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Abstract
Opinion spreading in a society decides the fate of elections, the success of products, and the impact of political or social
movements. A prominent model to study opinion formation processes is due to Hegselmann and Krause. It has the distin-
guishing feature that stable states do not necessarily show consensus, i.e., the population of agents might not agree on the
same opinion. We focus on the social variant of the Hegselmann–Krause model. There are n agents, which are connected by
a social network. Their opinions evolve in an iterative, asynchronous process, in which agents are activated one after another
at random. When activated, an agent adopts the average of the opinions of its neighbors having a similar opinion (where
similarity of opinions is defined using a parameter ε). Thus, the set of influencing neighbors of an agent may change over
time. We show that such opinion dynamics are guaranteed to converge for any social network. We provide an upper bound of
O(n|E |2(ε/δ)2) on the expected number of opinion updates until convergence to a stable state, where |E | is the number of
edges of the social network, and δ is a parameter of the stability concept. For the complete social network we show a bound
of O(n3(n2 + (ε/δ)2)) that represents a major improvement over the previously best upper bound of O(n9(ε/δ)2).
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1 Introduction

Our opinions are not static. On the contrary, opinions are
susceptible to dynamic changes, and this is heavily exploited
by (social) media, influencers, politicians, and professionals
for public relations campaigns and advertising. The way we
form our opinions is not a solitary act that simply combines
our personal experiences with information from the media.
Instead, it is largely driven by interactions with our peers
in our social network. We care about the opinions of our
peers and relatives, and their opinions significantly influence
our own opinion in an asynchronous dynamic process over
time. Such opinion dynamics are pervasive in many real-
world settings, ranging from small scale townhall meetings,
community referendum campaigns, parliamentary commit-
tees, and boards of enterprises to large scale settings like
political campaigns in democratic societies or peer interac-
tions via online social networks.

The aim for understanding how opinions are formed and
how they evolve in multi-agent systems is the driving force
behind an interdisciplinary research effort in diverse areas
such as sociology, economics, political science, mathematics,
physics, and computer science. Initial work on these issues
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dates back to Downs [31] and early agent-based opinion for-
mation models as proposed by Abelson and Bernstein [1].

In this paper we study an agent-based model for opinion
formation on a social network where the opinion of an agent
depends both on its own intrinsic opinion and on the opin-
ions of its network neighbors. One of the earliest influential
models in this direction was defined by DeGroot [30]. In
this model the opinion of an agent is iteratively updated to
the weighted average of the opinions of its neighbors. Later,
Friedkin and Johnsen [38] extended this by incorporating pri-
vate opinions. Every agent has a private opinion which does
not change and an expressed opinion that changes over time.
The expressed opinion of an agent is determined as a func-
tion of the expressed opinions of its neighbors and its private
opinion.

The main focus of our paper is the very influential model
by Hegselmann and Krause [43] that adds an important fea-
ture: the set of neighbors that influence a given agent is no
longer fixed, and the agents’ opinions and their respective
sets of influencing neighbors co-evolve over time. At any
point in time the set of influencing neighbors of an agent
are all the neighbors in a given static social network with
an opinion close to their own opinion. Hence, agents only
adapt their opinions to neighboring agents having an opinion
that is not too far away from their own opinion. Note that this
adaption, in turn, might lead to a new set of influencing neigh-
bors. In sociology this wide-spread behavior is known as
homophily [46], which, for example, governs the formation
of social networks and explains residential segregation. Co-
evolutionary opinion formation helps to analyze and explain
current phenomena like filter bubbles in the Internet [49]
and social media echo chambers [21] that inhibit opinion
exchange and amplify extreme views. The co-evolution of
opinions and the sets of influencing neighbors is the key fea-
ture of a Hegselmann–Krause system (HKS). It is also the
main reason why the analysis of the dynamic behavior of a
HKS is highly non-trivial and challenging.

Typical questions studied are the convergence properties
of the opinion dynamics: Is convergence to stable states guar-
anteed, and if yes, what are upper and lower bounds on the
convergence time? Guaranteed convergence is essential since
otherwise the predictive power of the model is severely lim-
ited. Moreover, studying the convergence time of opinion
dynamics is crucially important. In general, the analysis of
stable states is significantly more meaningful if these states
are likely to be reached in a reasonable amount of time, i.e.,
if quick convergence towards such states is guaranteed. If
systems do not stabilize in a reasonable time, stable states
lack justification as a prediction of the system’s behavior.

Researchers have investigated the convergence to stable
states and the corresponding convergence speed in many
variants of the Hegselmann–Krause model. The existing
work can be categorized along two dimensions: complete

or arbitrary social network and synchronous or asynchronous
updates of the opinions. Synchronous opinion updates means
that all agents update their opinion at the same time. In sys-
tems with asynchronous updates a single agent is selected
uniformly at random and only this agent updates its opin-
ion. While the main body of recent work focuses on HKSs
assuming the complete graph as social network and the syn-
chronous update rule, empirical simulations have also been
performed with asynchronous updates on arbitrary social
networks. Interestingly, convergence guarantees and con-
vergence times for the latter case are, to the best of our
knowledge, absent from the literature so far. This case is
arguably the most realistic setting as social networks are typ-
ically sparse, i.e., non-complete, and social interactions and
thereby opinion exchange usually happens in an uncoordi-
nated asynchronous fashion.

In this paper we study the following Hegselmann–Krause
system (HKS). We have n agents and their opinions are mod-
eled by points in d-dimensional Euclidean space R

d , for
some d ≥ 1. The agents are connected by a social network
which does not change over time. At any point of time the
set of influencing neighbors of an agent is the subset of its
neighbors (in the social network) with an opinion of distance
at most ε > 0 from its own opinion. We assume that in each
step a random agent is activated and its opinion is updated
to the average of its current opinion and the opinion of all
current influencing neighbors. Note in such an asynchronous
HKS stable states in the sense that no agent will change its
opinion might never be reached. This can be seen by a simple
example with two nodes and one edge. Hence, we adopt a
natural stability criterion defined by Bhattacharyya and Shi-
ragur [13]. A HKS is in a δ-stable state if and only if each
edge in the influence network has length at most δ. For this
scenario we prove that the convergence of the opinion dynam-
ics is guaranteed. We give an upper bound on the expected
convergence time of

O(n|E |2(ε/δ)2) ≤ O(n5(ε/δ)2),

where |E | is the cardinality of the edge set of the given
social network. We demonstrate the tightness of our derived
upper bound by providing analytical lower bounds as well as
empirical simulations for several topologies of the underly-
ing social network topologies. Note that for complete graphs
as social network our bound of O(n3(n2 +(ε/δ)2)) improves
the best previously known upper bound of O(n9(ε/δ)2) [33].

1.1 Related work

We focus our discussion on recent research on Hegselmann–
Krause systems and other opinion formation models.
Synchronous HKSs on Complete Networks Most recent
research focused on synchronous opinion updates in com-
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plete social networks. For this setting it is known that the
process always converges to a state where no agent changes
its opinion anymore [20]. We denote such states as perfectly
stable states. Touri and Nedic [50] prove that any one-
dimensional HKS converges in O(n4) synchronous update
rounds to a perfectly stable state. Bhattacharyya et al. [12]
improve this upper bound to O(n3). For d dimensions they
show a convergence time of O(n10d2). For arbitrary d Ete-
sami and Başar [33] establish a bound of O(n6) rounds, which
is independent of the dimension d. Finally, Martinsson [45]
shows that any synchronous d-dimensional HKS converges
within O(n4) update rounds to a perfectly stable state.

