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Abstract

Most evolutionary algorithms used in practice heavily em-
ploy crossover. In contrast, the rigorous understanding of how
crossover is beneficial is largely lagging behind. In this work,
we make a considerable step forward by analyzing the pop-
ulation dynamics of the (u + 1) genetic algorithm when op-
timizing the JUMP benchmark. We observe (and prove via
mathematical means) that once the population contains two
different individuals on the local optimum, the diversity in
the population increases in expectation. From this drift to-
wards more diverse states, we show that a diversity suitable
for crossover to be effective is reached quickly and, more im-
portantly, then persists for a time that is at least exponential in
the population size p. This drastically improves over the pre-
viously best known guarantee, which is only quadratic in p.
Our new understanding of the population dynamics easily
gives stronger performance guarantees. In particular, we de-
rive that population sizes logarithmic in the problem size n
already suffice to gain an Q(n)-factor runtime improvement
from crossover (previous works achieved comparable bounds
only with 4 = ©(n) or via a non-standard mutation rate).

1 Introduction

The vast majority of the applications of evolutionary al-
gorithms (EAs) uses crossover, that is, new solutions (off-
spring) are generated from two existing solutions (parents).
Surprisingly, there is very little rigorous evidence for the
usefulness of crossover. This is not only a fundamental open
question, but more importantly also indicates that our under-
standing of the working principles of crossover is very lim-
ited, which means that there is very little trustworthy advice
how to best employ crossover in evolutionary algorithms.
In this work, we shall analyze crossover via theo-
retical means, more specifically, via mathematical run-
time analyses, which have given many important insights
and explanations in the past (Neumann and Witt 2010;
Auger and Doerr 2011; Jansen 2013; Zhou, Yu, and Qian
2019; Doerr and Neumann 2020). Unfortunately, when it
comes to understanding crossover, the mathematical run-
time analysis area was not very successful (but we note that
other attempts to understand crossover, e.g., the building
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block hypothesis (Holland 1975) also struggled to explain
crossover (Mitchell, Holland, and Forrest 1993)).

The main difficulty towards understanding crossover via
mathematical tools are the usually complicated population
dynamics. We note that even when only regarding mutation-
based algorithms, still the majority of runtime analyses re-
gards algorithms with trivial populations such as random-
ized local search or the (1 + 1) EA. The particular difficulty
when adding crossover is that we need to understand the di-
versity of the population. Crossover can only be effective
when sufficiently different, good solutions are available.

This core problem is easily visible in the existing run-
time analyses of crossover-based algorithms. That diversity,
more precisely, arriving at a state with a diverse population,
is the crucial ingredient for profiting from crossover was
already discussed very clearly in the first runtime analysis
of a crossover-based algorithm (Jansen and Wegener 2002),
which analyzes how the (i + 1) genetic algorithm (GA) op-
timizes the JUMP benchmark. Unfortunately, the positive ef-
fect of crossover could be shown here only for unrealistically
small crossover rates. Doerr, Happ, and Klein (2012), with-
out taking uncommon assumptions, showed an advantage of
crossover when solving the all-pairs-shortest-path problem.
This problem, asking for a short path between any two ver-
tices, already in the problem definition contains a strong di-
versity mechanism that in particular prevents the population
from converging to a single genotype. Consequently, it is
not clear how the insights gained in that work extend to al-
gorithms without diversity mechanisms.

The maybe most convincing proof for an advantage from
crossover was given by Dang et al. (2018), who again re-
garded how the (12 + 1) GA optimizes JUMP functions. In-
terestingly, without particular modifications of the algorithm
or non-standard parameter settings, the authors managed to
show that the (i + 1) GA repeatedly arrives at diverse pop-
ulations and keeps this diversity for a moderate time. More
precisely, once the population is concentrated on the local
optima of the JUMP function, it takes an expected time of
O(nu + p?log p) iterations to reach a population in which
all genotype classes contain at most £/2 individuals. A di-
versity of the order of magnitude is kept for an expected
number of O(u?) iterations. Given these numbers, the best
runtime results are obtained for a relatively large population
sizes of order © (n), where a runtime gain of roughly a factor



of n/log n from crossover can be proven.

The key argument of Dang et al. (2018) is that the size of
the largest genotype class, once below p, is at least as likely
to decrease as to increase. This behavior resembles an unbi-
ased random walk in the interval [/2..u] and is the reason
why the diversity is shown to persist for Q(y?) iterations.

In this work, we analyze the random process describing
the largest genotype class of the (1 + 1) GA on JUMP more
carefully. We observe that there is not an unbiased random
walk behavior, as pessimistically assumed in the previous
work, but that instead it is more likely that the dominant
genotype class reduces than increases (Lemma 5). This ad-
vantage is strongest when the largest genotype class covers
only a constant fraction of the population. Consequently, we
show that once the largest genotype class contains at most
/2 individuals, a diversity of this order of magnitude is kept
for an expected number of exp(£2(p)) iterations.

This result is interesting in its own right as it shows that
diverse parent populations are much easier to obtain than
what previous works suggest. For the particular problem
of how fast the (11 + 1) GA optimizes JUMP functions, we
obtain a stronger advantage from crossover (Theorem 8),
namely by a factor of Q(n), and this already for popula-
tion sizes Q(Inn). For smaller values of y, we still obtain a
significant speed-up from crossover, namely by a factor of
exp(2(u)), again comparing favorably with the speed-up of
Q(u) shown by Dang et al. (2018). In addition, our results
hold for any constant crossover and mutation rate, further
generalizing the results by Dang et al. (2018).

Overall, our results show that also basic evolutionary al-
gorithms without diversity mechanisms or other adjustments
are able to reach and then keep a diverse population for a
long time. This is clearly good news for the use of crossover,
but this lasting diversity might also lead to other advantages
such as a more effective exploration of the search space or a
lower risk of getting stuck in local optima.

2 Previous Work

Since the first rigorous result showing a benefit of crossover
more than two decades (Jansen and Wegener 2002) ago, a
variety of results for genetic algorithms (GAs), i.e., evolu-
tionary algorithms that employ crossover, has been proven.
Due to the complex population dynamics in such algorithms,
many of the results showing an advantage from crossover
had to take uncommon assumptions or apply only to settings
where it is not clear how well they generalize.

Non-standard parameter values. The runtime analysis
of GAs was initiated by Jansen and Wegener (2002), who
regarded the JUMP function benchmark. For JUMP func-
tions with problem size n and gap size k, they proved that
the mutation-based (1 + 1) EA requires an expected num-
ber of ©(n*) function evaluations to reach the optimum,
whereas the (u + 1) GA with suitable parameters only re-
quires O(un?k3 + 4% /p..) evaluations. To prove their result,
however, the authors had to assume an unrealistically low
crossover rate of p. = O(1/(kn)).

This result was later improved by Kétzing, Sudholt, and
Theile (2011), however still assuming p. = O(k/n) since

the proof relied on techniques similar to the one of Jansen
and Wegener (2002).

Constant-factor improvements. For the classic
ONEMAX benchmark, Sudholt (2012) proved that a variant
of the (u+ 1) GA obtains a constant-factor speed-up
compared to any reasonable variant of the (1 + 1) EA. As
this algorithm applies crossover only to the best individuals
in the population, ;1 = 2 is the best population size.

Corus and Oliveto (2018) removed the assumption that
the best individual is part of any crossover operation. For
this more typical (u + 1) GA, with a crossover rate of 1, the
authors prove that speed-ups of up to 25 % over the expected
runtime of the (1 + 1) EA can be observed.

In a subsequent work, the same authors improved this
result by showing speed-ups of at least 60 % compared to
not using crossover (Corus and Oliveto 2020). The speed-
ups increase with growing population size (however, not be-
yond constant-factor improvements), thus showing a poten-
tial benefit of a larger population.

Oliveto, Sudholt, and Witt (2022) proved a lower bound
for the (2 + 1) GA on ONEMAX that matches the previ-
ous results (Corus and Oliveto 2020). Together, these results
show that a population larger than 2 is truly beneficial.

Diversity mechanisms. A common way to try to make
crossover more effective is to employ mechanisms that aim
at increasing the diversity in the population of the GA. Lehre
and Yao (2011) considered the (x + 1) GA with determin-
istic crowding, an algorithm they called SSGA. Determinis-
tic crowding ensures that when a newly created individual
is at least as good as its parent(s), one of the parents is re-
moved. Lehre and Yao (2011) showed that using crossover
with constant crossover rate improves the expected runtime
of the (14 1) SSGA from at least exponential to quadratic in
the problem size. Although this is an impressive speed-up,
the considered algorithm uses a crossover that exchanges ex-
actly one component among two parents, thus making rather
local changes, which is uncommon for crossover.

Oliveto, He, and Yao (2008) considered the vertex cover
problem and analyzed the (u + 1) EA (without crossover)
as well as (4 + 1) randomized local search (RLS) with
crossover, both with deterministic crowding. They show that
using deterministic crowding without crossover is already
sufficient for finding minimal covers on bipartite graphs.

Neumann et al. (2011) considered the single-receiver is-
land model with 1-point crossover. They designed a problem
for which a variant of the (2 + 1) GA (for populations of or-
der at most 1,/ log®(n)) has for each crossover rate at least an
exponential runtime, with high probability. In contrast, they
proved that the island model optimizes this problem with
high probability efficiently. This rather highlights the bene-
fits of the island model in this scenario than of crossover.

Dang et al. (2016) analyzed the expected runtime of the
(1 + 1) GA optimizing JUMP functions, for a variety of dif-
ferent diversity mechanisms. The runtime is always better
(for appropriate parameters) than that of the mutation-only
(1+ 1) EA. As before, these results heavily rely on the di-
versity mechanism for crossover to be useful, and it is hard
to predict to what extent the particular diversity mechanisms
employed are specific to the JUMP benchmark.



Sutton (2021) proved that a multi-start variant of the
(1 + 1) GA optimizes the closest-string problem in random-
ized fixed-parameter tractable (FPT) time. The article also
showed that if crossover is removed, there are instances that
are not solved in FPT time.

Problem-specific knowledge. Doerr, Happ, and Klein
(2012) analyzed the impact of crossover for the all-pairs-
shortest-path problem, a classic combinatorial optimization
problem, and proved that the algorithm with crossover im-
proves the expected runtime by a factor of Q(1/n/log(n)).
It has to be noted that the all-pairs shortest path problem
has a strong implicit diversity mechanism. Subsequent ex-
tensions and improvements of this result include (Doerr and
Theile 2009; Neumann and Theile 2010; Doerr et al. 2013).

Non-standard uses of crossover. A decade ago, Doerr,
Doerr, and Ebel (2013, 2015) proposed the (1 + (A, A)) GA
— a GA that combines mutation with a high rate with a bi-
ased crossover as repair mechanism. Doerr and Doerr (2018)
proved that the (1 + (A, \)) GA has an expected runtime on
ONEMAX that is lower by a factor of slightly more than
v/In(n) than many other evolutionary algorithms.

Since then, the (1 4 (A, A)) GA has been studied on a va-
riety of problems (Buzdalov and Doerr 2017; Doerr, Neu-
mann, and Sutton 2017; Antipov, Doerr, and Karavaev 2019,
2020, 2022). Notably, Antipov, Doerr, and Karavaev (2022)
proved that the (1 + (A, \)) GA optimizes JUMP functions
with gap size k, with optimal parameters (depending on k),
in an expected runtime of order of (n/k)*/2¢®(*), which
is faster by a factor of (nk) */2¢9(*) compared to the
(1+1) EA.

Other articles determined optimal parameter settings of
the (1 4+ (A, A)) GA and proposed dynamic choices (Doerr
2016; Doerr and Doerr 2018; Antipov, Buzdalov, and Doerr
2021; Hevia Fajardo and Sudholt 2022). Especially, An-
tipov, Buzdalov, and Doerr (2021) showed for JUMP func-
tions with gap size k that choosing all parameters of the
(14 (X, A\)) GA according to heavy-tailed distributions (in-
dependent of k) achieves a performance close to the best
instance-specific parameter choice.

Multi-objective optimization. Although it is not the
main focus of this article, we mention that crossover has also
been studied for multi-objective problems (Neumann and
Theile 2010; Qian, Yu, and Zhou 2013; Huang et al. 2019).
Recently, the most-widely used EA for multi-objective op-
timization, NSGA-II (Deb et al. 2002), which employs
crossover, has been studied (Bian and Qian 2022; Dang et al.
2023; Doerr and Qu 2023).

Standard algorithm with standard parameters. To the
best of our knowledge, the only result considering a single-
objective standard GA with typical parameters is the work
by Dang et al. (2018). For JUMP functions with gap size k =
o(n), the authors prove that this algorithm with popula-
tion size p < kn, with x a sufficiently small constant,
optimizes JUMP functions with gap size £ > 3 in time
O(n*/pu 4+ n*~'logn). When using a slightly higher muta-
tion rate than normal, an expected runtime of O(n*~1) can
be achieved. The analysis tracks the diversity of the popula-
tion, showing that there are phases lasting Q(?) iterations

in expectation in which a sufficient diversity in the popula-
tion emerges naturally. During such a phase, the probability
to create the optimum via crossover and mutation is larger
by a factor of roughly n compared to using only mutation.

3 Preliminaries

We use the following notation. Let N denote the set of all
natural numbers (including 0), and let R be the set of real
numbers. For m,n € N, let [m..n] = [m,n] NN, that is, the
discrete interval from m to n. Further, we define the special
case [n] := [1..n].

Given a random variable X, a o-algebra F, and an
event A with Pr[4] > 0, let E[X | F;A] = E[X - 14 |
F]/ Pr[A]. We make use of this notation when we condition
on a o-algebra but also make case distinctions via events.

We consider the maximization of pseudo-Boolean func-
tions f: {0,1}" — R. Conforming to the standards in the
field of evolutionary computation, such a function will be
called a fitness function, elements from {0, 1}"™ are individ-
uals and f(x) is called their fitness. Throughout this paper,
whenever we use big-O notation, we assume that the state-
ment is asymptotic in the problem dimension n.

For two individuals z,y € {0, 1}", we define their Ham-
ming distance as the number of positions that they differ in.
Further, let ||; denote the number of 1s in a bit-string .

The JumP functions benchmark was introduced by
Droste, Jansen, and Wegener (2002) and is, together with
some variations (Jansen 2015; Bambury, Bultel, and Doerr
2021; Doerr and Zheng 2021; Witt 2023), the most com-
mon benchmark to study how randomized search heuristics
cope with local optima, see, e.g., Doerr et al. (2017); Corus,
Oliveto, and Yazdani (2020); Doerr (2021); Rajabi and Witt
(2022); Lissovoi, Oliveto, and Warwicker (2023); Bian et al.
(2023); Zheng and Doerr (2024). For n € N>; and k € [n],
the JUMP function JUMPy,: {0,1}™ — N is defined by

{k: +|z)y if|z)s =nor|z); <n-—k,
JUMPL: x — .
n —|z|; otherwise.

(D

Apparently, the function value of JUMPy, increases with
the number of 1s in the individual until a plateau of local
optima is reached (all points with exactly n— k 1s). The only
global optimum of JUMPy, is the all-1s string. It is separated
from the plateau of local optima by a valley of low fitness
(all individuals with more than n — k but less than n 1s). Due
to this structure, typical elitist EAs easily reach solutions on
the plateau, but then have to change k particular bits in a
single iteration.

As algorithm we consider the (v + 1) genetic algorithm
((+ 1) GA), a standard genetic algorithm in the commu-
nity. See Algorithm 1 for the pseudocode. This algorithm
has three parameters, the population size p € Nxo, the
crossover rate p.. € [0, 1], and the mutation rate p,, € [0, 1].

The (4 1) GA maintains a multiset (population) of
individuals, initialized with uniform samples from the
search space and afterward updated iteratively. In each iter-
ation, one new individual is created and potentially replaces
an existing individual in the population. This is done in the
following way, where all random choices are independent.



Algorithm 1: The (2 + 1) GA with parameters y €
N> and pe,pn € [0, 1], maximizing fitness func-
tion f

1t+0;

P©) « y individuals, uniformly at random (u.a.r.)
from {0, 1}™;

3 while termination criterion metdo // iter. t
4 | p< valuefrom|[0,1) uar;
5
6

[ 5]

if p < p. then

W y®) « two individuals from P
chosen u.a.r. (with replacement);
7 Z®) « new individual created by uniform
crossover of () and y(*);
8 2 « Z® augmented by standard bit
L mutation;
9 else
10 m®) <« copy of an individual from P(*)
chosen u.a.r.;
1 2®) « m® augmented by standard bit
mutation;

12 () « individual with the lowest fitness from
P® U {zM}, breaking ties u.a.r.;

| PO e (PO U0} {60},

14 t—t+1;

With probability p., two individuals from the current pop-
ulation are selected uniformly at random and with repetition
(the parents). Then, a new individual (the offspring) is cre-
ated by uniform crossover of the parents. Here each bit of
the offspring is chosen from the respective position of a ran-
dom one of the two parents. Afterward, standard bit muta-
tion with mutation rate p,, is applied to the offspring, that is,
each of its bits is flipped independently with probability p,,.

Otherwise, that is, with probability 1 — p., a single parent
is selected uniformly at random from the current population
and produces an offspring only via standard bit mutation.

Finally, in either case, the new individual is added to the
population and an individual with the lowest fitness is re-
moved, breaking ties uniformly at random. The resulting
multiset, again of y individuals, forms the population for the
next iteration.

As common in this field, we do not specify a termination
criterion, but assume that the algorithm runs indefinitely and
define its runtime on a given instance as the number of fit-
ness function evaluations until an optimal solution is evalu-
ated for the first time.

Tools for Our Analyses

The following elementary lemma computes the probabil-
ity of constructing the optimum form a diverse population
on the plateau of local optima. It is a minimal adaptation
of (Dang et al. 2018, Lemma 2), from mutation rate % to

rate O (1), so we omit the proof here.

Lemma 1. Let n € N>1, x = O(1), let k € [n/2], let
d € [0..k], and let p,,, = X. Furthermore, let x,y € {0, 1}"
with |z|1 = |yl1 = n — k and such that their Hamming
distance is 2d. Then the probability that the result of uniform
crossover of x and vy, followed independently by standard
bit mutation with mutation rate p,,, is the all-1s string is

ai-(2) )

Our proof of the result that the diversity of the popula-
tion on the plateau persist for an exponential time needs the
following negative drift theorem. It is a variant of (K&tzing
2016, Theorem 3) where the drift does not need to be nega-
tive for the entire search space, but only in suitable parts of
it.

Theorem 2 ((Krejca 2019, Corollary 3.24)). Let (X;)ien
be a random process over R adapted to a filtration (F;)en.
Further, let Xo < 0, let b € Ry, and let T = inf{t €
N | X(t) > b}. Suppose that there are constants a € Ry,
c € (0,b), and e € Roqg such that, for allt € N, it holds that

L E[(Xep1 — Xo) - 1x,50 - 17t | ) <€ 1x,5a - 17<s,
2. |Xt+1_Xt|'1Xt2a'1T<t<C'1Xt2a+1X¢<a, and
3. Xt+1 . 1Xt<a . 1T<t § O

Then, for all t € N, it holds that Pr[T < t] <
t2 exp(—%).

4 Population Dynamics on the Plateau

In this section, we analyze the population dynamics of the
(1 + 1) GA once the population is fully contained on the
plateau of local optima. This is the most interesting part of
the run of the algorithm, both because it takes longest and
because it is here where crossover makes a substantial differ-
ence. Due to space restrictions, we omit some proofs, which
can be found in the full article (Doerr et al. 2023b).

General assumption: In all what follows, we regard how
the (1 + 1) GA optimizes the benchmark JUMP. Our re-
sults are asymptotic in the problems size n, hence we can
always assume that n is sufficiently large and we shall do
so often without explicit notice. We allow k to depend on n.
We recall that the most interesting case is that & is small,
since otherwise the runtimes are exorbitant. For that rea-
son, we shall occasionally assume (with explicit notice) that
k = o(n), as this will ease some proofs. For the algorithm
parameters, we regard an arbitrary crossover rate p.. € [0, 1]
that is £2(1), that is, at least ¢ for some absolute constant. We
allow an arbitrary mutation rate p,, = X with x a positive
constant. We also allow an arbitrary population size p > 2,
and this parameter again may and usually will depend on n.
Since our results in particular show that small population
sizes suffice to profit from crossover, we often assume that
u=o(n).

Outline: To allow for a more formal analysis, we refer
to identical individuals as a species. For a given species, we
call an individual belonging to this species a y-individual,
otherwise we say it is a non-y-individual. Since the popu-
lation is on the plateau, individuals from different species
have a Hamming distance of at least 2. Hence, for a constant
¢ € (0,1), if the largest species has a size of at most cp



and due to the constant crossover rate, there is a constant
probability to select two individuals for crossover that have
a Hamming distance of at least 2. By Lemma 1, the probabil-
ity to create the optimum via such a crossover followed by
mutation is at least Q((%)_k’“), which is roughly n times
more likely than if mutation by itself creates the optimum.
In the following, we show that the largest species quickly
reaches a size of at most ¢y (Lemma 6) and remains there
for a time exponential in ