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Abstract Most complex real world networks display scale-free features. This char-
acteristic motivated the study of numerous random graph models with a power-law
degree distribution. There is, however, no established and simple model which also
has a high clustering of vertices as typically observed in real data. Hyperbolic random
graphs bridge this gap. This natural model has recently been introduced by Krioukov
et al. (in Phys Rev E 82(3):036106, 2010) and has shown theoretically and empirically
to fulfill all typical properties of real world networks, including power-law degree dis-
tribution and high clustering. We study cliques in hyperbolic random graphs G and
present new results on the expected number of k-cliques E [Kk] and the size of the
largest clique ω(G). We observe that there is a phase transition at power-law expo-
nent β = 3. More precisely, for β ∈ (2, 3) we prove E [Kk] = nk(3−β)/2Θ(k)−k

and ω(G) = Θ(n(3−β)/2), while for β � 3 we prove E [Kk] = n Θ(k)−k and
ω(G) = Θ(log(n)/ log log n). Furthermore, we show that for β � 3, cliques in
hyperbolic random graphs can be computed in timeO(n). If the underlying geometry
is known, cliques can be found with worst-case runtime O(m · n2.5) for all values of
β.
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1 Introduction

Scale-free networks are ubiquitous in nature and society. They appear as a large array
of real world graphs that (mostly) have been formed by autonomous agents. Popular
examples include social networks, protein-protein interactions, sexual networks, elec-
tricity circuits, the WWW, the internet, and many more [22]. Even though the term
“scale-free network” has never been well-defined [19], it has been observed that all of
these graphs share similar characteristics. They have hub nodes (nodes that intercon-
nect the graph), community structures (subgraphs with high edge density), very low
diameter (longest shortest path), a giant component (a connected component contain-
ing almost all vertices) and—probably most importantly—their degree distribution
follows a power law: P(k) ∼ k−β , where P(k) is the fraction of nodes having degree
k.

Over the course of the last decade, research has been striving to produce genera-
tive models for these types of networks that are able to accurately predict properties
of real world graphs. Popular models include the preferential attachment graphs [2]
and variants of inhomogeneous random graphs [28]. The latter generalizes the Erdős-
Rényi random graphs Gn,p by using non-uniform edge probabilities. These models
excel at modeling the power-law degree distribution; they also have a giant com-
ponent, hub nodes, and low diameter. Due to their independent edge probabilities,
they are accessible to rigorous studies. Independent edge probabilities also imply,
however, that the graphs have low clustering, meaning that no community structures
exist.

In contrast, most real world graphs do have high clustering. In the case of social
networks this is easy to envision: two people are much more likely to be connected if
they already have a friend in common. A number of fixes to the above models have
been proposed to incorporate that intuition [20,21,29] (e.g., first construct a random
graph, and then replace all nodes with k-cliques). Often, however, these fixes seem
artificial and introduce structural artifacts that are unlikely to appear as such in nature.

Krioukov et al. [17] took a different approach by assuming an underlying hyperbolic
geometry to the network. Similarly to the well-known geometric random graphs in
Euclidean space [25], they introduced hyperbolic random graphs in which all nodes
are placed in the hyperbolic plane, and two nodes are connected whenever they have a
small distance from each other. Clustering then naturally emerges from the geometric
interpretation. When two nodes are close to a third node, it is likely that they are also
close to each other and the network thus attains a constant clustering coefficient [5,13,
17]. Furthermore, the hyperbolic geometry enforces a power-law degree distribution
and the presence of hub nodes.

The model achieved remarkable results for greedy forwarding. Embedding the
internet graph in the hyperbolic plane, an autonomous system can route packets using
only the hyperbolic location of the destination and its own neighbors [4,24]. This
approach both eliminates the need for the currently used routing tables, and it is
nearly optimal: on average, path lengths using greedy routing are just 10% longer
than optimal routing paths. This result suggests that there is an underlying hyperbolic
metric to at least the internet graph and that hyperbolic geometry might be what unites
most scale-free networks.
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Table 1 New results on the expected number of k-cliques E
[
Kk

]
and the size of the largest clique ω(G)

in hyperbolic random graphs drawn from the step model

Hyperbolic random graphs

1
2 < α < 1 α � 1

E
[
Kk

]
� n(1−α)k

kk exp(k(α C
2 −1))

( αkck−1
1

(1−α)k+1 + 1
)

nk−k αke(c1e
−C/2+1)k−1

(α−1)k+1 (1 + o(1))

�
( e−αC/2n1−α(1−o(1))

k

)k nk−k ( e−C/2

π

)k−1
(1 + o(1))

= n(1−α)kΘ(k)−k n · Θ(k)−k

ω(G) � c1e
−α C

2 +1n1−α(1 + o(1)) log n
log log n (1 + o(1))

� e−α C
2 n1−α(1 − o(1)) log n

log log n (1 − o(1))

= Θ(n1−α)
log n

log log n (1 ± o(1))

Sections 4 and 5 prove the upper and lower bounds on E
[
Kk

]
. Section 6 proves the bounds on ω(G)

2 Our Contribution

Closely related to clustering and community structures, we analyze the emergence of
cliques in hyperbolic randomgraphs (wenote thatwe focus on the so-called stepmodel,
see Sect. 3 for more details). In particular, we present bounds on the expected number
of k-cliques and the size of the largest clique. The results are summarized inTable 1.We
observe a phase transition at power-law exponent β = 3, with smaller exponents yield-
ing polynomial-size cliques and larger exponents yielding logarithmic-size cliques.
While Clique is NP- and W[1]-complete for general graphs, we show that the largest
clique of hyperbolic random graphs (in the step model) can be found in linear time, if
β � 3, and in polynomial time O(m · n2.5) if the node coordinates in the hyperbolic
space are known. These findings stand in contrast to previous results on similar models
like Chung and Lu [11], which need exponential time for a power-law of 2 < β < 3.