Regarding lower bounds, Bhattacharyya et al. [12] con-
struct two-dimensional instances that need at least �(n2)

update rounds before a perfectly stable state is reached. Later,
Wedin and Hegarty [51] show that this lower bound holds
even in one-dimensional systems.
Synchronous HKSs on Arbitrary Social Networks In [48],
the authors use the probabilistic method to prove that the
expected convergence time to a perfectly stable state is infi-
nite for general networks. This also holds for a slightly
weaker stability concept than perfect stability: in all future
steps an agent’s opinion will not move further than by a given
distance δ. To show their result the authors construct a HKS
with infinitely many oscillating states. Their stability notion
is also different to the one considered in this paper. We ana-
lyze the time to reach a δ-stable state which is defined as
a state where any edge in the influence network has length
at most δ (see Sect. 1.2). For δ-stability Bhattacharyya and
Shiragur [13] prove that a synchronous HKS with an arbi-
trary social network reaches a δ-stable state in O(n5(ε/δ)2)

synchronous rounds.
Asynchronous HKSs Compared to the synchronous case, the
existing results for asynchronous HKSs are rather limited.
On the empirical side, Fortunato [36] investigated the con-
sensus threshold with uniformly chosen initial opinions in
asynchronous dynamics on non-complete social networks
like grids, Erdős-Rényi graphs, or scale-free random graphs.
To the best of our knowledge, convergence guarantees and
convergence times on non-complete networks were first stud-
ied by Etesami and Başar [33] where the authors consider
δ-equilibra in contrast to δ-stable states. They define a δ-
equilibrium as a state where each connected component of
the influence network has an Euclidean diameter of at most δ
and prove that the expected number of update steps to reach
such a state is bounded by O(n9(ε/δ)2) for the complete
social network. In general, δ-equilibria are a proper subset
of the set of δ-stable states. However, in Sect. 2 we discuss
the equivalence of both stability notions on complete social
networks.
Other Opinion Formation Models In the seminal models by
Friedkin and Johnsen [38] (extending earlier work by DeG-
root [30]) each agent has an innate opinion and strategically

selects an expressed opinion that is a compromise of its
innate opinion and the opinions of its neighbors. Recently,
co-evolutionary and game-theoretic variants were studied
[14–16, 32, 37], and the results focus on equilibrium exis-
tence and social quality, measured by the price of anarchy.
In the AI and multi-agent systems community, opinion for-
mation is studied intensively. In [4] a co-evolutionary model
is investigated, where also the innate opinion may change
over time. There is also substantial work on understanding
opinion diffusion, i.e., the process of how opinions spread in
a social network [2, 17–19, 29, 35]. Moreover, in [23, 24] a
framework and a simulator for agent-based opinion forma-
tion models is presented. Opinion dynamics and in particular
the emergence of echo chambers is modeled with tools from
statistical physics in [34, 39]

Another line of related research on opinion dynamics
has its roots in randomized rumor spreading and distributed
consensus processes (see [6] for a rather recent survey).
Communication in these models is typically restricted to
constantly many neighbors. A simple and natural protocol
in this context is the Voter process [11, 25, 42, 47], where
every agent adopts in each round the opinion of a single,
randomly chosen neighbor. Similar processes are the Two-
Choices process [26–28], the 3Majority dynamics [8, 9,
40], and the Undecided State Dynamics [3, 5, 7, 10, 22, 41].

1.2 Model and notation

A Hegselmann–Krause system (HKS) (G = (V , E), ε, x) in
d dimensions is defined as follows. We are given a social
network G = (V , E) and a confidence bound ε ∈ R+. The
n nodes of the social network correspond to the agents, and
each agent v ∈ V has an initial opinion x(v) ∈ R

d . We will
use the terms agents and nodes interchangeably. As the opin-
ion of agent v is represented by a point in the d-dimensional
Euclidean space, we sometimes call it the position of v. In
step t ∈ Z≥0 the opinion of agent v ∈ V is denoted as
xt (v) ∈ R

d , where x0(v) = x(v). For some constant confi-
dence bound ε ∈ R+ we define the influencing neighborhood
of agent v ∈ V at time t as

Nv[t]v = {v} ∪ {u∈V | {u, v}∈E, ‖xt (u)−xt (v)‖2 ≤ ε}.

In each step t one agent v ∈ V is chosen uniformly at random
and updates its position according to the rule

xt+1(v) =
∑

u∈Nt (v) xt (u)

|Nt (v)| .

If xt (v) �= xt+1(v), then we say that (the opinion of) agent
v has moved. Also, in an update of agent v’s position in
step t , all other agents do not change their positions, i.e.,
xt+1(u) = xt (u) for u �= v.
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Given a social network G = (V , E), we define for any
edge e = {u, v} ∈ E at time t the length of e as ‖xt (e)‖2 =
‖xt (u) − xt (w)‖2. We define the available movement mt (v)

of agent v ∈ V at time t as the d-dimensional vector

mt (v) =
∑

u∈Nt (v)

xt (u) − xt (v)

|Nt (v)| .

Note that mt (v) = xt+1(v)−xt (v) if v is chosen in step t , and
hence ‖mt (v)‖2 denotes the distance the agent moves when
activated in step t . The influence network It in step t is given
by the social network G restricted to edges that have length
at most ε. More formally, it is defined as It = (V , Et ), where
e = {u, v} ∈ Et if and only if u ∈ Nt (v), i.e., ‖xt (e)‖2 ≤ ε.
We define the state of a HKS (G = (V , E), ε, x) at time t as
St = (G = (V , E), ε, xt ) and it refers to the positions of the
agents at that specific time. If clear from the context, we omit
the parameter t . For a fixed state S, the term N(v) denotes
the influencing neighborhood in this state.

We are interested in the expected number of steps that are
required until the HKS reaches a δ-stable state, which is a
natural stability criterion defined by Bhattacharyya and Shi-
ragur [13]. A HKS is in a δ-stable state if and only if each
edge in the influence network has length at most δ. Intu-
itively, in such a state each agent has a small incentive to
further revise the opinion. Hence, it is reasonable to assume
that such states represent a stable configuration of the sys-
tem. Strictly speaking, however, in a δ-stable state the HKS
might not be stabilized entirely in the sense that agents are
unable to achieve further improvement by a deviation at all.
If agents would continue to revise their opinions, the HKS
might subsequently be able to leave the δ-stable state. Put
differently, not all such states are attractive. We note, how-
ever, that this is a condition shared by the vast majority of
approximate stability or equilibrium concepts defined in the
literature.

We call the number of steps to reach a δ-stable state
the convergence time of the system. To track the progress
towards convergence, we define the following potential func-
tion for any state S = (G = (V , E), ε, x) of a d-dimensional
HKS (G = (V , E), ε, x):

�(S) =
∑

{u,v}∈E

min{‖x(u) − x(v)‖2
2, ε

2}.

This potential is upper-bounded by �(S) ≤ |E |ε2.

1.3 Our contribution

We study the convergence time to a δ-stable state in
Hegselmann–Krause systems with an arbitrary initial state
and an arbitrary given social network, where we update one
uniformly at random chosen agent in each step. To the best

of our knowledge, this is the first analysis of the variant of
HKSs that feature asynchronous opinion updates on a given
arbitrary social network. For these systems, we prove the
following:

Theorem 1 For a d-dimensional HKS S0 = (G = (V , E),

ε, x), the expected convergence time to a δ-stable state under
uniform random asynchronous updates is O(�(S0)n|E |/δ2)

≤ O(n|E |2 (ε/δ)2).

For graphs with |E | = O(n), for example graphs with con-
stant maximum node degree, the theorem immediately shows
an expected convergence time of O(n3 (ε/δ)2). Interestingly,
our upper bound on the expected convergence time in the
asynchronous process on arbitrary social networks is of the
same order as the best known upper bound of O(n5 (ε/δ)2)

for the synchronous process [13] where all agents are acti-
vated in parallel.

Furthermore, we show that the convergence time stated
in Theorem 1 also transfers to the model of Etesami and
Başar [33]. They showed that a HKS with asynchronous
opinion updates on a complete social network converges
to a δ-equilibrium in O(n9 (ε/δ)2) steps, thus it is a major
improvement over their analysis. However, since on arbitrary
social networks δ-stability does not imply a δ-equilibrium, it
is open if the bound given in Theorem 1 also holds for the
convergence time to δ-equilibria.

Moreover, for the special case of a complete social net-
work with asynchronous opinion updates, i.e., the case
considered by Etesami and Başar [33], we show the following
even stronger result that holds for arbitrary δ:

Theorem 2 Let (G = (V , E), ε, x) be any instance of a d-
dimensional HKS and let G = Kn be the complete social
network. Using uniform random asynchronous update steps,
the expected convergence time to a δ-stable state is at most
O

(
n3

(
n2 + (ε/δ)2

))
.

To prove these results, we extend the potential function
used in [33]. The main ingredient for strongly improving the
upper bound derived in [33] is to significantly tighten and
generalize their proof. To do so, we develop a projection
argument (see Lemma 4) and a new analysis of the expected
available movement of a randomly chosen agent. This allows
us to improve the bound on the expected drop of the potential
function (see Lemma 8).

To complement our upper bound results, we demonstrate
that our analysis method is tight in the sense that by using this
potential function and studying the step-by-step drop, one
cannot improve the results. We present a family of instances
and initial states where the expected potential drop is exactly
of the same order as our upper bound (see Theorem 9). More-
over, we present a family of one-dimensional HKSs and
initial states where �(�(S0)n|E |/ε2) steps are needed to
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reach a δ-stable state (see Theorem 3), thereby matching the
upper bound shown in Theorem 1 in terms of the order of n.

Theorem 3 For ε = 1 and δ < 1/2, there exists a family
of social 1-dimensional HKSs (S0,4n)n∈N where any given
update sequence needs at least �(�(S0,4n)n|E |/ε2) =
�(n4) steps to reach a δ-stable state.

