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Abstract
k-means and k-median clustering are powerful unsupervised
machine learning techniques. However, due to complicated
dependences on all the features, it is challenging to inter-
pret the resulting cluster assignments. Moshkovitz, Dasgupta,
Rashtchian, and Frost proposed an elegant model of explain-
able k-means and k-median clustering in ICML 2020. In this
model, a decision tree with k leaves provides a straightfor-
ward characterization of the data set into clusters.
We study two natural algorithmic questions about explain-
able clustering. (1) For a given clustering, how to find the
“best explanation” by using a decision tree with k leaves?
(2) For a given set of points, how to find a decision tree
with k leaves minimizing the k-means/median objective of
the resulting explainable clustering? To address the first ques-
tion, we introduce a new model of explainable clustering. Our
model, inspired by the notion of outliers in robust statistics,
is the following. We are seeking a small number of points
(outliers) whose removal makes the existing clustering well-
explainable. For addressing the second question, we initiate
the study of the model of Moshkovitz et al. from the per-
spective of multivariate complexity. Our rigorous algorithmic
analysis sheds some light on the influence of parameters like
the input size, dimension of the data, the number of outliers,
the number of clusters, and the approximation ratio, on the
computational complexity of explainable clustering.

Introduction
Interpretation or explanation of decisions produced by learn-
ing models, including clustering, is a significant direction in
machine learning (ML) and artificial intelligence (AI), and
has given rise to the subfield of Explainable AI. Explain-
able AI has attracted a lot of attention from the researchers
in recent years (see the surveys by Carvalho et al. (2019)
and Marcinkevičs and Vogt (2020)). All these works can
be divided into two main categories: pre-modelling (Wang
and Rudin 2015; Ustun and Rudin 2016; Hastie and Tibshi-
rani 1986; Feng and Simon 2017; Lu et al. 2018) and post-
modelling (Ribeiro, Singh, and Guestrin 2016; Shrikumar,
Greenside, and Kundaje 2017; Breiman 2001; Sundarara-
jan, Taly, and Yan 2017; Lundberg and Lee 2017) explain-
ability. While post-modeling explainability focuses on giv-
ing reasoning behind decisions made by black box models,
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pre-modeling explainability deals with ML systems that are
inherently understandable or perceivable by humans. One
of the canonical approaches to pre-modelling explainabil-
ity builds on decision trees (Molnar 2020; Murdoch et al.
2019). In fact, a significant amount of work on explainable
clustering is based on unsupervised decision trees (Bertsi-
mas, Orfanoudaki, and Wiberg 2021; Fraiman, Ghattas, and
Svarc 2013; Geurts et al. 2007; Ghattas, Michel, and Boyer
2017; Lipton 2018; Moshkovitz et al. 2020). In each node of
the decision tree, the data is partitioned according to some
features’ threshold value. While such a threshold tree pro-
vides a clear interpretation of the resulting clustering, its cost
measured by the standard k-means/median objective can be
significantly worse than the cost of the optimal clustering.
Thus, on the one hand, the efficient algorithms developed
for k-means/median clustering (Aggarwal and Reddy 2013)
are often challenging to explain. On the other hand, the eas-
ily explainable models could output very costly clusterings.
Subsequently, Moshkovitz et al. (2020), in a fundamental
work, posed the natural algorithmic question of whether it is
possible to kill two birds with one stone? To be precise, is it
possible to design an efficient procedure for clustering that

• Is explainable by a small decision tree; and

• Does not cost significantly more than the cost of an opti-
mal k-means/median clustering?

To address this question, Moshkovitz et al. (2020) in-
troduced explainable k-means/median clustering. In this
scheme, a clustering is represented by a binary (threshold)
tree whose leaves correspond to clusters, and each internal
node corresponds to partitioning a collection of points by a
threshold on a fixed coordinate. Thus, the number of leaves
in such a tree is k, the number of clusters sought. Also,
any cluster assignment can be explained by the thresholds
along the corresponding root-leaf path. For example, con-
sider Fig. 1: Fig. 1a shows an optimal 5-means clustering of
a 2D data set; Fig. 1b shows an explainable 5-means clus-
tering of the same data set; The threshold tree inducing the
explainable clustering is shown in Fig. 1c. The tree has five
leaves, corresponding to 5 clusters. Note that in this model of
explainability, any clustering has a clear geometric interpre-
tation, where each cluster is formed by a set of axis-aligned
cuts defined by the tree. As Moshkovitz et al. argue, the
classical k-means clustering algorithm leads to more com-
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Figure 1: (a) An example of an optimal solution to 5-means.
(b) An explainable 5-means clustering and (c) the corre-
sponding threshold tree.

plicated clusters while the threshold tree leads to an easy
explanation. The advantage of the explainable approach be-
comes even more evident in higher dimensions when many
feature values in k-means contribute to the formation of the
clusters.

Moshkovitz et al. (2020) define the quality of any explain-
able clustering as the “cost of explainability”, that is the ra-
tio of the cost of the explainable clustering to the cost of
an optimal clustering. Subsequently, they obtain efficient al-
gorithms for computing explainable clusterings whose “cost
of explainability” is O(k) for k-median and O(k2) for k-
means. Recently, these bounds have been improved signif-
icantly (Charikar and Hu 2021; Esfandiari, Mirrokni, and
Narayanan 2021; Gamlath et al. 2021; Laber and Murtinho
2021; Makarychev and Shan 2021).

Our contributions. In this work, we propose a new model
for explaining a clustering, called CLUSTERING EXPLANA-
TION. Our approach to explainability is inspired by the re-
search on robustness in statistics and machine learning, es-
pecially the vast field of outlier detection and removal in
the context of clustering (Chen 2008; Friggstad et al. 2019;
Feng et al. 2019; Charikar et al. 2001; Chakrabarty, Goyal,
and Krishnaswamy 2016; Harris et al. 2019; Krishnaswamy,
Li, and Sandeep 2018). In this model, we are given a k-
means/median clustering and we would like to explain the
clustering by a threshold tree after removing a subset of
points. To be precise, we are interested in finding a sub-
set of points S (which are to be removed) and a threshold
tree T such that the explainable clustering induced by the
leaves of T is exactly the same as the given clustering after
removing the points in S. For the given clustering, we de-
fine an optimal (or best) explainable clustering to be the one
that minimizes the size of S, i.e. for which the given cluster-
ing can be explained by removing the minimum number of
points. Thus in CLUSTERING EXPLANATION we measure
the “explainability” as the number of outlying points whose
removal turns the given clustering into an explainable clus-
tering. The reasoning behind the new measure of cluster ex-
plainability is the following. In certain situations, we would
be satisfied with a small decision tree explaining clustering
of all but a few outlying data points. We note that for a given
clustering that is already an explainable clustering, i.e. can
be explained by a threshold tree, the size of S is 0.

In Fig. 2, we provide an example of an optimal 5-means
clustering of exactly the same data set as in Fig. 1. However,
the new explainable clustering is obtained in a different way.
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Figure 2: (a) An optimal 5-clustering and (b) an explainable
clustering that fits this clustering after removing the larger
(red) points.

If we remove a small number of points (in Fig. 2b these are
the 9 red larger points), then the explainable clustering is
same as the optimal clustering after removing those 9 points.

We note that CLUSTERING EXPLANATION corresponds
to the classical machine learning setting of interpreting
a black-box model, i.e. it lies within the scope of post-
modeling explainability. Surprisingly, this area is widely un-
explored when it comes to rigorous algorithmic analysis of
clustering explanation. Consequently, we study CLUSTER-
ING EXPLANATION from the perspective of computational
complexity. Our new model naturally raises the following
algorithmic questions: (i) Given a clustering, how efficiently
can one decide whether the clustering can be explained by a
threshold tree (without removing any points)? and (ii) Given
a clustering and an integer s, how efficiently can one de-
cide whether the clustering can be explained by removing s
points?

In our work, we design a polynomial time algorithm that
resolves the first question. Regarding the second question,
we give an algorithm that in time 22min{s,k} ·n2d · (dn)O(1)

decides whether a given clustering of n points in Rd could
be explained by removing s points. We also give an nO(1)

time (k−1)-approximation algorithm for CLUSTERING EX-
PLANATION. That is, we give a polynomial time algorithm
that returns a solution set of at most s(k − 1) points that
are to be removed, whereas any best explainable clustering
removes s points. Moreover, we provide an efficient data
reduction procedure that reduces an instance of CLUSTER-
ING EXPLANATION to an equivalent instance with at most
r = 2(s+1)dk points in Rd with integer coordinates within
the range {1, . . . , r}. The procedure can be used to speed up
any algorithm for CLUSTERING EXPLANATION, as long as
n > 2(s+1)dk. We complement our algorithms by showing
a hardness lower bound. In particular, we show that CLUS-
TERING EXPLANATION cannot be approximated within a
factor of F (s) in time f(s)(nd)o(s), for any functions F
and f , unless Exponential Time Hypothesis (ETH) (Impagli-
azzo, Paturi, and Zane 2001) fails. All these results appear
in Section .

We also provide new insight into the computational com-
plexity of the model of Moshkovitz et al. (2020). While the
vanilla k-median and k-means problems are NP-hard for
k = 2 (Aloise et al. 2009; Drineas et al. 2004; Dasgupta
2008) or d = 2 (Mahajan, Nimbhorkar, and Varadarajan
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Model Algorithms Lower bounds

Clustering
Explanation

22min{s,k}n2dnO(1)

(k − 1)-approximation
Red. to O(sdk) points

No F (s)-appr.
in f(s)(nd)o(s)

Explainable
Clustering

(4nd)k+O(1)

n2d · nO(1) f(k) · no(k)

Approx.
Explainable
Clustering

( 8dkε )k · nO(1)

Table 1: A summary of our results.

2012), this is not the case for explainable clustering! We
design two simple algorithms computing optimal (best) ex-
plainable clustering with k-means/median objective that run
in time (4nd)k+O(1) and n2d · nO(1), respectively. Hence
for constant k or constant d, an optimal explainable clus-
tering can be computed in polynomial time. The research
on approximation algorithms on the “cost of explainability”
in (Moshkovitz et al. 2020; Charikar and Hu 2021; Esfan-
diari, Mirrokni, and Narayanan 2021; Gamlath et al. 2021;
Laber and Murtinho 2021; Makarychev and Shan 2021) im-
plicitly assumes that solving the problem exactly is NP-hard.
However, we did not find a proof of this fact in the litera-
ture. To fill this gap, we obtain the following hardness lower
bound: An optimal explainable clustering cannot be found
in f(k) · no(k) time for any computable function f(·), un-
less Exponential Time Hypothesis (ETH) fails. This lower
bound demonstrates that asymptotically the running times
of our simple algorithms are unlikely to be improved. Our
reduction also yields that the problem is NP-hard. These re-
sults are described in Section .

Finally, we combine the above two explainability models
to obtain the Approximate Explainable Clustering model:
For a collection of n points in Rd and a positive real con-
stant ε < 1, we seek whether we can identify at most εn
outliers, such that the cost of explainable k-means/median of
the remaining points does not exceed the optimal cost of an
explainable k-means/median clustering of the original data
set. Thus, if we are allowed to remove a small number of
points, can we do as good as any original optimal solution?
While our hardness result of Section holds for explaining
the whole dataset, by “sacrificing” a small fraction of points
it might be possible to solve the problem more efficiently.
And indeed, for this model, we obtain an algorithm whose
running time ( 8dkε )k ·nO(1) has a significantly better depen-
dence on d and k. For example, compare this with the above
time bounds of (4nd)k+O(1) and n2d · (dn)O(1). This algo-
rithm appears in Section . See Table 1 for a summary of all
our results. Some of the proofs are deferred to the full ver-
sion of the paper (Bandyapadhyay et al. 2021).

Preliminaries
k-means/median. Given a collection X = {x1, . . . ,xn}
of n points in Rd and a positive integer k, the task of k-

clustering is to partition X into k parts C1, . . . ,Ck, called
clusters, such that the cost of clustering is minimized. We
follow the convention in the previous work (Moshkovitz
et al. 2020) for defining the cost. In particular, for k-means,
we consider the Euclidean distance and for k-median, the
Manhattan distance. For a collection of points X′ of Rd, we
define

cost2(X
′) = min

c∈Rd

∑
x∈X′

‖c− x‖22, (1)

and call the point c∗ ∈ Rd minimizing the sum in (1) the
mean of X′. For a clustering {C1, . . . ,Ck} of X ⊆ Rd, its
k-means (or simply means) cost is cost2(C1, . . . ,Ck) =∑k
i=1 cost2(Ci). With respect to the Manhattan distance,

we define analogously cost1(X
′) = minc∈Rd

∑
x∈X′ ‖c −

x‖1, which is minimized at the median of X′, and
cost1(C1, . . . ,Ck) =

∑k
i=1 cost1(Ci), which we call the

k-median (or simply median) cost of the clustering.

Explainable clustering. For a vector x ∈ Rd, we use x[i]
to denote the i-th element (coordinate) of the vector for i ∈
{1, . . . , d}. Let X be a collection of points of Rd. For i ∈
{1, . . . , d} and θ ∈ R, we define Cuti,θ(X) = (X1,X2),
where {X1,X2} is a partition of X with

X1 = {x ∈ X | x[i] ≤ θ} and X2 = {x ∈ X | x[i] > θ}.

Then, given a collection X ⊆ Rd and a positive integer k,
we cluster X as follows. If k = 1, then X is the unique
cluster. If k = 2, then we choose i ∈ {1, . . . , d} and θ ∈ R
and construct two clusters C1 and C2, where (C1,C2) =
Cuti,θ(X). For k > 2, we select i ∈ {1, . . . , d} and θ ∈ R,
and construct a partition (X1,X2) = Cuti,θ(X) of X. Then
clustering of X is defined recursively as the union of a k1-
clustering of X1 and a k2-clustering of X2 for some integers
k1 and k2 such that k1 + k2 = k. We say that a clustering
{C1, . . . ,Ck} is an explainable k-clustering of a collection
of points X ⊆ Rd if C1, . . . ,Ck can be constructed by the
described procedure.

Threshold tree. It is useful to represent an explainable k-
clustering as a triple (T, k, ϕ), called a threshold tree, where
T is a rooted binary tree with k leaves, where each non-
leaf node has two children called left and right, respectively,
and ϕ : U → {1, . . . , d} × R, where U is the set of nonleaf
nodes of T . For each node v of T , we compute a collection of
points Xv ⊆ X. For the root r, Xr = X. Let v be a nonleaf
node of T and let u and w be its left and right children, re-
spectively, and assume that Xv is constructed. We compute
(Xu,Xw) = Cutϕ(v)(X). If v is a leaf, then Xv is a cluster.
A clustering {C1, . . . ,Ck} is an explainable k-clustering of
a collection of points X ⊆ Rd if there is a threshold tree
(T, k, ϕ) such that C1, . . . ,Ck are the clusters correspond-
ing to the leaves of T . Note that T is a full binary tree with
k leaves and the total number of such trees is the (k − 1)-th
Catalan number, which is upper bounded by 4k.

For a collection X = {x1, . . . ,xn} of n points and
i ∈ {1, . . . , d}, we denote by coordi(X) the set of distinct
values of i-th coordinates xj [i] for j ∈ {1, . . . , n}. It is easy
to observe that in the construction of a threshold tree for a set
of points X ⊆ Rd, it is sufficient to consider cuts Cuti,θ with
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θ ∈ coordi(X); we call such values of θ and cuts canon-
ical. We say that a threshold tree (T, k, ϕ) for a collection
of points X ⊆ Rd is canonical, if for every nonleaf node
u ∈ V (T ), ϕ(u) = (i, θ) where θ ∈ coordi(X). Through-
out the paper we consider only canonical threshold trees.

Clustering Explanation
Clustering explanation. In the CLUSTERING EXPLA-
NATION problem, the input contains a k-clustering
{C1, . . . ,Ck} of X ⊆ Rd and a nonnegative integer s, and
the task is to decide whether there is a collection of points
W ⊆ X with |W | ≤ s such that {C1 \W, . . . ,Ck \W} is
an explainable k-clustering. Note that some Ci \W may be
empty here.

A Polynomial-time (k − 1)-Approximation
In the optimization version of CLUSTERING EXPLANA-
TION, we are given a k-clustering C = {C1, . . . ,Ck} of
X in Rd, and the goal is to find a minimum-sized subset
W ⊆ X such that {C1 \W, . . . ,Ck \W} is an explainable
clustering. In the following, we design an approximation al-
gorithm for this problem based on a greedy scheme.

For any subset W ⊆ X, let C −W = {C1 \W, . . . ,Ck \
W}. Also, for any subset Y ⊆ X, define the clustering in-
duced by Y as C(Y ) = {C1 ∩ Y, . . . ,Ck ∩ Y }. Denote by
OPT(Y ) the size of the minimum-sized subset W such that
the clustering C(Y ) −W is explainable. First, we have the
following simple observation which follows trivially from
the definition of OPT(.).
Observation 1. For any subset Y ⊆ X, OPT(Y ) ≤
OPT(X).

For any cut (i, θ) where i ∈ {1, . . . , d} and θ ∈
coordi(X), let L(i, θ) = {x ∈ Rd | x[i] ≤ θ} and
R(i, θ) = {x ∈ Rd | x[i] > θ}.
Lemma 1. Consider any subset Y ⊆ X such that C(Y )
contains at least two non-empty clusters. It is possible to
select a cut (i, θ) for i ∈ {1, . . . , d} and θ ∈ coordi(Y ),
and a subset W ⊆ Y , in polynomial time, such that (i) each
cluster in C(Y ) −W is fully contained in either L(i, θ) or
in R(i, θ), (ii) at least one cluster in C(Y )−W is in L(i, θ),
(iii) at least one cluster in C(Y ) −W is in R(i, θ) and (iv)
size of W is at most OPT(Y ).

Before we prove this lemma, we show how to use it to
design the desired approximation algorithm.

The Algorithm. We start with the set of all points X. We
apply the algorithm in Lemma 1 with Y = X to find a
cut (i, θ) and a subset W1 ⊆ X such that each cluster in
C(X)−W1 is fully contained in either L(i, θ) or in R(i, θ).
Let X1 = (X\W1)∩L(i, θ) and X2 = (X\W1)∩R(i, θ).
We recursively apply the above step on both X1 and X2 sep-
arately. If at some level the point set is a subset of a single
cluster, we simply return.

The correctness of the above algorithm trivially follows
from Lemma 1. In particular, the recursion tree of the al-
gorithm gives rise to the desired threshold tree. Also, the
algorithm runs in polynomial time, as each successful cut
(i, θ) can be found in polynomial time and the algorithm

finds only k− 1 such cuts that separate the clusters. The last
claim follows due to the properties (ii) and (iii) in Lemma 1.

Consider the threshold tree generated by the algorithm.
For each internal node u, letXu be the corresponding points
and Wu be the points removed from Xu for finding an ex-
plainable clustering of the points in Xu \Wu. Note that we
have at most k − 1 such nodes. The total number of points
removed from X for finding the explainable clustering is∑
u |Wu|. By Lemma 1,

|Wu| ≤ OPT(Xu).

Now, as Xu ⊆ X, by Observation 1, OPT(Xu) ≤ OPT(X).
It follows that∑

u

|Wu| ≤ (k − 1) · OPT(X).

Theorem 1. There is a polynomial-time (k − 1)-
approximation algorithm for the optimization version of
CLUSTERING EXPLANATION.

By noting that OPT(X) = 0 if C is an explainable clus-
tering, we obtain the following corollary.

Corollary 1. Explainability of any given k-clustering in Rd

can be tested in polynomial time.

Proof of Lemma 1. We probe all possible choices for cuts
(i, θ) with i ∈ {1, . . . , d} and θ ∈ coordi(Y ), and select
one which incurs the minimum cost. We also select a subset
W of points to be removed w.r.t. each cut. The cost of such
a cut is exactly the size of W .

Fix a cut (i, θ). We have the following three cases. In the
first case, for all clusters in C(Y ), strictly more than half
of the points are contained in L(i, θ). In this case select a
cluster C which has the minimum intersection with L(i, θ).
Put all the points in C ∩ L(i, θ) into W . Also, for any other
cluster C′ ∈ C(Y ), put the points in C′∩R(i, θ) intoW . The
second case is symmetric to the first one – for all clusters
in C(Y ), strictly more than half of the points are contained
in R(i, θ). In this case we again select a cluster C which
has the minimum intersection withR(i, θ). Put all the points
in C ∩ R(i, θ) into W . Also, for any other cluster C′ ∈
C(Y ), put the points in C′ ∩ L(i, θ) into W . In both of the
above cases, the first three desired properties are satisfied
for C(Y )−W . In the third case, for each cluster C ∈ C(Y ),
add the smaller part among C ∩ L(i, θ) and C ∩ R(i, θ)
to W . In case |C ∩ L(i, θ)| = |C ∩ R(i, θ)|, we break the
tie in a way so that properties (ii) and (iii) are satisfied. As
C(Y ) contains at least two clusters this can always be done.
Moreover, property (i) is trivially satisfied.

In the above we showed that for all the choices of the cuts,
it is possible to select W so that the first three properties are
satisfied. Let wm be the minimum size of the set W over
all cuts. As we select a cut for which the size of W is mini-
mized, it is sufficient to show that wm ≤ OPT(Y ).

Let k′ be the number of clusters in C(Y ). Consider any
optimal set W ∗ for Y such that C(Y ) −W ∗ is explainable.
Let (i∗, θ∗) be the canonical cut corresponding to the root
of the threshold tree corresponding to the explainable clus-
tering C(Y ) − W ∗. Such a cut exists, as C(Y ) contains at

3907



least two clusters. Let Ŵ be the set selected in our algo-
rithm corresponding to the cut (i∗, θ∗). In the first of the
above mentioned three cases, suppose W ∗ does not con-
tain the part C ∩ L(i∗, θ∗) fully for any of the k′ clusters
C ∈ C(Y ). In other words, C(Y )−W ∗ contains points from
each such part C ∩ L(i∗, θ∗). But, then even after choosing
the root cut (i∗, θ∗) we still need k′ more cuts to separate the
points in (Y \W ∗) ∩ L(i∗, θ∗), which contains points from
all the k′ clusters. However, by definition, the threshold tree
must use only k′ cuts and hence we reach to a contradiction.
Hence, C∗ ∩ L(i∗, θ∗) must be fully contained in W ∗ for
some C∗ ∈ C(Y ). In this case, our algorithm adds the points
in C ∩ L(i∗, θ∗) to Ŵ such that the size |C ∩ L(i∗, θ∗)|
is minimized over all C ∈ C(Y ) and for any other cluster
C′ ∈ C(Y ), we put the points in C′ ∩ R(i∗, θ∗) into Ŵ .
Thus, |Ŵ | ≤ |W ∗| = OPT(Y ). The proof for the second
case is the same as the one for the first case. We discuss the
proof for the third case. Consider the clusters C ∈ C(Y )
such that both C ∩ L(i∗, θ∗) and C ∩ R(i∗, θ∗) are non-
empty. Note that these are the only clusters whose points are
put into Ŵ . But, then W ∗ must contain all the points from
at least one of the parts C ∩ L(i∗, θ∗) and C ∩ R(i∗, θ∗).
For each such cluster C, we add the smaller part among
C ∩ L(i, θ) and C ∩ R(i, θ) to Ŵ . Hence, in this case also
|Ŵ | ≤ |W ∗| = OPT(Y ). The lemma follows by noting that
wm ≤ |Ŵ |.

Exact Algorithm
Our 22min{s,k} · n2d · (dn)O(1) time algorithm is based on
a novel dynamic programming scheme. Here, we briefly de-
scribe the algorithm. Our first observation is that each sub-
problem can be defined w.r.t. a bounding box in Rd, as each
cut used to split a point set in any threshold tree is an axis-
parallel hyperplane. The number of such distinct bounding
boxes is at most n2d, as in each dimension a box is speci-
fied by two bounding values. This explains the n2d factor in
the running time. Now, consider a fixed bounding box cor-
responding to a subproblem containing a number of given
clusters, may be partially. If a new canonical cut splits a clus-
ter, then one of the two resulting parts has to be removed,
and this choice has to be passed on along the dynamic pro-
gramming. As we remove at most s points and the number
of clusters is at most k, the number of such distinct choices
can be bounded by 22min{s,k}. This roughly gives us the fol-
lowing theorem. The detailed proof is quite technical and is
deferred to the full version of the paper.

Theorem 2. CLUSTERING EXPLANATION can be solved in
22min{s,k} · n2d · (dn)O(1) time.

Data Reduction
Theorem 3. Let r = 2(s+1)dk. There is a polynomial-time
algorithm that, given an instance of CLUSTERING EXPLA-
NATION, produces an equivalent one with at most r points
in {1, . . . , r}d.

Proof. Let (C, s) be an instance of CLUSTERING EXPLA-
NATION, where C = {C1, . . . ,Ck} for disjoint collections

of points Ci of Rd. Let X =
⋃k
i=1 Ci.

Our first aim is to reduce the number of points. For this,
we use a procedure that marks essential points.

For every i ∈ {1, . . . , k} and every j ∈ {1, . . . , d}, do the
following:

• Order the points of Ci by the increase of their j-th coor-
dinate; the ties are broken arbitrarily.

• Mark the first min{s + 1, |Ci|} points and the last
min{s+ 1, |Ci|} points in the ordering.

The procedure marks at most 2(s+1)dk points. Then we
delete the remaining unmarked points. Formally, we denote
by Y the collection of marked points and set Si = Ci ∩Y
for all i ∈ {1, . . . , k}. Then we consider the instance (S, s)
of CLUSTERING EXPLANATION, where S = {S1, . . . ,Sk}.
We show the following claim.

Claim 0.1. (C, s) is a yes-instance of CLUSTERING EX-
PLANATION if and only if (S, s) is a yes-instance.

Proof of Claim 0.1. Trivially, if (C, s) is a yes-instance, then
(S, s) is a yes-instance, because we just deleted some point
to construct (S, s). We show that if (S, s) is a yes-instance,
then (C, s) is a yes-instance.

Because (S, s) is a yes-instance, there is a collection of at
most s points W ⊆ Y such that {S1 \W, . . . ,Sk \W}
is an explainable k-clustering. In other words, there is an
explainable clustering of Y \W with a canonical threshold
tree (T, k, ϕ) such that the clusters S1 \W, . . . ,Sk \W
correspond to the leaves of the threshold tree. We claim that
if we use the same threshold tree for X \W, then C1 \
W, . . . ,Ck \W correspond to the leaves.

The proof is by contradiction. Assume that at least one
collections of points corresponding to a leaf is distinct from
every C1 \W, . . . ,Ck \W. Then there is a node v ∈ V (T )
such that for some j ∈ {1, . . . , k}, Cj \W is split by the cut
Cuti,θ for (i, θ) = ϕ(v), that is, for (A,B) = Cuti,θ(X),
A∩(Cj\W) 6= ∅ and B∩(Cj\W) 6= ∅. Observe that either
A∩(Sj \W) = ∅ or B∩(Sj \W) = ∅. We assume without
loss of generality that A ∩ (Sj \W) = ∅ (the other case
is symmetric). This means that there is an unmarked point
x ∈ Cj \W in A and all the marked points of Cj \W are in
B. Because Cj has an unmarked point, |Cj | ≥ 2(s+1)+1.
Following the marking procedure, we order the points of Cj

by the increase of the i-th coordinate breaking ties exactly
as in the marking procedure. Let L be the collection of the
first s + 1 points that are marked. Since |W| ≤ s, there is
y ∈ L \W. Because L \W ⊆ Sj \W ⊆ B, we have that
y[i] > θ. Then x[i] ≥ y[i] > θ and x ∈ B; a contradiction.

We conclude that if we use (T, k, ϕ) to cluster X \W,
then C1 \W, . . . ,Ck \W correspond to the leaves. This
proves that (C, s) is a yes-instance of CLUSTERING EXPLA-
NATION.

We obtained the instance (S, s), where Y =
⋃k
i=1 Si

has ` ≤ 2(s + 1)dk points, that is equivalent to the origi-
nal instance. Now we modify the points to ensure that they
are in {1, . . . , `}d. For this, we observe that for each i ∈
{1, . . . , d}, the values of the i-th coordinates can be changed
if we maintain their order. Formally, we do the following.
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For every i ∈ {1, . . . , d}, let coordi(Y) = {θi1, . . . , θiri},
where θi1 < · · · < θiri . For every y ∈ Y, we construct
a point z, by setting z[i] = j, where θij = y[i], for each
i ∈ {1, . . . , d}. Then for Si containing y, we replace y
by z. Denote by Z the constructed collection of points, and
let R = {R1, . . . ,Rk} be the family of the collections of
points constructed from S1, . . . ,Sk.

We have that (R, s) is a yes-instance of CLUSTERING
EXPLANATION if and only if (S, s) is a yes-instance, and
Z ⊆ {1, . . . , `}d. Then the data reduction algorithm returns
(R, s). To complete the proof, it remains to observe that the
marking procedure is polynomial, and the coordinates re-
placement also can be done in polynomial time.

Hardness of Approximation
We show that the CLUSTERING EXPLANATION problem re-
mains hard when the number of points to delete s is small.
Specifically, we provide a parameter-preserving reduction
from HITTING SET to CLUSTERING EXPLANATION that
transfers known results about hardness of approximation for
the HITTING SET problem to CLUSTERING EXPLANATION.

Theorem 4. For any functions f and F , there is no al-
gorithm that approximates CLUSTERING EXPLANATION
within a factor of F (s) in time f(s)(nd)o(s), unless ETH
fails.

Intuitively, given an instance (U,A, `) of HITTING SET,
we construct clusters C0, . . . , Cm in R

∑
j∈[m] |Aj |. The clus-

ters C1, . . . , Cm represent the sets in the family A =
{A1, . . . , Am}, and C0 is a special cluster that needs to be
separated from each of C1, . . . , Cm so that the clustering
is explainable. The separation can only be performed by re-
moving special points from C0 each of which corresponds
to an element of the universe U . Removing such a point al-
lows for separation between C0 and each Cj such that the
corresponding set Aj contains the corresponding universe
element. The two clusters can be separated along a special
coordinate where only that special point “blocks” the separa-
tion. This is the crux of the reduction. The full proof appears
in the full version.

Explainable Clustering
Explainable k-means/median clustering. We consider
the EXPLAINABLE k-MEANS (resp. EXPLAINABLE k-
MEDIAN) problem where given a collection X ⊆ Rd of
n ≥ k points, the task is to find an explainable k-clustering
{C1, . . . ,Ck} of X of minimum k-means (resp. k-median)
cost.

Exact Algorithms
Our (nd)k+O(1) time algorithm is indeed very simple and
based on branching technique. At each non-leaf node of
threshold tree, we would like to find an optimal cut. As we
focus on canonical threshold trees, the number of distinct
choices for branching is at most nd. Also as the number of
non-leaf nodes in the threshold binary tree is k− 1, we have
the following theorem.

Theorem 5. EXPLAINABLE k-MEANS and EXPLAINABLE
k-MEDIAN can be solved in (nd)k+O(1) time.

Our n2d · (dn)O(1) time algorithm is based on dynamic
programming, which we describe in the following. For two
vectors x,y ∈ Rd, we write x ≤ y (x < y, respectively) to
denote that x[i] ≤ y[i] (x[i] < y[i], respectively) for every
i ∈ {1, . . . , d}. We highlight that when we write x < y, we
require the strict inequality for every coordinate.
Theorem 6. EXPLAINABLE k-MEANS and EXPLAINABLE
k-MEDIAN can be solved in n2d · (dn)O(1) time.

Proof. The algorithms for both problems are almost the
same. Hence, we demonstrate it for EXPLAINABLE k-
MEANS. For simplicity, we only show how to find the mini-
mum cost of clustering but the algorithm can be easily mod-
ified to produce an optimal clustering as well by standard
arguments.

Let (X, k) be an instance of the problem with X =
{x1, . . . ,xn} and X ⊆ Rd. We say that a vector z ∈
(R ∪ {±∞})d is canonical if z[i] ∈ coordi(X) ∪ {±∞}
for every i ∈ {1, . . . , d}. For every pair of canonical vectors
(a,b) such that a ≤ b and every positive integer s ≤ k,
we compute the minimum means cost of an explainable s-
clustering of Xa,b = {xi ∈ X | a < xi ≤ b} and denote
this value ω(a,b, s). We assume that ω(a,b, s) = +∞ if
Xa,b does not admit an explainable s-clustering. It is also
convenient to assume that ω(a,b, s) = +∞ if Xa,b = ∅,
because we are not interested in empty clusters. Notice that
the minimum means cost of an explainable k-clustering of
X is ω(a∗,b∗, k), where a∗[i] = −∞ and b∗[i] = +∞ for
i ∈ {1, . . . , d}. We compute the table of values of ω(a,b, s)
consecutively for s = 1, 2, . . . , k.

If s = 1, then by definition,

ω(a,b, s) =

{
cost2(Xa,b) if Xa,b 6= ∅,
+∞ if Xa,b = ∅,

and this value can be computed in polynomial time. Let s ≥
2 and assume that the tables are already constructed for the
lesser values of s. Consider a pair (a,b) of canonical vectors
of (R ∪ {±∞})d such that a ≤ b. For i ∈ {1, . . . , d} and
θ ∈ coordi(X) such that a[i] < θ < b[i], we define the
vectors ai,θ and bi,θ by setting

ai,θ[j] =

{
θ if j = i,

a[j] if j 6= i,
and bi,θ[j] =

{
θ if j = i,

b[j] if j 6= i.

Then we compute ω(a,b, s) using the following recurrence

ω(a,b, s) = min{ω(a,bi,θ, s1) + ω(ai,θ,b, s2)

for 1 ≤ i ≤ d, θ ∈ coordi(X),

a[i] < θ < b[i],

s1, s2 ≥ 1, and s1 + s2 = s}. (2)

The correctness of (2) follows form the definition of the
explainable clustering. It is sufficient to observe that to
compute the optimum means cost of an explainable s-
clustering of Xa,b, we have to take minimum over the
sums of optimum costs of explainable s1-clusterings and s2-
clusterings of X1 and X2, respectively, where (X1, X2) =
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Cuti,θ(Xa,b) for some i ∈ {1, . . . , d}, θ ∈ coordi(Xa,b)
and s1 + s2 = s, and this is exactly what is done in (2).

To evaluate the running time, observe that to compute
ω(a,b, s) using (2), we consider d values of i, at most n
values of θ and at most k ≤ n values of s1 and s2, that is,
we go over at most dn2 choices. Thus, computing ω(a,b, s)
for s ≥ 2 and fixed a and b can be done in O(dn2) time.
Since there are at most (n+2)2d pairs of canonical vectors a
and b, we obtain that the time to compute the table of values
of Xa,b for all pairs of vectors is n2d · (dn)O(1). Since the
table for s = 1 can be constructed in n2d · (dn)O(1) and we
iterate using (2) k − 1 ≤ n times, the total running time is
n2d · (dn)O(1).

Hardness
Theorem 7. EXPLAINABLE k-MEANS and EXPLAINABLE
k-MEDIAN are NP-complete and cannot be solved in f(k) ·
no(k) time for a computable function f(·) unless ETH fails.

To prove this theorem, we again reduce from HITTING
SET, but the construction is different. Here, we construct a
point for each set and also for each element. Then, there is
a hitting set of size k iff there is an explainable (k + 1)-
clustering of a suitable cost. The details appear in the full
version of the paper.

Approximate Explainable Clustering
Approximate explainable k-means/median clustering.
In APPROXIMATE EXPLAINABLE k-MEANS, we are given
a collection of n points X ⊆ Rd, a positive integer k ≤ n,
and a positive real constant ε < 1. Then the task is to find
a collection of points Y ⊆ X with |Y| ≥ (1 − ε)|X| and
an explainable k-clustering of Y whose k-median cost does
not exceed the optimum k-median cost of an explainable k-
clustering for the original collection of points X. Note that
we ask about the construction of Y and the corresponding
clustering as the decision variant is trivial. Observe also that
the optimum cost is unknown a priori. APPROXIMATE EX-
PLAINABLE k-MEDIAN differs only by the clustering mea-
sure.

Theorem 8. APPROXIMATE EXPLAINABLE k-MEANS and
APPROXIMATE EXPLAINABLE k-MEDIAN are solvable in
( 8dkε )k · nO(1) time.

As the proofs for both problems are identical, we describe
only the algorithm for APPROXIMATE EXPLAINABLE k-
MEANS.

Proof. Let X ⊆ Rd be an instance of APPROXIMATE EX-
PLAINABLE k-MEANS, (T, k, ϕ) be the optimal (canoni-
cal) threshold tree for explainable k-means clustering and
(C1, . . . , Ck) the clustering induced by (T, k, ϕ). The goal
of the algorithm will be to guess an approximation of
(T, k, ϕ). Since T is a binary tree with k leaves, guessing
T only requires 4k tries. Guessing ϕ is more complicated
however, as there is d · n choice at each node of T , which
gives potentially (dn)k possibilities, where n = |X|. The
idea here will be to guess for every nonleaf node u of T the

second element of ϕ(u) up to a precision of O( εnk ), which
gives only O(d · kε ) choices at each nonleaf node.

More formally, let n′ = b εnk c and note first that if n′ = 0,
then εn

k < 1 and thus n ≤ k
ε . This means that if n′ = 0, then

the algorithm trying all the possible values of T and ϕ, and
computing the value of the obtained clustering, runs in time
4k(dkε ) · n

O(1), which ends the proof. From now on, let us
assume that n′ 6= 0.

Let U denote the set of nonleaf nodes of T . Let ϕ′ : U →
{1, . . . , d}×R be the function obtained from ϕ by rounding,
for every u ∈ U , the value of the first element of ϕ(u) to the
closest multiple of n′. In other words, if ϕ(u) = (j, r), then
ϕ′(u) = (j, i · n′) where i is the largest integer such that
i · n′ ≤ r.

Consider now the clustering obtained from the threshold
tree (T, k, ϕ′). At each node v ∈ T such that ϕ(v) = (j, r)
and ϕ′(v) = (j, i · n′), the points x of X that can be mis-
placed by the Cutϕ′(u)(X) are exactly the points such that
i · n′ < x[i] ≤ r. This means that, if Zu denotes the set
of all the points x such that i · n′ ≤ x[j] ≤ (i + 1)n′,
then |Zu| ≤ n′ and the partitions Cutϕ′(u)(X \ Zu) and
Cutϕ(u)(X \Zu) are identical. Therefore, if Z =

⋃
u∈U Zu,

then (T, k, ϕ′) and (T, k, ϕ) induce the exact same cluster-
ing on X \ Z. Note that |Z| ≤ kn′ ≤ εn.

Therefore the algorithm will try all possible choices for
T , and for every nonleaf node u, it tries all possible values
for ϕ′(u) of the form (j, i · n′), where j ∈ [d] and i ∈ [ 2kε ].
For each such try, the algorithm also removes the set Z con-
sisting of all the points x such that i ·n′ ≤ x[j] ≤ (i+1) ·n′
whenever there exists u ∈ U such that ϕ′(u) = (j, i ·n′) and
computes the value of the clustering induces by (T, k, ϕ′) on
X\Z. Finally it outputs the set X\Z as well as the threshold
tree (T, k, ϕ′) which minimises the value of the clustering.

Note that for every set of choices of T and ϕ′(u) of the
form (j, i · n′), the set Z has size at most k · n′ ≤ εn, which
implies that the algorithm indeed outputs the desired set and
threshold tree. Moreover, since there are at most 4k possible
trees T and d· 2kε possible choices of ϕ′(u) for every node of
the tree, we conclude that the running time of the algorithm
is ( 8dkε )knO(1).

Conclusion
In this paper, we initiated the study of computational com-
plexity of several variants of explainable clustering. Con-
cluding, we would like to outline some further directions of
research and state a number of open problems.

We showed that CLUSTERING EXPLANATION admits a
polynomial-time approximation with a factor of (k−1). Can
this factor be improved in polynomial-time, say, to log k?
We proved that EXPLAINABLE k-MEANS and EXPLAIN-
ABLE k-MEDIAN can be solved in n2d · (dn)O(1) time. Is
this result tight? Or is it possible to obtain an f(d) ·(dn)O(1)

time algorithm for some function f? Also, is it possible
to obtain approximation schemes parameterized by k, i.e.,
(1 + ε)-approximation in g(k, ε)(nd)O(1) time for some
function g. Regular k-means/median admits such approxi-
mation schemes (Kumar, Sabharwal, and Sen 2010).
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