Comparison with other scale-free models Using the results of [15], we compare the
clique numbers (i.e., the size of the largest clique) of some popular scale-free network
models to hyperbolic random graphs in Table 2.

We notice that the (asymptotic) clique number is nearly the same for Chung and Lu
[1], Norros and Reittu [23] and hyperbolic random graphs, in the case where the power
law exponent is 2 < β < 3. An intuitive explanation for this phenomenon is that all
these models have a tightly connected core—a subgraph of polynomial size in which
the edge probability is 1 − o(1) or even 1. Large cliques emerge as a consequence of
this core.

But even when such a core does not exist in the graph (which is the case for β � 3),
one would expect to have small communities and therefore cliques in the graph. In
particular, due to the large clustering coefficient it is likely that a node’s neighbors (or
a subset of the neighbors) form a clique. Consequently, the hyperbolic random graph
has in this case a largest clique of sizeΘ(

log n
log log n ). Previous scale-free network models
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Table 2 Comparison of our new results on the clique numberω(G) of hyperbolic random graphs to known
results by [15] for other scale-free random graph models

Random graph model Power-law exponent

2 < β < 3 β = 3 β > 3

Hyperbolic (new results) Θ

(
n
3−β
2

)
Θ

( log n
log log n

)
Θ

( log n
log log n

)

Chung–Lu Θ

(
n
3−β
2

)
Θ(1) 3

Norros–Reittu Θ

(
n
3−β
2 log− β−1

2 n

)
Θ(1) 3

Generalized RG Ω

(
n
3−β
1+β

)
,O

(
n
3−β
1+β log

β−1
β+1 n

)
Θ(1) 3

Pref. Attachment Θ(1) Θ(1) Θ(1)

All bounds hold with high probability

with independent edge probabilities predict in this case a largest clique of size � 3
asymptotically almost surely (i.e., with probability � 1 − o(1)), which is typically
not true for real-world networks. For instance, the networks Gnutella31, cit-Patents
and com-Amazon from [18] have, respectively, estimated power-law exponents of
4.8, 4.02 and 3.58 but clique numbers of 4, 11 and 7.

Organization The remainder of this paper is organized as follows. Section 3 contains
a brief introduction to the hyperbolic random graph model. Section 4 shows the upper
bounds onE [Kk] inTable 1,while Sect. 5 shows the lower bounds onE [Kk]. By apply-
ing these results, in Sect. 6weobtain bounds on the size of the largest cliqueω(G) in the
hyperbolic random graph. Finally, in Sect. 7 we present efficient algorithms for finding
the largest clique in hyperbolic randomgraphs. Section 8 contains concluding remarks.

3 Preliminaries

In this section, we briefly describe the hyperbolic graph generation. For a more in-
depth introduction to the topic of hyperbolic random graphs, we refer the reader to
[13,17].

Following convention, we use the native representation of the hyperbolic planeH2.
Here, a point x is identified by a radial and an angular coordinate (rx , ϕx ), where
the radial coordinate denotes the hyperbolic distance from the coordinate origin. The
hyperbolic space is also typically equipped with some negative curvature K < 0. In
our case, however, it has been shown that there exists a coupling between random
hyperbolic graphs on different curvatures [3]. Therefore, using different curvatures is
equivalent to rescaling othermodel parameters—which is whywe simply set K = −1.

To obtain a graphG with n nodes, let DRn be a disc inH
2 of radius Rn = 2 ln n+C ,

where C adjusts the average degree of G. The disc is centered in the point of origin.
Afterwards, n points are sampled in DRn as follows. Let α > 1

2 be some constant. The
probability density for the radial coordinate r of a point p = (r, ϕ) is given by
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ρ(r) := α
sinh(αr)

cosh(αRn) − 1
,

and the angular coordinate ϕ is sampled uniformly from [0, 2π ]. We write ru and ϕu

to refer to the polar coordinates of a point u. For the sake of brevity, we omit the
dependence on n and simply write R throughout the rest of the paper.

In the most general model, the probability that two nodes u, v with relative angle
Δθ connect is p(u, v) := (exp( 1

2T (d(u, v) − R)) + 1)−1, where T is the temperature
of the model, and

cosh(d(u, v)) := cosh ru cosh rv − sinh ru sinh rv cosΔθ (1)

defines the distance d(u, v) between two points u, v inH2. This produces a power-law
graph with exponent β = 2α + 1 if α � 1

2 , and β = 2 otherwise [10,13,17]. We
assume that α > 1

2 , i.e., β > 2. Gugelmann et al. [13,26] have shown that the average
degree is then

δ = (1 + o(1))
2α2e−C/2

(α − 1/2)2

(
lim
t→T

t

sin(π t)

)
.

Observe that when T → 0, p(u, v) becomes a step function that connects two
nodes if and only if they have hyperbolic distance at most R from each other. We call
this case the step model and the case T > 0 the binomial model. In this paper, we
focus on the step model. Then, for two nodes with given radial coordinates r, y, the
maximal angle such that they are connected by an edge is by Eq. (1)

θ(r, y) = maxϕ{d((r, 0), (y, ϕ)) � R} = arccos
(
cosh(y) cosh(r)−cosh(R)

sinh(y) sinh(r)

)
. (2)

This complicated expression is closely approximated by the following Lemma from
[13]. Notice that the second condition in the statement is required as otherwise r+ y <

R and the two corresponding nodes are always connected by the triangle inequality.

Lemma 1 ([13]) Let 0 � r, y � R and y + r � R. Then,

θ(r, y) = θ(y, r) = 2e
R−r−y

2 (1 ± Θ(eR−r−y)).

For most computations on hyperbolic random graphs, one needs close approxima-
tions of the probability that a sampled point falls in a certain area. To this end, [13]
define the probability measure of a set S ⊆ DR as

μ(S) :=
∫

S
f (y) dy,

where f (r) is the probability mass of a single point p = (r, θ), which is f (r) :=
α sinh(αr)

2π(cosh(αR)−1) . To simplify computation,wenormally use the following approximation
of f (r).
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Lemma 2 The density function f (r) is approximated by

f (r) = α
2π e

α(r−R) · (1 + Θ(e−αR − e−2αr )).

Proof By applying 1
1+x = 1 − Θ(x) for x = o(1), we obtain

f (r) = 1

2π
· α sinh(αr)

cosh(αR) − 1

= α
2π · eαr − e−αr

eαR + e−αR − 2

= α
2π · eαr (1 − e−2αr )

eαR(1 − Θ(e−αR))

= α
2π e

α(r−R)(1 + Θ(e−αR − e−2αr )).

��
We define the ball with radius x around a certain point (r, θ) as

Br,θ (x) := {(r ′, θ ′) | d((r ′, θ ′), (r, θ)) � x}.

We write Br (x) for Br,0(x). Using these definitions, we can formulate the following
Lemma which was partially proven by [13].

Lemma 3 For any 0 � r,m � R we have

μ(B0(r)) = e−α(R−r)(1 − Θ(e−αr )) (3)

μ(Br (R) ∩ B0(R − m)) =
{

μ(B0(R − m)) if r � m,
4α

π(2α−1)e
m−r
2 −αm · E if r > m,

(4)

with error term E = 1 ± O(e(m−r)(α− 1
2 )) if α 
= 3

2 and E = 1 ± O(em−r (r − m))

otherwise.

Proof The proof of Eq. (3) can be found in [13]. In the following, we show Eq. (4).
Consider first the case r � m, for which Fig. 1a contains an illustration. In that

case, the ball Br (R) fully encloses B0(R−m), as all points in B0(R−m) have at most
distance R−m to 0; and by the triangle inequality at most distance R−m+ r � R to
the center of Br (R). Therefore, the intersection of those two areas has the probability
measure μ(B0(R − m)) = e−αm(1 ± o(1)), proving the first case.

We now assume r � m. Figure 1b contains an illustration for this case. Then, we
can write

μ(Br (R) ∩ B0(R − m)) = μ(B0(R − r)) + 2
∫ R−m

R−r

∫ θ(r,y)

0
f (y) dθ dy,
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DR Br(R)

R

B0(R−m)

m(r, 0)0

R
−m

R

DR Br(R)

m (r, 0)

R
−m

B0(R− r)

(a) (b)

Fig. 1 Proof illustration for Lemma 3. The gray area denotes the disc DR . Note that these illustrations
should only be understood schematically, as the behavior of circles in the hyperbolic plane is different to
the classical Euclidean geometry. a First case in Eq. (4). Here, the disk Br (R) fully encloses B0(R − m),
so their intersection is determined by the smaller disk B0(R −m). b Second case in Eq. (4). The two disks
Br (R) and B0(R −m) intersect. The orange circle B0(R − r) is fully enclosed in the intersection. For the
remainder, we integrate over the area as indicated by the red dashed arrows (Color figure online)

where θ(r, y) = arccos
( cosh(r) cosh(y)−cosh(R)

sinh(r) sinh(y)

)
is given by the definition of the distance

function, see Eq. (2). The first part of the sum vanishes in the error term E , since it
simplifies to (1 ± o(1))e−αr = e

m−r
2 −αm · O(e(m−r)(α− 1

2 )).
For the second part of the sum, we have

2
∫ R−m

R−r

∫ θ(r,y)

0
f (y) dθ dy = 2

∫ R−m

R−r
θ(r, y) · f (y) dy.

By simplifying θ(r, y) using Lemma 1 and f (y) using Lemma 2, this term can be
transformed to obtain

2α

π
(1 + O(e−αR))

∫ R−m

R−r
e

R−r−y
2 +αy−αR(1 + O(±eR−r−y − e−2αy)) dy. (5)

Observe that the dominant error term within the integral is O(±eR−r−y). This holds
since −2αy < R − r − y follows from (1 − 2α)y < 0 < R − r and thereby
O(±eR−r−y − e−2αy) = O(±eR−r−y).

We now first compute the integral without the error term and later add the error
term. We obtain

2α

π
(1 + O(e−αR))

∫ R−m

R−r
e

R−r−y
2 +αy−αR dy

= 4α

π(2α − 1)
(1 + O(e−αR))

[
e

R−r−y
2 +αy−αR

]R−m

R−r

= 4α

π(2α − 1)
(1 + O(e−αR))

(
e
m−r
2 −αm − e−αr

)
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= 4α

π(2α − 1)
e
m−r
2 −αm

(
1 + O

(
e−αR − e(m−r)(α− 1

2 )
))

= 4α

π(2α − 1)
e
m−r
2 −αm

(
1 + O

(
e(m−r)(α− 1

2 )
))

,

since again the dominating error term is e(m−r)(α− 1
2 ) > e−R(α− 1

2 ) > e−αR .
It is left to bound the error term in Eq. (5). To this end, we compute

∫ R−m

R−r
O

(
e
3
2 (R−r−y)+αy−αR

)
dy

= e
m−r
2 −αm ·

⎧
⎪⎪⎨

⎪⎪⎩

O(em−r ) � O
(
e(m−r)(α− 1

2 )
)

, if α > 3
2 ,

O(em−r (r − m)), if α = 3
2 ,

O
(
e(m−r)(α− 1

2 )
)

, if α < 3
2 .

Plugging everything together, we obtain Eq. (4). ��
Finally, let us also restate a useful result from [3]. Consider two vertices u, v in

the hyperbolic random graph. Moving one vertex closer to 0—i. e., decreasing ru—
typically does not result in a monotone behavior of d(u, v). In particular, u can first
move closer to v; and then farther away again. However, if u, v had distance at most x
to each other and to the origin 0, this fact remains true even when u is moved closer to
the center. In this sense, a node’s neighborhood is monotone in its radial coordinate:
Bu(R) ∩ DR ⊂ Bu′(R) ∩ DR for u′ < u. The next lemma formalizes this intuition.

Lemma 4 ([3]) Consider two nodes u = (ru, ϕu), v = (rv, ϕv) in the hyperbolic
random graph. If d(u, v) � x and ru, rv � x, then it holds

d(u′, v′) � x,

where u′ = (r ′
u, ϕu), v

′ = (r ′
v, ϕv) with r ′

u � ru and r ′
v � rv .

Using these results, we compute an upper bound on the expected number of k-
cliques in the hyperbolic random graph.

4 Proof of the Upper Bound

The goal of this section is to show the upper bounds for E [Kk] stated in Table 1. The
following theorem summarizes these results in their asymptotic form.

Theorem 1 In a hyperbolic random graph, the expected number of k-cliques is at
most n(1−α)kΘ(k)−k and n · Θ(k)−k if 1

2 < α < 1 and α � 1, respectively.

In a clique, each pair of nodes is connected. To compute an upper bound on the
probability that k nodes form a clique, we examine a relaxed condition; namely, that
all nodes connect to one specific node v.
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For a set U of k independently sampled points, let v ∈ U be the node with the
largest radial coordinate, i. e., rv = maxu∈U {ru}. We begin by computing the proba-
bility density function of rv which we call ρv(r). By the definition of the cumulative
distribution function, we have

Pr[rv � x] = Pr[∀u ∈ U : ru � x] =
(∫ x

0

α sinh(αr)

cosh(αR) − 1
dr

)k

=
(
cosh(αx) − 1

cosh(αR) − 1

)k

.

The resulting probability density function is given by

ρv(r) = ∂

∂r

(
cosh(αr) − 1

cosh(αR) − 1

)k

= αk sinh(αr)
(cosh(αr) − 1)k−1

(cosh(αR) − 1)k

= αkeαk(r−R)(1 − e−2αr ) · (1 + e−2αr − 2e−αr )k−1

(1 + e−2αR − 2e−αR)k

= αkeαk(r−R)(1 − O(e−αr ))k

� αkeαk(r−R),

whereweused the fact 1
1+x = 1−Θ(x) for x = o(1) to bound the error term.Following

the explanation above, the probability that a set U of k independently sampled nodes
forms a clique is upper bounded by the probability that all nodes are connected to v.
Formally,

Pr[U is clique] � Pr[∀u ∈ U : d(u, v) � R]

=
∫ R

0
ρv(r) · Pr[∀u ∈ U : u ∈ Br (R) | rv = r ] dr

=
∫ R

0
ρv(r) ·

(
μ(Br (R) ∩ B0(r))

μ(B0(r))

)k−1

dr

For the last equality, observe that we condition on the fact that the largest radial
coordinate among the nodes inU is r , i. e., all other radial coordinates are� r . Hence,
the probability that a node u is connected to v is the probability that u ∈ Br (R)∩B0(R),
conditioned on the fact that ru � r , that is, u ∈ B0(r).

We split the integral in two parts. If r < R/2, then by the triangle inequality it
follows that all k nodes are connected. This agrees with Lemma 3 since r < R/2
implies r < m, and we obtain

∫ R/2

0
ρv(r) ·

(
μ(Br (R) ∩ B0(r))

μ(B0(r))

)k−1

dr

=
∫ R/2

0
ρv(r) dr �

(
cosh(αR/2) − 1

cosh(αR) − 1

)k

� e−αk R
2 . (6)
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When r � R
2 , we estimate again using Lemma 3

μ(Br (R) ∩ B0(r))

μ(B0(r))
= 4α

π(2α−1)e
R
2 −r−α(R−r)+α(R−r) · E

= 4α
π(2α−1) · e R

2 −r · E,

where E = (1 ± O(e(R−2r)(α− 1
2 ) + e−αr )), if α 
= 3

2 and E = (1 ± O(e(R−2r)(2r −
R) + e−αr )) otherwise. Observe that in both cases, since r � R

2 , the error term is
upper bounded by a constant. Thus, we write

μ(Br (R) ∩ B0(r))

μ(B0(r))
� c1e

R
2 −r (7)

for some large enough constant c1 > 1. Then, we compute for the second part of the
integration

∫ R

R/2
ρv(r) ·

(
μ(Br (R) ∩ B0(r))

μ(B0(r))

)k−1

dr

�
∫ R

R/2
αkeαk(r−R)

(
c1e

R/2−r
)k−1

dr (8)

= αkck−1
1

(α − 1)k + 1

[
e
αk(r−R)+(k−1)

(
R
2 −r

)]R

R/2
(9)

= αkck−1
1

(α − 1)k + 1

(
e− R

2 (k−1) − e− R
2 αk

)
, (10)

where Eqs. (9 and 10) hold if α 
= 1 and k 
= 1/(1−α). In the following, we consider
all possible combinations of α and k. Whenever possible, we continue computing with
Eq. (10), otherwise we use Eq. (8). We distinguish the following cases:

(a) α = 1. In this case, Eq. (8) evaluates to

(8) = kck−1
1

[
e− R

2 (k+1)+r
]R

R/2

� kck−1
1 e− R

2 (k−1).