Notably, this lower bound applies for arbitrary update
sequences, while our upper bound applies when the updat-
ing agent is chosen uniformly at random. Thus, even when
resorting to a smarter choice of the updating agent, one can-
not drastically reduce the convergence time in the worst case.

Last but not least, in Sect. 5 we provide some simula-
tion results for two specific social network topologies. Our
empirically derived lower bounds asymptotically match our
theoretically proven upper bound from Theorem 1.

2 Social Hegselmann–Krause systems

In this section we prove Theorem 1 in three steps. Recall
that for a HKS in d dimensions the opinion are represented
by points in the d-dimensional Euclidean space. First, in
Lemma 4 we show that for each HKS in d dimensions
there exists a mapping to a suitable 1-dimensional HKS,
such that the length of all edges does not increase, and the
influence network (consisting of the active edges) as well
as the length of the longest edge λ is preserved. We use
this projection in the second step (see Lemma 6) where
we only consider HKS in one dimension: We prove that
∑

v∈V (|Nt (v)| · ‖mt (v)‖2) ≥ 2λ, where Nt (v) is the set
of neighbors in the influence network and mt (v) is the avail-
able movement of the node. In the third step, we prove that
the potential drop due to activating an agent v can be lower
bounded by (|Nt (v)|+1) ·‖mt (v)‖2

2 (see Lemma 7). Finally,
in Lemma 8 we combine these three insights to bound the
potential drop.

Let S = (G = (V , E), ε, x) be a state of some d-
dimensional HKS with influence network I = (V , E). For
some arbitrary edge e = {u, w} ∈ E, we will project the
state S to a state S̄e of some 1-dimensional HKS. We define
the projected state S̄e along edge e = {u, w} with the help of
the projection vector

p = (x(u) − x(w))

‖x(u) − x(w)‖2
,

where the order of u and w is chosen arbitrarily. We define

S̄e = (Ḡ = (V , Ē), ε, x̄),

as follows. We project the position of each agent v ∈ V to

x̄(v) = x(v)� p ∈ R.

Furthermore, in the graph Ḡ = (V , Ē) of the projected sys-
tem, we restrict the set of edges Ē to the ones, which are edges
of the influence network in the original state, i.e., Ē = E. For
an agent v ∈ V , we denote by N̄(v) its influencing neigh-
borhood, and by m̄(v) its available movement in S̄e.

In the following lemma, we prove that the projected sys-
tem behaves similarly to the original system in the sense
that the length of the edge e stays the same and the influ-
ence network does not change. Furthermore, the agents in
the original HKS move at least as much as the agents in the
projected state, when activated.

Lemma 4 Let S = (G = (V , E), ε, x) be a state of a d-
dimensional HKS with influence network I = (V , E) and
e = {u, w} ∈ E. Then for any v, v′ ∈ V and the projected
state S̄e defined as above it holds that

‖x(u) − x(w)‖2 = |x̄(u) − x̄(w)| , (1)

‖x(v) − x(v′)‖2≥ |x̄(v) − x̄(v′)| , (2)

N(v) = N̄(v) , and (3)
∑

v∈V

(|N(v)| · ‖m(v)‖2) ≥
∑

v∈V

(|N̄(v)||m̄(v)|). (4)

Proof Let p be the projection vector used to generate S̄e. To
see statement (1) note that

|x̄(u) − x̄(w)|
=

∣
∣
∣x(u)� p − x(w)� p

∣
∣
∣ =

∣
∣
∣(x(u) − x(w))T p

∣
∣
∣

=
∣
∣
∣
∣
(x(u) − x(w))�(x(u) − x(w))

‖(x(u) − x(w))‖2

∣
∣
∣
∣

= ‖(x(u) − x(w))‖2.

To prove statement (2), we show that for each pair v, v′ ∈ V
it holds that ‖x(v) − x(v′)‖2 ≥ |x̄(v) − x̄(v′)|:

|x̄(v) − x̄(v′)|
=

∣
∣
∣x(v)� p − x(v′)� p

∣
∣
∣ =

∣
∣
∣(x(v) − x(v′))� p

∣
∣
∣

=
∣
∣
∣
∣
(x(v) − x(v′))�(x(u) − x(w))

‖(x(u) − x(w))‖2

∣
∣
∣
∣

C.-S.≤ ‖(x(v) − x(v′))‖2 .

The last inequality uses the Cauchy-Schwarz inequality (C.-
S.).

To see (3), note that (because of (2)) the difference
between projected positions of agents is at most as large as
the difference between their original positions. Since Ē con-
tains only the edges of the influence network in the original
state, it holds that N(v) = N̄(v).
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Finally, it holds that

‖m(v)‖2

=
∥
∥
∥
∥

∑
u∈N(v)(x(u) − x(v))

|N(v)|
∥
∥
∥
∥

2

=
∥
∥
∥
∑

u∈N(v)(x(u) − x(v))

∥
∥
∥

2

|N(v)|

C.-S.≥

∣
∣
∣
∣

(∑
u∈N(v)(x(u) − x(v))

)�
(x(u) − x(w))

∣
∣
∣
∣

|N(v)|‖x(u) − x(w)‖2

=
∣
∣
∣
∣
∣
∣

(∑
u∈N(v)(x(u)� p − x(v)� p)

)

|N(v)|

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∑
j∈N̄(v)(x̄(u) − x̄(v))

|N̄(v)|

∣
∣
∣
∣
∣
= |m̄(v)| ,

and hence

∑

v∈V

|N(v)|‖m(v)‖2 ≥
∑

v∈V

|N̄(v)||m̄(v)| .


�
We now prove a lower bound on the total available movement
of agents.

Lemma 5 Let S = (G = (V , E), ε, x) be a state of a 1-
dimensional HKS, let c ∈ R and V� = {v ∈ V | x(v) ≤ c}
and Vr = V \V�. Define E�,r = {{u, w} ∈ EI | u ∈ Vl , w ∈
Vr }. Then it holds that

∑

v∈V

|N(v)||m(v)| ≥ 2
∑

e∈E�,r

‖x(e)‖2

Proof We observe

∑

v∈V�

|N(v)||m(v)|

≥
∑

v∈V�

|N(v)|m(v) =
∑

v∈V�

|N(v)|
∑

u∈N(v)

x(u) − x(v)

|N(v)|
=

∑

v∈V�

∑

u∈Vr ∩N(v)

(x(u) − x(v))

+
∑

v∈V�

∑

u∈V�∩N(v)

(x(u) − x(v)) .

Note that for each edge e = {v, u} with v, u ∈ V� the second
sum contains x(u) − x(v) as well as x(v) − x(u). As such,

∑

v∈V�

∑

u∈V�∩N(v)

(x(u) − x(v)) = 0

Furthermore, for each edge e = {v, u} with v ∈ V� and
u ∈ Vr it holds that x(u) − x(v) > 0, since x(u) > 0 and
x(v) < 0. As a consequence,

∑

v∈V�

|N(v)||m(v)| ≥
∑

v∈V�

∑

u∈Vr ∩N(v)

(x(u) − x(v))

=
∑

e∈E�,r

‖x(e)‖2 .

Similarly, it holds that

∑

v∈Vr

|N(v)||m(v)| ≥
∣
∣
∣
∣
∣
∣

∑

v∈Vr

|N(v)|m(v)

∣
∣
∣
∣
∣
∣

=
∑

e∈E�,r

‖x(e)‖2 .

The lemma follows by combining the two results as Vr =
V \V�. 
�
Corollary 6 Let S = (G = (V , E), ε, x) be a state of a d-
dimensional HK system. Let λ be the length of a longest edge
in the influence network. Then

∑

v∈V

|Nt (v)| · ‖mt (v)‖2 ≥ 2λ.

Proof Let edge e = {v�, vr } ∈ E be a longest edge in
the influence network and ‖x(e)‖2 = λ. Let S̄e = (Ḡ =
(V , Ē), ε, x̄) be the state projected to one dimension along
the edge e. By Lemma 4 Eq. (4), we know that

∑

v∈V

|N(v)| · ‖m(v)‖2 ≥
∑

v∈V

|N̄(v)| · |m̄(v)|.

Furthermore, by Lemma 4, we know that the influence net-
work in both systems has the same set of edges (Eq. (3)), the
longest edge e preserves its length in the projection (1), and
all other edges do not increase their length (Eq. 2). There-
fore, the length of the longest edge in the influence network
of Īt is equal to the length of the longest edge in It . Hence
e = {u, w} ∈ E is a longest edge in the influence network Ī
with ‖x(e)‖2 = λ.

Analogously to Lemma 5, we partition V into two sets
V� and Vr at c = (x(u) + x(w))/2 and define E�,r =
{{v, v′} | v ∈ V�, v

′ ∈ Vr }. Note that e ∈ E�,r and hence
∑

v∈V |m̄(v)||N̄(v)| ≥ 2
∑

e∈E�,r
‖x(e)‖2 ≥ 2λ . 
�

In the next step, we will prove a lower bound on the drop
in the potential when updating any agent v ∈ V .

