
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Pareto Optimization for Subset Selection with Dynamic Cost Constraints

Vahid Roostapour,1 Aneta Neumann,1 Frank Neumann,1 Tobias Friedrich1, 2

1Optimisation and Logistics, School of Computer Science, The University of Adelaide, Adelaide, Australia
2Chair of Algorithm Engineering, Hasso Plattner Institute, Potsdam, Germany

{vahid.roostapour, aneta.neumann, frank.neumann}@adelaide.edu.au, tobias.friedrich@hpi.de

Abstract

In this paper, we consider the subset selection problem for
function f with constraint boundB which changes over time.
We point out that adaptive variants of greedy approaches
commonly used in the area of submodular optimization are
not able to maintain their approximation quality. Investigat-
ing the recently introduced POMC Pareto optimization ap-
proach, we show that this algorithm efficiently computes a
φ = (αf/2)(1 − 1

e
αf)-approximation, where αf is the sub-

modularity ratio of f , for each possible constraint bound
b ≤ B. Furthermore, we show that POMC is able to adapt
its set of solutions quickly in the case that B increases. Our
experimental investigations for the influence maximization in
social networks show the advantage of POMC over general-
ized greedy algorithms.

Introduction
Many combinatorial optimization problems consist of opti-
mizing a given function under a given constraint. Constraints
often limit the resources available to solve a given problem
and may change over time. For example, in the area of sup-
ply chain management, the problem may be constrained by
the number of vehicles available which may change due to
vehicle failures and vehicles being repaired or added as a
new resource.

Submodular functions form an important class of prob-
lems as many important optimization problems can be mod-
eled by them. The area of submodular function optimiza-
tion under given static constraints has been studied quite ex-
tensively in the literature (Nemhauser, Wolsey, and Fisher
1978; Lee et al. 2010; Lee, Sviridenko, and Vondrák 2010;
Krause and Golovin 2014). In the case of monotone sub-
modular functions, greedy algorithms are often able to
achieve the best possible worst case approximation guaran-
tee (unless P=NP).

Recently, Pareto optimization approaches have been in-
vestigated for a wide range of subset selection prob-
lems (Friedrich and Neumann 2015; Qian, Yu, and Zhou
2015; Qian et al. 2017a; 2017b). It has been shown in (Qian
et al. 2017b) that an algorithm called POMC is able to
achieve a φ = (αf/2)(1 − 1

eαf
)-approximation where αf

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

measures the closeness of the considered function f to sub-
modularity. The approximation matches the worst-case per-
formance ratio of the generalized greedy algorithm (Zhang
and Vorobeychik 2016).

Our contribution
In this paper, we study monotone functions with a con-
straint where the constraint bound B changes over time.
Such constraint changes reflect real-world scenarios where
resources vary during the process. We show that greedy al-
gorithms have difficulties in adapting their current solutions
after changes have happened. In particular, we show that
there are simple dynamic versions of the classical knap-
sack problem where adding elements in a greedy fashion
when the constraint bound increases over time can lead to
an arbitrary bad performance ratio. For the case where con-
straint bounds decrease over time, we introduce a submod-
ular graph covering problem and show that the considered
adaptive generalized greedy algorithm may encounter an ar-
bitrarily bad performance ratio on this problem.

Investigating POMC, we show that this algorithm obtains
for each constraint bound b ∈ [0, B], a φ = (αf/2)(1 −
1
eαf

)-approximation efficiently. Furthermore, when relaxing
the bound B to B∗ > B, φ-approximations for all values
of b ∈ [0, B∗] are obtained efficiently. We evaluate the con-
sidered algorithms on influence maximization in social net-
works that have dynamic routing or cardinality constraints.
Benchmarking the algorithms over sequences of dynamic
changes, we show that POMC obtains superior results to the
generalized greedy and adaptive generalized greedy algo-
rithms. Furthermore, POMC shows an even more prominent
advantage as more dynamic changes are carried out because
it is able to improve the quality of its solutions and cater for
changes that occur in the future.

The paper is structured as follows. In the next section,
we define the dynamic problems and the algorithms under
investigation. Then, we show that the adaptive generalized
greedy algorithm may encounter an arbitrary bad perfor-
mance ratio even when starting with an optimal solution for
the initial budget. In contrast, we show that POMC is able to
maintain a φ-approximation efficiently. We present experi-
mental investigations for influence maximization in social
networks that show the advantage of the Pareto optimization
approach and finish with some concluding remarks.

2354

Problem Formulation and Algorithms
In this paper we consider optimization problems in which
the cost function and objective functions are monotone and
quantified according to their closeness to submodularity.

Different definitions are given for submodularity
(Nemhauser, Wolsey, and Fisher 1978) and we use the fol-
lowing one in this paper. For a given set V = {v1, · · · , vn},
a function f : 2V → R is submodular if

for any X ⊆ Y ⊆ V and v /∈ Y

f(X ∪ v)− f(X) ≥ f(Y ∪ v)− f(Y). (1)

In addition, we consider how much a function is close
to being submodular, measured by the submodularity ra-
tio (Zhang and Vorobeychik 2016). The function f is αf -
submodular where

αf = min
X⊆Y,v/∈Y

f(X ∪ v)− f(X)

f(Y ∪ v)− f(Y)
.

