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Spectral symmetry in conference matrices
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Abstract

A conference matrix of order n is an n × n matrix C with diagonal entries 0 and
off-diagonal entries ±1 satisfying CC> = (n − 1)I. If C is symmetric, then C has
a symmetric spectrum Σ (that is, Σ = −Σ) and eigenvalues ±

√
n− 1. We show that

many principal submatrices of C also have symmetric spectrum, which leads to examples
of Seidel matrices of graphs (or, equivalently, adjacency matrices of complete signed
graphs) with a symmetric spectrum. In addition, we show that some Seidel matrices
with symmetric spectrum can be characterized by this construction.

Keywords: Conference matrix, Seidel matrix, Paley graph, signed graph, symmetric
spectrum,
AMS subject classification: 05C50.

1 Introduction

Suppose S is a symmetric matrix with zero diagonal and off-diagonal entries 0 or ±1. Then
S can be interpreted as the adjacency matrix of a signed graph. Signed graphs are well
studied, and a number of recent papers [1, 2, 6, 12] pay attention to signed graphs for which
the adjacency matrix has symmetric spectrum, which means that the spectrum is invariant
under multiplication by −1. If S contains no −1, then S is the adjacency matrix of an
ordinary graph, which has a symmetric spectrum if and only if the graph is bipartite. For
general signed graphs there exist many other examples with symmetric spectrum. Here
we consider the case that no off-diagonal entries are 0, in which case S can be interpreted
as the Seidel matrix of a graph (−1 is adjacent; +1 is non-adjacent). It is known that a
Seidel matrix of order n is nonsingular if n 6≡ 1 (mod 4) (see Greaves at al [7]). Clearly,
a symmetric spectrum contains an eigenvalue 0 if n is odd, therefore there exists no Seidel
matrix with symmetric spectrum if n ≡ 3 (mod 4). For all other orders Seidel matrices with
spectral symmetry exist. Examples are often built with smaller block matrices. Here we use
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a different approach, and investigate Seidel matrices with spectral symmetry inside larger
matrices known as conference matrices (see next section).

The spectrum of S does not change if some rows and the corresponding columns are mul-
tiplied by −1. This operation is called switching. If S′ can be obtained from S by switching
and/or reordering rows and columns, S and S′ are called equivalent. The corresponding
graphs are called switching isomorphic, or switching equivalent.

2 Conference matrices

A conference matrix of order n (n ≥ 2) is an n × n matrix C with diagonal entries 0 and
off-diagonal entries ±1 satisfying CC> = (n − 1)I. If C is symmetric, then the spectrum
Σ of C contains the eigenvalues

√
n− 1 and −

√
n− 1, both with multiplicity n/2, and we

write:
Σ = {±

√
n− 1

n/2}.

Clearly the spectrum of C is symmetric. Conference matrices are well studied (see for
example Section 13 of Seidel [13], and Section 10.4 of Brouwer and Haemers [4]). The
order n of a conference matrix is even, and every conference matrix can be switched into a
symmetric one when n ≡ 2 (mod 4) and into a skew-symmetric one if n ≡ 0 (mod 4). Here
we will not consider the skew case, because every skew-symmetric matrix has a symmetric
spectrum. Necessary for the existence of a symmetric conference matrix of order n is that
n− 1 is the sum of two squares.

If C is a symmetric conference matrix of order n = 4m + 2 ≥ 6, switched such that all
off-diagonal entries in the first row and column are equal to 1, then C is the Seidel matrix of
a graph with an isolated vertex. If we delete the isolated vertex, we have a strongly regular
graph G with parameters (4m + 1, 2m,m − 1,m) (this means that G has order 4m + 1, is
2m-regular, every edge is in precisely m−1 triangles, and any two nonadjacent vertices have
precisely m common neighbors). Conversely, the Seidel matrix of a strongly regular graph
with these parameters extended with an isolated vertex, is a symmetric conference matrix. If
4m+1 is a prime power q (say), such a strongly regular graph can be constructed as follows.
The vertices of G are the elements of the finite field Fq, where two vertices x and y (x 6= y)
are adjacent whenever x− y is a square in Fq. The construction is due to Paley, the graph
G is known as Paley graph, and a corresponding conference matrix C is a Paley conference
matrix of order n = q + 1, which we shall abbreviate to PC(n). Other constructions are
known. Mathon [11] has constructed conference matrices of order n = qp2 + 1, where p and
q are prime powers, q ≡ 1 (mod 4), and p ≡ 3 (mod 4). For n = 6, 10, 14 and 18, every
conference matrix of order n is a PC(n). There is no conference matrix of order 22 (21 is not
the sum of two squares), and there are exactly four non-equivalent conference matrices of
order 26, one of which is a PC(26). The smallest order for which existence is still undecided
is 86.
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3 The tool

Theorem 1. Suppose

A =

[
A1 M
M> A2

]
is a symmetric orthogonal matrix with zero diagonal. Let ni be the order, and let Σi be the
spectrum of Ai (i = 1, 2). Assume n1 ≤ n2, and define m = (n2 − n1)/2. Then

Σ2 = −Σ1 ∪ {±1m}.

(Recall that {±1m} means that 1 and −1 are both repeated m times.)

Proof. We have

I = A2 =

[
A2

1 +MM> A1M +MA2

M>A1 +A2M
> A2

2 +M>M

]
.

This implies A1M = −MA2, A2
1 +MM>= I and A2

2 +M>M = I. For i = 1, 2 let Σ′i be the
sub-multiset of Σi obtained by deleting all eigenvalues equal to ±1. Suppose λ ∈ Σ′1 is an
eigenvalue of A1 with multiplicity `. Define V such that its columns span the eigenspace of λ.
Then A1V = λV , and rank(V ) = `. Moreover, λM>V = M>A1V = −A2M

>V . Therefore
−λ is an eigenvalue of A2 and the columns of M>V are eigenvectors. Using A2

1 +MM>= I
and λ 6= ±1 we have

rank(V ) ≥ rank(M>V ) ≥ rank(MM>V ) = rank((I −A2
1)V ) = rank((1− λ2)V ) = rank(V ).

Therefore rank(M>V ) = rank(V ), and the multiplicity `′ of −λ ∈ Σ′2 is at least `. Con-
versely, ` ≥ `′ and therefore ` = `′. This implies that Σ′1 = −Σ′2. Finally, trace(A1) =
trace(A2) = 0 implies that for both matrices the eigenvalues −1 and 1 have the same multi-
plicities.

Corollary 1. Suppose

C =

[
C1 N
N> C2

]
is a symmetric conference matrix of order n.
(i) C1 has a symmetric spectrum if and only if C2 has a symmetric spectrum.
(ii) If C1 and C2 have symmetric spectrum then, except for eigenvalues equal to ±

√
n− 1,

C1 and C2 have the same spectrum.

Proof. Apply Theorem 1 to A = 1√
n−1C.

Theorem 1 is a special case of an old tool, which has proved to be useful in spectral
graph theory. It is, in fact, a direct consequence of the inequalities of Aronszajn (see [9],
Theorem 1.3.3).
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4 Submatrices

Clearly a Seidel matrix of order 1 or 2 has symmetric spectrum, so by Corollary 1 we obtain

Seidel matrices with spectra {0, ±
√
n− 1

(n−2)/2} and {±1, ±
√
n− 1

(n−4)/2} if we delete
one or two rows and the corresponding columns from a symmetric conference matrix of
order n. In the next section we will characterise this construction.

As mentioned earlier, there is no Seidel matrix with symmetric spectrum if n ≡ 3 (mod 4).
For n = 4 and 5, there is exactly one equivalence class of Seidel matrices with spectral
symmetry, represented by:

S4 =

 0 1 1 1
1 0 −1 1
1 −1 0 −1
1 1 −1 0

, and S5 =


0 1 1 1 1
1 0 −1 1 1
1 −1 0 −1 1
1 1 −1 0 −1
1 1 1 −1 0


with spectra

{±1, ±
√

5} and {0, ±
√

5
2
}.

Proposition 1. After suitable switching, every symmetric conference matrix of order n ≥ 6
contains S4 and S5 as a principal submatrix.

Proof. The graphs of S4 and S5 have an isolated vertex. If we delete the isolated vertex we
obtain the paths P3 and P4. So, it suffices to show that a strongly regular graph G with
parameters (4m+1, 2m,m−1,m) contains P3 and P4 as an induced subgraph. The presence
of P3 in G is trivial. Fix an edge {x, y} in G, and let z be a vertex adjacent to y, but not to
x. Then there are m vertices which are adjacent to x and not to y, and at least one of them
(w say) is nonadjacent to z, since otherwise x and z would have m + 1 common neighbors.
Thus the set {w, x, y, z} induces a P4.

By Corollary 1 and the above proposition we know that there exist Seidel matrices of
order n− 4 and n− 5 with spectra

{±1, ±
√

5, ±
√
n− 1

(n−8)/2}, and {0, ±
√

5
2
, ±
√
n− 1

(n−10)/2},

respectively, whenever there exists a symmetric conference matrix of order n ≥ 10.
Next we investigate how Corollary 1 can be applied to a PC(n) for n = 10, 14, and 18

with a submatrix of order 6, 8, or 9. Up to equivalence there exist four Seidel matrices of
order 6 with symmetric spectrum (see Van Lint and Seidel [10], or Ghorbani et al [6]). The
spectra are:

Σ1 = {±1, ±
√

5, ±3}, Σ2 = {±
√

5
3
}, Σ3 = {±1, ±

√
7± 2

√
5}, Σ4 = {±12, ±

√
13}.

Only Σ1 is the spectrum of a submatrix of a PC(10), each of the spectra Σ1, Σ2 and Σ3

belongs to a submatrix of a PC(14), and all four occur as the spectrum of a submatrix of a
PC(18). So by Corollary 1 we obtain Seidel matrices of order 8 and 12 with spectra

Σi ∪ {±
√

13} for i = 1, 2, 3 and Σi ∪ {±
√

17
3
} for i = 1, . . . , 4,
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respectively. All graphs of order 8 with a symmetric Seidel spectrum are given in Figure 6
of Ghorbani et al [6]. Up to equivalence and taking complements there are twenty such
graphs (we just found three of these). By computer we found that six of these graphs have a
Seidel matrix, which is a submatrix of a PC(18). So Corollary 1 gives six possible symmetric
spectra for the graphs on the remaining 10 vertices. However, it turns out that these six
spectra belong to seven non-equivalent graphs, of which two have the same Seidel spectrum.
These seven graphs are given in Figure 1 (the last seven graphs). The same phenomenon
occurs if we delete S4 from a PC(14). This can be done in two non-equivalent ways, which
leads to two non-equivalent graphs with spectrum {±1, ±

√
5, ±

√
13 3} (the first two in

Figure 1). The Seidel matrices of order 9 with symmetric spectrum are also given in [6]. It
turns out that none of these is a submatrix of a PC(18). But note that we already found two
non-equivalent Seidel matrices of order 9 with symmetric spectrum, one in a PC(10) and
one in a PC(14). Also the Seidel matrix of order 8 with spectrum {±1, ±33} is a submtrix
of a PC(10), but not of a PC(14) or a PC(18). Similarly, the Seidel matrix of order 8 with
spectrum Σ1 ∪{±

√
13} is a submatrix of a PC(14) (as we saw above), but not of a PC(18).

Figure 1: Graphs of order 10 for which the Seidel matrix is a submatrix of a PC(14) (first 2),
or a PC(18) (last 7); the numbers represent the positive part of the (symmetric) spectrum.
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It is known (see Bollobas and Thomason [3]) that every graph of order m is an induced
subgraph of the Paley graph of order q if q ≥ f(m) = (2m−2(m − 1) + 1)2. If the smaller
graph is the Paley graph of order m, it follows that a PC(m+ 1) is a principal submatrix of
a PC(q + 1) if q ≥ f(m). Thus, by Corollary 1, we obtain Seidel matrices with symmetric
spectrum containing only four distinct eigenvalues:

Proposition 2. If q and m are prime powers satisfying q ≡ m ≡ 1 (mod 4) and q ≥ f(m),

then there exist a Seidel matrix with spectrum {±√q (q−2m−1)/2, ±
√
m

(m+1)/2}.

5 Characterizations

It is clear that a Seidel matrix with symmetric spectrum and two distinct eigenvalues is a
conference matrix. The next two theorems deal with three and four distinct eigenvalues.

In a more general setting, the results of this section were already obtained by Greaves
and Suda [8]. In the proofs below we restrict to the case which is relevant to us: spectral
symmetry in a symmetric conference matrix.

Theorem 2. Suppose S is a Seidel matrix with symmetric spectrum and three distinct
eigenvalues, then S can be obtained from a symmetric conference matrix by deleting one row
and the corresponding column.

Proof. Suppose S has order n − 1. It follows that S has an eigenvalue 0 of multiplicity 1,
and two eigenvalues ±

√
n− 1, each of multiplicity (n − 2)/2. Define M = (n − 1)I − S2,

then rank(M) = 1, the diagonal entries of M are equal to 1, and M is positive semi-
definite. This implies that M = kk> for some vector k with entries ±1. It follows that
k>S2k = k>((n− 1)I −M)k = (n− 1)2 − (n− 1)2 = 0, hence Sk = 0. Define

C =

[
0 k>

k S

]
. Then CC> = C2 =

[
n k>S
Sk kk>+ S2

]
= (n− 1)I,

because Sk = 0 and S2 = (n− 1)I −M = (n− 1)I − kk>.

If S is the Seidel matrix of a regular graph G, then G is strongly regular, as we have seen
in Section 2. Here we do not require regularity. However it follows from the above that we
can always switch in C, such that k becomes the all-one vector, in which case the switched
G is regular.

Theorem 3. Suppose S is a Seidel matrix with symmetric spectrum and four distinct eigen-
values, which include 1 and −1 both of multiplicity 1, then S can be obtained from a sym-
metric conference matrix by deleting two rows and the corresponding columns.

Proof. Suppose S has order n−2. Clearly n is even, and S2 has an eigenvalue 1 of multiplicity
2. From trace(S2) = (n−2)(n− 3) it follows that S2 has one other eigenvalue equal to n−1
of multiplicity n − 4. Define M = (n − 1)I − S2. Then rank(M) = 2, and M is positive
semi-definite with an eigenvalue n− 2 of multiplicity 2. The diagonal entries of M are equal
to 2, and the off-diagonal entries are even integers. Let T be a pricipal submatrix of M of
order 2, then T is positive semi-definite, and therefore T is one of the following:[

2 −2
−2 2

]
,

[
2 2
2 2

]
, or

[
2 0
0 2

]
.
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Since rank(M) = 2, M has a 2 × 2 pricipal submatrix of rank 2, so the last option T = 2I
does occur. Consider the two rows in M corresponding to T = 2I. At each coordinate place,
the two entries can only consist of one 0 and one ±2, since all other options would create
a submatrix of M of rank 3. Every other row of M is a linear combination of these two
rows, and because M is symmetric, we can conclude that the rows and columns of S can be
ordered such that

M = 2

[
M1 O
O M2

]
,

where M1 and M2 have 1 on the diagonal, ±1 off-diagonal, and rank(M1) = rank(M2) = 1.
This implies that there exist vectors k1 and k2 with entries ±1, such that M1 = k1k

>
1 and

M2 = k2k
>
2 . Both M1 and M2 have one nonzero eigenvalue (n − 2)/2, which equals the

trace, so M1 and M2 have the same order (n− 2)/2. With the corresponding partition of S
we have

S =

[
S1 R
R> S2

]
, S2 =

[
S2
1 +RR> S1R+RS2

R>S1 + S2R
> R>R+ S2

2

]
= (n− 1)I − 2

[
M1 O
O M2

]
.

We conclude that S1R = −RS2, and S2
1 +RR> = (n− 1)I − 2M1. Using k>1 k1 = (n− 2)/2,

and M1 = k1k
>
1 we obtain

k>1 S
2
1k1 + k>1 RR

>k1 = k>1 (S2
1 +RR>)k1 = k>1 ((n− 1)I − 2M1)k1 = (n− 2)/2.

The entries of S1k1 are odd integers, so k>1 S
2
1k1 ≥ (n−2)/2. This implies k>1 RR

>k1 = 0 and
k>1 S

2
1k1 = (n − 2)/2, so R>k1 = 0, and S1k1 is a (±1)-vector h1 (say). Next observe that

R>h1 = R>S1k1 = −S2R
>k1 = 0, and also S1h1 = S2

1k1 = (−RR>+(n−1)I−2k>1 k1)k1 =
k1. Similarly, h2 = S2k2 is a (±1)-vector, S2h2 = k2, and Rk2 = Rh2 = 0. Define

C =


0 1 −h>1 h>2
1 0 −h>1 −h>2
k1 k1 S1 R
k2 −k2 R> S2

 .
Then CC> = (n− 1)I. Finally C>C = (n− 1)I implies that h1 = −k1 and h2 = k2.

As we have seen in Proposition 2, there exist many Seidel matrices with four distinct
eigenvalues and symmetric spectrum different from the ones in the above theorem. Another
example is the Seidel matrix of a complete graph of order m, extended with m isolated
vertices. (see Ghorbani et al [6], Theorem 2.2). It is not likely that the case of four eigenvalues
can be characterised in general.

Note that the above characterizations lead to nonexistence of some Seidel spectra. For
example, there exist no graphs with Seidel spectra {0, ±

√
21 10} and {±1, ±

√
21 9}, because

there exist no conference matrix of order 22.

6 Sign-symmetry

A graph G is called sign-symmetric if G is switching isomorphic to its complement. If S is
the Seidel matrix of a sign-symmetric graph G (we also call S sign-symmetric), then S and
−S are equivalent, and therefore S has symmetric spectrum.
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Every PG(n) is sign-symmetric, but many other conference matrices are not. Up to
equivalence, there are at least two conference matrices of order 38, and at least 80 of order
46 which are not sign-symmetric (see Bussemaker, Mathon and Seidel [5]).

If we delete one or two rows and columns from a PC(n), the obtained Seidel matrix will
be sign-symmetric. But in general, when we apply Corollary 1, there is not much we can
say about the relation between sign-symmetry of C, C1 and C2.
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