Lemma 7 Let St = (G = (V , E), ε, xt ) be the state of some
d-dimensional HKS (G = (V , E), ε, x). Suppose we update
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the position of agent v and v moves by mt (v). Let

St+1 = (G = (V , E), ε, xt+1)

be the new state. The potential decreases by at least

�(St ) − �(St+1) ≥ (|Nt (v)| + 1) · ‖mt (v)‖2
2.

If the influence network does not change from step t to t + 1,
we obtain equality.

Proof As we activate v, the position of agents u �= v does not
change, but the set of active edges can change and is updated
from Et to Et+1. To bound the potential change we consider
edges Et ∩ Et+1, Et\Et+1 and Et+1\Et . In the set Et\Et+1 the
length of the edges increases above ε while in the set Et+1\Et

the length decreases below ε.
By the definition of �, we have

�(St ) − �(St+1)

=
∑

{u,v}∈E

(min{‖xt (v) − xt (u)‖2
2, ε

2}

− min{‖xt+1(v) − xt+1(u)‖2
2, ε

2})
=

∑

{u,v}∈
Et ∩Et+1

(
‖xt (v) − xt (u)‖2

2 − ‖xt+1(v) − xt+1(u)‖2
2

)

+
∑

{u,v}∈
Et \Et+1

(
‖xt (v) − xt (u)‖2

2 − ε2
)

=
∑

{u,v}∈
Et ∩Et+1

(
‖xt (v) − xt (u)‖2

2 − ‖xt+1(v) − xt+1(u)‖2
2

)

+
∑

{u,v}∈
Et+1\Et

(
ε2 − ‖xt+1(v) − xt+1(u)‖2

2

)

≥
∑

{u,v}∈
Et ∩Et+1

(
‖xt (v) − xt (u)‖2

2 − ‖xt+1(v) − xt+1(u)‖2
2

)

+
∑

{u,v}∈
Et \Et+1

(‖xt (v) − xt (u)‖2
2

− ‖xt+1(v) − xt+1(u)‖2
2

)
.

Note that in this step, we have equality if Et = Et+1. We
conclude

�(St ) − �(St+1)

≥
∑

{u,v}∈Et

(
‖xt (v) − xt (u)‖2

2 − ‖xt+1(v) − xt+1(u)‖2
2

)

=
∑

u∈Nt (v)

(
‖xt (v) − xt (u)‖2

2 − ‖xt+1(v) − xt+1(u)‖2
2

)

= ‖xt+1(v) − xt (v)‖2
2

+
∑

u∈Nt (v)

(‖xt (v) − xt (u)‖2
2

− ‖xt+1(v) − xt (u)‖2
2

)

= ‖mt (v)‖2
2

+
∑

u∈Nt (v)

(‖xt (v) − xt (u)‖2
2

− ‖xt (v) + mt (v) − xt (u)‖2
2

)
,

Using the definition of ‖ · ‖, we obtain

= ‖mt (v)‖2
2

+
∑

u∈Nt (v)

(xt (v)�xt (v) − 2xt (v)�xt (u)

+ xt (u)�xt (u)

− (xt (v) + mt (v))�(xt (v) + mt (v))

+ 2(xt (v) + mt (v))�xt (u) − xt (u)�xt (u))

= ‖mt (v)‖2
2

+
∑

u∈Nt (v)

(−2mt (v)�xt (v) − mt (v)�mt (v)

+ 2mt (v)�xt (u))

= ‖mt (v)‖2
2 − |Nt (v)|‖mt (v)‖2

2

+ 2mt (v)�
⎛

⎝
∑

u∈Nt (v)

(xt (u) − xt (v))

⎞

⎠

= ‖mt (v)‖2
2 − |Nt (v)|‖mt (v)‖2

2

+ 2|Nt (v)|mt (v)�mt (v)

= (|Nt (v)| + 1)‖mt (v)‖2
2 ,

which concludes the proof. 
�
We now have the tools to prove a lower bound on the expected
potential drop in a single step.

Lemma 8 For any state St = (G = (V , E), ε, xt ) of some
HKS (G = (V , E), ε, x) in step t, when updating an agent
chosen uniformly at random resulting in state St+1 = (G =
(V , E), ε, xt+1), the expected potential drop is at least

E[�(St ) − �(St+1)] ≥ 2(λt )
2

n|Et | ,

where λt is the length of the longest edge in the influence
network It in step t.
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Proof From Lemma 7 we know that the potential never
increases: if we choose agent v to be updated, the potential
decreases by at least

�(St ) − �(St+1) ≥ (|Nt (v)| + 1) · ‖mt (v)‖2
2.

Let et be a longest edge in the corresponding influence
network of St . By Lemma 6, we know that

∑

v∈V

|Nt (v)| · ‖mt (v)‖2 ≥ 2‖et‖2.

Using Cauchy-Schwarz
(∑

v∈V avbv

)2 ≤ ∑
v∈V a2

v ·∑
v∈V b2

v with av = √|Nt (v)| · ‖mt (v)‖2 and bv =√|Nt (v)|, we conclude that the expected potential drop in
each step with an edge with length at least λt is at least

E[�(St ) − �(St+1)]
=

∑

v∈V

1

n
E[�(St ) − �(St+1) | v is updated]

≥ 1

n

∑

v∈V

(|Nt (v)| + 1)‖mt (v)‖2
2

≥ 1

n

∑

v∈V

(
√|Nt (v)| · ‖mt (v)‖2)

2

≥ 1

n

(∑
v∈V |Nt (v)| · ‖mt (v)‖2

)2

∑
v∈V

√|Nt (v)|2

≥ 1

n
· 4(λt )

2

2|Et | .


�
The proof of Theorem 1 is a direct consequence of Lemma 8.

Theorem 1 For a d-dimensional HKS S0 = (G = (V , E),

ε, x), the expected convergence time to a δ-stable state under
uniform random asynchronous updates is O(�(S0)n|E |/δ2)

≤ O(n|E |2 (ε/δ)2).

Proof Note that by definition of the potential function, we
have �(S) ≤ ε2|E | for all states S. We know by Lemma 8
that the expected potential drop at any step t is at least

E[�(St ) − �(St+1)] ≥ 2δ2

n|Et | ≥ 2δ2

n|E |
as long as there is an edge with length at least δ.

Applying the classic additive drift theorem (see, e.g.,
[44, Theorem 2.3.1] and the historic references therein) we
directly observe that the expected number of steps to reach a
δ-stable state is upper bounded by

�(S)

2δ2

n|E |
≤ |E |ε2

2δ2

n|E |
= n|E |2

2

(ε

δ

)2
,

Cl

r

ε − 9m̂ ε − 6m̂ ε − 3m̂ ε ε − 3m̂ ε − 6m̂ ε − 9m̂

Cr

Fig. 1 A state S of a HKS with �(S) = �(n2ε) and an expected
potential drop of �(ε2/n3). Only edges in E0 are presented, and
m̂ = ε/(n2/16 + 5n/4 − 1) represents the equal available movement
of all nodes. Note that the state S is a one-dimensional instance and the
position of all nodes of the cliques C� and Cr have the same position,
respectively. We use the second dimension only for a better illustration
of the influencing network. We call the state S with its social network
reduced to the edges in E0 a Dumbbell instance

resulting in the bound from the theorem. 
�
Our results in Theorem 1 directly improve the results from
Etesami and Başar [33] even though they use a slightly dif-
ferent convergence criterium. In their paper, convergence
is reached if the diameter of each connected component is
bounded by δ, and they call this state a δ-equilibrium. They
bound the expected number of update steps to reach a δ-
equilibrium in the complete social network by O(n9(ε/δ)2).

Our result transfers to their notion of convergence as fol-
lows. Assume δ ≤ ε/2 and that the length of the longest
edge is at most δ. If the social network is the complete graph,
each connected component in the influence network must be
a complete sub-graph, see Lemma 10. Hence, the diameter
of this connected component is also bounded by δ. Hence, if
δ ≤ ε/2, a δ-stable state must be in δ-equilibrium as well. On
the other hand, if δ > ε/2, the expected number of steps to
reach a ε/2-stable state and hence a δ-equilibrium is bounded
by O(n5) by Theorem 1.

The next theorem shows that our bound on the poten-
tial drop per step is tight. Consequently, if we would like to
improve the theorem, we have to choose a different potential
function and/or consider multiple activations at once.

Theorem 9 There is a family of instances and initial states
with |E | = �(n2) and a potential of �(n2ε2), where the
expected potential drop is �(ε2/n3) for the first activation.