This definition is equivalent to the Equation 1 when αf = 1,
i.e. we have submodularity in this case. Another notion
which is used in our analysis is the curvature of function
f . The curvature measures the deviation from linearity and
reflects the effect of marginal contribution according to the
function f (Conforti and Cornuéjols 1984; Vondrák 2010).
For a monotone submodular function f : 2V → R+,

κf = 1−min
v∈V

f(V)− f(V \ v)

f(v)

is defined as the total curvature of f .
In many applications the function to be optimized f

comes with a cost function c which is subject to a given cost
constraint B. Often the cost function c cannot be evaluated
precisely. Hence, the function ĉ which is ψ-approximation
of c is used (Zhang and Vorobeychik 2016). Moreover, ac-
cording to the submodularity of f , the aim is to find a good
approximation instead of finding the optimal solution.

Consider the static version of an optimization problem de-
fined in (Qian et al. 2017b).

Definition 1 (The Static Problem). Given a monotone ob-
jective function f : 2V → R+, a monotone cost function
c : 2V → R+ and a budget B, the goal is to compute a
solution X such that

X = arg max
Y⊆V

f(Y) s.t. c(Y) ≤ B.

As for the static case investigated in (Qian et al.
2017b), we are interested in a φ-approximation where φ =
(αf/2)(1− 1

eαf
) depends on the submodularity ratio.

Zhang and Vorobeychik considered the performance of
the generalized greedy algorithm (Zhang and Vorobeychik
2016), given in Algorithm 1, according to the approximated
cost function ĉ. Starting from the empty set, the algorithm
always adds the element with the largest objective to cost
ratio that does not violate the given constraint bound B.

Let Kc = max{|X| : c(X) ≤ B}. The optimal so-
lution X̃B in these investigations is defined as X̃B =

arg max{f(X) | c(X) ≤ αc
B(1+α2

c(Kc−1)(1−κc)))
ψKc

} where

αc is the submodularity ratio of c. This formulation gives
the value of an optimal solution for a slightly smaller bud-
get constraint. The goal is to obtain a good approximation of
f(X̃B) in this case.

It has been shown in (Zhang and Vorobeychik 2016) that
the generalized greedy algorithm, which adds the item with
the highest marginal contribution to the current solution in
each step, achieves a (1/2)(1− 1

e)-approximate solution if f
is monotone and submodular. (Qian et al. 2017b) extended
these results to objective functions with αf submodularity
ratio and proved that the generalized greedy algorithm ob-
tains a φ = (αf/2)(1− 1

eαf
)-approximation. For the remain-

der of this paper, we assume φ = (αf/2)(1 − 1
eαf

) and are
interested in obtaining solutions that are φ-approximation
for the considered problems.

In this paper, we study the dynamic version of problem
given in Definition 1.
Definition 2 (The Dynamic Problem). Let X be a φ-
approximation for the problem in Definition 1. The dynamic
problem is given by a sequence of changes where in each
change the current budget B changes to B∗ = B + d,
d ∈ R≥−B . The goal is to compute a φ-approximation X ′
for each newly given budget B∗.

The Dynamic Problem evolves over time by the changing
budget constraint bounds. Note that every fixed constraint
bound gives a static problem and any good approximation
algorithm can be run from scratch for the newly given bud-
get. However, the main focus of this paper are algorithms
that can adapt to changes of the constraint bound.

Algorithms
We consider dynamic problems according to Definition 2
with φ = (αf/2)(1− 1

eαf
) and are interested in algorithms

that adapt their solutions to the new constraint bound B∗

and obtain a φ-approximation for the new bound B∗. As the
generalized greedy algorithm can be applied to any bound
B, the first approach would be to run it for the newly given
bound B∗. However, this might lead to totally different so-
lutions and adaptation of already obtained solutions might
be more beneficial. Furthermore, adaptive approaches that
change the solution based on the constraint changes are of
interest as they might be faster in obtaining such solutions
and/or be able to learn good solutions for the different con-
straint bounds that occur over time.

Based on the generalized greedy algorithm, we introduce
the adaptive generalized greedy algorithm. This algorithm is
modified from Algorithm 1 in a way that enables it to deal
with a dynamic change. Let X be the current solution of
the algorithm. When a dynamic change decreases the bud-
get constraint, the algorithm removes items from X accord-
ing to their marginal contribution, until it achieves a feasible
solution. When there is a dynamic increase, this algorithm
behaves similarly to the generalized greedy algorithm.

Furthermore, we consider the Pareto optimization ap-
proach POMC (Algorithm 3) which is also known as Global
SEMO in the evolutionary computation literature (Lau-
manns, Thiele, and Zitzler 2004; Friedrich et al. 2010;
Friedrich and Neumann 2015). POMC is a multi-objective

2355

Algorithm 1: Generalized Greedy Algorithm
input: Initial budget constraint B.