(b) α > 1. Then, 0 > 1
1−α


= k and thus we may use Eq. (10):

(10) � αkck−1
1

(α − 1)k + 1
e− R

2 (k−1).

(c) 1
2 � α < 1. In this case, the sign in front of the antiderivative depends on k:

(c.i) k < 1
1−α

. In that case, (α − 1)k > −1, and Eq. (10) is again upper bounded
by
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(10) � αkck−1
1

(α − 1)k + 1
e− R

2 (k−1).

(c.ii) k = 1
1−α

. Then, we substitute α = k−1
k in Eq. (8):

(8) =
∫ R

R/2
αkck−1

1 e− R
2 (k−1) dr

= αkck−1
1

R

2
e− R

2 (k−1)

(c.iii) k > 1
1−α

. Here, the sign of the antiderivative is negative, and we obtain

(10) � αkck−1
1

(1 − α)k + 1
e−αk R

2 .

Recall that we split the integral into two parts and thus have to add e−αk R
2 to the result,

c. f. Eq. (6). Cases (a)–(c.ii) only change by a factor of (1 + o(1)), and in the case of

(c.iii) we obtain that Pr[U is a clique] � (1 + αkck−1
1

(1−α)k+1 )e
−αkR/2. When α > 1 (i.e.

when the graph has a power law exponent β > 3), the number of cliques is therefore
bounded by

E [Kk] =
(
n

k

)
Pr[U is clique]

�
(ne
k

)k αkck−1
1

(α − 1)k + 1
e− R

2 (k−1)(1 + o(1))

= nk−k · αke(c1e−C/2+1)k−1

(α − 1)k + 1
(1 + o(1))

= n · Θ(k)−k,

since n = e
R−C
2 . Recall that C is a parameter of the network model adjusting the

average degree, see Sect. 3. For α = 1 we obtain a similar bound E [Kk] � n ·
Θ(k)−k+1 = n · Θ(k)−k .

For networks with a dense core ( 12 � α < 1), we obtain

E [Kk] �
(ne
k

)k
(

1 + αkck−1
1

(1 − α)k + 1

)

e−αk R
2

= n(1−α)kk−k

(

1 + αkck−1
1

(1 − α)k + 1

)

e

(
1−α C

2

)
k

= n(1−α)kΘ(k)−k,

if k > 1
1−α

. Table 1 contains the detailed results for these cases. In the case where
k � 1/(1 − α), which is not shown in the table, our result states that there is at most
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a linear number of k-cliques. This agrees, for instance, with the known fact that for
k = 2 � 1

1−α
there are Θ(n) many edges in G.

5 Proof of the Lower Bound

In this section, we show the lower bounds for E [Kk] stated in Table 1, which asymp-
totically match the upper bounds we proved in the previous section.

Theorem 2 In a hyperbolic random graph, the expected number of k-cliques is at
least n(1−α)kΘ(k)−k and n · Θ(k)−k if 1

2 < α < 1 and α � 1, respectively.

To obtain these matching lower bounds, we consider two cases. In the case when
1
2 < α < 1, we show that hyperbolic random graphs exhibit a tightly connected core
and the high-degree nodes thus form a clique of polynomial size. The number of k-
cliques in G is then simply dominated by the number of distinct k-subsets of nodes in
the core.

To be more precise, consider the ball B0(R/2). All nodes in this area have distance
at most R from each other by the triangle inequality. It is therefore left to bound the
number of nodes in B0(R/2). By Lemma 3 we know that

μ(B0(x)) = e−α(R−x)(1 − O(e−αx )),

that is, the probability that a sampled point has atmost distance x from the center of DR

is e−α(R−x)(1+o(1)). Consequently, we expect ne−αR/2(1−o(1)) nodes in B0(R/2).
Observe that for 1

2 < α < 1 and R = 2 ln n+C this amounts to e−αC/2n1−α(1−o(1)),
which is polynomial. In Sect. 6, we will also see that this number is close to the size
of the maximum clique.

Let Kk(G) be the number of k-cliques in G. Clearly, if G ′ ⊆ G, then we have that
Kk(G ′) � Kk(G). Consider for G the hyperbolic random graph and for G ′ the graph
induced on G by only taking vertices v with rv � R/2. Then, we get

E [Kk] = E [Kk(G)] � E
[
Kk(G

′)
] = E

[(
X

k

)]
,

where X is the random variable describing the number of nodes that drop in B0(R/2).
To show the lower bound, we use the following well-known lemma, which can, for
example, be found in [30, Ex. 1].

Lemma 5 The function f (x) = (x
k

)
is convex on x � k.

Therefore, using Jensen’s inequality [16], which says f (E [X ]) � E [ f (X)] for
convex functions f , we obtain

E

[(
X

k

)]
�

(
E [X ]

k

)
=

(
e−αC/2n1−α

(
1 − O(e−αR/2)

)

k

)

�
(
e−αC/2n1−α(1 − o(1))

k

)k

.
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Thus, we have that E [Kk] � n(1−α)k · Θ(k)−k , which proves the lower bound for the
dense case.

