·β−2
β−1 · i(k·i−2·i)β−2

β−1
+i

= κi · n−i·(ε1+1) · ii·(ε2+1),

where we used
(

i2

i−1

)i−1
≤ e · ii−1 in the second line and upper-bounded i− 1 in the base by i,

which we can do since (k · i− 2 · (i− 1))β−2
β−1 > 0 due to k ≥ 3 and β > 2. In the third line, we

used 2β−2
β−1 − 1 < 0, which holds since β < 3.

We can now see that

w∑
i=1

(
m

i

)
Pi ≤

w∑
i=1

(
m

i

)
· κi · n−i·(ε1+1) · ii·(ε2+1)

≤
w∑
i=1

κi ·∆i · n−i·ε1 · ii·ε2 , (3)

which holds since we assume m = ∆ · n and
(
m
i

)
≤
(
e·m
i

)i
. In order to have a sum which is o(1)

we want to ensure that
κ ·∆ · n−ε1 · iε2

is at most a constant smaller than 1. It is easy to check that this holds for

i ∈ O
(
nε1/ε2 ·∆−1/ε2

)
.

Thus, we can set w to this value. If we split the sum in Equation (3) at i0 = ⌊ε1 log n⌋,
the part with i ≤ i0 is upper-bounded by O

(
∆ · n−ε1 · i0ε2

)
∈ O

(
∆
(
logε2(n)/nε1

))
via a

geometric series. The part with i > i0 is upper-bounded by the first term. If we chose
w ∈ Θ(nε1/ε2 ·∆−1/ε2) so that ∆ · n−ε1 · iε2 ≤ c for a constant c ∈ (0, 1), the second term yields

at most cΘ(logn) = o(1). Thus, we get

(
Θ
(
nε1/ε2 ·∆−1/ε2

)
, 0

)
-expansion with probability at

least 1−Θ
(
∆
(
logε2(n)/nε1

))
or a. a. s. if ∆ ∈ o(nε1/(log(n))ε2).

For β > 3 we get

Pi ≤ κi ·

(
i2

i− 1

)i−1

· n−(i−1) ·
(
i− 1

n

)(k·i−2·(i−1))β−2
β−1

≤ κi ·
(
i

n

)i−1+(k·i−2·(i−1))β−2
β−1

.
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Thus,

r∑
i=1

(
m

i

)
Pi ≤

w∑
i=1

(
n

i

)i

· κi ·∆i ·
(
i

n

)i−1+(k·i−2·(i−1))β−2
β−1

=
w∑
i=1

κi ·∆i ·
(
i

n

)(k·i−2·i)β−2
β−1

+2β−2
β−1

−1

≤
w∑
i=1

κi ·∆i ·
(
i

n

)i·(k−2)β−2
β−1

≤
w∑
i=1

κi ·∆i ·
(
i

n

)i·ε2
,

which holds since i
n ≤ 1 and 2 · β−2

β−1 − 1 ≥ 0 for β ≥ 3. It is now easy to show that κ ·∆ ·
(
i/n
)ε2

is at most a small constant for w ∈ Θ(n ·∆−1/ε2) sufficiently small. By splitting the sum as
before, we can show ((n ·∆−1/ε2), 0)-expansion with probability at least 1−Θ(∆ · logε2 n/nε2)
or a. a. s. for ∆ ∈ o

(
nε2/ logε2 n

)
.

For β = 3 we get the same result as for β > 3, except for an additional factor of (lnn)i−1.
Thus,

w∑
i=1

(
m

i

)
Pi ≤

w∑
i=1

κi ·∆i ·
(
i

n

)i·(k−2)β−2
β−1

lni−1 n

≤
w∑
i=1

κi ·∆i ·

(
i · ln

2/(k−2) n

n

)i· k−2
2

.

By assuming

w ∈ Θ
(
n · (∆ · log n)−2/(k−2)

)
small enough, we can ensure that this sum is at most O(∆ · log n ·

(
log(n)/n

)(k−2)/2
) by

splitting the expression at ⌊i0 = lnn⌋ again. Hence, we get
(
Θ(n · (∆ · log n)−2/(k−2)), 0

)
-

expansion with probability at least 1 − O
(
∆ · lnn · (log(n)/n)(k−2)/2

)
or a. a. s. for ∆ ∈

o
(
n(k−2)/2/ log(k−2)/2+1(n)

)
.

Now we want to show the second requirement of Theorem 5.3, that every set S of 1
3w ≤

|S| ≤ 2
3w clauses contains at least a constant fraction of unique variables. Again, our choices of

k and β in the lemma ensure that we can always choose an ε > 0 with ε1, ε2 > 0.

Lemma 5.2. Let Φ be a random power-law k-SAT formula with n variables, ∆ · n = m ∈ Ω(n)
clauses, k ≥ 3, and power-law exponent β > 2k−1

k−1 . Let ε, ε1, ε2 be constant such that ε > 0,

ε1 = k−ε
2 − 1 > 0, and ε2 = (k − ε) · β−2

β−1 − 1 > 0. There is a W such that for all w ∈ ω(1) with

w ≤ W a. a. s. all sets C ′ of clauses from Φ with 1
3w ≤ |C ′| ≤ 2

3w contain at least ε · |C ′| unique
variables. It holds that:

(i) If β ∈
(
2k−1
k−1 , 3

)
and ∆ ∈ o (nε2), then W ∈ Θ

(
nε2/ε1 ·∆−1/ε1

)
.

(ii) If β = 3 and ∆ ∈ o
(
nε1/ lnε1+1 n

)
, then W ∈ Θ

(
n ·∆−1/ε1/ ln

1+ 1
ε1 n

)
.

(iii) If β > 3 and ∆ ∈ o (nε1), then W ∈ Θ
(
n ·∆−1/ε1

)
.
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Proof. Let ε ∈ (0,min{k− β−1
β−2 , k−2}) be a constant. The upper bounds on ε ensure ε1 > 0 and

ε2 > 0. We want to bound the probability that there is a set of clauses C ′ with 1
3w ≤ |C ′| ≤ 2

3w
and at most ε · |C ′| many unique variables. Let Pi be the probability that there is a set C ′ of
size i with that property. We assume the k · i Boolean variables to be drawn independently at
random, i. e., we allow duplicate variables inside clauses. This only decreases the probability
of having unique variables. Additionally, we split the probability into parts depending on the
number j of different variables that appear in C ′ in addition to the ε · i unique ones. It holds
that

Pi ≤
(
m

i

)
︸ ︷︷ ︸

choices of
clauses

·

k−ε
2

·i∑
j=1

(
k · i
ε · i

)
︸ ︷︷ ︸

possible posi-
tions for the
ε · i unique
variables

(((k−ε)·i
2

)
j

)
︸ ︷︷ ︸

possible positions
for the first

two appearances
of the j

other variables

· 1ε·i︸︷︷︸
probability to
draw a new
variable

 n∑
x=1

p2x

j

︸ ︷︷ ︸
probability

that variables
are same at
positions for
first two

appearances

· F (j)k·i−ε·i−2j︸ ︷︷ ︸
upper bound on

probability to draw
j chosen variables again

≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
k · i
ε · i

)ε·i
(
(k − ε)2 · i2

j

)j

·

 n∑
x=1

p2x

j

· F (j)k·i−ε·i−2j

≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

·

 n∑
x=1

p2x

j

·
(
j

n

)(k·i−ε·i−2j)β−2
β−1

,

where κ = κ(k, ε, β) > 0 is a constant that might depend on other parameters, which are fixed to
constants. Note that we estimated the probability to draw a new (unique) variable with 1. Thus,
this also accounts for the probability to draw a variable that is not actually new. Especially,
it accounts for the probability to draw one of the j non-unique variables. This means, the
expression we have is an upper bound for the probability to draw at most ε · i unique variables.
As in the proof of Lemma 5.1 we have to distinguish three cases depending on the power law
exponent β. Using Lemma A.1 we see that for β < 3

Pi ≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

·

 n∑
x=1

p2x

j

·
(
j

n

)(k·i−ε·i−2j)β−2
β−1

≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

· n−2j β−2
β−1 ·

(
j

n

)(k·i−ε·i−2j)β−2
β−1

= κi ·∆i · ni
(
1−(k−ε)β−2

β−1

)
· i−i ·

k−ε
2

·i∑
j=1

(
i2

j

)j

· j(k·i−ε·i−2j)β−2
β−1 . (4)

Now it remains to bound the inner sum. In order to do so, we will split it at j0 = 3−β
4 (k − ε) · i.

It is easy to see that 0 < 3−β
4 < 1

4 for 2 < β < 3, thus this choice of j is valid. For the first part
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of the sum it holds that

3−β
4

(k−ε)·i∑
j=1

(
i2

j

)j

· j(k·i−ε·i−2j)β−2
β−1 ≤ κi

3−β
4

(k−ε)·i∑
j=1

i2·j · j−j · i((k−ε)·i−2j)β−2
β−1

≤ κi · i(k−ε)·i·β−2
β−1

3−β
4

(k−ε)·i∑
j=1

i
2·j
β−1

≤ κi · i(k−ε)·i·β−2
β−1 · i2·

3−β
4

· k−ε
β−1

·i

= κi · i
k−ε
2

·i,

where we used j ≤ 3−β
4 (k − ε) · i and ((k − ε) · i− 2j) ≥ 0 in the first line. The derived sum in

the second line is a geometric series with base i
2

β−1 ≥ 1. This series is dominated by the term
with j = 3−β

4 (k− ε) · i. Additional factors of at most ci for positive constants c are hidden in κi.
For the second part of the sum it holds that

k−ε
2

·i∑
j= 3−β

4
(k−ε)·i

(
i2

j

)j

· j(k·i−ε·i−2j)β−2
β−1 ≤ κi

k−ε
2

·i∑
j= 3−β

4
(k−ε)·i

i2·j · j−j · i((k−ε)·i−2j)β−2
β−1

≤ κi · i(k−ε)·i·β−2
β−1

k−ε
2

·i∑
j= 3−β

4
(k−ε)·i

i
j−2·j β−2

β−1

≤ κi · i(k−ε)·i·β−2
β−1 · i

3−β
β−1

· k−ε
2

·i

= κi · i
k−ε
2

·i,

where we used j ≥ 3−β
4 (k− ε) · i in the second and a geometric series in the third line. The base

of the series is i
3−β
β−1 ≥ 1. Thus, the last term with j = k−ε

2 · i dominates and we get the shown
estimate with factors ci for positive constants c hidden in κi again.

Thus,
k−ε
2

·i∑
j=1

(
i2

j

)j

· j(k·i−ε·i−2j)β−2
β−1 ≤ κi · i

k−ε
2

·i

and plugging this into Equation (4) yields

Pi ≤ κi ·∆i · ni
(
1−(k−ε)β−2

β−1

)
· ii

(
k−ε
2

−1
)
= κi ·∆i · n−ε2·i · iε1·i.

Since we want to sum over all Pi with
1
3w ≤ i ≤ 2

3w for some w, it holds that

2
3
w∑

i= 1
3
w

Pi ≤

2
3
w∑

i= 1
3
w

κi ·∆i · n−ε2·i · iε1·i

≤

2
3
w∑

i= 1
3
w

(
κ ·∆ · n−ε2 · wε1

)i
This sums up to o(1) as soon as κ·∆·n−ε2 ·wε1 is a suitably small constant and w is super-constant.
In our case, we see that this holds for some

w ∈ O
(
nε2/ε1∆−1/ε1

)
.
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For β = 3 we get

Pi ≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

·

 n∑
x=1

p2x

j

·
(
j

n

)((k−ε)·i−2j)β−2
β−1

≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

·
(
lnn

n

)j

·
(
j

n

)((k−ε)·i−2j) 1
2

= κi ·∆i ·
(
n

i

)i

· n− k−ε
2

i

k−ε
2

·i∑
j=1

i2j · j
k−ε
2

i−2j · (lnn)j . (5)

We want to show that this inner sum is at most κi · (i · lnn)
k−ε
2

i. As before, we can split the
sum. This time we split it at j0 =

k−ε
4 i. For the first part we get

k−ε
4

i∑
j=1

i2j · j
k−ε
2

i−2j · (lnn)j ≤ κi ·

k−ε
4

i∑
j=1

i2j · i
k−ε
2

i−2j · (lnn)j

≤ κi · i
k−ε
2

i ·

k−ε
4

i∑
j=1

(lnn)j

≤ κi · i
k−ε
2

i · (lnn)
k−ε
4

i ,

where we used that k−ε
2 i− 2j ≥ 0 in the first line. The second line contains a geometric series

with base lnn ≥ 1 again that we estimated by its dominating term (lnn)
k−ε
4

i. The second part
of the sum yields

k−ε
2

i∑
j= k−ε

4
i

i2j · j
k−ε
2

i−2j · (lnn)j ≤ κi ·

k−ε
2

i∑
j= k−ε

4
i

i2j · i
k−ε
2

i−2j · (lnn)j

≤ κi · i
k−ε
2

i

k−ε
2

i∑
j= k−ε

4
i

(lnn)j ≤ κi · i
k−ε
2

i (lnn)
k−ε
2

i ,

since j ∈ Θ(i). Plugging this into Equation (5) gives us

Pi ≤ κi ·∆i ·
(
n

i

)i
(
1− k−ε

2

)
· (lnn)

k−ε
2

i = κi ·∆i ·
(
n

i

)−ε1·i
· (lnn)(ε1+1)·i .

As before, we can see that this is at most κi for some constant κ ∈ (0, 1) if

w ∈ O

(
n/ ln

1+ 1
ε1 n ·∆−1/ε1

)
is small enough.
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For β > 3 we get

Pi ≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

·

 n∑
x=1

p2x

j

·
(
j

n

)((k−ε)·i−2j)β−2
β−1

≤ κi ·∆i

(
n

i

)i

·

k−ε
2

·i∑
j=1

(
i2

j

)j

· n−j ·
(
j

n

)((k−ε)·i−2j)β−2
β−1

= κi ·∆i ·
(
n

i

)i

· n−(k−ε)β−2
β−1

i

k−ε
2

·i∑
j=1

i2j · nj
(
2β−2
β−1

−1
)
· j((k−ε)·i−2j)β−2

β−1
−j

. (6)

This time we are going to show that the inner sum is bounded by i
(k−ε)β−2

β−1
i ·
(
n
i

) k−ε
2

i
(
2β−2
β−1

−1
)
.

Again, we split the sum. This time at

j0 =
(k − ε)β−2

β−1

1 + 2β−2
β−1

i.

Our choice ensures ((k − ε) · i− 2j)β−2
β−1 − j ≥ 0 for j ≤ j0. Thus, in the first part of the sum all

exponents are positive. It now holds that

j
((k−ε)·i−2j)β−2

β−1
−j ≤ j

((k−ε)·i−2j)β−2
β−1

−j

0 ≤ κi · i((k−ε)·i−2j)β−2
β−1

−j

for some constant κ that we can incorporate in the κ we already have. In the second part of
the sum the exponent ((k − ε) · i− 2j)β−2

β−1 − j is negative. However, we know that the base is

j ≥ j0 =
(k−ε)β−2

β−1

1+2β−2
β−1

i. Thus,

j
((k−ε)·i−2j)β−2

β−1
−j ≤ j

((k−ε)·i−2j)β−2
β−1

−j

0 ≤ κi · i((k−ε)·i−2j)β−2
β−1

−j

as well. This yields

k−ε
2

·i∑
j=1

i2j · nj
(
2β−2
β−1

−1
)
· j((k−ε)·i−2j)β−2

β−1
−j

≤ κi ·

k−ε
2

·i∑
j=1

i2j · nj
(
2β−2
β−1

−1
)
· i((k−ε)·i−2j)β−2

β−1
−j

= κi · i(k−ε)β−2
β−1

i ·

k−ε
2

·i∑
j=1

(
n

i

)j
(
2β−2
β−1

−1
)

≤ κi · i(k−ε)β−2
β−1

i ·
(
n

i

) k−ε
2

i
(
2β−2
β−1

−1
)
,

where the last line holds, since 2β−2
β−1 − 1 > 0, which implies that we have a geometric series with

base at least one again, that we estimate by its dominating term, i. e. the term with j = k−ε
2 · i.

If we plug our estimate into Equation (6) this gives us

Pi ≤ κi ·∆i

(
n

i

)(
1− k−ε

2

)
i

= κi ·∆i

(
n

i

)−ε1·i
.
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We can now find a w ∈ Θ(n ·∆−1/ε1) small enough such that the property holds as desired.
In all three cases we can choose w in such a way that the probability for the property not

to hold is at most κ
w
3 for some constant κ ∈ (0, 1). This means, the property holds a. a. s. for

w ∈ ω(1).

The two properties we showed in Lemma 5.1 and Lemma 5.2 can be used to derive lower
bounds on resolution width via the following theorem by Ben-Sasson and Wigderson [9].

Theorem 5.3 ([9]). Let Φ be an unsatisfiable k-CNF formula with k ≥ 3. If there is a w ∈ N
such that

(i) for all sets of clauses C ′ with |C ′| ≤ w it holds that C ′ contains at least |C ′| different
Boolean variables and

(ii) for all sets of clauses C ′ with 1
3w ≤ |C ′| ≤ 2

3w it holds that C ′ contains at least ε · |C ′|
unique variables for some constant ε > 0.

then the resolution width of Φ is Ω(w).

Lemma 5.1 and Lemma 5.2 together with Theorem 5.3 imply Corollary 5.4. However,
Theorem 5.3 only works for unsatisfiable instances. Since the two lemmas do not condition
on instances being unsatisfiable, we also need to make sure that the probability for having
unsatisfiable instances is large enough. In particular, we have to guarantee that this probability is
larger than the error probabilities of Lemma 5.1 and Lemma 5.2. If the probability of generating
unsatisfiable instances is asymptotically larger than those error probabilities, the conditional
probability of our width lower bounds to hold conditioned on instances being unsatisfiable will
be approaching one. Since the error probabilities of the two lemmas are o(1), we want the
clause-variable ratio ∆ to be high enough for instances to be unsatisfiable with at least constant
probability. The resulting corollary is stated below. It only holds for unsatisfiable instances
as well, i. e. the probability bound on resolution width is actually a conditional probability
conditioned on instances being unsatisfiable.

Corollary 5.4. Let Φ be an unsatisfiable random power-law k-SAT formula with n variables,
m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent β > 2k−1

k−1 constant. Let ∆ = m/n be large
enough so that Φ is unsatisfiable at least with constant probability. Let ε, ε1, ε2 be constants with
ε > 0, ε1 = k−ε

2 − 1 > 0, and ε2 = (k − ε) · β−2
β−1 − 1 > 0. For the resolution width w of Φ, it

holds a. a. s. that:

(i) If β ∈
(
2k−1
k−1 , 3

)
and ∆ ∈ o (nε2), then w ∈ Ω

(
nε2/ε1 ·∆−1/ε1

)
.

(ii) If β = 3 and ∆ ∈ o
(
nε1/ logε1+1 n

)
, then w ∈ Ω

(
n ·∆−1/ε1/ log

1+ 1
ε1 n

)
.

(iii) If β > 3 and ∆ ∈ o
(
nε1+1

)
, then w ∈ Ω

(
n ·∆−1/ε1

)
.

Proof. If both Lemma 5.1 and Lemma 5.2 hold, we can use Theorem 5.3 to get the desired
bound on resolution width. As stated before, Theorem 5.3 only holds for unsatisfiable instances.
Thus, if a random formula Φ is unsatisfiable at least with constant probability, it holds that the
conditional probability for the bounds stated in the corollary to hold is at least

Pr (Φ unsat)− o(1)

Pr (Φ unsat)
= 1− o(1),

conditioned on Φ being unsatisfiable, where the o(1) term is the error probability from Lemma 5.1
and Lemma 5.2. We are going to show that the values of w from Lemma 5.2 are smaller than
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those from Lemma 5.1. The expansion bound from Lemma 5.1 also holds for those smaller
values of w due to the definition of bipartite expansion. Thus, the bound from Lemma 5.2 gives
us the maximum w we can achieve.

First, consider the case β ∈ (2k−1
k−1 , 3). Let ε3 = k β−2

β−1 − 1 and ε4 = (k − 2)β−2
β−1 . We want to

show that
nε2/ε1 ·∆−1/ε1 ≤ nε3/ε4 ·∆−1/ε4 . (7)

Both bounds only hold for
∆ ∈ o (nε2) ⊆ o

(
nε3/ logε4(n)

)
,

since ε2 = (k − ε)β−2
β−1 − 1 < k β−2

β−1 − 1 = ε3. It holds that

ε2/ε1 =
(k − ε) · β−2

β−1 − 1

k−ε
2 − 1

<
k · β−2

β−1 − 1

k
2 − 1

<
k β−2
β−1 − 1

(k − 2) · β−2
β−1

= ε3/ε4.

We can now distinguish four cases. First, assume ∆ ≥ 1. If ε1 ≤ ε4, then ∆−1/ε1 ≤ ∆−1/ε4 ,
which implies Inequality (7). If ε1 > ε4, we need to ensure

∆ ≤ n

(
ε3
ε4

− ε2
ε1

)
/
(

1
ε4

− 1
ε1

)
.

This is already the case, since we assume ∆ ∈ o(nε2) and ε2 ≤ ( ε3ε4 −
ε2
ε1
)/( 1

ε4
− 1

ε1
) due to ε1 > ε4

and ε3 ≥ ε2. Thus, Inequality (7) holds.
Now assume ∆ < 1. If ε1 ≤ ε4, we need to ensure that

∆ ≥ n
(
ε2
ε1

− ε3
ε4

)/( 1
ε1

− 1
ε4

)
.

This already holds, since we assume ∆ ∈ Ω(1) and ( ε2ε1 − ε3
ε4
)/( 1

ε1
− 1

ε4
) ≤ 0 due to ε1 ≤ ε4 and

ε2/ε1 ≤ ε3/ε4. Thus, Inequality (7) holds. If ε4 ≤ ε1, then ∆−1/ε1 ≤ ∆−1/ε4 and Inequality (7)
holds as well.

Now consider β = 3. We need to show that

n/ (lnn)
ε1+1
ε1 ∆−1/ε1 = n/ (lnn)

k−ε
k−ε−2 ∆−2/(k−ε−2) ∈ O(n · (∆ · lnn)−2/(k−2)).

Again, the left-hand side is from Lemma 5.2 and the right-hand side is from Lemma 5.1.
This holds, due to our assumption ∆ ∈ Ω(1) and since ε1 = k−ε

2 − 1 > 0 implies 0 <

ε < k − 2 and thus k−ε
k−ε−2 > 2

k−ε−2 > 2
k−2 . Additionally, the bound only holds up to ∆ ∈

o
(
n(k−ε−2)/2/ ln(k−ε)/2(n)

)
⊆ o
(
n(k−2)/2/ log(k−2)/2+1(n)

)
.

For β > 3 we have to show

n ·∆−1/ε1 ∈ O(n ·∆−1/ε4)

as well as ∆ ∈ o(nε1) ⊆ o
(
(n/ log n)ε4

)
. This holds since ε1 = k−ε

2 − 1 ≤ (k− 2)β−2
β−1 = ε4 due to

β > 3. This shows that in all three cases the bounds from Lemma 5.2 are smaller, thus giving
us the lower bounds on resolution width as stated in the corollary.

This is nearly the statement of Theorem 5.8. However, via bipartite expansion we can
already show linear resolution width at constant clause-variable ratios for β > 2k−2

k−2 instead
of β > 3. This gives a better bound for k ≥ 5. The bounds on bipartite expansion and the
resulting bounds on resolution width will be derived in the next section.
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5.2 A Lower Bound on Bipartite Expansion

In this section we show an improved bound on the bipartite expansion. We will use it to obtain
a linear lower bound on resolution width for β > 2k−2

k−2 , which is potentially smaller than 3, and
therefore improves the previous bound. Recall that linear resolution width implies exponential
resolution size, and thus also exponential tree-like resolution size. Moreover, our bound on
the bipartite expansion can also be used to bound the so-called resolution clause space, which
additionally yields an exponential lower bound on tree-like resolution size for β > 2k−3

k−2 as we
will see at the end of this section. The following lemma shows the bipartite expansion property.

Lemma 5.5. Let Φ be a random power-law k-SAT formula with n variables, m clauses, k ≥ 3,
power-law exponent β > 2k−3

k−2 , and let ε ∈ (0, (k − 1) · β−2
β−1 − 1) constant. If ∆ = m/n ∈

o
(
nε/ logε n

)
, then there exists an r ∈ Θ

(
n ·∆−1/ε

)
such that the clause-variable incidence graph

G(Φ) is an (r, c)-bipartite expander a. a. s. for c = (k − 1)− (1 + ε) · β−1
β−2 .

Proof. First, note that our choice of β > 2k−3
k−2 guarantees that the interval (0, (k − 1) · β−2

β−1 − 1)
from which we choose ε is not empty. This interval is chosen in such a way that c > 0 is
guaranteed. As in the proof of [8, Lemma 5.1], we define a bad event E , that G (Φ) is not an
(r, c)-bipartite expander. If E happens, then there is a set C ′ ⊆ C with 1 ≤ |C ′| ≤ r such that
|N(C ′)| < (1 + c) · |C ′|. Given a set C ′ ⊆ C = [m] of clause indices with |C ′| = i we want to
bound the probability Pi that the k · i indices of variables appearing in those clauses contain at
most (1 + c) · i different variables. Since clauses contain variables without repetition, it holds
that Pi is dominated by the probability to draw at most (1 + c) · i different variables when
drawing k · i Boolean variables independently at random. Now imagine sampling these k · i
variables in some arbitrary, but fixed order. It holds that the probability to draw a new variable
is at most 1, while the probability to draw an old variable is at most the probability to draw
one of the (1 + c) · i variables of maximum probability. As before, the sum of these probabilities
is denoted by F ((1 + c) · i). This gives us

Pi ≤
(
m

i

)
·
(

k · i
(1 + c) · i

)
· 1(1+c)·i · F ((1 + c) · i)k·i−(1+c)·i.

Note that this expression also captures the case that we draw fewer than (1 + c) · i different
variables, since the probability to draw a new variable is bounded by one and thus also captures
the probability that this new variable is in fact an old one. In the case of a power-law distribution,
we have

F ((1 + c) · i) ∼
(
(1 + c) · i

n

)β−2
β−1

due to Lemma A.1 and thus

Pi ≤
(
m

i

)
·
(

k · i
(1 + c) · i

)
·
(
(1 + c) · i

n

)(k−(1+c))·β−2
β−1

·i

≤
(
e ·m
i

)i

·
(

e · k
1 + c

)(1+c)·i
·
(
(1 + c) · i

n

)(k−(1+c))·β−2
β−1

·i

= κ(c, β, k)i ·∆i

(
i

n

)i((k−(1+c))·β−2
β−1

−1)

= κ(c, β, k)i ·∆i

(
i

n

)i·ε

for some constant κ(c, β, k) > 0, m = ∆ · n, and c = (k − 1)− (1 + ε) · β−1
β−2 .
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Summing over all i ≥ 1 now yields

Pr [E ] ≤
r∑

i=1

κ(c, β, k)i ·∆i ·
(
i

n

)i·ε

We split this sum into two parts, the first part from i = 1 to ⌊ε · log n⌋ and the second part from
⌈ε · log n⌉ to r. For the first part we get

⌊ε·logn⌋∑
i=1

κ(c, β, k)i ·∆i ·
(
i

n

)i·ε
≤

⌊ε·logn⌋∑
i=1

κ(c, β, k)i ·∆i ·
(
ε · log n

n

)i·ε

≤ 2 · κ(c, β, k) ·∆ ·
(
ε · log n

n

)ε

∈ O

(
∆

(
log n

n

)ε
)
,

which holds, since
∑m

i=1 α
i ≤ 2 · α for all m ≥ 1 and α < 1

2 . This holds for big enough values of
n and for ∆ ∈ o(nε/ logε n). For the second part we get

r∑
i=⌈ε·logn⌉

κ(c, β, k)i ·∆i ·
(
i

n

)i·ε
≤

r∑
i=⌈ε·logn⌉

2−i ∈ O

((
1

n

)ε
)
,

which holds if we choose
r ∈ O

(
n ·∆−1/ε

)
small enough so that ∆ ·

(
r
n

)ε
< 1

2·κ(c,β,k) .

This notion of bipartite expansion is connected to the resolution width of a formula. The
following corollary, implicitly stated by Ben-Sasson and Wigderson [9], formalizes this connection.

Corollary 5.6 ([9]). Let k ≥ 3 integer and constant, let ε > 0 constant, and let Φ be an
unsatisfiable Boolean formula in k-CNF. If there is a constant ε > 0 such that G(Φ) is a(
r, k+ε

2 − 1
)
-bipartite expander, then Φ has resolution width at least Ω(r).

Proof. Due to the definition of bipartite expansion, k+ε
2 > 1 ensures the first condition of

Theorem 5.3. We will show that the second condition is fulfilled as well. Let G(Φ) = (C, V,E)
and let C ′ ⊆ C with 1

3r ≤ |C ′| ≤ 2
3r. Let δC ′ denote the set of unique variables from C ′,

i. e. δC ′ =
{
v ∈ N(C ′) | |N(v) ∩ C ′| = 1

}
. As Ben-Sasson and Widgerson state in [9, proof of

Theorem 6.5] it holds that:

|N(C ′)| − |δC ′| ≤ (k · |C ′| − |δC ′|)/2,

which implies
|δC ′| ≥ 2|N(C ′)| − k · |C ′| ≥ ε · |C ′|

due to the
(
r, k+ε

2 − 1
)
-bipartite expansion. These two properties imply a resolution width of

Ω(r).

This result on the bipartite expansion of power-law random k-SAT allows us to derive the
following corollary on resolution width. Again, we require the clause-variable ratio ∆ to be high
enough for instances to be unsatisfiable with at least constant probability.
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Corollary 5.7. Let Φ be an unsatisfiable random power-law k-SAT formula with n variables,
m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent β > 2k−2

k−2 . Let ∆ = m/n be large enough so

that Φ is unsatisfiable at least with constant probability. For 0 < ε < k
2 · β−2

β−1 − 1 constant and

∆ ∈ o(nε/ logε n) it holds a. a. s. that Φ has resolution width w ∈ Ω(n ·∆−1/ε).

Proof. Due to Lemma 5.5 G(Φ) is a (Ω(n·∆−1/ε), c)-bipartite expander for c = (k−1)−(1+ε)β−1
β−2 .

With β > 2k−2
k−2 , it holds that we can choose an ε > 0 so that c > k

2 − 1. This means, the
requirement of Corollary 5.6 is fulfilled and implies the statement.

Together with Corollary 5.4 the former corollary implies Theorem 5.8.

Theorem 5.8. Let Φ be an unsatisfiable random power-law k-SAT formula with n variables,
m ∈ Ω(n) clauses, k ≥ 3, and power-law exponent β > 2k−1

k−1 . Let ∆ = m/n be large enough so
that Φ is unsatisfiable at least with constant probability. Let ε, ε1, . . . , ε3 be constants with ε > 0,
ε1 = k−ε

2 − 1 > 0, ε2 = (k − ε) · β−2
β−1 − 1 > 0, and 0 < ε3 < (k2 − 1) · β−2

β−1 − 1. For the resolution
width w of Φ, it holds a. a. s. that:

(i) If β ∈
(
2k−1
k−1 , 3

)
and ∆ ∈ o (nε2), then w ∈ Ω

(
nε2/ε1∆−1/ε1

)
.

(ii) If β = 3 and ∆ ∈ o
(
nε1/ log1+ε1 n

)
, then w ∈ Ω

(
n ·∆−1/ε1/ log1+1/ε1 n

)
.

(iii) If β > 3 and ∆ ∈ o (nε1), then w ∈ Ω
(
n ·∆−1/ε1

)
.

(iv) If β > 2k−2
k−2 and ∆ ∈ o

(
nε3/ logε3 n

)
, then w ∈ Ω

(
n ·∆−1/ε3

)
.

Additionally, Ben-Sasson and Galesi [8] state a theorem that directly connects bipartite
expansion and tree-like resolution size. An application of this theorem yields a slightly better
bound on tree-like resolution size than the ones derived from resolution width.

Theorem 5.9 ([8]). Let Φ be an unsatisfiable CNF and let G (Φ) = (U ∪ V,E) be the clause-
variable incidence graph of Φ. If G (Φ) is a (r, c)-bipartite expander then Φ has resolution clause

space of at least c·r
2+c and tree-like resolution size of at least exp

(
Ω( c·r

2+c)
)
.

Proof. [8, Theorems 4.2 and 3.3] state together that any bipartite graph that is an (r, c)-bipartite
expander has a resolution clause space of at least c·r

2+c . Thus, with [31, Theorem 1.6], it holds
that the resolution size for formulas whose clause-variable incidence graph is an (r, c)-bipartite

expander, is at least exp
(

c·r
2+c

)
.

This leads to the following corollary, which already asserts exponential tree-like resolution
size for constant clause-variable ratios at β > 2k−3

k−2 .

Corollary 5.10. Let Φ be an unsatisfiable random power-law k-SAT formula with n variables,
m = Ω(n) clauses, k ≥ 3, and power-law exponent β > 2k−3

k−2 . Let ∆ = m/n be large enough so

that Φ is unsatisfiable at least with constant probability. For 0 < ε < (k − 1) · β−2
β−1 − 1 constant

and ∆ ∈ o((n/ log n)ε), it holds that Φ has tree-like resolution size exp(Ω(n ·∆−1/ε)).

Proof. Using Lemma 5.5 we see that for β > 2k−3
k−2 the clause-variable incidence graph a. a. s. is

a (Θ(n ·∆−1/ε), c)-bipartite expander for some constant c > 0. Thus, Theorem 5.9 implies the
statement.

25



6 The Complexity of Voronoi Diagrams

We first show quadratic lower bounds on the complexity (number of non-empty regions) of
order-k Voronoi diagrams that already hold in rather basic settings. Afterwards, we consider
random point sets and prove a linear upper bound.

6.1 Worst-Case Lower Bounds

In this section, we show worst-case lower bounds on the number of non-empty regions of higher-
order Voronoi diagrams. As already mentioned in Section 2.3, our lower bounds are based on
previously known lower bounds on the number of vertices of Voronoi diagrams, in conjunction
with a new theorem connecting the number of vertices with the number of regions in higher
orders. This theorem relies on the fact that there are not too many different points with equal
distance to a set of d+ 1 sites in d-dimensional space. For the unweighted case and for p ̸= ∞,
the result in the next lemma was shown by Lê [45]. We extend it to weighted sites and p = ∞,
following along the lines of Lê’s proof [45] (at least for p ̸= ∞): (i) Observe that the points
with equal distance to the d+ 1 sites is the set of solutions to a system of polynomial equations.
(ii) Show that the so-called additive complexity of these polynomial equations is bounded by
a constant only depending on d. (iii) Apply [45, Proposition 3], giving an upper bound on
the number of solutions to a system of equations that only depends on d and on the additive
complexities of the equations.

Lemma 6.1. Let A be a set of d+ 1 weighted sites in general position6 in Rd equipped with a
p-norm. Then, the number of points with equal weighted distance to all sites in A only depends
on d.

Proof. Assume p ̸= ∞, and let s0, . . . , sd be d + 1 sites with normalized weights ω0, . . . , ωd.
Recall that the weighted distance between si and a point p is ∥si − p∥/ωi. Thus, p has the
same distance to all d+ 1 sites if, for all i ∈ [d], it satisfies

∥s0 − p∥
ω0

− ∥si − p∥
ωi

= 0. (8)

We note that this polynomial has the same form in the unweighted case [45, Equation 10], except
we have the additional factors 1/ω0 and 1/ωi.

Concerning (ii), it thus suffices to note that these additional factors do not significantly
increase the so-called additive complexity. We do not fully define the additive complexity
here, but rather cite the properties crucial for this proof. The additive complexity L+(P ) of a
polynomial P is defined to be 0 if P is a monomial. Moreover, by [45, Lemma 4], it holds that

L+(P1 + · · ·+ Pn) ≤ n− 1 + L+(P1) + · · ·+ L+(Pn),

L+(P
m) ≤ L+(P ), for any m ∈ N, and

L+(PQ) ≤ L+(P ) + L+(Q),

where all Pi, P , and Q are polynomials. With this, it is easy to see that the additive complexity
of the polynomial in Equation (8) is bounded by a constant only depending on d. In fact, the
last bound, L+(PQ) ≤ L+(P ) + L+(Q) in conjunction with the property that constants are
monomials with additive complexity 0, makes it so that the additional constant factors ω0 and
ωi do not increase the additive complexity at all. Thus, the additive complexity is bounded by
4d− 1 [45, Lemma 5].

6For a formal definition what general position means in this context, see [45]. As usual, the configurations
excluded by the assumption of general position have measure 0.
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Finally, applying [45, Proposition 3] directly yields the claim, which concludes the proof for
p ̸= ∞.

For p = ∞, we cannot use the same argument, as Equation (8) is not polynomial: ∥si − p∥
involves the maximum over all coordinates. However, for each si, there are only d possibilities
to which coordinate the maximum is evaluated, leading to dd+1 combinations. For each of these
combinations, we consider its own system of equations. Denote the resulting set of systems of
equations with E . Clearly, every solution for the system of equations in (8) is a solution to at
least one system in E . Thus, the number of solutions to (8) is bounded by the total number of
solutions to systems in E . Clearly, with the same argument as above, the number of solutions to
each system of equations in E is bounded by a constant only depending on d. As E contains
only dd+1 systems, this bounds the number of solutions to (8) by a constant only depending on
d.

With this, we can now prove the theorem establishing the connection between vertices and
non-empty regions.

Theorem 6.2. Let S be a set of n weighted sites in general position in Rd equipped with a
p-norm. If the order-k Voronoi diagram has ℓ vertices, then the order-(k + d) Voronoi diagram
has Ω(ℓ) non-empty regions.

Proof. We first show that a vertex of the order-k Voronoi diagram is an interior point of a
non-empty region of the order-(k + d) Voronoi diagram. Afterwards, we show that only a
constant number of different vertices can end up in the same region.

Let p ∈ Rd be a vertex of the order-k Voronoi diagram. Then p has equal weighted distance
to exactly d+ 1 sites (the sites are in general position). Let {s1, . . . , sd+1} = A ⊆ S be these
sites and let P be the ε-environment of p, i.e., a ball with sufficiently small radius ε centered
at p. For a point p′ ∈ P , sort all sites in S by weighted distance from p′. Then all sites in A
appear consecutive in this order. Moreover, we obtain almost the same order of S for every
p′ ∈ P . The only difference is that the sites of A might be reordered. Also, as p is a vertex
of the order-k Voronoi diagram, at least one site from A belongs to the k sites with smallest
weighted distance to p. It follows that the first k + d sites in this order completely include all
sites from A. Thus, the k + d closest sites are the same for all points in the ε-environment P
around p; let B be the set of these sites. It follows that B has non-empty Voronoi region in the
order-(k + d) Voronoi diagram as this region has p in its interior.

It remains to show that only a constant number of vertices of the order-k Voronoi diagram
can be contained in the same region of the order-(k + d) Voronoi diagram, i.e., the order-(k + d)
region belonging to B includes only a constant number of order-k vertices. As stated above,
every order-k vertex belongs to a subset A ⊆ B with |A| = d+ 1. There are only

(|B|
|A|
)
≤
(
k+d
d+1

)
such subsets A, which is constant for constant k and d. Moreover, every fixed subset A of d+ 1
sites is responsible for only a constant number of vertices due to Lemma 6.1. Thus, only a
constant number of order-k vertices end up in the same order-k + d region, which concludes the
proof.

Theorem 6.2 transfers some known lower bounds on the number of vertices of Voronoi
diagrams to lower bounds on the number of non-empty regions of order-k Voronoi diagrams. In
particular, we get the following corollaries.

Corollary 6.3. In the worst case, the order-4 Voronoi diagram of n (unweighted) sites in
3-dimensional Euclidean space has Ω(n2) non-empty regions.

Proof. In the worst case, the ordinary (order-1, unweighted) Voronoi diagram of n sites in
3-dimensional Euclidean space has Ω(n2) vertices [43, 56]. Applying Theorem 6.2 yields the
claim.
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Corollary 6.4. In the worst case, the order-3 Voronoi diagram of n weighted sites in 2-
dimensional Euclidean space has Ω(n2) non-empty regions.

Proof. In the worst case, the order-1 Voronoi diagram of n weighted sites in 2-dimensional
Euclidean space has Ω(n2) vertices [5]; also see Figure 2. Applying Theorem 6.2 yields the
claim.

6.2 Upper Bounds for Sites with Random Positions

Let S = {s1, . . . , sn} ⊆ Td be n randomly positioned sites with weights w1, . . . , wn. In the
following, we bound the complexity of the weighted order-k Voronoi diagram in terms of non-
empty regions. Recall from Section 3 that the torus Td is the hypercube [0, 1]d that wraps
around in every dimension in the sense that opposite sides are identified. However, the following
arguments do not require this property. Thus, the exact same results hold for Voronoi diagrams
in hypercubes.

For the normalized weights ω1, . . . , ωn, recall from Section 3, that the point p ∈ Td belongs
to the Voronoi region corresponding to A ⊆ S with |A| = k if there exists a radius r such that
∥p− si∥ ≤ ωir if si ∈ A and ∥p− si∥ > ωir if si /∈ A. Thus, A has non-empty order-k Voronoi
region if and only if there exists such a point p. Our goal in the following is to bound the
probability for its existence.

Our general approach to achieve such a bound is the following. The condition ∥p−si∥ ≤ ωir
for si ∈ A basically tells us the sites in A are either close together or that r has to be large.
In contrast to that, the condition ∥p − si∥ > ωir for si /∈ A tells us that many sites (namely
all n− k sites in S \A) have to lie sufficiently far away from p, which is unlikely if r is large.
How unlikely this is of course depends on r and thus on how close the sites in A lie together.
Therefore, to follow this approach, we first condition on how close the sites in A lie together.

To formalize this, consider a size-k subset A ⊆ S and assume without loss of generality that
A = {s1, . . . , sk}. The site in A with the lowest weight, without loss of generality s1, will play
a special role. We define the random variable RA to be

RA = max
i∈[k]

∥s1 − si∥
ω1 + ωi

. (9)

The intuition behind the definition of RA is the following. The weighted center between s1 and
si is the point p on the line between them such that ∥s1 − p∥ = ω1r and ∥si − p∥ = ωir for a
radius r ∈ R. Then RA is the maximum value for r over i ∈ [k]. In the unweighted setting, RA

is just half the maximum distance between s1 and any other site si. In a sense, RA describes
how close the sites in A lie together. Thus, it provides a lower bound on r.

Based on RA, we slightly relax the condition on A having non-empty Voronoi region. We
call A relevant if there exists a point p ∈ Td and a radius r ≥ RA such that ∥s1 − p∥ ≤ ω1r and
∥si − p∥ > ωir for i > k. The following lemma states that being relevant is in fact a weaker
condition than having non-empty order-k Voronoi region. Thus, bounding the probability that
a set is relevant from above also bounds the probability for a non-empty Voronoi region from
above.

Lemma 6.5. A subset of k sites that has a non-empty order-k Voronoi region is relevant.

Proof. Assume A = {s1, . . . , sk} has a non-empty order-k Voronoi region. Then there exists a
point p and a radius r such that ∥si − p∥ ≤ ωir if and only if i ≤ k. Thus, ∥s1 − p∥ ≤ ω1r and
∥si − p∥ > ωir for i > k clearly holds, and it remains to show r ≥ RA. From ∥si − p∥ ≤ ωir for
i ∈ [k] it follows that ∥s1−p∥+∥si−p∥ ≤ ω1r+ωir holds for any i ∈ [k]. Thus, by rearranging and
applying the triangle inequality, we obtain r ≥ (∥s1−p∥+∥si−p∥)/(ω1+ωi) ≥ ∥s1−si∥/(ω1+ωi).
This immediately yields r ≥ RA.
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Now we proceed to bound the probability that a set A is relevant. The following lemma
bounds this probability conditioned on the random variable RA. At its core, we have to bound
the probability of the event ∥si − p∥ > ωir for si /∈ A. For a fixed point p and a fixed radius
r, this is rather easy. Thus, most of the proof is concerned with eliminating the existential
quantifiers for p and r.

Lemma 6.6. For constants c1 and c2 depending only on d and p, it holds that

Pr
[
A is relevant | RA

]
≤ c1 min

si∈A
{wi} exp

−c2R
d
A

∑
si /∈A

wi

 .

Proof. As before, we assume that A = {s1, . . . , sk} and that s1 has minimum weight among
sites in A, i.e., minsi∈A{wi} = w1. By definition, A is relevant conditioned on RA, if and only if
there exists a radius r ≥ RA and point p ∈ Td such that ∥s1 − p∥ ≤ ω1r and ∥si − p∥ > ωir for
i > k, i.e., formally we have

∃r ≥ RA ∃p ∈ Td ∀i > k : ∥s1 − p∥ ≤ ω1r ∧ ∥si − p∥ > ωir. (10)

The core difficulties of bounding the probability for this event are the existential quantifiers
that quantify over the continuous variables r and p. In both cases, we resolve this by using an
appropriate discretization, for which we then apply the union bound.

We get rid of the existential quantifier for r by dividing the interval [RA,∞), which covers
the domain of r, into pieces of length at most RA. More formally, we split the event ∃r ≥ RA

with the desired property into the disjoint events ∃r ∈ [jRA, (j + 1)RA) for j ∈ N+. For a
fixed j, r ≥ jRA and ∥si − p∥ > ωir implies ∥si − p∥ > ωijRA. Moreover, r ≤ (j + 1)RA and
∥s1 − p∥ ≤ ω1r implies ∥s1 − p∥ ≤ ω1(j + 1)RA. Note that this completely eliminates the
variable r from the event, which lets us drop the existential quantifier for r. Thus, the event in
Equation (10) implies

∃j ∈ N+ ∃p ∈ Td ∀i > k : ∥s1 − p∥ ≤ ω1(j + 1)RA ∧ ∥si − p∥ > ωijRA. (11)

Note that the new existential quantifier for j is not an issue: as j is discrete, we can simply use
the union bound and sum over the probabilities we obtain for the different values of j. We will
later see that this sum is dominated by the first term corresponding to j = 1.

To deal with the existential quantifier for p, assume j ∈ N+ to be a fixed number. First note
that ∥s1 − p∥ ≤ ω1(j + 1)RA implies that p lies somewhat close to s1. We discretize the space
around s1 using a grid such that the point p is guaranteed to lie inside a grid cell. By choosing
the distance between neighboring grid vertices sufficiently small, we guarantee that p lies close
to a grid vertex. Then, instead of considering p itself, we deal with its closest grid vertex. To
define the grid formally, let ωmin = minni=k+1{ωi} be the minimum weight of sites not in A and

let x = ωminjRA/
p
√
d (x will be the width of our grid cells). To simplify notation, assume that

s1 is the origin. Otherwise, we can simply translate the grid defined in the following to be
centered at s1 to obtain the same result. Let Γ = {ℓx | ℓ ∈ Z ∧ |(ℓ− 1)x| ≤ ω1(j + 1)RA} be
the set of all multiples of x that are not too large. We use the grid defined by the Cartesian
product Γd. Then the following three properties of Γd are easy to verify.

(i) A point p with ∥s1 − p∥ ≤ ω1(j + 1)RA lies in a grid cell.

(ii) The maximum distance between a point in a grid cell and its closest grid vertex is
p
√
dx/2 = ωminjRA/2.

(iii) Γd has at most c′1(ω1jRA/x)
d = c1(ω1/ωmin)

d ≤ c1ω
d
1 vertices for constants c1 and c′1 only

depending on d and p.
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Going back to the event in Equation (11), let p be a point with ∥s1 − p∥ ≤ ω1(j + 1)RA

and ∥si − p∥ > ωijRA (for all i > k). By the first inequality and Property i, p lies in a grid
cell of Γd. Let p′ ∈ Γd be the grid vertex with minimum distance to p. Then, by Property ii,
∥p− p′∥ ≤ ωminjRA/2. Thus, using the triangle inequality and ∥si − p∥ > ωijRA, we obtain

∥si − p′∥ ≥ ∥si − p∥ − ∥p− p′∥ > ωijRA − ωminjRA

2
≥ ωijRA

2
.

It follows that the event in Equation (11) implies

∃j ∈ N+ ∃p′ ∈ Γd ∀i > k : ∥si − p′∥ >
ωijRA

2
.

For this event, we can now bound the probability. First note that ∥si − p′∥ > ωijRA/2 implies
that the ball of radius ωijRA/2 around p′ does not contain si. By Lemma A.3, the volume of
this ball intersected with [−0.5, 0.5]d is min{1, c2(ωijRA)

d} for a constant c2 depending only on
d and p. As the si are chosen independently and using that 1− x ≤ exp(−x) for 0 ≤ x ≤ 1, we
obtain

Pr

[
∀i > k : ∥si − p′∥ >

ωijRA

2

]
=

n∏
i=k+1

max
{
0, 1− c2 (ωijRA)

d
}

≤
n∏

i=k+1

exp
(
−c2 (ωijRA)

d
)

= exp

−c2j
dRd

A

n∑
i=k+1

ωd
i

 .

We resolve the two existential quantifiers for j and p′ using the union bound. Recall from

Property iii that the grid Γd contains only c1ω
d
1 vertices. Using that ωi = w

1/d
i , we obtain

Pr
[
A is relevant | RA

]
≤ Pr

[
∃j ∈ N+ ∃p′ ∈ Γd ∀i > k : ∥si − p′∥ >

ωijRA

2

]

≤
∞∑
j=1

c1w1 exp

−c2j
dRd

A

n∑
i=k+1

wi

 .

To conclude the proof, it remains to show that the sum over j is dominated by the first term
corresponding to j = 1. For this, note that

∞∑
j=1

exp
(
−xjd

)
= exp(−x) ·

∞∑
j=1

exp
(
−xjd

)
exp(−x)

= exp(−x) ·
∞∑
j=1

exp

(
−x
(
jd − 1

))

≤ exp(−x) ·
∞∑
j=1

(
exp(−x)

)j−1

As x is positive in our case, the sum is bounded by a constant due to the convergence of the
geometric series. This concludes the proof.

Now that we know the probability that A ⊆ S is relevant conditioned on RA, we want to
understand how RA is distributed. The following lemma gives an upper bound on its density
function.
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Lemma 6.7. There exists a constant c depending only on k, d, and p, such that the density
function fRA

(x) of the random variable RA satisfies

fRA
(x) ≤ cxdk−d−1 1

min
si∈A

{wi}
∏
si∈A

wi.

Proof. The density function fRA
(x) is the derivative of the distribution function FRA

(x) =
Pr [RA ≤ x]. Thus, we have to upper bound the slope of Pr [RA ≤ x]. As before, we assume that
A = {s1, . . . , sk} and that s1 has minimum weight among sites in A, i.e., minsi∈A{wi} = w1.
Recall the definition of RA in Equation (9). It follows directly that RA ≤ x if and only if
∥s1 − si∥/(ω1 + ωi) ≤ x for all i ∈ [k]. Note that this clearly holds for i = 1. For greater i,
this is the case if and only if si lies in the ball Bs1((ω1 + ωi)x) of radius (ω1 + ωi)x around s1.
To simplify notation, we denote this ball with B(xi) in the following. Note that the volume
vol(B(xi)) is exactly the probability for si to lie sufficiently close to s1. As the positions of the
different sites si are independent, we obtain

FRA
(x) = Pr [RA ≤ x] =

k∏
i=2

vol
(
B(xi)

)
.

To upper bound the derivative of this, we have to upper bound the growth of vol(B(xi))
depending on xi. For sufficiently small xi, this volume is given by the volume of a ball in Rd.
For larger xi, due to the fact that our ground space7 is bounded, the growth of this volume
slows down. Thus, to get an upper bound on the derivative, we can simply use the volume of a
ball in Rd. Thus, for appropriate constants c1 and c2 only depending on d and p, we obtain

d

dx
vol
(
B(xi)

)
≤ d

dx
c1
(
(ω1 + ωi)x

)d ≤ d

dx
c2 (ωix)

d =
d

dx
c2wix

d.

With this, it follows that

fRA
(x) =

d

dx
FRA

(x) ≤ d

dx

k∏
i=2

(
c2wix

d
)
,

which immediately yields the claimed bound.

By Lemma 6.6, we know the probability for a set A to be relevant conditioned on RA and
by Lemma 6.7 we know how RA is distributed. Based on this, we can bound the unconditional
probability that A is relevant.

Lemma 6.8. Let A ⊆ S. For a constant c only depending on k, d, and p, the probability that A
is relevant satisfies

Pr [A is relevant] ≤ c

∏
si∈Awi(∑

si /∈Awi

)k−1
.

Proof. Let A ⊆ S and let RA be the random variable as defined before; see Equation (9). Note
that 0 ≤ RA ≤ p

√
d. By the law of total probability, we have

Pr [A is relevant] =

∫ p√
d

0
Pr
[
A is relevant | RA = x

]
· fRA

(x) dx.

Using Lemma 6.6 and Lemma 6.7, we obtain

Pr
[
A is relevant | RA = x

]
· fRA

(x) ≤ c1
∏
si∈A

wi exp

−c2x
d
∑
si /∈A

wi

xdk−d−1,

7Again, this is true for the torus as well as for the Hypercube.
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for constants c1 and c2 only depending on k, d, and p. Ignoring the factors independent of x for
now, this expression has the form

xαd−1 exp
(
−βxd

)
with α = k − 1 and β = c2

∑
si /∈A

wi,

which lets us apply Lemma A.4 to bound the integral. We obtain

Pr [A is relevant] = c1
∏
si∈A

wi ·
∫ p√

d

0
xαd−1 exp

(
−βxd

)
dx

≤ c1
∏
si∈A

wi ·
Γ (α)

βαd
.

As k is an integer, Γ(α) = Γ(k− 1) = (k− 2)!, which is constant. Thus, substituting α and β by
its corresponding values and aggregating all constant factors into c yields

Pr [A is relevant] ≤ c

∏
si∈Awi(∑

si /∈Awi

)k−1
,

which is exactly the bound we wanted to prove.

Having bound the probability that a specific subset of sites A ⊆ S of size k is relevant, we
can now bound the expected total number of relevant subsets. By Lemma 6.5, this also bounds
the number of non-empty Voronoi regions.

Theorem 6.9. Let S be a set of n sites with minimum weight 1, total weight W , and random
positions on the d-dimensional torus equipped with a p-norm, for constant d. For every fixed k,
the expected number of regions of the weighted order-k Voronoi diagram of S is in O(W ). The
same holds for random sites in a hypercube.

Proof. For every subset A ⊆ S with |A| = k, let XA be the indicator random variable that has
value 1 if and only if A has non-empty order-k Voronoi region. Moreover, let X be the sum of
these random variables. Note that E [X] is exactly the quantity, we are interested in. Using
linearity of expectation, we obtain

E [number of regions] = E [X] =
∑
A⊆S
|A|=k

E [XA]

Due to Lemma 6.5, a subset A with non-empty Voronoi region is also relevant. Thus, E [XA] ≤
Pr [A is relevant] and Lemma 6.8 yields∑

A⊆S
|A|=k

E [XA] ≤
∑
A⊆S
|A|=k

c

∏
si∈Awi(∑

si /∈Awi

)k−1
. (12)

For technical reasons, we assume c to be the maximum of 1 and the constant from Lemma 6.8.
We continue by proving the following claim:∑

A⊆S
|A|=k

E [XA] ≤ 4k
2
cW (13)

In addition to implying the theorem, this claim specifies a constant that comes on top of c,
which is crucial for the rest of the proof.
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We first prove the claim for the situation, in which W is not dominated by the highest k
weights. Afterwards, we deal with the other somewhat special case. More formally, let the
weights w1, . . . , wn be sorted increasingly and consider the case that

∑n−k
i=1 wi ≥ 4−kW , i.e., if

we leave out the k largest weights, we still have a significant portion of the total weight. We can
use this to estimate the denominator in Equation (12):∑

A⊆S
|A|=k

c

∏
si∈Awi(∑

si /∈Awi

)k−1
≤
∑
A⊆S
|A|=k

c

∏
si∈Awi(

4−kW
)k−1

=4k (k−1)c ·
∑

A⊆S,|A|=k

∏
si∈Awi

W k−1
.

To bound the fraction by W , observe that the binomial theorem yields

W k =

 n∑
i=1

wi

k

≥
∑
A⊆S
|A|=k

∏
si∈A

wi,

as each summand on the on the right-hand side also appears on the left-hand side. This proves
the claim in Equation (13) for the case

∑n−k
i=1 wi ≥ 4−kW .

For
∑n−k

i=1 wi < 4−kW , assume for contradiction that the claim in Equation (13) does not
hold for every set of n weights. Then there exists a minimum counterexample, i.e., a smallest
number of n weights such that the expected number of non-empty regions exceeds 4k

2
cW . We

show that, based on this assumption, we can construct an even smaller counterexample; a
contradiction. First note that n > 2k for every counterexample, as there are fewer than 4k

2
cW

subsets otherwise (recall that c ≥ 1).
Now let w1, . . . , wn be the minimum counterexample and again assume that the weights

are ordered increasingly. Moreover, fix the coordinates of the sites s1, . . . , sn and consider two
order-k Voronoi diagrams: one on the set of all sites S = {s1, . . . , sn}, and the one on all
but the k heaviest sites S′ = {s1, . . . , sn−k} (note that this is well defined as n > 2k). In the
following, we call the former Voronoi diagram V and the latter V ′. We define a mapping from
the non-empty regions of V to non-empty regions of V ′. Let A ⊆ {s1, . . . , sn} be a subset of
size k with non-empty region in V and let p be an arbitrary point in this region. Moreover,
let A′ be the set of sites corresponding to the region of V ′ containing p. Then we map the
region of A to the region of A′. Note that A and A′ share all sites that have not been deleted:
A ∩ A′ = A ∩ S′. Thus, any site A that is mapped to A′ must satisfy A ⊆ A′ ∪ (S \ S′). This
limits the number of different regions in V that are mapped to the same region of V ′ to at most
4k. Thus, the number of regions in V ′ is at least 4−k times the number of regions in V. As this
holds for arbitrary coordinates, this also holds for the expected number of non-empty regions
when choosing random coordinates.

As we assumed w1, . . . , wn to be a counterexample for Equation (13), the expected number
of regions with these weights is more than 4k

2
cW . Thus, by the above argument, the expected

number of regions for the weights w1, . . . , wn−k is at least 4−k · 4k2cW . As we consider the
case

∑n−k
i=1 wi < 4−kW , we can substitute W to obtain that the weights w1, . . . , wn−k lead to at

least 4k
2
c
∑n−k

i=1 wi non-empty regions in expectation. Thus, the weights w1, . . . , wn−k also form
a counterexample for the claim in Equation (13), which is a contradiction to the assumption
that w1, . . . , wn is the minimum counterexample and thus to the assumption that there is a
counterexample at all.

7 Geometric SAT with Non-Zero Temperature

In the case with temperature T = 0, we used the fact that every clause contains the k variables
with smallest weighted distance; recall Section 4.2. This is no longer true for higher temperatures:
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for T > 0, a clause can, in principle, contain any variable. However, the probability to contain
a variable that is far away is rather small. In the remainder of this section, we show that a
constant fraction of clauses actually behave just like in the T = 0 case, i.e., they contain the k
closest variables. With this, we can then apply the argument outlined in Section 4.2.

7.1 Expected Number of Nice Clauses

Recall that a clause c is generated by drawing k variables without repetition with probabilities
proportional to the connection weights. We call c nice if the ith variable drawn for c has the
ith highest connection weight with c, i.e., c does not only contain the k variables with highest
connection weight but they are drawn in descending order. This is a slightly stronger property
than just requiring c to contain the k variables with lowest weighted distance.

Let x̄ be the connection weight of a variable v that has rather high connection weight with c.
To show that the probability for v ∈ c is reasonably high, we prove that x̄ is large compared
to the sum of connection weights over all variables with smaller weight. The following lemma
bounds this sum for a given x̄. We use the Iverson bracket to exclude the variables with weight
larger than x̄ from the sum, i.e.,

[
X(c, v) ≤ x̄

]
evaluates to 1 if X(c, v) ≤ x̄ and to 0 otherwise.

Lemma 7.1. Let c be a clause at any position and let V be a set of n weighted variables with
random positions in Td. For T < 1 and x̄ ∈ Ω(W 1/T ), the expected sum of connection weights
smaller than x̄ is in O(x̄), i.e.,

E

∑
v∈V

X(c, v) ·
[
X(c, v) < x̄

] ∈ O(x̄).

Proof. Using linearity of expectation, the term in the lemma’s statement equals to the sum over

the expectations E
[
X(c, v) ·

[
X(c, v) ≤ x̄

]]
. To bound this expectation, we consider the three

events X(c, v) ≤ (2dwv)
1/T , (2dwv)

1/T < X(c, v) < x̄, and x̄ ≤ X(c, v). Note that
[
X(c, v) < x̄

]
is 0 in the last event and 1 in the former two. Thus, we obtain

E
[
X(c, v) ·

[
X(c, v) < x̄

]]
= Pr

[
X(c, v) ≤ (2dwv)

1/T
]
· E
[
X(c, v) | X(c, v) ≤ (2dwv)

1/T
]

(14)

+ Pr
[
(2dwv)

1/T < X(c, v) < x̄
]
· E
[
X(c, v) | (2dwv)

1/T < X(c, v) < x̄
]

(15)

We bound the first term from above by assuming X(c, v) = (2dwv)
1/T whenever X(c, v) ≤

(2dwv)
1/T . Moreover, using the CDF for X(c, v) (2) yields

(14) ≤ Pr
[
X(c, v) ≤ (2dwv)

1/T
]
· (2dwv)

1/T

=
(
1−Πd,pwv(2

dwv)
−1
)
· (2dwv)

1/T

=
(
1−Πd,p2

−d
)
· (2dwv)

1/T ∈ Θ(w1/T
v ).

For the second term, we have to integrate over the probability density function (PDF)
fX(x) of the connection weights X(c, v), which is the derivative of FX(x) (2). Thus, fX(x) =
TΠd,pwvx

−T−1 for x ≥ (2dwv)
1/T , and we obtain

(15) = Pr
[
(2dwv)

1/T < X(c, v) < x̄
]
·
∫ x̄

(2dwv)1/T

x · fX(x)

Pr
[
(2dwv)1/T < X(c, v) < x̄

] dx
= TΠd,pwv ·

∫ x̄

(2dwv)1/T
x−T dx.
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For T < 1, this evaluates to

= TΠd,pwv ·

[
x1−T

1− T

]x̄
(2dwv)1/T

=
TΠd,pwv

1− T
·
[
x̄1−T − (2dwv)

1/T−1
]

≤
TΠd,pwv

1− T
· x̄1−T

∈ Θ
(
wvx̄

1−T
)
.

Putting these bounds together yields

E

[∑
v

X(c, v) ·
[
X(c, v) ≤ x̄

]]
=
∑
v

(
(14) + (15)

)
∈ O

(∑
v

w1/T
v +

∑
v

wvx̄
1−T

)

⊆ O

(∑
v

wv

)1/T

+ x̄1−T ·
∑
v

wv


∈ O

(
W 1/T + x̄1−TW

)
.

As, x̄ ∈ Ω(W 1/T ), we have W 1/T ∈ O(x̄), which handles the first term. The second term is also
in O(x̄), as x̄ ∈ Ω(W 1/T ) implies W ∈ O(x̄T ). Thus, this yields the claimed bound of O(x̄).

This lets us show that each clause is nice with constant probability. The only assumption
we need for this is the fact that no single weight is too large, i.e., every weight wi has to be
asymptotically smaller than the total weight W .

Theorem 7.2. Let Φ be a random formula drawn from the weighted geometric model with
ground space Td equipped with a p-norm, with temperature T < 1, and with wv/W ∈ o(1) for
v ∈ V . Let c be a clause of Φ. Then c is nice with probability Ω(1).

Proof. We prove two things. First, we show that, with probability Ω(1), there are at least k
variables sufficiently close to c that they have connection weight Ω(W 1/T ). Second, we use
Lemma 7.1 to show that the k variables with highest connection weight are chosen for c with
constant probability (in descending order).

For the first part, we show that there is a constant a such that, with constant probability, at
least k variables have connection weight at least aW 1/T . For a fixed variable v, we can use the
CDF of X(c, v) (Equation (2)) to obtain

Pr
[
X(c, v) ≥ aW 1/T

]
= Πd,pwv

(
aW 1/T

)−T

=
Πd,p

aT
wv

W

= 2k
wv

W
, for a =

(
Πd,p

2k

)1/T

.

Note that this is a valid probability, as wv/W ∈ o(1) implies that it is below 1. For the above
choice of a, we obtain that the expected number of variables with connection weight at least
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aW 1/T is 2k. As the connection weights for the different variables are independent, we can
apply the Chernoff-Hoeffding bound in Theorem A.7 to obtain that at least k variables have
connection weight aW 1/T with constant probability.

For the second part of the proof, let x̄ be the connection weight of the kth closest variable.
With the argument above, we can assume x̄ ∈ Ω(W 1/T ) with constant probability, which lets
us apply Lemma 7.1. To do so, consider the experiment of drawing the first variable for our
clause c. Let v be the variable that maximizes the connection weight X(c, v). The probability of
drawing v equals X(c, v) divided by the sum of all connection weights. By Lemma 7.1, the sum
of all connection weights smaller than x̄ is in O(x̄). Thus, the sum of all connection weights is
in O(X(c, v)), which implies that v is chosen with constant probability. As we draw variables
without repetition, the exact same argument applies for the second closest variable and so
on. Thus, the probability that c contains the k closest variables drawn in order of descending
connection weights is at least a constant, if there are k sufficiently close variables. As the latter
holds with constant probability, c is nice with constant probability.

By the linearity of expectation, this immediately yields the following bound on the expected
number of nice clauses.

Corollary 7.3. Let Φ be a random formula with m clauses drawn from the weighted geometric
model with ground space Td equipped with a p-norm, with temperature T < 1, and with wv/W ∈
o(1) for v ∈ V . The expected number of nice clauses in Φ is Θ(m).

7.2 Concentration of Nice Clauses

We show that the number of nice clauses is concentrated around its expectation, i.e., with high
probability, a constant fraction of clauses is nice. Our main tool for this will be the method of
typical bounded differences [61]; see Section A.6.2. To this end, we consider several random
variables, e.g., the coordinates of clauses and variables, that together determine the whole
process of generating a random formula. The number of nice clauses is then a function f of
these random variables and its expectation is Θ(m), due to Corollary 7.3. Roughly speaking,
the method of bounded differences then states that the probability that f deviates too much
from its expectation is low if changing a single random variable only slightly changes f .

7.2.1 The Random Variables

So far, we viewed the generation of a random formula as a two-step process: first, sample
coordinates for the variables and clauses; second, sample the variables contained in each clause
based on their distances. The first step can be easily expressed via random variables. Let
V1, . . . , Vn and C1, . . . Cm be the coordinates8 of the n variables and m clauses, respectively.
Though the second step heavily depends on the distances determined by the first, we can
determine all random choices in advance. For all i ∈ [m] and j ∈ [k], let Xj

i be a random

variable uniformly distributed in [0, 1). The variable Xj
i determines the jth variable of the

ith clause ci in the following way. We partition the interval [0, 1) such that each variable v
not already chosen for ci corresponds to a subinterval of length proportional to the connection
weight X(ci, v). We order these subintervals by length such that the largest interval comes first.
The jth variable of ci is then the variable whose interval contains Xj

i . Note that this samples
k different variables for each clause, with probabilities proportional to the connection weights
X(ci, v). Note further that the whole generation process of a random formula is determined by
evaluating the independent random variables V1, . . . , Vn, C1, . . . , Cm, X1

1 , . . . , X
k
m.

To formalize the concept of nice clauses in this context, we require some more notation. For
i ∈ [m], let Vi be the sequence of all variables ordered decreasingly by connection weight with

8Technically, these are multivariate random variables, as they represent d-dimensional points in Td.
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the clause ci. Moreover, let Vi[a, b] denote the subsequence from the ath to the bth variable in
this sequence, including the boundaries. To simplify notation, we abbreviate the unique element
in Vi[a, a] with Vi[a]. Recall that clause ci is nice if, for each of k steps, we choose the variable
with highest connection weight that has not been chosen before. With respect to the random
variables, this happens if, for each j ∈ [k], Xj

i is smaller than the connection weight of Vi[j]
divided by the sum of all connection weights of the remaining variables Vi[j, n]. We thus define
the indicator variable

Ni =

1, if ∀j ∈ [k] : Xj
i <

X(ci,Vi[j])∑
v∈Vi[j,n]

X(ci, v)
,

0 otherwise,

(16)

which is 1 if and only if the ith clause is nice. With this, we can define the number of nice
clauses as f(V1, . . . , Vn, C1, . . . , Cm, X1

1 , . . . , X
k
m) =

∑
i∈[m]Ni.

7.2.2 Bounding the Effect on the Number of Nice Clauses

To apply the method of bounded differences (Theorem A.9 or the more specific Corollary A.10),
we have to bound the effect of changing the value of only one of these random variables on
f . For the variables C1, . . . , Cm, this is easy: Changing Ci moves the position of the clause ci,
which only makes a difference for ci. Thus, the number of nice clauses changes by at most 1.
Similarly, changing Xj

i only impacts the clause ci, which implies that it changes the number of
nice clauses by at most 1.

For the variables V1, . . . , Vn, one can actually construct situations in which changing only a
single position drops f from m to 0. There are basically two situations in which this can happen.
First, if a single variable is close to many clauses, changing its position potentially impacts
many clauses. Second, if many inequalities in Equation (16) are rather tight, then moving a
single variable slightly closer to many clauses can increase the denominator on the right hand
side by enough to change Ni for many clauses. We exclude both situations by defining unlikely
bad events. By assuming these bad events do not happen, we can bound the effect of moving a
single variable v by

δv = w
1

1+T
v n

T
1+T log

2
1+T n. (17)

The following bound gives a simpler estimate for δv that will be useful later.

Lemma 7.4. Let 0 < T < 1 and wv ∈ O(n1−ε) for an arbitrary ε > 0. Then δv ∈ O
(√

wvn
logn

)
.

Proof. We ignore logarithmic factors and show that δv/
√
wvn converges polynomially to 0 for

n → ∞. As logarithmic factors grow slower than any polynomial, this proves the claim. We get

δv√
wvn

= w
1

1+T
− 1

2
v n

T
1+T

− 1
2 .

Rearranging the exponents yields

1

1 + T
− 1

2
=

2− (1 + T )

2(1 + T )
=

1− T

2(1 + T )
, and

T

1 + T
− 1

2
=

2T − (1 + T )

2(1 + T )
= − 1− T

2(1 + T )
.

Thus δv/
√
wvn = (wv/n)

c for a positive constant c. As wv ∈ O(n1−ε), this yields the claim.

The following lemma states that, with overwhelming probability, no point (and therefore no
variable) is too close to too many clauses. This eliminates the first problematic situation (and
will also help with the second). Note that this statement only assumes random clause positions
and holds for arbitrary variable positions, i.e., when moving a variable, we can assume that it
holds before and after the movement.
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Lemma 7.5. Let m ∈ O(n), 0 < T < 1, and wv ∈ O(n1−ε) for every v ∈ V and arbitrary

constant ε > 0. Let r = (wv log
2(n)/n)

1
d(1+T ) . With overwhelming probability, for every point p,

the ball Bp(r) around p with radius r contains only O(δv) clauses.

Proof. As there are uncountably many points p, it is hard to argue about them directly. Thus,
we first reduce the statement to one about finitely many positions, namely the positions of the
clauses. Then it remains to show the statement for these positions.

Consider a fixed point p. As Bp(r) has diameter 2r, the pair-wise distance between clauses
in Bp(r) is at most 2r. Thus, if there exists a point p such that Bp(r) contains too many clauses,
then there exists a clause that has too many other clauses at distance at most 2r. Thus, it
suffices to show that for every clause c ∈ C, the number of clauses of distance at most 2r to c is
in O(δv).

Let c0 be a fixed clause (we later apply the union bound over all clauses). We want to bound
the probability for another clause c to be closer than 2r to c0. For this, we use the CDF of the
distance in Equation (1). Note that the restriction of Equation (1) to the interval [0, 0.5] is not
an issue here, as wv ∈ O(n1−ε) implies r ∈ o(1) and thus 2r ≤ 0.5. Thus, we obtain

Pr
[
∥c0 − c∥ ≤ 2r

]
= Πd,p2

drd

= Πd,p2
d

(
wv log

2 n

n

) 1
1+T

= Πd,p2
d

(
wv

n

) 1
1+T

log
2

1+T n.

As there are m ∈ O(n) clauses, the expected number of clauses with distance at most 2r to c0 is

mΠd,p2
d

(
wv

n

) 1
1+T

log
2

1+T n ∈ O

(
w

1
1+T
v n1− 1

1+T log
2

1+T n

)
= O

(
w

1
1+T
v n

T
1+T log

2
1+T n

)
,

which is already the claimed bound of O(δv). As 0 < T < 1, this upper bound grows polynomially
in n. Thus, by the Chernoff-Hoeffding bound in Corollary A.8, it holds asymptotically with
overwhelming probability. Applying the union bound over all O(n) clauses yields the claim.

The above lemma is stated in terms of the distances. In the following it will be useful to
think of it in terms of connection weights instead. The following lemma translates the radius
r in Lemma 7.5 to the corresponding connection weight between a clause and a variable at
distance r.

Lemma 7.6. Let v ∈ V be a variable and let c ∈ C be a clause with distance ∥c − v∥ =

(wv log
2(n)/n)

1
d(1+T ) . They have connection weight X(c, v) = w

1
1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n.

Proof. Using the definition of the connection weight and inserting the above distance, we obtain

X(c, v) =

(
wv

∥c− v∥d

) 1
T

=

wv ·

(
n

wv log
2 n

) 1
1+T


1
T

= w
1
T
− 1

T (1+T )
v n

1
T (1+T ) log

− 2
T (1+T ) n

= w
1

1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n.
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Combining Lemma 7.5 and Lemma 7.6, we obtain that, for arbitrary variable positions (and
random clause positions), no variable has a high connection weight to too many clauses, as
summarized by the following corollary.

Corollary 7.7. Let m ∈ O(n), 0 < T < 1, and wv ∈ O(n1−ε) for every v ∈ V and arbitrary
constant ε > 0. With overwhelming probability, for every variable v and every possible position

of v, the number of clauses with connection weight at least w
1

1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n is in O(δv).

For the second problematic situation mentioned above, consider for a clause ci the k
inequalities in Equation (16). We call ci v-critical if for one of these inequalities the difference
between the left and right hand side is at most δv/n. In the following lemma, we first bound
the number of critical clauses. Afterwards, we show that the concept of critical clauses works
as intended in the sense that moving the variable v does only change the niceness status of
v-critical clauses.

Lemma 7.8. Let m ∈ O(n), 0 < T < 1 and let v be a variable. With overwhelming probability,
there are only O(δv) v-critical clauses.

Proof. A clause ci can only be v-critical if one of the random variables Xj
i for j ∈ [k] differs by

at most δv/n to the right hand side of the inequality in Equation (16). The probability for this
to happen for a single Xj

i is 2δv/n. As k is constant, ci is v-critical with probability O(δv/n).
Thus, as m ∈ O(n), the expected number of v-critical clauses is in O(δv). As the event of being
v-critical is independent for the different clauses, and as this bound is polynomial in n for T > 0
(see Equation (17)), the Chernoff-Hoeffding bound in Corollary A.8 yields the claim.

To prove that the movement of a single variable does not change the niceness status of too
many clauses, we argue along the following lines. Let v be the variable we move and consider a
clause c. If, before or after the movement, v is so close to c that we get a very high connection
weight X(c, v), we basically give up on c and assume that c changes its status (from being nice
to not being nice or the other way round). By Corollary 7.7 this only happens for at most
O(δv) clauses. Similarly, if c is v-critical, we also give up on c, which happens for at most O(δv)
clauses by Lemma 7.8. Then it remains to show that in all other cases (i.e., when X(c, v) is low
before and after the movement and c is not v-critical), the status of c remains unchanged.

This is done as follows. As c is not v-critical, the difference between the right and left hand
side of the inequality in Equation (16) is somewhat high. Thus, if moving v does not change the
right hand side by too much, then c keeps its niceness status. To show this, we can use the fact
that X(c, v) is low before and after the movement and thus it cannot change by too much. This
change of X(c, v) has to be considered relative to the other connection weights, i.e., changing
X(c, v) has less impact if there are other variables with higher connection weight. The following
lemma establishes that these other variables with higher connection weight indeed exist.

Lemma 7.9. Let wv ∈ O(n1−ε) for every v ∈ V and arbitrary constant ε > 0. With overwhelm-

ing probability every clause has k variables with connection weight at least W
1
T log−

2
T n.

Proof. Let x0 = W
1
T log−

2
T n be the above connection weight and let c be a clause with fixed

position. For every variable v, the probability for X(c, v) ≥ x0 is Πd,pwvx
−T
0 = Πd,pwvW

−1 log2 n
by Equation (2). Note that we can apply Equation (2) as x0 ≥ (2dwv)

1/T due to the condition
wv ∈ O(n1−ε) and the fact that W ≥ n. Summing this over all variables yields that the expected
number of variables with connection weight at least x0 is Πd,p log

2 n. By Corollary A.8, c has
Ω(log2 n) variables with connection weight at least x0 with overwhelming probability. Applying
the union bound over all clauses and the fact that k is constant while log2 n grows with n yields
the claim.

Now we are ready to bound the effect of moving just a single variable on the number of nice
clauses.
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Lemma 7.10. Let m ∈ O(n), 0 < T < 1, and wv ∈ O(n1−ε) for every v ∈ V and arbitrary
constant ε > 0. With overwhelming probability, moving a single variable to an arbitrary position
changes the number of nice clauses by only O(δv).

Proof. We show the result for a fixed variable v. It then follows for all variables using the union
bound.

Consider how the niceness status of clauses changes when moving v. Due to Corollary 7.7,

there are only O(δv) clauses with connection weight at least w
1

1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n before or

after the movement. Moreover, due to Lemma 7.8 there are only O(δv) v-critical clauses. Thus,
even if all these clauses change the status from being nice to not being nice or vice versa, the
number of nice clauses changes by only O(δv).

Every remaining clause c is not v-critical and we have X(c, v) ≤ w
1

1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n

before and after the movement. In the following we show that a clause c with these two properties
is nice after the movement if and only if it is nice before the movement.

We first observe that v does not belong to the k variables closest to c due to Lemma 7.9: With

overwhelming probability, there are k variables with connection weight at least W
1
T log−

2
T n,

which is asymptotically bigger than X(c, v) as wv ∈ O(n1−ε).
Thus, in the right hand side of the inequality in Equation (16), the connection weight X(c, v)

only appears in the denominator. To show that the right hand side does not change by too
much, let x be the numerator, let y be the denominator before the movement, and let y′ be the
denominator after the movement. Note that |y′ − y| is exactly the change in X(c, v) caused by
the movement of v. With this, the right hand side of the inequality in Equation (16) changes by∣∣∣∣xy − x

y′

∣∣∣∣ = ∣∣∣∣xy′ − xy

yy′

∣∣∣∣ = x

y′
· |y

′ − y|
y

.

Note that x (the numerator) is the connection weight of one variable whose connection weight
also appears in the sum of the denominator (after and before the movement). Thus, x

y′ ≤ 1

and the above change is upper bounded by |y′−y|
y . Note that the upper bound on X(c, v) holds

before and after the movement and thus X(c, v) can only change by less than this upper bound,

i.e., |y′ − y| < w
1

1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n. Moreover, y is the sum of multiple connection weights

including the weight of one of the k closest variables. Thus, by Lemma 7.9 and the fact that

W ≥ n we can assume that y ≥ n
1
T log−

2
T n. Putting this together yields∣∣∣∣xy − x

y′

∣∣∣∣ ≤ |y′ − y|
y

<
w

1
1+T
v n

1
T (1+T ) log

− 2
T (1+T ) n

n
1
T log−

2
T n

=

(
wv

n

) 1
1+T

log
2

1+T n =
δv
n
.

As c is not v-critical, the difference between the left and right side of the inequality in Equa-
tion (16) is at least δv

n before the movement. Thus, as the movement can change the right hand

side by only less than δv
n , the clause c is nice after the movement if and only if it was nice

before.

With this we are ready to prove concentration using the method of typical bounded differences.

Theorem 7.11. Let Φ be a random formula with n variables and m ∈ Θ(n) clauses drawn from
the weighted geometric model with ground space Td equipped with a p-norm, with temperature
0 < T < 1, with W ∈ O(n), and with wv ∈ O(n1−ε) for every v ∈ V and arbitrary constant
ε > 0. With high probability, Θ(m) clauses are nice.

Proof. We want to apply Corollary A.10. As defined in Section 7.2.1, the random variables are
the variable positions V1, . . . , Vn, the clause positions C1, . . . , Cm, and the coin flips X1

1 , . . . , X
k
m,

and the function f is the number of nice clauses. For N = n+m+km note that |f(X)| ≤ m ≤ N .
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For the nice event Γ we assume that the statement from Lemma 7.10 holds. Due to Lemma 7.10,
the probability for this is Pr [Γ] ≥ 1−N−c for any constant c and sufficiently large N . Thus,
when choosing c ≥ 3, we satisfy the condition |f(X)| ≤ N c−2 of Corollary A.10.

Now we have to bound the change of f when changing only one of the random variables,
assuming we start with an event in Γ, i.e., we have to determine the ∆i from Corollary A.10. As
mentioned before, changing a clause position Ci or one of the Xj

i impacts only one clause and
thus changes f by at most 1. Moreover, as we start with a configuration satisfying Lemma 7.10,
f changes by only O(δv) for variable v. Thus, for the sum in Corollary A.10 we obtain

∑
i∈[N ]

∆2
i ∈ O

m+ km+
∑
v∈V

δ2v

 .

Due to Lemma 7.4, we have δv ∈ O(
√
wvn/ log n). Thus, the above sum can be bounded by

∑
v∈V

δ2v ∈ O

∑
v∈V

(√
wvn

log n

)2
 = O

 n

log2 n

∑
v∈V

wv

 = O

(
n2

log2 n

)
.

As E [f ] ∈ Θ(m) = Θ(n), this is exactly the bound required by Corollary A.10 and thus the
number of nice clauses is in Θ(m) with high probability.

7.2.3 Putting Things Together

Now we are ready to prove our main theorem for the geometric model.

Theorem 7.12. Let Φ be a formula with n variables and m ∈ Θ(n) clauses drawn from the
weighted geometric model with ground space Td equipped with a p-norm, temperature T < 1,
W ∈ O(n), and wv ∈ O(n1−ε) for every v ∈ V and any constant ε > 0. Then, Φ contains a. a. s.
an unsatisfiable subformula of constant size, which can be found in O(n log n) time.

Proof. Let m′ be the number of clauses in Φ that consist of the k variables with minimum
weighted distance. By Theorem 7.11 we have m′ ∈ Θ(m) = Θ(n). In the following, we consider
only these clauses.

Consider the weighted order-k Voronoi diagram of the n variables and let n′ be the number
of non-empty regions. By Theorem 6.9 and due to W ∈ O(n), we have E

[
n′] ∈ O(n). Moreover,

it follows from Markov’s inequality that n′ ≤ n log n holds asymptotically almost surely:

Pr
[
n′ ≥ n log n

]
≤

E
[
n′]

n log n
∈ O

(
1

log n

)
.

Now, determining the k variables of a clause c is equivalent to observing which region of
the order-k Voronoi diagram contains c, or more precisely, which k variables define this region.
Thus, choosing random positions for the clauses is like throwing m′ balls into n′ (non-uniform)
bins. Thus, if m′ ∈ Ω(n′/ polylog n′), we can apply Corollary A.5. With the above bounds,
which hold asymptotically almost surely, it is not hard to see that this condition in fact holds: If
n′ ≤ n, it clearly holds as m′ ∈ Ω(n). Otherwise, we have n′ ≤ n log n ≤ n log n′, which implies
n ≥ n′/ log n′, and thus m ∈ Ω(n′/ log n′).

Applying Corollary A.5 tells us that, asymptotically almost surely, there is a bin with a
superconstant number of balls. In other words, there is a superconstant number of clauses that
share the same set of k variables. For sufficiently large n, this is bigger than 2k, which implies
an unsatisfiable subformula consisting of only 2k clauses. Clearly, it can be found in O(n log n)
time by sorting the clauses lexicographically with respect to the contained variables.

41



Acknowledgments

The authors would like to thank Thomas Sauerwald for the fruitful discussions on random SAT
models and bipartite expansion.

References
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[2] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of SAT
formulas. In Theory and Applications of Satisfiability Testing (SAT), pages 410–423, 2012.
doi:10.1007/978-3-642-31612-8 31.
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A Basic Technical Tools

This section is a collection of tools we use throughout the paper that were either known before
or are straight-forward to prove but distract from the core arguments we make in the paper.

A.1 Discrete Power-Law Weights

The following lemma summarizes some properties of the probability distribution given by the
discrete power-law weights.

Lemma A.1. Let β > 2 and

pi =
i−1/(β−1)∑n
j=1 j

−1/(β−1)

for i ∈ [n]. It holds that

n∑
j=1

j−1/(β−1) =
(
1 + o(1)

) β − 1

β − 2
· n(β−2)/(β−1),

F (i) :=

i∑
j=1

pj ∈ O

((
i

n

)(β−2)/(β−1)
)
,

and

n∑
j=1

p2j ∈


Θ

(
n
−2β−2

β−1

)
, β < 3;

Θ
(
lnn/n

)
, β = 3;

Θ
(
n−1

)
, β > 3.

(18)
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Proof. Since j−1/(β−1) is monotonically decreasing, it holds that

n∑
j=1

j−1/(β−1) ≤ 1 +

∫ n

j=1
j−1/(β−1)dj

= 1 +
β − 1

β − 2

(
n(β−2)/(β−1) − 1

)
=

β − 1

β − 2
· n(β−2)/(β−1) − 1

β − 2

and
n∑

j=1

j−1/(β−1) ≥ n−1/(β−1) +

∫ n

j=1
j−1/(β−1)dj

=
β − 1

β − 2
· n(β−2)/(β−1) − β − 1

β − 2
+ n−1/(β−1).

Equivalently, we get

F (i) =

i∑
j=1

pj =

∑i
j=1 j

−1/(β−1)∑n
j=1 j

−1/(β−1)

≤ 1∑n
j=1 j

−1/(β−1)

(
1 +

∫ i

j=1
j−1/(β−1)dj

)

≤ 1∑n
j=1 j

−1/(β−1)

(
β − 1

β − 2
· i(β−2)/(β−1) − 1

β − 2

)

∈ O

((
i

n

)(β−2)/(β−1)
)
.

Finally, we want to bound
n∑

j=1

p2j =

∑n
j=1 j

−2/(β−1)(∑n
j=1 j

−1/(β−1)
)2 .

First, note that for β = 3 this equation yields

n∑
j=1

p2j =
Hn(∑n

j=1 j
−1/(β−1)

)2 ∈ Θ(lnn/n),

where Hn denotes the n-th harmonic number. For β ̸= 3 we can achieve

n∑
j=1

p2j ≤
1(∑n

j=1 j
−1/(β−1)

)2
(
1 +

∫ n

j=1
j−2/(β−1)dj

)

=
1(∑n

j=1 j
−1/(β−1)

)2 (1 + β − 1

β − 3
·
(
n(β−3)/(β−1) − 1

))

and
n∑

j=1

p2j ≥
1(∑n

j=1 j
−1/(β−1)

)2
(
n−2/(β−1) +

∫ n

j=1
j−2/(β−1)dj

)

=
1(∑n

j=1 j
−1/(β−1)

)2 (n−2/(β−1) +
β − 1

β − 3
·
(
n(β−3)/(β−1) − 1

))
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If β < 3, the expressions above yield

n∑
j=1

p2j ∈ Θ

 1(∑n
j=1 j

−1/(β−1)
)2
 ⊆ Θ

(
n−2(β−2)/(β−1)

)
.

For β > 3, they yield
n∑

j=1

p2j ∈ Θ

(
n(β−3)/(β−1)

n2(β−2)/(β−1)

)
⊆ Θ

(
n−1

)
.

This proves all statements of the lemma.

A.2 CDF of Connection Weights in the Geometric Model

The CDF FX(x)) of the connection weights X(c, v) in the geometric SAT model satisfies the
following lemma.

Lemma A.2. FX(x) = 1−Πd,pwvx
−T for x ≥

(
2dwv

)1/T
.

Proof. Inserting the definition of the connection weight and rearranging slightly yields

FX(x) = Pr
[
X(c, v) ≤ x

]
= Pr

[(
wv

∥c− v∥d

)1/T

≤ x

]
= Pr

[
∥c− v∥ ≥ w1/d

v x−T/d
]

= 1− Pr
[
∥c− v∥ < w1/d

v x−T/d
]
.

As c and v are two random points, we can use the CDF for the distances between random
points in Equation (1) to obtain

FX(x) = 1−Πd,pwvx
−T for x ≥

(
2dwv

)1/T
,

which concludes the proof.

A.3 Volume of Balls in a Hypercube

We are regularly concerned with the asymptotic behavior of a ball’s volume depending on its
radius. The following lemma helps us to deal with the edge case, where the ball stretches beyond
the boundary of our ground space.

Lemma A.3. Let H be a d-dimensional unit-hypercube in Rd equipped with a p-norm. There
exists a constant c > 0 such that, for every p ∈ H and r > 0, the intersection of H with the ball
Bp(r) of radius r around p has volume at least min{1, crd}.

Proof. In the following, we assume H = [−0.5, 0.5]d (rather than [0, 1]d), as it makes the proof
more convenient. If r is sufficiently small, then Bp(r) is completely contained in H. Thus, in
this case, the claim follows from the fact that the volume of a ball with radius r in d-dimensional
space is proportional to rd. Thus, we have to prove that the parts of Bp(r) outside of H are
asymptotically not relevant.

Let p1, . . . , pd be the coordinates of p and assume without loss of generality that p lies in
the all-negative orthant, i.e., pi ≤ 0 for i ∈ [d]. We proof the claim by defining a box B with
the following three properties. First, the box B has volume proportional to rd. Second, B is a
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subset of the ball Bp(r). Third, B is a subset of the hypercube H or H is a subset of Bp(r).
Note that the lemma’s statement clearly holds if H is a subset of Bp(r) as the intersection has
volume 1 in this case. If H is not a subset of Bp(r), the second and third property imply that
B is a subset of the intersection of Bp(r) and H. Thus, the volume of B given by the first
property is a lower bound for the volume of the intersection, which proves the claim.

It remains to define B and prove the three properties. The box B has p as corner and
extends from there in the direction of the all-positive orthant. The side lengths are chosen
proportional to the distance from the edge of H in this direction. Formally, the corners of B are
{p1, p1 + r(0.5− p1)/

p
√
d} × · · · × {pd, pd + r(0.5− pd)/

p
√
d}.

To prove the first property, note that the side length of B in dimension i is r(0.5− pi)/
p
√
d.

As pi ≤ 0, this is at least 0.5r/ p
√
d, which implies that the volume of B is at least (0.5r/ p

√
d)d.

For the second property, note that the point of B with maximum distance from p is the opposite
corner, i.e., the point with coordinates (pi + r(0.5− pi)/

p
√
d). The distance from p is given by

p

√√√√ d∑
i=1

(
r(0.5− pi)

p
√
d

)p

≤ p

√√√√ d∑
i=1

rp

d
= r.

Finally, for the third property, assume r = p
√
d. Then the coordinates pi + r(0.5− pi)/

p
√
d of the

corners of B simplify to 0.5. Thus, all corners of B are still in the hypercube H if r ≤ p
√
d. On

the other hand, if r ≥ p
√
d, then H is completely contained in Bp(r), which concludes the proof

of the last property. We note that it is easy to verify that all above arguments also hold for the
limit p = ∞.

A.4 Derivative of the Incomplete Gamma Function

We need the following somewhat technical bound that is easy to verify.

Lemma A.4. Let Γ be the gamma function. For any α, β, γ, d ∈ R with β, γ, d > 0,∫ γ

0
xαd−1 exp

(
−βxd

)
dx ≤ Γ (α)

βαd
.

Proof. Let Γ(α, x) be the incomplete gamma function. Its derivative is

∂Γ(α, x)

∂x
= −xα−1 exp(−x).

Thus, it follows that

∂

∂x

−
Γ
(
α, βxd

)
βαd

 = βdxd−1

(
βxd

)α−1
exp

(
−βxd

)
βαd

= xαd−1 exp
(
−βxd

)
.

Using this, the given integral evaluates to

∫ γ

0
xαd−1 exp

(
−βxd

)
dx =

−Γ
(
α, βxd

)
βαd


γ

0

=
1

βαd

(
Γ (α, 0)− Γ

(
α, βγd

))
≤ Γ (α, 0)

βαd
.
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A.5 Balls Into Heterogeneous Bins

Consider throwing m balls into n uniform bins, i.e., for each ball we draw one of the n bins
uniformly at random and place the ball into the drawn bin. The maximum load L is the random
variable that describes the maximum number of balls that are together in the same bin. From
the analysis by Raab and Steger [55, Theorem 1], we immediately get the following corollary.

Corollary A.5 ([55], Theorem 1). Throw m balls into n uniform bins and let L be the maximum
load. If m ∈ Ω( n

polylogn), then L ∈ Ω( logn
log logn) asymptotically almost surely.

Now assume we have non-uniform bins, i.e., the probability for each ball to end up in the ith
bin is pi with

∑
i pi = 1. Intuitively, Corollary A.5 should still hold in this setting, as increasing

the probability of some bins only makes it more likely that a bin gets many balls. Making this
argument formal yields the following theorem.

Theorem A.6. Corollary A.5 also holds for the non-uniform bins.

Proof. Let B = [n] be the set of all bins and let B′ be the subset of bins with probability at
least 1/(2n). These are the bins whose probability either increased, or decreased by a factor
of at most 2. Without loss of generality, let B′ = [n′]. Note that the probability for a ball to
land in a bin of B′ is at least a constant, as every bin not in B′ has probability at most 1/(2n).
Thus, by the Chernoff-Hoeffding bound in Corollary A.8, a constant fraction of the balls end up
in a bin of B′ with high probability. We make a case distinction on how large n′ is.

First, assume n′ ≤ m/ log n. Thus, with high probability, we end up with Θ(m) balls in at
most m/ log n bins, which means that at least one bin contains Ω(log n) balls. Thus, clearly
L ∈ Ω(log n/ log logn).

Second, assume n′ > m/ log n. Recall that each bin in B′ has probability at least 1/(2n). We
consider the alternative experiment where, for every ball, each bin in B′ has probability exactly
1/(2n) to get the ball. Balls not landing in B′ are discarded. Let L′ denote the maximum
number of balls that share a bin in B′. Clearly, we can couple the two experiments such that
L ≥ L′ holds in every outcome. It remains to show that L′ ∈ Ω(log n/ log log n). For this, let
m′ be the number of balls ending up in B′. Note that m′ is a random variable. However, if we
condition on m′, then we are back to the normal homogeneous balls into bins, except that we
throw m′ balls into n′ bins. If we show that m′ ∈ Ω(n′/ polylog n′), then Corollary A.5 tells us
that L′ ∈ Ω(log n′/ log log n′). First note that this is sufficient for our purpose: as n′ > m/ log n
and m ∈ Ω(n/polylog n), we get

log n′

log logn′ >
logm− log log n

log(logm− log logn)

∈ Ω

(
log n− log polylog n− log log n

log(log n− log polylog n− log logn)

)
⊆ Ω

(
log n

log logn

)
.

It remains to show that m′ ∈ Ω(n′/ polylog n′) so that we can actually apply Corollary A.5.
To do so, recall that B′ has n′ bins, each with probability 1/(2n). Thus, the probability that
a single ball lands in B′ is n′/(2n), which shows that m′ is mn′/(2n) in expectation. As n′ is
almost m (up to logarithmic factors) and m is almost n, this expectation is almost linear in n.
Thus, by the Chernoff-Hoeffding bound in Corollary A.8, we can assume that

m′ ∈ Θ

(
mn′

n

)
holds with high probability. Using that n′ > m/ log n and m ∈ Ω(n/ polylog n), we obtain

mn′

n
>

m2

n log n
∈ Ω

(
n

polylog n

)
.
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As n′ ≤ n, it follows that m ∈ Ω(n′/ polylog n′), which concludes the proof.

A.6 Concentration Bounds

For a random experiment, we say that an event happens with high probability (w. h. p.) if
the probability is at least 1 − O(1/n). The type of event we are usually interested in is that
a random variable assumes a value close to its expectation, i.e., that the random variable is
concentrated. In the following, we state two well known techniques to prove concentration,
namely a Chernoff-Hoeffding bound and the method of bounded differences. In both cases we
derive asymptotic variants that suite our purpose better than the original exact bounds.

A.6.1 Chernoff-Hoeffding

Theorem A.7 (Theorem 1.1 in [27]). Let X1, . . . , Xn be independent random variables with
values in {0, 1} and let X =

∑
i∈[n]Xi be their sum. Then, for all 0 < ε < 1,

Pr
[
X > (1 + ε) · E [X]

]
≤ exp

(
−ε2

3
E [X]

)
, and

Pr
[
X < (1− ε) · E [X]

]
≤ exp

(
−ε2

2
E [X]

)
.

We use this bound multiple times in a similar way, which is captured by the following direct
corollary.

Corollary A.8. Let X1, . . . , Xn, and X be as in Theorem A.7. Let f(n) ∈ ω(log n) be an
upper or lower bound for E [X]. With overwhelming probability, X ∈ O(f(n)) and X ∈ Ω(f(n)),
respectively.

Proof. Assume f(n) is a lower bound, i.e., f(n) ≤ E [X]. We show X ∈ Ω(f(n)) with the desired
probability. By the second inequality of Theorem A.7, we have

Pr
[
X < (1− ε) · f(n)

]
≤ Pr

[
X < (1− ε) · E [X]

]
≤ exp

(
−ε2

2
E [X]

)

≤ exp

(
−ε2

2
f(n)

)
= n−ω(1),

where the last equality is due to the fact that f(n) ∈ ω(log n). Thus, for any constant c,
this probability is below n−c for sufficiently large n. Hence, for any constant ε ∈ (0, 1),
X ≥ (1− ε) · f(n) with probability 1− n−c.

Assume f(n) is an upper bound, i.e., E [X] ≤ f(n). Let X ′ be a random variable with
f(n) = E

[
X ′] such that X ′ dominates X in the sense that X ≤ X ′ for every outcome. We show

that X ′ ∈ O(f(n)) with probability 1− n−c, which implies X ∈ O(f(n)) with at least the same
probability. The first inequality of Theorem A.7 yields

Pr
[
X ′ > (1 + ε) · f(n)

]
= Pr

[
X ′ > (1 + ε) · E

[
X ′]]

≤ exp

(
−ε2

3
E
[
X ′])

= exp

(
−ε2

3
f(n)

)
= n−ω(1).

As before, the last inequality comes from the fact that f(n) ∈ ω(log n). All remaining arguments
are as in the case where f(n) was a lower bound.
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A.6.2 Method of Typical Bounded Differences

Theorem A.9 (Theorem 2 in [61]). Let X = (X1, . . . , XN ) be a family of independent random
variables with Xk taking values in Λk and let Λ =

∏
j∈[N ] Λj. Let Γ ⊆ Λ be an event and assume

that the function f : Λ → R satisfies the following typical Lipschitz condition.

(TL) There are numbers (ck)k∈[N ] and (dk)k∈[N ] with ck ≤ dk such that whenever x, x̃ ∈ Λ differ
only in the kth coordinate, we have

|f(x)− f(x̃)| ≤

{
ck if x ∈ Γ,

dk otherwise.

For any numbers (γk)k∈[N ] with γk ∈ (0, 1], there is an event B = B(Γ, (γk)k∈[N ]) satisfying

Pr [B] ≤
∑
k∈[N ]

γ−1
k · Pr

[
X /∈ Γ

]
and ¬B ⊆ Γ,

such that for µ = E [f ], ek = γk(dk − ck) and any t ≥ 0, we have

Pr
[
f(X) ≥ µ+ t and ¬B

]
≤ exp

(
− t2

2
∑

k∈[N ](ck + ek)2

)
.

We derive the following corollary from this, which is more convenient for our purpose and
uses a notation more compatible with the rest of the paper.

Corollary A.10. Let X = (X1, . . . , XN ) ∈ Λ be a family of independent random variables and
let Γ ⊆ Λ be an event with Pr [Γ] ≥ 1−N−c. Moreover, let f : Λ → R with |f(X)| ≤ N c−2 and
let (∆i)i∈[N ] ∈ Ω(1) be numbers such that for any two x ∈ Γ and x̃ ∈ Λ that differ only in the ith

coordinate, we have |f(x)− f(x̃)| ≤ ∆i. If
∑

i∈[N ]∆
2
i ∈ O(E [f ]2 / log2N) then f(X) ∈ Θ(E [f ])

holds with high probability.

Proof. We want to apply Theorem A.9. First note that |f(X)| ≤ N c−1 implies that f satisfies
the typical Lipschitz condition when setting ci = ∆i and di = 2N c−2 for every i. We set γi in
Theorem A.9 to γi = 1/di yielding ei ≤ 1. Thus, we get the event B with

Pr [B] ≤
∑
i∈[N ]

γ−1
i · Pr [¬Γ]

=
∑
i∈[N ]

di · Pr [¬Γ]

≤
∑
i∈[N ]

2N c−2 ·N−c

= 2N−1 ∈ O(N−1),

such that

Pr
[
f(X) ≥ E [f ] + t and ¬B

]
≤ exp

(
− t2

2
∑

i∈[N ](∆i + ei)2

)
.

As ∆i ∈ Ω(1) and ei ≤ 1, we get that the sum in the denominator is up to constants equal to∑
i∈[N ]∆

2
i ∈ O(E [f ]2 / log2N), i.e., for sufficiently large N , there exists a positive constant a

such that

Pr
[
f(X) ≥ E [f ] + t and ¬B

]
≤ exp

(
−a · t2 · log2N

E [f ]2

)
.
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Choosing t = b ·E [f ] for any positive constant b yields an upper bound of N−ab2 logN ∈ O(N−1)
for the probability. Thus, we obtain

Pr
[
f(x) ≥ (1 + b)E [f ]

]
≤ Pr

[
f(x) ≥ (1 + b)E [f ] and ¬B

]
+ Pr [B] ∈ O(N−1).

As already noted by Warnke [61], one can obtain the same bound as stated in Theorem A.9
for the opposite direction (Pr

[
f(x) ≤ E [f ]− t

]
) by using −f . The above argument works

exactly the same for this case, yielding Pr
[
f(x) ≤ (1− b)E [f ]

]
∈ O(N−1). Note that for this

direction it is crucial that we can choose b to be an arbitrary positive constant. This yields the
claim that f(x) ∈ Θ(E [f ]) with high probability.
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