Proof Consider the following family of 1-dimensional HKSs
H Kn = (G = (V , E), ε, x0) such that |V | = 4n for any
n ∈ N>1, see Fig. 1 for the example for n = 4. The set of
nodes V is partitioned into sets C�, Cr , P, {�, r} ⊆ V , such
that |C�| = |Cr | = n and |P| = 2n − 2. The set of edges E
is given such that C�, Cr , and P are cliques while nodes �

and r are connected to all nodes.
To define the opinions of the agents that correspond to the

nodes V at state S0, define m̂ = ε/(n2 + 5n − 1) and choose

• x0(v) = 0 for each v ∈ C�,
• x0(�) = m̂ · (n + 1),
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• for each j ∈ {1, . . . , n} there exists a node v j ∈ P with

x0(v j ) = x0(v j−1) + ε − 3(n − j)m̂

where we define v0 = �.
• for each j ∈ {n + 1, . . . , 2n − 2} there exists a node

v j ∈ P with

x0(v j ) = x0(v j−1) + ε − 3( j − n)m̂

• x0(r) = x0(v) + ε − 3(n − 1)m̂
• x0(v) = x0(r) + (n + 1)m̂ for each v ∈ Cr .

Note that all the edges inside the cliques C�∪{�} and Cr ∪{r}
are in the influence network I0, as well as each edge between
v j and v j+1 for j ∈ {0, . . . , 2n − 2}, where v0 = � and
v2n−1 = r . Also,

|x0(vi ) − x0(v j )| ≥ x0(v2) − x0(v0)

= ε − 3(n − 2)m̂ + ε − 3(n − 1)m̂

= 2ε − 3(2n − 3)ε/(n2 + 5n − 1)

> ε

for all 0 ≤ i, j ≤ 2n with |i − j | ≥ 2 and therefore the
above-mentioned edges are the only ones in I0.

We proceed by verifying that for each v ∈ V it holds that
|m0(v)| = m̂. We calculate the available movement for �.
Let v ∈ C�. Since all n agents in C� have the same initial
position x0(v) = 0, it holds that

|m0(�)| = n · x0(v) + x0(v1) − (n + 1)x0(�)

n + 2

= x0(�) + ε − 3(n − 1)m̂ − (n + 1)x0(�)

n + 2

= ε − 3(n − 1)m̂ − n · x0(�)

n + 2

= ε − 3(n − 1)m̂ − n · m̂ · (n + 1)

n + 2

= ε − (n2 + 4n − 3)m̂

n + 2

= ε − (n2 + 4n − 3) · ε/(n2 + 5n − 1)

n + 2

= ε · (n2 + 5n − 1) − (n2 + 4n − 3)

(n2 + 5n − 1)(n + 2)

= ε · n + 2

(n2 + 5n − 1)(n + 2)

= m̂ .

The calculation of the available movement of the other agents
is analogous. Let v ∈ C�, then it holds that

|m0(v)| = x0(�) − x0(v)

n + 1
+

∑

v′∈C�

x0(v
′) − x0(v)

n + 1

= x0(�)

n + 1
= m̂ · (n + 1)

n + 1
= m̂.

Let v ∈ Cr , then we have

|m0(v)| =
∣
∣
∣
∣
∣
∣

x0(r) − x0(v)

n + 1
+

∑

v′∈C�

x0(v
′) − x0(v)

n + 1

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
x0(r) − (x0(r) + (n + 1)m̂)

n + 1

∣
∣
∣
∣

= m̂ · (n + 1)

n + 1
= m̂.

Let vi ∈ P with i ≤ n − 1, then we get that

|m0(vi )| = |x0(vi−1) + x0(vi+1) − 2x0(vi )|
3

= |x0(vi−1) + ε − 3(n − (i + 1))m̂ − x0(vi )|
3

= |ε − 3(n − i)m̂ − (ε − 3(n − (i + 1))m̂)|
3

= 3m̂

3
= m̂.

Let vn ∈ P , then it holds that

|m0(vn)| = |x0(vn−1) + x0(vn+1) − 2x0(vn)|
3

= |x0(vn−1) + ε − 3(n + 1 − n)m̂ − x0(vn)|
3

= |ε − 3(n + 1 − n)m̂ − (ε − 3(n − n)m̂)|
3

= 3m̂

3
= m̂.

Let vi ∈ P with i > n, then we have

|m0(vi )| = |x0(vi−1) + x0(vi+1) − 2x0(vi )|
3

= |x0(vi−1) + ε − 3(i + 1 − n)m̂ − x0(vi )|
3

= |ε − 3(i + 1 − n)m̂ − (ε − 3(i − n)m̂)|
3

= 3m̂

3
= m̂.
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Finally, we get that

|m0(r)| =
∣
∣
∣
∣
∣
∣

∑

v∈Cr ∪v2n−2

x0(v) − x0(r)

n + 2

∣
∣
∣
∣
∣
∣

= (n + 1)x0(r)

n + 2

− n · (x0(r) + (n + 1)m̂)

n + 2

− (x0(r) − ε + 3(n − 1)m̂)

n + 2

= ε − 3(n − 1)m̂ − n(n + 1)m̂

n + 2

= ε − (n2 + 4n − 3)m̂

n + 2

= ε − (n2 + 4n − 3) · ε/(n2 + 5n − 1)

n + 2

= ε · (n2 + 5n − 1) − (n2 + 4n − 3)

(n2 + 5n − 1)(n + 2)

= ε · n + 2

(n2 + 5n − 1)(n + 2)

= m̂ .

By Lemma 7, the expected potential drop is given by

E[�(S0) − �(S1)]
= 1

4n

∑

v∈V

(|N0(v)| + 1) · |m0(v)|2

= 1

4n

(n

2

(n

4
+ 2

)
+ 2

(n

4
+ 3

)
+

(n

2
− 2

)
· 4

)
m̂2

= 1

4
(n/8 + 7/2 − 2/n) m̂2

= 1

4
(n/8 + 7/2 − 2/n) (ε/(n2/16 + 5n/4 − 1))2

= �(ε2/n3).

On the other hand, there exist n
2

( n
2 − 2

)
edges with length

longer than ε and hence �(S0) = �(ε2n2). 
�

Note that this only proves that the drop in the first step is
sufficiently small. The expected drop for the next step could
increase after activating a node. Therefore, this theorem does
not prove a lower bound for the convergence time. Instead,
it shows that the analysis of the step-by-step drop is tight.

In the next section, we see an example of how to change
the analysis to circumvent this bound.

3 Special network topologies

In this section, we will prove two improved upper bounds,
each for a more restricted set of graph classes. The first result
holds when the social network is a complete graph, while the
second holds when, in each step of the HKS, the influence
network is the same as the social network.

To prove the result for HKSs with a social network, we
prove the following characteristics of these systems.

Lemma 10 Let (G = (V , E), ε, x) be any instance of a d-
dimensional HKS with complete social network G = Kn and
current influence network I. If all edges in I have a length
of at most ε/2, each connected component in I is a complete
graph.

Proof Let V ′ ⊆ V be the set of nodes of a connected com-
ponent in I . Assume that v, u ∈ V ′, but {v, u} /∈ E(I ). Then
there exists a shortest path P = (v,w1, . . . , wk = u) of
length at least 2 from v to u where each edge has a length
of at most ε/2. As a consequence, the distance between v

and w2 can be at most ε. Therefore, the edge between v and
w2 has to exist in the influence network. Hence, P is not the
shortest path, contradicting the assumption. 
�
Theorem 2 Let (G = (V , E), ε, x) be any instance of a d-
dimensional HKS and let G = Kn be the complete social
network. Using uniform random asynchronous update steps,
the expected convergence time to a δ-stable state is at most
O

(
n3

(
n2 + (ε/δ)2

))
.

Proof We split this proof into two steps. First, we count the
number of possible steps where the influence network has
an edge of length at least ε/2. Secondly, we upper-bound
the number of steps where the longest edge of the influence
network is in [δ, ε/2].

Assume in step t there is an edge in the influence network
with length at least ε/2. Let St and St−1 denote the states of
the HKS in steps t and t − 1, respectively. In this case, by
Lemma 8, we have

E[�(St ) − �(St−1)] ≥ ε2

2n|Et | .

As a consequence, the expected number of such steps is
bounded by |E |2n = O(n5).

For the rest of the proof, assume that all edges in the influ-
ence network are shorter than ε/2 and there exists one edge
with a length at least δ. We project the HKS to one dimension
along the longest edge. By Lemma 4, we know that in the
projected graph, no edge increases its length, and there exists
an edge with a length at least δ.

Let there be k connected components Ci = (Vi , Ei ), i ∈
{1, . . . , k}, and λi (t) be the length of the longest edge in
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the connected component Ci . We bound the total available
movement in this component from below using Lemma 5.