5.1 Small Cliques Outside of the Core

So far, we have seen that for 1
2 < α < 1, hyperbolic random graphs contain many

cliques in the core. When α � 1, however, the number of nodes in B0(R/2) is of order
O(1). We now show that due to the underlying geometry, cliques still emerge outside
of the core.

To this end, we investigate a circular sector of the disk DR with angle θ = a/n,
for some constant a, which we choose later. Clearly, there are 2πn

a non-overlapping
sectors. As we show in the following, such a circular sector has a (geometric) diameter
of � R, if a is chosen as an appropriate constant. This means that all points in the
sector have pairwise distance at most R and therefore form a complete subgraph.

Since the angular coordinates of nodes are sampled uniformly, the probability that
we sample a node inside one specific circular sector of angle a/n is exactly a

2πn .
Therefore, the probability that a set of k independently sampled pointsU is contained
in one sector is

Pr[U is clique] � 2πn

a
·
( a

2πn

)k =
( a

2πn

)k−1
.

This probability is maximized by choosing a as large as possible, i.e., such that for
any larger value the diameter exceeds R. It remains to derive a suitable value for a.
We note that a statement similar to the following lemma has been proven concurrently
by [10].

Lemma 6 Let S be a circular sector of DR of angle a
n = 2

n e
−C/2(1−O(n−2)). Then,

S has a (geometric) diameter of at most R.

Proof Let u, v be two points inside S with maximum distance. Observe that these
points lie on the boundary of S. Otherwise, consider the geodesic that goes through
u, v and intersects S at u′, v′. But then d(u′, v′) > d(u, v) contradicts the assumption
that u, v had maximum distance. Observe further that

cosh(d(u, v)) := cosh(ru) cosh(rv) − sinh(ru) sinh(rv) cos(Δϕ)

is monotonously increasing for 0 � Δϕ � π . Since S has an angle of a
n 
 π , we

thus may assume that u, v have a relative angle of Δϕ = a
n .

We now show that if ru = rv = R, d(u, v) � R. By Lemma 4 it follows that all
other pairs of points with smaller radial coordinates also have a distance of at most R.

By Lemma 1, the maximum angle between u, v such that their distance is at most
R, is

θ(R, R) = 2e− R
2 (1 ± O(e−R)) = 2e− R−C

2 −C
2 (1 ± O(e−R))

= 2e−C/2 1
n (1 ± O(n−2)).

Thus, we set a = 2e−C/2(1 ± O(n−2)). ��
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Finally, the probability that a set U of k nodes is a clique is

Pr[U is clique] �
( a

2πn

)k−1

�
(
e−C/2

πn
(1 − O(n−2))

)k−1

=
(
e−C/2

πn

)k−1

(1 ± O(n−1)),

since (1−O(n−2))k−1 � (1−O(n−2))n = (1−O(n−1)). For the expected number
of k-cliques, this implies that

E [Kk] =
(
n

k

)
Pr[U is k-clique]

�
(n
k

)k (
e−C/2

πn

)k−1

(1 ± O(n−1))

= n · Θ(k)−k .

Taken together with the result from above, we conclude

E [Kk] � max{n, n(1−α)k} · Θ(k)−k .

6 Largest Clique

In this section, we present the bounds on the clique number ω(G), i.e., the size of the
largest clique in G, as stated in Table 1. The asymptotic bounds are summarized in
the following theorem.

Theorem 3 The clique number of a hyperbolic random graph is with high probability
Θ(n1−α) if 1

2 < α < 1, and asymptotically almost surely log n
log log n (1 ± o(1)) if α � 1.

We use the upper bounds on the number of k-cliques from Theorem 1 to obtain
upper bounds for ω(G) by applying the Markov inequality

Pr[Kk > 1] � E [Kk] .

Let therefore ε > 0 and solve E [Kk] � n−ε for k. If ε is chosen as a constant
independent of n, we obtain an upper bound on the clique number that holds with high
probability.

6.1 Dense Core

Let us first consider the case when 1
2 < α < 1 and there exists a dense core in the

center of DR . Due to Theorem 1, there exists some constant c such that
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Pr[Kk > 1] � E [Kk] � n(1−α)k · (ck)−k .

We set k = 2
c n

1−α to obtain

E [Kk] � n(1−α)k · (ck)−k

= n(1−α)
2
c n

1−α · (2n1−α)
− 2
c n

1−α

= 2− 2
c n

1−α

.

This term is asymptotically smaller than n−ε for any constant ε, since

2− 2
c n

1−α � n−ε ⇔ 2
c n

1−α � ε log2 n

for large enough n. Therefore, we know that ω(G) � Θ(n1−α) in this case. The
precise leading constant for this approach depends on c1, see Eq. (7). Since c1 > 1,
we have for k = ω(1)

E [Kk] � n(1−α)k
(

1
c1
eα

C
2 −1

(1 + o(1))

)−k

.

Using a similar approach as above, we can compute that

ω(G) � c1e
−α C

2 +1n1−α(1 + o(1)) = O(n1−α)

holds with high probability.
To compute a matching lower bound, recall that Sect. 5 states that B0(R/2) con-

tains e−αC/2n1−α(1 − o(1)) nodes in expectation. Let X be the number of nodes in
B0(R/2). Since each node is sampled independently from all others, we may apply a
multiplicative Chernoff bound (see e. g. [9]) to obtain that

Pr[X � (1 − 1
log n )E [X ]] � exp(−Θ(1) · log−2 ne−αC/2n1−α).

As this tail probability decreases faster than any polynomial, we have with high prob-
ability that the largest clique is of size

ω(G) � e−αC/2n1−α(1 − o(1)) = Ω(n1−α).

Wenote that a similar observationhas beenmadeby [6],where the authors computed
bounds on the number of nodes close to the center.

6.2 Sparse Core

For α � 1, when a dense core is not present, we have proven thatE [Kk] = n ·Θ(k)−k .
Thus, there exists a constant c such that E [Kk] � n · (ck)−k . Again, we apply a
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Markov bound to upper bound the probability that a large clique occurs. Thus, we
need to choose k such that Pr[Kk � 1] � n−ε. Since it holds

Pr[Kk � 1] � E [Kk] � n · (ck)−k,

it suffices to find a k such that n·(ck)−k � n−ε, which is equivalent to (ck)−k � n−1−ε.

By taking k := (1 + ε)
log n

log log n , we obtain for large enough n

(ck)−k =
(

(1 + ε)
c log n

log log n

)−(1+ε)
log n

log log n !
� n−1−ε

⇐ log

(
(1 + ε)

c log n

log log n

)
·
(

(−1 − ε)
log n

log log n

)
� (−1 − ε) log n

⇐ log log n · (1 − o(1)) ·
(

(−1 − ε)
log n

log log n

)
� (−1 − ε) log n.

Therefore, there is no larger clique than (1 + ε)
log n

log log n with probability 1 − n−ε.
Setting ε > 0 to any constant yields a result with high probability. We may, however,
obtain an even tighter result by choosing, for example, ε = 1

log log n . Then, n
−ε = o(1)

and therefore the largest clique is of size at most log n
log log n (1 + o(1)) asymptotically

almost surely, that is, with probability 1 − o(1).
To obtain a matching lower bound, observe that the analysis in Sect. 5 corresponds

to a balls-into-bins experiment. There are 2πn
a circular sectors (bins), and each node

(ball) is uniformly sampled in one of those. Since there are n balls and Θ(n) bins, an
application of [27, Theorem 1] yields the desired result. For reasons of completeness,
we restate the relevant part of the theorem:

Theorem 4 ([27]) Let M be the random variable that counts the maximum number
of balls in any bin. If we throw n balls independently and uniformly at random into
m = Θ(n) bins, then

Pr

[

M � logm

log m logm
n

(

1 + 0.99 · log log
m logm

n

log m logm
n

)]

= 1 − o(1).

Observe that since m = Θ(n), we have logm = (1 ± o(1)) log n. Furthermore,

log m logm
n = log(Θ(logm)) = (1 ± o(1)) log log n.

Plugging this into the theorem, we obtain that with probability 1 − o(1), there is a
clique of size at least

log n

log log n
(1 ± o(1))

(
1 + 0.99

log log log n

log log n
(1 ± o(1))

)
� log n

log log n
(1 − o(1)).

This proves the lower bound for the maximum clique in Table 1.
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7 Algorithms for Finding Cliques

So far, we showed bounds on the size of cliques in hyperbolic random graphs, but
did not yet investigate on how to find them algorithmically. For the case α � 1 we
showed that there are only a few cliques in the graph. Therefore, a simple enumeration
algorithm finds the largest clique in polynomial time. In fact, it is even possible to find
the largest clique in linear time, as shown by the following theorem.

Theorem 5 The largest clique of a hyperbolic randomgraphwith power-lawexponent
β � 3 can be found in expected time O(n).

Proof Let X be the number of neighbors of a node v with radial coordinate smaller
than rv . By Lemma 3, this amounts in expectation to

E [X ] = n · μ(B0(rv) ∩ Brv (R))

= Θ(1) · exp
(
R

2
+ R − rv − rv

2
− α(R − rv)

)

= Θ(1) · exp ((α − 1)rv − (α − 1)R)

= O(1),

if rv � R
2 , and

E [X ] = Θ(1) · e R
2 −α(R−rv) � Θ(1) · e R

2 −α(R− R
2 ) = O(1)

otherwise. Thus, every node only has (in expectation) a constant number of neighbors
with larger degree, and the largest clique can be found by exhaustively searching all
node neighborhoods. For this, in each step, pick the node v of smallest degree in the
graph, and find the largest clique that v is a part of. Then, delete v and recurse. The
technical analysis of this process is the same as in [11, Theorem 1], which reveals that
the largest clique can be determined in O(n) expected time. ��
This algorithm is the same as in the Chung-Lu model with β � 3 [11]. In this model,
however, no algorithm is known for finding the largest clique in polynomial time when
2 < β < 3. In contrast, we now show that given the geometric representation of a
hyperbolic random graph sampled from the step model, a polynomial runtime is also
achievable for the case 2 � β < 3. The proof is similar to [7, Sect. 3] and works
roughly as follows.

Consider two connected nodes u, v with distance d(u, v) = d � R. We denote by
Su,v the set of all nodes that have distance at most d to both nodes u, v. By definition,
it holds Su,v ⊂ Bu(d) ∩ Bv(d). Consider now the largest clique C in the graph, and
let x, y ∈ C be the two nodes with maximum distance in C . It is then easy to see that
C ⊆ Sx,y . Thus, it suffices to find the largest clique in Su,v for all connected node
pairs u, v ∈ V .

In the following, we prove that the graph induced by the nodes Su,v is complement
to a bipartite graph. Finding the largest clique then boils down to finding the largest
independent set in a bipartite graph, which is possible in polynomial time.
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u

v

d

w

w

Diameter d

Half lens

Fig. 2 Illustration of the clique algorithm. Every two nodes u, v with distance d(u, v) = d � R define a
lens Bu(d)∩ Bv(d). A half lens has the geometric diameter d � R and the nodes within thus form a clique.
The union of the two half lenses is not necessarily a clique, since some nodes w,w′ might have a distance
> d

To show that Su,v is a complement of a bipartite graph, we partition the lens
Bu(d) ∩ Bv(d) into two symmetrical areas (half lenses) and show that each half lens
has geometric diameter at most d. Thus, both half lenses form complete subgraphs;
while edges crossing the two half lenses may or may not be present. Figure 2 contains
an illustration. Without loss of generality, we assume that u = (0, 0) and v = (d, 0).
The statement generalizes to arbitrary positions by a simple coordinate transformation.

Lemma 7 Consider a lens of the form L = B0(d) ∩ Bd(d) in the hyperbolic plane.
Then, the half lens L1 = {(r, ϕ) ∈ L | 0 � ϕ < π} has geometric diameter at most d.
Proof Let us denote with p the point where the two discs of radius d intersect. We
first show that p has distance at most d to all points in the half lens. Figure 3a contains
an illustration of this statement.

Consider a circle of radius d around p, i.e. Bp(d). Since p has distance d to both
u, v, they lie on this circle. Since circles in hyperbolic space are convex, the geodesic
between u, v lies inside the circle as well. It is still necessary to show that the two
circular arcs from p to u, v also lie within Bp(d). To this end, we use the basic fact that
distinct circles in the hyperbolic plane meet at most twice. Due to symmetry, it suffices
to show that the arc from p to u is contained in Bp(d). Since u is on the boundary of
Bp(d), this leaves at most one more intersection. By symmetry of the lens, every such
intersection in L1 must also occur in L2 = {(r, ϕ) ∈ L | π � ϕ < 2π}. Thus, the
circular arc from p to u cannot intersect Bp(d), as otherwise there would be at least
three intersections.

Therefore, we know that u, v and p have at most distance d to all nodes in the half
lens L1. Consider now two arbitrary points x, y ∈ L1. We consider the three triangles
obtained by using xy as base, and u, v or p as the third point (see Fig. 3b). Since these
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u v

p

L1

d

d

u v

p

x

y

z

(a) (b)

Fig. 3 Proof illustration for Lemma 7. a The point p has distance at most d to all points in L1. In particular,
the arcs from p to u, v are fully contained in Bp(d). b Two arbitrary points x, y ∈ L1 have distance at most
d, which can be deduced from this construction and the triangle inequality

three triangles use the same base, at least two of them intersect. W. l. o. g., we assume
that px intersects vy, the other cases are analog. We call the intersection point z. We
observe now the following:

vy = vz + yz � d since v has distance at most d to all points in L1, (11)

px = pz + xz � d since p has distance at most d to all points in L1, (12)

vz + pz � d by triangle inequality, since vp = d. (13)

Adding Eqs. (11, 12) and subtracting Eq. (13) yields

yz + xz � d.

Thus, by triangle inequality, we have xy � yz + xz � d. ��
Using this result, we may show that there exists a polynomial time algorithm for

finding the maximum clique in a hyperbolic random graph drawn from the step model.
Note that, similar to the euclidean case, this result holds with probability 1. That is, the
proof is fully deterministic and does not use the distribution of nodes. Using Lemma 7,
the proof is analogous to the euclidean case [7]. We reprove it here for completeness.

Theorem 6 Let G be a graph sampled from the hyperbolic random graph in the
step model. Given the geographic position of the nodes, the clique number ω(G) can
be computed in worst-case O(m · n2.5) time, where m < n2 is a random variable
describing the number of edges in G.

Proof Let C be the largest clique in G. Then, there must exist two nodes u, v ∈ C
such that u, v have maximum geometric distance among all node pairs in C . Let
d := d(u, v). Observe that d � R, as otherwise u, v are not connected.

Consider now the induced subgraph G[Su,v] on all nodes Su,v that lie within the
lens Bu(d) ∩ Bv(d). This subgraph can be found using the geometric representation,
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and, as shown in Lemma 7, Su,v may be partitioned in two sets S1, S2, such that both
sets form a clique. Finding the largest clique in G[Su,v] is then equivalent to finding
the largest independent set in the complement graphG[Su,v]. Since S1, S2 both form a
clique inG[Su,v], they are independent inG[Su,v] and therefore,G[Su,v] is a bipartite
graph.

Finding a maximum independent set is again equivalent to finding a minimum
vertex cover. By Kőnig’s Theorem (see, e. g., [8]), the size of the maximum matching
in a bipartite graph is equal to the size of the minimum vertex cover. Thus, it suffices
to compute the size k of a maximummatching in G[Su,v] and return |Su,v|− k. Using
e. g. the Hopcroft–Karp algorithm [14], this may be done in time O(|Su,v|2.5).

Thus, an algorithm needs to simply check for each connected pair of nodes u, v for
the largest clique in Su,v , which takes at most O(m · n2.5). ��

8 Conclusion

We present an analysis of the emergence of cliques in hyperbolic random graphs and
suggest how to find them algorithmically.We found that the large clustering coefficient
of these graphs strongly affects the clique number when β > 3. Previous models with
independent edge probabilities predicted a clique number of 3 in this case, whereas
the hyperbolic random graph contains a log n

log log n size clique.
Further, we show two algorithms for computing the largest clique in a hyperbolic

random graph drawn from the step model. For graphs with power law exponent β � 3,
the largest clique can be found in expected linear time. On the other hand, if the node
coordinates are known, the largest clique in any hyperbolic random graph may be
found in time O(m · n2.5) with probability 1. It is, however, an open problem to find
the largest cliquewhen given only the graph structure—but not the geometric locations
of the nodes. Moreover, it is open how our results extend to the binomial model, which
allows long edges and short non-edges with a small probability.
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