1 X ← ∅;
2 V ′ ← V ;
3 repeat
4 v∗ ← arg maxv∈V ′

f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) ;

5 if ĉ(X ∪ v∗) ≤ B then
6 X ← X ∪ v∗;
7 V ′ ← V ′ \ {v∗};
8 until V ′ ← ∅;
9 v∗ ← arg maxv∈V ;ĉ(v)≤B f(v);

10 return arg maxS∈{X,v∗} f(S);

Algorithm 2: Adaptive Generalized Greedy Algorithm
input: Initial solution X , Budget constraint B, New

budget constraint B∗.
1 if B∗ < B then
2 while ĉ(X) > B∗ do
3 v∗ ← arg minv∈X

f(X)−f(X\{v})
ĉ(X)−ĉ(X\{v}) ;

4 X ← X \ {v∗} ;

5 else if B∗ > B then
6 V ′ ← V \X;
7 repeat
8 v∗ ← arg maxv∈V ′

f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) ;

9 if ĉ(X ∪ v∗) ≤ B∗ then
10 X ← X ∪ v∗;
11 V ′ ← V ′ \ {v∗};
12 until V ′ ← ∅;
13 v∗ ← arg maxv∈V ;ĉ(v)≤B∗ f(v) ;
14 return arg maxS∈{X,v∗} f(S);

optimization approach which is proven to perform better
than the generalized greedy algorithm in case of local op-
tima (Qian et al. 2017b). We reformulate the problem as a
bi-objective problem in order to use POMC as follows:

arg maxX ∈ {0, 1}n(f1(X), f2(X)),
where:

f1(X) =

{
−∞, ĉ(X) > B + 1

f(X), otherwise
, f2(X) = −ĉ(X).

This algorithm optimizes the cost function and the ob-
jective function simultaneously. To achieve this, it uses the
concept of dominance to compare two solutions. Solution
X1 dominates X2, denoted by X1 � X2, if f1(X1) ≥
f1(X2) ∧ f2(X1) ≥ f2(X2). The dominance is strict, �,
when at least one of the inequalities is strict. POMC pro-
duces a population of non-dominated solutions and opti-
mizes them during the optimization process. In each itera-
tion, it chooses solution X randomly from the population
and flips each bit of the solution with the probability of 1/n.
It adds the mutated solution X ′ to the population only if

Algorithm 3: POMC Algorithm
input: Initial budget constraint B, time T

1 X ← {0}n;
2 Compute (f1(X), f2(X));
3 P ← {x};
4 t← 0;
5 while t < T do
6 Select X from P uniformly at random;
7 X ′ ← flip each bit of X with probability 1

n ;
8 Compute (f1(X ′), f2(X ′));
9 if @Z ∈ P such that Z � X ′ then

10 P ← (P \ {Z ∈ P | X ′ � Z}) ∪ {X ′};
11 t = t+ 1;
12 return arg maxX∈P :ĉ(X)≤B f(x)

there is no solution in the population that dominates X ′.
All the solutions which are dominated by X ′ will be deleted
from the population afterward.

Note that we only compute the objective vector
(f1(X), f2(X)) when the solution X is created. This im-
plies that the objective vector is not updated after changes to
the constraint bound B. As a consequence solutions whose
constraint exceeds the value of B + 1 for a newly given
bound are kept in the population. However, newly produced
individuals exceeding B + 1 for the current bound B are
not included in the population as they are dominated by the
initial search point 0n. We are using the value B + 1 in-
stead of B in the definition of f1 as this gives the algorithm
some look ahead for larger constraint bounds. However, ev-
ery value of at least B would work for our theoretical anal-
yses. The only drawback would be a potentially larger pop-
ulation size which influences the value Pmax in our runtime
bounds.

Adaptive Generalized Greedy Algorithm
In this section we analyze the performance of the adaptive
generalized greedy algorithm. This algorithm is a modified
version of the generalized greedy using the same principle
in adding and deleting items. However, in this section we
prove that the adaptive generalized greedy algorithm is not
able to deal with the dynamic change, i.e., the approximation
obtained can become arbitrarily bad during a sequence of
dynamic changes.

In order to show that the adaptive generalized greedy al-
gorithm can not deal with dynamic increases of the con-
straint bound, we consider a special instance of the classical
knapsack problem. Note that the knapsack problem is spe-
cial submodular problem where both the objective and the
cost function are linear.

Given n + 1 items ei = (ci, fi) with cost ci and value
fi independent of the choice of the other items, we assume
there are items ei = (1, 1

n), 1 ≤ i ≤ n/2, ei = (2, 1),
n/2 + 1 ≤ i ≤ n, and a special item en+1 = (1, 3). We
have finc(X) =

∑
ei∈X fi and cinc(X) =

∑
ei∈X ci as the

linear objective and constraint function, respectively.

2356

⋯

⋯

"#$ "%$

&#$ &%$ &%'(%$&)$&*$ &%' (*$

"'$"*$

⋯ ⋯

Figure 1: Single subgraph Gi of G = (U, V,E)

Theorem 3. Given the dynamic knapsack problem
(finc, cinc), starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive generalized greedy algorithm
computes a solution that has approximation ratio O(1/n).

Proof. For the constraint B = 1 the optimal solution is
{en+1}. Now let there be n/2 dynamic changes where each
of them increases B by 1. In each change, the algorithm
can only pick an item from {e1, · · · , en/2}, otherwise it vi-
olates the budget constraint. After n/2 changes, the bud-
get constraint is 1 + n/2 and the result of the algorithm is
S = {en+1, e1, · · · , en/2}with f(S) = 3+(n/2)·(1/n) =
7/2 and c(S) = 1 + n/2. However, an optimal solution
for budget 1 + n/2 is S∗ = {en+1, en/2+1, . . . , e 3n

4
} with

f(S∗) = 3 + n
4 . Hence, the approximation ratio in this ex-

ample is (7/2)/(3 + n/4) = O(1/n)

Now we consider the case where the constraint bound de-
creases over time and show that the adaptive generalized
greedy algorithm may also encounter situations where the
approximation ratio becomes arbitrarily bad over time.

We consider the following Graph Coverage Problem. Let
G = (U, V,E) be a bipartite graph with bipartition U and
V of vertices with |U | = n and |V | = m. The goal is to
select a subset S ⊆ U with |S| ≤ B such that the number of
neighbors of S in V is maximized. Note that the objective
function f(S) measuring the number of neighbors of S in V
is monotone and submodular.

We consider the graph G = (U, V,E) which consists of k
disjoint subgraphs

Gi = (Ui = {ui1, · · · , uil}, Vi = {vi1, · · · , vi2l−2}, Ei)

(see Figure 1). Node ui1 is connected to nodes vi2j−1, 1 ≤
j ≤ l− 1. Moreover, each vertex uij , 2 ≤ j ≤ l is connected
to two vertices vi2j−3 and vi2j−2. We assume that k =

√
n

and l = n/k =
√
n.

Theorem 4. Starting with the optimal set S = U and bud-
get B = n, there is a specific sequence of dynamic budget
reductions such that the solution obtained by the adaptive
generalized greedy algorithm has the approximation ratio
O(1/

√
n).

Proof. Let the adaptive generalized greedy algorithm be ini-
tialized with X = U and B = n = kl. We assume that the
budget decreases from n to k where each single decrease
reduces the budget by 1. In the first k steps, to change the

cost of solution from n to n− k, the algorithm removes the
nodes ui1, 1 ≤ i ≤ k, as they have a marginal contribution
of 0. Following these steps, all the remaining nodes have the
same marginal contribution of 2. The solution X of size k
obtained by the removal steps of the adaptive generalized
greedy algorithm contains k vertices which are connected to
2k nodes of V , thus f(X) = 2k = 2

√
n. Such a solution

is returned by the algorithm for B = k as the most valuable
single node has at most (l− 1) = (

√
n− 1) neighbors in V .

ForB = k, the optimal solutionX∗ = {ui1 | 1 ≤ i ≤ k} has
f(X∗) = k(l− 1) = n−

√
n. Therefore, the approximation

ratio achieved by the adaptive generalized greedy algorithm
is upper bounded by (2

√
n)/(n−

√
n) = O(1/

√
n).

Pareto Optimization
In this section we analyze the behavior of POMC fac-
ing a dynamic change. According to Lemma 3 in (Qian
et al. 2017b), we have for any X ⊆ V and v∗ =

arg maxv/∈X
f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) :

f(X∪v∗)−f(X) ≥ αf
ĉ(X ∪ v∗)− ĉ(X)

B
·(f(X̃)−f(X)).

We denote by δĉ = min{ĉ(X ∪ v)− ĉ(X) | X ⊆ V, v /∈
X} the smallest contribution of an element to the cost of a
solution for the given problem. Moreover, let Pmax be the
maximum size of POMC’s population during the optimiza-
tion process.

The following theorem considers the static case and
shows that POMC computes a φ-approximation efficiently
for every budget b ∈ [0, B].
Theorem 5. Starting from {0}n, POMC computes, for any
budget b ∈ [0, B], a φ = (αf/2)(1 − 1/eαf)-approximate
solution after T = cnPmax · Bδĉ iterations with the constant
probability, where c ≥ 8e+1 is a sufficiently large arbitrary
constant.

Proof. We first consider the number of iterations to find a
(αf/2)

(
1− (1− αf

k)k
)
-approximate solution for a budget

b ∈ [0, B] and some k. We consider the largest value of
i for which there is a solution X in the population where
ĉ(X) ≤ i < b and

f(X) ≥

(
1−

(
1− αf

i

bk

)k)
· f(X̃b)

holds for some k. Initially, it is true for i = 0 with X =
{0}n. We now show that adding v∗ to the current solution
has the desired contribution to achieve a φ-approximate so-
lution. Let X ⊆ V and v∗ = arg maxv/∈X

f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) .

Assume that

f(X) ≥

(
1−

(
1− αf

i

bk

)k)
· f(X̃b)

holds for some ĉ(X) ≤ i < b and k. Then adding v∗ leads
to
f(X ∪ v∗) ≥(

1−
(

1− αf
i+ ĉ(X ∪ v∗)− ĉ(X)

b(k + 1)

)k+1
)
· f(X̃b).

2357

This process only depends on the quality of X and is inde-
pendent from its structure. Starting from {0}n, if the algo-
rithm carries out such steps at least b/δĉ times, it reaches a
solution X such that

f(X ∪ v∗) ≥

(
1−

(
1− αf

b

bk∗

)k∗)
· f(X̃b)

≥
(

1− 1

eαf

)
· f(X̃b).

Considering item z = arg maxv∈V :ĉ(v)≤b f(v), by submod-
ularity and α ∈ [0, 1] we have f(X ∪ v∗) ≤ (f(X) +
f(z))/αf .

This implies that

max{f(X), f(z)} ≥ (αf/2) · (1− 1

eαf
) · f(X̃b).

We consider T = cnPmaxB/δĉ iterations of the algorithm
and analyze the success probability within T steps. To have a
successful mutation step where v∗ is added to the currently
best approximate solution, the algorithm has to choose the
right individual in the population, which happens with prob-
ability at least 1/Pmax. Furthermore, the single bit corre-
sponding to v∗ has to be flipped which has the probability
at least 1/(en). We call such a step a success. Let random
variable Yj = 1 when there is a success in iteration j of the
algorithm and Yj = 0, otherwise. Thus, we have

Pr(Yj = 1) ≥ 1

en
· 1

Pmax

as long as a φ-approximation for bound b has not been ob-
tained.

Furthermore, let Y ∗i , 1 ≤ i ≤ T , be mutually independent
random binary variables with Pr[Y ∗i = 1] = 1

enPmax
and

Pr[Y ∗i = 0] = 1 − 1
enPmax

. For the expected value of the

random variable Y ∗ =
∑T
j=1 Y

∗
j we have:

E[Y ∗] =
T

enPmax
=
cB

eδĉ
≥ cb

eδĉ
.

We use Lemma 1 in (Doerr, Happ, and Klein 2011) for mod-
erately correlated variables which allows the use of the fol-
lowing Chernoff bound

Pr (Y < (1− δ)E[Y ∗]) ≤ Pr (Y ∗ < (1− δ)E[Y ∗])

≤ e−E[Y ∗]δ2/2. (2)

Using Equation 2 with δ = (1 − e
c), we bound the

probability of not finding a φ-approximation of X̃b in time
T = cnPmaxB/δĉ by

Pr(Y ≤ b

δĉ
) ≤ e−

(c−e)2B
2ceδĉ ≤ e−

(c/2)2B
2ceδĉ

≤ e−
cB

8eδĉ ≤ e−
B
δĉ .

Using the union bound and taking into account that there
are at mostB/δĉ different values for b to consider, the proba-
bility that there is a b ∈ [0, B] for which no φ-approximation
has been obtained is upper bounded by B

δĉ
· e−

B
δĉ .

This implies that POMC finds a (αf/2)(1 − 1
eαf

)-

approximate solution with probability at least 1− B
δĉ
· e−

B
δĉ

for each b ∈ [0, B].

Note that if we have B/δĉ ≥ log n then the probability
of achieving a φ-approximation for every b ∈ [0, B] is 1 −
o(1). In order to achieve a probability of 1 − o(1) for any
possible change, we can run the algorithm for T ′ = cnPmax·
max{log n, Bδĉ }, c ≥ 8e+ 1, iterations.

Now we consider the performance of POMC in the dy-
namic version of the problem. In this version, it is assumed
that POMC has achieved a population which includes a φ-
approximation for all budgets b ∈ [0, B]. Reducing the bud-
get from B to B∗ implies that a φ-approximation for the
newly given budget B∗ is already contained in the popula-
tion.

Consideration must be given to the case where the bud-
get increases. Assume that the budget changes from B to
B∗ = B + d where d > 0. We analyze the time until
POMC has updated its population such that it contains for
any b ∈ [0, B∗] a φ-approximate solution.

We define
Imax(b, b′) = max{i ∈ [0, b] | ∃X ∈ P, ĉ(X) ≤ i

∧ f(X) ≥

(
1−

(
1− αf

i

bk

)k)
· f(X̃b)

∧ f(X) ≥

(
1−

(
1− αf

i

b′k′

)k′)
· f(X̃b′)}

for some k and k′. The notion of Imax(b, b′) enables us to
correlate progress in terms of obtaining a φ-approximation
for budgets b and b′.
Theorem 6. Let POMC have a population P such that,
for every budget b ∈ [0, B], there is a φ-approximation
in P . After changing the budget to B∗ > B, POMC has
computed a φ-approximation with probability Ω(1) within
T = cnPmax

d
δĉ

steps for every b ∈ [0, B∗].

Proof. Let P denote the current population of POMC in
which, for any budget b ≤ B, there is a

(
1− (1− αf

k)k
)
-

approximate solution for some k.
Let X be the solution corresponding to Imax(B,B∗). Let

v∗ = arg maxv/∈X
f(X∪v)−f(X)
ĉ(X∪v)−ĉ(X) be the item with the high-

est marginal contribution which could be added to X and
X ′ = X ∪ v∗. According to Lemma 3 and Theorem 2 in
(Qian et al. 2017b) and the definition of Imax(B,B∗), we
have

f(X ′) ≥(
1− (1− αf

Imax + ĉ(X ′)− ĉ(X)

Bk
)k
)
· f(X̃B)

and

f(X ′) ≥(
1− (1− αf

Imax + ĉ(X ′)− ĉ(X)

B∗k′
)k
′
)
· f(X̃B∗).

2358

Table 1: Results for influence maximization with dynamic routing constraints
Changes GGA AGGA POMC1000 POMC5000 POMC10000 POMCWP

1000 POMCWP
5000 POMCWP

10000
mean st mean st mean st mean st mean st mean st mean st mean st

1-25 85.0349 12.88 81.5734 14.07 66.3992 17.95 77.8569 18.76 86.1057 17.22 86.3846 10.76 86.9270 12.86 85.8794 14.69
26-50 100.7344 22.16 96.1386 23.99 104.9102 15.50 117.6439 16.71 122.5604 15.54 110.4279 11.08 115.6766 14.21 120.8651 14.97
51-75 118.1568 30.82 110.4893 29.50 141.8249 5.64 155.2126 5.08 158.7228 5.20 140.7838 5.02 149.7658 5.49 157.6169 5.54

76-100 127.3422 31.14 115.2978 27.66 149.0259 3.36 159.9100 3.28 162.7353 3.65 148.3012 3.47 155.1943 4.04 163.1958 3.74
101-125 132.3502 29.62 116.9768 25.45 150.3415 3.17 160.1367 2.81 161.2852 2.68 148.5254 2.67 155.1104 3.05 162.3770 2.81
126-150 134.5256 27.69 118.6962 24.19 147.8998 7.36 154.7319 8.77 154.1470 7.43 143.4908 7.96 150.7567 7.82 156.0363 8.12
151-175 135.7651 25.89 119.4982 22.85 147.2478 4.68 153.1417 5.32 151.2966 3.17 143.2959 4.79 149.5447 4.87 153.2526 3.85
176-200 135.5133 24.41 119.1491 22.04 139.5072 8.08 143.6928 9.16 143.9832 8.67 134.7968 8.72 140.5930 8.61 144.4088 8.08

This implies that adding v∗ to X violates the budget con-
straintB, otherwise we would have a greater value for Imax.

If Imax + ĉ(X ′)− ĉ(X) ≥ B∗, then, similar to the proof
of Theorem 5, we have

max{f(X), f(z)} ≥ (αf/2) ·
(

1− 1

eαf

)
· f(X̃B∗).

Otherwise, we have

f(X ′) ≥
(

1− (1− αf
B

B∗k′
)k
′
)
· f(X̃B∗).

From this point, the argument in the proof of Theorem 5
holds, i.e., POMC obtains, for each value b ∈ [B,B∗], a
φ-approximation after d

δĉ
successes.

Hence, after T = cnPmaxd/δĉ iterations, for all b ∈
[B,B∗] with probability 1 − d

δĉ
· e−

d
δĉ , we have a φ =

(αf/2)(1− 1
eαf

)-approximation in the population.

Note that if the dynamic change is sufficiently large such
that d

δĉ
≥ log n, then the probability of having obtained, for

every budget b ∈ [0, B∗], a φ-approximation increases to
1− o(1). A success probability of 1− o(1) can be obtained
for this magnitude of changes by giving the algorithm time
T ′ = cnPmax max{log n, dδĉ }, c ≥ 8e+ 1.

A special class of known submodular problems is the
maximization of a function with a cardinality constraint. In
this case, the constraint value can take on at most n+ 1 dif-
ferent values and we have Pmax ≤ n + 1. Furthermore, we
have δ = 1 which leads to the following two corollaries.
Corollary 7. Consider the static problem with cardinality
constraint bound B. POMC computes, for every budget b ∈
[0, B], a φ-approximation within T = cn2 ·max{B, log n},
c ≥ 8e+ 1, iterations with probability 1− o(1).
Corollary 8. Consider the dynamic problem with a car-
dinality constraint B. Assume that P contains a φ-
approximation for every b ∈ [0, B]. Then after increasing
the budget to B∗, POMC computes, for every budget b ∈
[0, B∗], a φ-approximation in time T = cn2 max{d, log n},
c ≥ 8e+ 1 and d = |B∗ −B|, with probability 1− o(1).

Experimental Investigations
We compare the generalized greedy algorithm (GGA) and
adaptive generalized greedy algorithm (AGGA) with the
POMC algorithm on the submodular influence maximiza-
tion problem (Zhang and Vorobeychik 2016; Qian et al.
2017b). We consider dynamic variants of the problems
where the constraint bound changes over time.

The Influence Maximization Problem
The influence maximization problem aims to identify a
set of most influential users in a social network. Given
a directed graph G = (V,E) where each node repre-
sents a user. Each edge (u, v) ∈ E has assigned an
edge probability pu,v((u, v) ∈ E). The probability pu,v
corresponds to the strengths of influence from user u to
user v. The goal is to find a subset X ⊆ V such that
the expected number of activated nodes from X , IC(X),
is maximized. Given a cost function c and a budget B
the submodular optimization problem is formulated as
arg maxX⊆V E[|IC(X)|] s.t. c(X) ≤ B.

We consider two types of cost functions. The routing
constraint takes into account the costs of visiting nodes
whereas the cardinality constraint counts the number of cho-
sen nodes. For both cost functions, the constraint is met if the
cost is at most B.

For more detailed descriptions of the influence maximiza-
tion through a social network problem we refer the reader to
(Kempe, Kleinberg, and Tardos 2015; Zhang and Vorobey-
chik 2016; Qian et al. 2017b).

For our dynamic constraint bound changes, we follow
the approach taken in (Roostapour, Neumann, and Neumann
2018). We assume that the initial constraint bound isB = 10
and stays within the interval [5, 30]. We consider a sequence
of 200 constraint bounds obtained by randomly increasing
or decreasing B by a value of 1. The values of B over
time used in our studies are shown in Figure 2. For the ex-
perimental investigations of POMC, we consider a parame-
ter τ which determines the number of generations between
constraint changes. Furthermore, we consider the option of
POMC having a warm-up phase where there are no dynamic
changes for the first 10000 iterations. This allows POMC
to optimize for an extended period for the initial bound. It
should be noted that the number of iterations in the warm-
up phase and our choices of τ are relatively small compared
to the choice of 10eBn2 used in (Qian et al. 2017b) for op-
timizing the static problem with a given fixed bound B. The
results are shown in Tables 1 and 2 and we report for each
batch of 25 consecutive constraint bound changes the aver-
age solution quality and standard deviation.

Influence Maximization with Dynamic Routing
Constraints
We investigate the influence maximization for routing con-
straints based on simulated networks as done for the static
case in (Qian et al. 2017b). We consider a social network

2359

Table 2: Results for influence maximization with dynamic cardinality constraints
Changes GGA AGGA POMC1000 POMC5000 POMC10000 POMCWP

1000 POMCWP
5000 POMCWP

10000
mean st mean st mean st mean st mean st mean st mean st mean st

1-25 130.9410 14.71 130.6550 14.36 84.8898 24.32 114.8272 23.09 121.1330 19.72 125.2047 10.75 128.6376 13.52 129.3003 15.72
26-50 145.6766 20.70 145.0774 20.11 133.2130 14.69 155.4231 13.98 158.0245 14.34 149.1073 10.62 157.2572 13.28 159.3071 13.40
51-75 160.2780 26.86 159.6331 26.50 164.9157 3.84 184.3274 3.45 187.1952 3.68 171.8898 3.46 187.0476 3.99 187.8508 4.26

76-100 167.9512 26.84 167.3365 26.60 171.5600 1.89 189.4834 2.74 189.6107 2.78 176.1166 1.92 190.3793 3.29 191.5821 3.06
101-125 172.1483 25.45 171.6884 25.35 174.3528 2.11 188.2120 2.32 188.7572 2.46 176.9912 2.47 188.6362 2.63 190.1389 2.35
126-150 174.0582 23.77 173.6528 23.72 174.0404 5.88 183.0188 6.65 183.8033 6.47 175.6150 5.17 183.3861 6.82 184.6115 7.09
151-175 175.1998 22.23 174.8330 22.21 174.5846 4.03 181.3669 4.01 188.4192 3.60 175.6140 3.37 181.7484 3.82 182.9550 4.25
176-200 175.1023 20.94 174.7836 20.92 168.8791 8.05 173.8794 7.28 175.2773 7.23 169.8283 6.73 174.5172 7.19 175.1586 7.39

0 25 50 75 100 125 150 175 200
Time

5

10

15

20

25

30

Bu
dg

et
 B

Figure 2: Budget over time for dynamic problems

with 400 nodes that are built using the popular Barabasi-
Albert (BA) model (Albert and Barabási 2002) with edge
probability p = 0.1. The routing network is based on the
Erdos-Renyi (ER) model (Erdős and Rényi 1959) where
each edge is presented with probability p = 0.02. Nodes are
placed randomly in the plane and the edge costs are given
by Euclidean distances. Furthermore, each chosen node has
a cost of 0.1.

We compare the final results for the generalized greedy
and adaptive generalized greedy algorithms with our new
POMC approach based on the uniform distribution with all
the weights being one. Table 1 shows the results of influence
spread for the generalized greedy (GGA), adaptive general-
ized greedy (AGGA), POMCτ for τ = 1000, 5000, 10000,
and POMCWP

τ for τ = 1000, 5000, 10000 and with a warm-
up phase (WP) where we run the algorithm for 10000 gen-
eration as the initial setting prior to the dynamic process.

Table 1 shows that the generalized greedy algorithm has a
better performance than the adaptive one during the dynamic
changes. Particularly, after the first 75 changes, the general-
ized greedy algorithm performs significantly better than the
adaptive generalized greedy algorithm. This shows that at-
tempting to adapt to the expected changes results in worse
performance than simply starting from scratch. I.e., the cost
of adapting outweighs the cost of starting afresh.

Comparing POMCτ to the greedy approaches we can see
that POMCτ for τ = 1000, 5000 performs worse than the
generalized greedy algorithm during the first 25 changes.
However, POMCτ is able to improve its performance over
time and outperforms the generalized greedy algorithm after
the first 25 changes have occurred. Considering POMCWP

τ ,
it can be observed that the warm-up phase leads to better re-
sults than running the generalized greedy algorithm for any

interval of changes.
Comparing the different parameter settings used for

POMCτ , it can be observed that POMCτ for τ = 10000
always performs better than POMCτ for τ = 1000, 5000
until 125 iteration for dynamic routing constraints. During
the changes 126 − 175, POMCτ with τ = 5000 achieves
better solutions than τ = 1000.

We see that POMCτ with warm-up for τ = 1000, 5000
outperforms POMCτ without warm-up within the first 25
iterations. In the other cases, there are no clear differences
between running POMCτ with or without warm-up when
considering the same value of τ . This indicates that the al-
gorithm adapts quite quickly to the problem and shows that
the warm-up is only necessary for the first 25 changes if the
value of τ is quite small.

Influence Maximization with Dynamic Cardinality
Constraints
To consider the cardinality constraint, we use the social
news data which is collected from the social news aggre-
gator Digg. The Digg dataset contains stories submitted to
the platform over a period of a month, and IDs of users
who voted on the popular stories. The data consist of two
tables that describe friendship links between users and the
anonymized user votes on news stories (Hogg and Ler-
man 2012). As in (Qian et al. 2017b), we use the prepro-
cessed data with 3523 nodes and 90244 edges, and estimated
edge probabilities from the user votes based on the method
in (Barbieri, Bonchi, and Manco 2012).

The experimental results are shown in Table 2. In con-
trast to the routing constraint, we see that the generalized
greedy algorithm does not have a major advantage over the
adaptive generalized greedy algorithm when considering the
problem with the cardinality constraint. Although the gen-
eralized greedy algorithm achieves better results in all of
the intervals, the performance of the adaptive generalized
greedy algorithm is highly comparable. In most of the in-
tervals, they achieve almost the same results. The reason
for this might be that the change in cost when adding or
removing an item is always 1, which makes it less likely
for the adaptive generalized greedy algorithm to run into sit-
uations where it obtains solutions of low quality. We con-
sider POMCτ for τ = 1000, 5000, 10000 with and without
the warm-up phase. Comparing POMCτ to the greedy ap-
proaches for the problem with the cardinality constraint, we
get a similar picture as for the routing constraint. Apart from
some exceptions POMCτ achieves better solutions than the
greedy approaches.

2360

POMCτ with warm-up phase also clearly outperforms
POMCτ without warm-up for early changes. Overall,
POMCτ with warm-up achieves improvements in terms of
objective value in most cases over POMCτ without warm-
up, the generalized greedy approach and the adaptive gener-
alized greedy approach.

Conclusions
Many real-world problems can be modeled as submodu-
lar functions and have problems with dynamically changing
constraints. We have contributed to the area of submodular
optimization with dynamic constraints. Key to the investi-
gations have been the adaptability of algorithms when con-
straints change. We have shown that an adaptive version of
the generalized greedy algorithm frequently considered in
submodular constrained optimization is not able to main-
tain a φ-approximation. Furthermore, we have pointed out
that the population-based POMC algorithm is able to cater
for and recompute φ-approximations for related constraints
bounds in an efficient way. Our experimental results con-
firm that advantage of POMC over the considered greedy
approaches on important real-world problems. Furthermore,
they show that POMC is able to significantly improve its
performance over time when dealing with dynamic changes.

Acknowledgement
We thank Chao Qian for providing his POMC implementa-
tion and test data to carry out our experimental investiga-
tions. This research has been supported by the Australian
Research Council (ARC) through grant DP160102401 and
the German Science Foundation (DFG) through grant
FR2988 (TOSU).

References
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics
of complex networks. Reviews of modern physics 74(1):47.
Barbieri, N.; Bonchi, F.; and Manco, G. 2012. Topic-aware
social influence propagation models. In IEEE Conference
on Data Mining, 81–90. IEEE Computer Society.
Conforti, M., and Cornuéjols, G. 1984. Submodular set
functions, matroids and the greedy algorithm: Tight worst-
case bounds and some generalizations of the rado-edmonds
theorem. Discrete Applied Mathematics 7(3):251–274.
Doerr, B.; Happ, E.; and Klein, C. 2011. Tight analysis of
the (1+1)-EA for the single source shortest path problem.
Evolutionary Computation 19(4):673–691.
Erdős, P., and Rényi, A. 1959. On random graphs I. Publi-
cationes Mathematicae Debrecen 6:290–297.
Friedrich, T., and Neumann, F. 2015. Maximizing submod-
ular functions under matroid constraints by evolutionary al-
gorithms. Evolutionary Computation 23(4):543–558.
Friedrich, T.; He, J.; Hebbinghaus, N.; Neumann, F.; and
Witt, C. 2010. Approximating covering problems by
randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4):617–633.

Hogg, T., and Lerman, K. 2012. Social dynamics of Digg.
EPJ Data Science 1(1):5.
Kempe, D.; Kleinberg, J. M.; and Tardos, É. 2015. Maximiz-
ing the spread of influence through a social network. Theory
of Computing 11:105–147.
Krause, A., and Golovin, D. 2014. Submodular function
maximization. In Bordeaux, L.; Hamadi, Y.; and Kohli, P.,
eds., Tractability: Practical Approaches to Hard Problems.
Cambridge University Press. 71–104.
Laumanns, M.; Thiele, L.; and Zitzler, E. 2004. Running
time analysis of multiobjective evolutionary algorithms on
pseudo-boolean functions. IEEE Trans. Evolutionary Com-
putation 8(2):170–182.
Lee, J.; Mirrokni, V. S.; Nagarajan, V.; and Sviridenko, M.
2010. Maximizing nonmonotone submodular functions un-
der matroid or knapsack constraints. SIAM J. Discrete Math.
23(4):2053–2078.
Lee, J.; Sviridenko, M.; and Vondrák, J. 2010. Submodu-
lar maximization over multiple matroids via generalized ex-
change properties. Math. Oper. Res. 35(4):795–806.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functions - I. Math. Program. 14(1):265–294.
Qian, C.; Shi, J.; Yu, Y.; Tang, K.; and Zhou, Z. 2017a. Sub-
set selection under noise. In Guyon, I.; von Luxburg, U.;
Bengio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S.
V. N.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 3563–3573.
Qian, C.; Shi, J.; Yu, Y.; and Tang, K. 2017b. On subset se-
lection with general cost constraints. In International Joint
Conference on Artificial Intelligence, IJCAI 2017, 2613–
2619.
Qian, C.; Yu, Y.; and Zhou, Z. 2015. Subset selection by
Pareto optimization. In Cortes, C.; Lawrence, N. D.; Lee,
D. D.; Sugiyama, M.; and Garnett, R., eds., Advances in
Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015,
1774–1782.
Roostapour, V.; Neumann, A.; and Neumann, F. 2018. On
the performance of baseline evolutionary algorithms on the
dynamic knapsack problem. In Auger, A.; Fonseca, C. M.;
Lourenço, N.; Machado, P.; Paquete, L.; and Whitley, D.,
eds., Parallel Problem Solving from Nature - PPSN XV, vol-
ume 11101 of LNCS, 158–169. Springer.
Vondrák, J. 2010. Submodularity and curvature: The opti-
mal algorithm. RIMS Kôkyûroku Bessatsu B23:253–266.
Zhang, H., and Vorobeychik, Y. 2016. Submodular opti-
mization with routing constraints. In Schuurmans, D., and
Wellman, M. P., eds., Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, 2016, 819–826. AAAI
Press.

2361