For each connected component Ci with λi (t) > 0 let
ei = {u, w} be a longest edge in this component. We partition
Vi into Vi,� and Vi,r at c = (xt (u)+ xt (w))/2 and we define
the set E�,r ,i as in Lemma 5. Since the connected component
is the complete graph by Lemma 10 each node from Vi,� is
connected to w while each node from Vi,r is connected to u.
As a consequence, the set E�,r ,i contains at least (|Vi | − 1)

edges of length at least λt/2 and one of them has length λt .
As a consequence,

∑
e∈E�,r ,i

‖xt (e)‖2 ≥ |Vi |λt/2 and hence,
by Lemma 5,

|Vi |
∑

v∈Vi

|mt (v)| =
∑

v∈Vi

|Nt (v)||mt (v)|

≥ 2
∑

e∈E�,r ,i

‖xt (e)‖2 ≥ |Vi |λi (t)

and therefore

∑

v∈Vi

|mt (v)| ≥ λi (t).

As a consequence, it holds that

E[�(St ) − �(St−1)]
≥ 1

n

∑

v∈V

(|Nt (v)| + 1)‖mt (v)‖2
2

≥ 1

n

k∑

i=1

(|Vi | + 1)
∑

v∈Vi

‖mt (v)‖2
2

≥ 1

n

k∑

i=1

(|Vi | + 1)

⎛

⎝
∑

v∈Vi

‖mt (v)‖2

⎞

⎠

2

/|Vi |

>
1

n
·

k∑

i=1

(λi (t))
2.

Since one of the edges λi (t) has a length at least δ, the
expected potential drop is at least δ2/n. Therefore, in expec-
tation, there are at most O(|E |n(ε/δ)2) steps where the length
of the longest edge is in [δ, ε/2]. Combining the two results
finishes the proof. 
�
We say an HKS is socially stable if, independently of the
update steps, the influence network is always equal to the
social network. For these systems, we can prove a better upper
bound on the expected number of steps needed to reach a δ-
stable state. Examples of such graphs are the path, where all
the nodes are positioned with equal distance of at most ε, as
well as the graph from Theorem 9 if the social network for
the latter is reduced to the set of edges in E0.

Theorem 11 Let (G = (V , E), ε, x) be a HKS where the
social network and the influence network are equal in
each step. Using uniform asynchronous update steps, the
expected convergence time to a δ-stable state is bounded by
O(n|E |2 log(ε/δ)).

Proof Note that at any step, it holds that �(St ) ≤ |E |(λt )
2,

where λt is the length of the longest edge at time t . By
Lemma 8, the expected drop of the potential in each step
is bounded by 2(λt )

2/(n|E |). As a consequence, for each
i ∈ N the expected number of steps with λt ∈ [ε/2i+1, ε/2i ]
is bounded by O(n|E |2). Since for λt ∈ [δ, ε] there are at
most log(ε/δ) such intervals, the expected number of update
steps is bounded by O(n|E |2 log(ε/δ)). 
�

4 Lower bound

In this section, we complement our upper bounds on the
expected convergence time with a lower bound. To the best of
our knowledge, no lower bound for asynchronous updates is
known so far. We prove that there exists a family of instances
of HKS (S0,4n)n∈N for which at least �(�(S0,4n)n|E |)
updates are needed to converge. In this family, we have |E | =
�(n2) and �(S0) = �(n) for ε = 1 and δ < 1/2. Note that
the lower bound holds for any given update sequence. In par-
ticular, we also prove that there cannot be a deterministic
algorithm that reaches a δ-stable state faster than the proven
lower bound.

Theorem 3 For ε = 1 and δ < 1/2, there exists a family
of social 1-dimensional HKSs (S0,4n)n∈N where any given
update sequence needs at least �(�(S0,4n)n|E |/ε2) =
�(n4) steps to reach a δ-stable state.

Note that this lower bound is tight with regard to the con-
sidered family of instances and the parameter n since Theo-
rem 1 states that in expectation at most O((�(S0,4n)n|E |)/δ2)

= O(n4) updates are needed, to reach a δ-stable state.
We prove this lower bound in three steps. First, we prove

that edges cannot be deactivated in the defined family of
instances. Then, we upper bound the total available move-
ment of certain nodes in the family by a modified process
that is simpler to analyze.
Dumbbell Graph We define the following family of instances
of HKS (S0,4n)n∈N = (G4n = (V , E), ε, x0))n∈N: Let
G4n = (V , E) be the Dumbbell graph defined as follows.
The |V | = 4n nodes of the graph are partitioned into the
sets C�, Cr , P, {�, r} ⊆ V , such that |C�| = |Cr | = n,
|P| = 2n − 2.

The set of edges are given such that C� ∪ {�} and Cr ∪
{r} are cliques, P = {p1, . . . , p2n−2} is a path such that
{pi , pi+1} ∈ E for each i ∈ {1, . . . , 2n − 2}, as well as
{�, p1}, {r , p2n−2} ∈ E . In state S0,4n the opinions of the
agents that correspond to the nodes V are given as follows:
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• x0(v) = 0 for each v ∈ C�

• x0(�) = ε/n
• x0(pi ) = iε + ε/n for each node pi ∈ P
• x0(r) = (2n − 1)ε + ε/n
• x0(v) = (2n − 1)ε + 2ε/n for each v ∈ Cr .

Note that �(S0,4n) ∈ �(nε2) and |E | = n2, therefore
�(�(S0)n|E |/δ2) = �(n4).

Lemma 12 When starting the HKS process with S0,4n, it can
never happen that an edge is deactivated during the process.

Proof Assume we activate node pi ∈ P in step t + 1
and that the edges {pi−1, pi } and {pi , pi+1} are active as
well as xt (pi−1) ≤ xt (pi ) ≤ xt (pi+1). Which means that
xt (pi )− xt (pi−1) ≤ ε and xt (pi+1)− xt (pi ) ≤ ε and hence
|xt (pi+1) − xt (pi−1)| ≤ 2ε. As a consequence,

xt+1(pi ) − xt+1(pi−1)

= 1

3
(xt (pi ) + xt (pi+1) + xt (pi−1)) − xt (pi−1)

= 1

3
((xt (pi ) − xt (pi−1)) + (xt (pi+1) − xt (pi−1)))

≤ 1

3
(ε + 2ε) = ε

and similarly xt (pi+1) − xt+1(pi ) ≤ ε. Furthermore, we
obviously have that xt (pi−1) ≤ 1

3 (xt (pi ) + xt (pi+1) +
xt (pi−1)) ≤ xt (pi+1) and hence xt+1(pi−1) ≤ xt+1(pi+1)

≤ xt+1(pi+1)

For each pair of nodes v, v′ ∈ C� and any time t , we will
prove that |xt (v

′)−xt (v)| ≤ ε/n, that |xt (�)−xt (v)| ≤ 2ε/n,
and that |xt (�) − xt (p1)| ≤ ε. This claim is true in the start
configuration since all nodes in C� have the same position,
and � has distance ε/n to the nodes in C�.

Assume we activate a node v ∈ C� in step t + 1 and
|xt (v

′) − xt (v
′′)| ≤ ε/n as well as |xt (�) − xt (v

′)| ≤ 2ε/n
for each pair of nodes v′, v′′ ∈ C� ∪ {�}. Then it holds for
any node v′ ∈ C� ∪ {�}\{v} that

|xt (v
′) − xt+1(v)|

= |xt (v
′) −

∑

v′′∈C�∪{�}
xt (v

′′)/(|C� ∪ {�}|)|

≤
∑

v′′∈C�∪{�}\{v′}
|xt (v

′) − xt (v
′′)|/(n + 1)

≤ ((n − 1)(ε/n) + 2ε/n)/(n + 1) = ε/n .

Furthermore, it holds that

|xt (�) − xt+1(v)|
= |xt (�) −

∑

v′′∈C�∪{�}
xt (v

′′)/(|C� ∪ {�}|)|

≤
∑

v′′∈C�

|xt (v
′) − xt (v

′′)|/(n + 1)

≤ (n · (ε/n))/(n + 1) ≤ 2ε/n .

Assume we activate the node � in step t + 1 and for each
pair of nodes v, v′ ∈ C� it holds that |xt (v

′) − xt (v)| ≤ ε/n,
that |xt (�) − xt (v)| ≤ 2ε/n, and that |xt (�) − xt (p1)| ≤ ε.
Then it holds for any node v′ ∈ C� that

|xt (v
′) − xt+1(�)|

= |xt (v
′) −

∑

v′′∈C�∪{�,p1}
xt (v

′′)/(|C� ∪ {�, p1}|)|

≤
∑

v′′∈C�∪{�,p1}\{v′}
|xt (v

′) − xt (v
′′)|/(n + 2)

≤ ((n−1)(ε/n) + 2ε/n + ε)/(n + 2)

= (2ε + ε/n)/(n + 2) ≤ 2ε/n

Furthermore, it holds that

|xt (p1) − xt+1(�)|
= |xt (p1) −

∑

v′′∈C�∪{�,p1}
xt (v

′′)/(|C� ∪ {�, p1}|)|

≤
∑

v′′∈C�∪{�}
|xt (p1) − xt (v

′′)|/(n + 2)

≤ (n(ε/n + ε) + ε)/(n + 2) = ε.

Analogously, we can prove the statement for the nodes in
Cr ∪ {r}.

Hence, no edge can disappear when updating any node in
the graph at any step t . 
�

A necessary condition to terminate is that each edge on the
path P has a length of at most δ. Since the distance between
� and r is (2n−1)ε at state S0,4n and can be at most (2n−1)δ

in the final state, one of the nodes � and r has to move by at
least (ε − δ)(2n − 1)/2.
Modified Update Process In the following, we will lower-
bound the number of required update steps to move � by
this distance by defining a modified update process that
moves � faster. However, the required number of steps in
the modified process can be analyzed more easily. The opin-
ions in the modified process are denoted by x ′

t (v) for each
v ∈ V and t ∈ N. Let St = ∑

v∈C�∪� xt (v)/(n + 1) and
S′

t = ∑
v∈C�∪� x ′

t (v)/(n + 1) denote the mass center of the
nodes C� ∪ � in the original and modified process respec-
tively. Note that when activating an agent from C� in each of
the two processes, it will move to the corresponding center
of mass.

Consider any update-sequence (ut )t∈N≥0 specifying for
any t ∈ N≥0 the node ut that will be updated to generate
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the positions xt+1 from xt . Assume for simplicity of nota-
tion, that the nodes in C� are numbered from one to n, i.e.,
C� = {v1, . . . , vn}. Given (ut )t∈N≥0 , the modified process is
defined as follows:

• x ′
0 = x0.

• If ut /∈ C� do nothing, i.e., set x ′
t+1 = x ′

t .
• If ut ∈ C�, update multiple nodes at once. Generate x ′

t+1
as follows:

– find the node vmin ∈ C� that has the smallest value
x ′

t (v) with the smallest index, and set

x ′
t+1(vmin) = S′

t ;

– move the node � to the right: set

x ′
t+1(�) = ε

n
+

∑

v∈C�

x ′
t+1(v)

n
;

– if vmin = vn , move all the nodes in C� to S′
t , i.e., for

all v ∈ C� set

x ′
t+1(v) = S′

t .

We prove Theorem 3 in two steps. First, we prove that, indeed,
the modified process moves the node � faster than the original
process. Afterward, we prove that the modified process needs
at least �(n4) steps to move the clique by the distance (ε −
δ)(2n − 1)/2.

Lemma 13 For each update sequence (ut )t∈N>0 there exists
for each t ∈ N a bijection ft : C� → C� such that xt (v) ≤
x ′

t ( f (v)) for each v ∈ C�. Furthermore in each step it holds
that xt (�) ≤ x ′

t (�) and St ≤ S′
t .

Proof First, note that the modified update process will update
the nodes C� always in the same order from v1 to vn since
it chooses the node with a smallest opinion and the smallest
index. Since, in the beginning, all the nodes have the same
opinion, and the opinion only increases when updated, the
first n updates will update the nodes in the claimed order.
After updating the node vn , all the nodes will be shifted to the
same (increased) opinion. Inductively, the nodes are activated
in the same order.

We will prove the claim via induction on the number of
steps. Before activating any node, the bijection f0 : C� →
C�, v �→ v fulfills the required properties, since x0(v) =
x ′

0(v)= 0. Furthermore it holds that x0(�) = x ′
0(�) = ε/n

and

S0 = S′
0 =

∑

v∈C�∪�

x0(v)/(n + 1) = ε

n(n + 1)
.

Assume that after step t there is a bijection ft : C� → C�

such that xt (v) ≤ x ′
t ( ft (v)) for each v ∈ C�, St ≤ S′

t , and
xt (�) ≤ x ′

t (�). We have to consider the following cases: the
updated node is in C�, the updated node is �, the modified
process updates the node vn , and a node not in C� ∪ {�} is
updated.

In the case that a node in V \(C� ∪ {�}) is updated, the
values xt (�), x ′

t (�), St , S′
t stay unchanged. Furthermore, in

both processes, no node from C� will be updated and hence
we set the update function ft+1 = ft .

If the node � is updated, the modified process will not
move the node �. Note that in the original process, the edge
connecting the node � with the node p1 can have length at
most ε, since no edge is deactivated when updating any node
and hence xt (p1) ≤ xt (�) + ε. As a consequence, it holds
that

xt+1(�) =
∑

v∈C�∪{�,p1}
xt (v)/(n + 2)

≤ ((n + 1)St + (xt (�) + ε))/(n + 2)

≤ ((n + 1)S′
t + (x ′

t (�) + ε))/(n + 2)

= (
∑

v∈C�

x ′
t (v) + 2x ′

t (�) + ε)/(n + 2)

= (n + 2)
∑

v∈C�
x ′

t (v)/n + (n + 2)ε/n

(n + 2)

=
∑

v∈C�

x ′
t (v)/n + ε/n = x ′

t (�)

and hence xt+1(�) ≤ x ′
t+1(�). Since in both processes no

node form C� was updated, for the bijection ft : C� → C�

with xt (v) ≤ x ′
t ( f (v)) for each v ∈ C�, it still hods that

xt+1(v) ≤ x ′
t+1( f (v)) and hence we can set ft+1 = ft . As

a consequence St+1 ≤ S′
t+1 has to hold as well.

Let us assume that we update the clique node vt+1 ∈ C� in
the next step in the original process and the node v′

t+1 ∈ C�

in the modified process. Note that xt+1(vt+1) = St and
x ′

t+1(v
′
t+1) = S′

t by definition of the update process. Fur-
thermore

St+1 = St + (xt+1(vt ) − xt (vt ))/(n+1).

If ft (vt+1) = v′
t+1, we know that xt+1(vt+1) = St ≤

S′
t = x ′

t+1(v
′
t+1) = x ′

t+1( ft (vt+1)). Since no other node
form C� is moved, we define ft+1 = ft and it holds that
xt+1(v) ≤ x ′

t+1( f (v)) for each v ∈ C�. Furthermore,

St+1 =
∑

v∈C�∪{�}
xt+1(v)/(n + 1)

≤ x ′
t+1(�)/(n + 1) +

∑

v∈C�

x ′
t+1( ft+1(v))/(n + 1)
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=
∑

v∈C�∪{�}
x ′

t+1(v)/(n + 1)

= S′
t+1.

If ft (vt+1) �= v′
t+1, consider the nodes ft (vt+1) and

f −1
t (v′

t+1). We know that xt (vt+1) ≤ x ′
t ( ft (vt+1)) and

xt ( f −1
t (v′

t+1)) ≤ x ′
v′

t+1
. Furthermore, by the choice of v′

t+1,

we know that x ′
v′

t+1
≤ x ′

t ( ft (vt+1)). As a consequence, it

holds that xt ( f −1
t (v′

t+1)) ≤ x ′
t ( ft (vt+1)). When updating

the nodes, we get xt+1(vt+1) = St ≤ S′
t = x ′

t+1(v
′
t+1). We

define

ft+1(v) =

⎧
⎪⎨

⎪⎩

v′
t+1 if v = vt+1

ft (vt+1) if v = f −1
t (v′

t+1)

ft (v) otherwise

Note that for each v ∈ C� it holds that xt+1(v) ≤
x ′

t+1( ft+1(v)). Furthermore, we have

xt+1(�) = xt (�) ≤ x ′
t (�) ≤ x ′

t+1(�)

and

St+1 =
∑

v∈C�∪{�}
xt+1(v)/(n + 1)

≤ (x ′
t+1(�) +

∑

v∈C�

x ′
t+1( ft+1(v)))/(n + 1)

= S′
t+1.

Finally, if the updated node in the modified processes was
vn , all the nodes in C� move to the point S′

t . Since St ≤ S′
t , the

identity function ft+1 = id fulfills the required conditions,
since S′

t is monotonically increasing and hence there can be
no node with xt (v) > S′

t . Similarly as above it follows that
xt+1(�) ≤ x ′

t+1(�) and St+1 ≤ S′
t+1. 
�

Lemma 14 The modified process needs at least �(n4)

updates before � has moved by at least (ε − δ)(2n − 1)/2.

Proof In the modified process, the nodes in C� are shifted
to a common position every nth update step. We define an
update round as n updates of nodes in C� such that, before the
first update of the round, all nodes have the same position,
and all nodes are shifted to the same position after the last
update of the round.

First, we prove that in each update round, the node � moves
by at most (1+e)ε

n(n+1)
. Let p0 be the common start position of all

nodes in C�. By definition of the modified process, the node �

has position p0+ε/n. We denote by S′
t = ∑

v∈C�∪� x ′
t/(n+1)

the mass center of the nodes C� ∪� and by S̄′
t = ∑

v∈C�
x ′

t/n
the mass-center of the clique nodes C�.

When updating a node ut+1 ∈ C� at step t + 1, it moves
from position p0 to position S′

t since in each round, only
non-updated nodes will be moved. This update increases the
mass-center of the clique S̄′

t to

S̄′
t+1 = S̄′

t + (S′
t − p0)/n.

After updating the node ut+1, the node � is shifted to x ′
t (�) =

S̄′
t+1 + ε/n, increasing the mass-center of the nodes C� ∪ �

from St to

S′
t+1 = (S̄′

t+1 · n + S̄′
t+1 + ε/n)/(n + 1)

= S̄′
t+1 + ε

n(n + 1)
.

As a consequence, we get that

S̄′
t+1 = S̄′

t + (S′
t − p0)/n

= S̄′
t + S̄′

t + ε
n(n+1)

− S̄′
0

n

= n + 1

n
S̄′

t − S̄′
0

n
+ ε

n2(n + 1)

Via induction, we show that

S̄′
t = S̄′

0 +
((

n + 1

n

)t

− 1

)

· ε

n(n + 1)

It holds that

S̄′
1 = n + 1

n
S̄′

0 − S̄′
0

n
+ ε

n2(n + 1)

= S̄′
0 + ε

n2(n + 1)

= S̄′
0 +

((
n + 1

n

)1

− 1

)

· ε

n(n + 1)

Additionally, it holds that

S̄′
t+1 =n + 1

n
S̄′

t − S̄′
0

n
+ ε

n2(n + 1)

=n + 1

n

(

S̄′
0 +

((
n + 1

n

)t

− 1

)

· ε

n(n + 1)

)

− S̄′
0

n
+ ε

n2(n + 1)

=S̄′
0 +

((
n + 1

n

)t+1

− n + 1

n
+ 1

n

)
ε

n(n + 1)

=S̄′
0 +

((
n + 1

n

)t+1

− 1

)

· ε

n(n + 1)

123



Asynchronous opinion dynamics in social networks

As a consequence

S̄′
n−1 = S̄′

0 +
((

n + 1

n

)n−1

− 1

)

· ε

n(n + 1)

< S̄′
0 + (e − 1)ε

n(n + 1)

In the last update step of the round, all nodes are moved
to

S′
n−1 = S̄′

n−1 + ε

n(n + 1)
≤ S̄′

0 + eε

n(n + 1)

resulting in S̄′
n ≤ S̄′

0 + eε
n(n+1)

Consequently � is located at

or left of position S̄′
0 + eε

n(n+1)
+ ε

n and hence has moved by
at most eε

n(n+1)
in this round.

Note that after moving each node once, the relative posi-
tioning between the nodes in C� ∪ � is the same as before
moving the first node. Hence, it is sufficient to consider the
total number of rounds of moving n nodes from the clique.

The node � has to move by (ε−δ)(n−1), but after activat-
ing each node of the clique, it has moved by at most eε

n(n+1)
.

Hence, we need

(ε − δ)(n − 1)
eε

n(n+1)

= �(n3 ε − δ

ε
) = �(n3)

of these rounds, for δ small enough. Since each round needs n
updates, at least �(n4) updates are needed until the modified
process terminates. 
�
Proof of Theorem 3 Consider the family (S0,4n)n∈N as defined
in this section. By Lemma 12, no edge will be deactivated
until the process terminates. As a consequence, for termina-
tion, each edge on the path can have a length of at most δ.
This implies the the distance between � and r has to shrink
from (2n − 1)ε to (2n − 1)δ. Therefore, one of the nodes �

or r must move by at least (n − 1/2)(ε − δ) until the pro-
cess terminates. Let us w.l.o.g. assume that � moves by this
distance.

Consider the modified process as defined in this chapter.
By Lemma 13 we know that xt (�) ≤ x ′

t (�) for any update
step t . Furthermore, by Lemma 14 we know, that at least
t ∈ �(n4) steps are needed before x ′

t (�) − x ′
0(�) ≥ (n −

1/2)(ε−δ). Consequently, the original process needs at least
�(n4) update steps until it terminates. 
�

5 Simulation results

To corroborate our theoretical findings, we performed agent-
based simulations of asynchronous Hegselmann–Krause
opinion dynamics in one dimension on two types of initial
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Fig. 2 The plot shows the normalized convergence time: the number
of agent activations until a δ-stable state has been reached, divided by
n3. The data indicate that the convergence time on Path instances with
equal distances scales as n3 and on Dumbbell instances it scales as n4

HKS states called Path and Dumbbell. They are defined as
follows:

• Path: The given social network is a path graph. Initially,
the agents’ opinions are uniformly distributed in one
dimension with an equal distance of ε so that the influ-
ence network forms a path graph with a uniform edge
length of ε.

• Dumbbell: This is the state constructed in the proof of
Theorem 9 using the dumbbell graph, except that the
social network contains only the edges that are in E0

We fixed ε = 100 and δ = 1 in our simulations. For each
initial HKS state on social networks with varying numbers
of agents n, we simulated 100 independent runs of random
activations needed to reach a δ-stable state. The code for our
simulator software and all necessary tools to reproduce our
figures are available from our public GitHub repository.1

We present our simulation results in Fig. 2.
There, the obtained number of activations divided by n3

is plotted via box plots that summarize the results for each
configuration. Since for Path instances, the number of activa-
tions appears to be constant, we observe that we need �(n3)

activations for Path instances. On the other hand, the num-
ber of activations seems to grow linearly in n for Dumbbell
instances. This matches our proofs (upper and lower bound)
that in �(n4) activations Dumbbell instances reach a δ-stable
for constant ε and δ.

Note that by construction, in the first step, the potential
function of both instance types is bounded by �(S0) =
�(nε2). Applying Theorem 1 yields an upper bound of
�(S0)/(2δ2/(n|E |)) = O(nε2/(2δ2/(n|E |))), which yields
an upper bound of O(n3(ε/δ)2) for Path instances and
O(n4(ε/δ)2) for Dumbbell instances. Thus, the empirically

1 https://github.com/dcmx/HKsim
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observed lower bounds on the expected number of steps until
convergence match our theoretical analysis for these two
graph classes with respect to the dependence on the num-
ber of agents.

We highlight that our simulations not only confirm our the-
oretical results but also allow us to empirically pinpoint the
constants hidden in the asymptotic analysis. For the simula-
tions carried out on the path our simulation results indicate a
constant of roughly 1.5, giving a total running time of roughly
1.5 · n3. For the dumbbell we get a running time of less than
0.1 · n4. We remark that in our theoretical analysis we did
not attempt to optimize the constants. In fact, our result for
the dumbbell graph (see the proof of Theorem 1) gives a
bound of at most log(1002)/4 · n4 ≈ 3.32 · n4. Interestingly,
the total running times are sharply concentrated around their
mean. In fact, the plot in Fig. 2 actually shows box plots, but
starting with a number of agents as small as only 40 the upper
and lower whiskers become almost identical with no outliers
detected.

6 Conclusion

In this paper, we present the first analysis of the convergence
time of asynchronous Hegselmann–Krause opinion dynam-
ics on arbitrary social networks. As our main result, we derive
an upper bound of O(n|E |�(S0)/δ

2) ≤ O(n|E |2 (ε/δ)2)

expected random activations until a δ-stable state is reached.
This bound significantly improves over the state-of-the-art
upper bound for the special case with a given complete
social network. Moreover, our simulation results on one-
dimensional instances with a path graph or a dumbbell graph
as the social network indicate that our theoretical upper
bound is tight for these instances. For the dumbbell graph, this
is not only underlined by our simulations but also proven by
presenting a matching lower bound with respect to the num-
ber of agents. This theoretical lower bound on the expected
convergence time is the first proven non-trivial lower bound
for asynchronous opinion updates. A challenging open prob-
lem is to improve this lower bound by finding a graph class
with �(S0) ∈ �(n2ε2) with expected convergence time in
�(n5).

It might be possible to prove better bounds for specific
social network topologies. Regarding this, it would be inter-
esting to consider social networks that have similar features
to real-world social networks. Moreover, another direction
for future work is to consider social networks with directed
and possibly weighted edges. This would more closely mimic
the structure of real-world neighborhood influences, allow-
ing us to study asymmetric influence settings found in online
social networks like Twitter. Another promising extension

would be to incorporate the influence of external factors like
publicity campaigns.
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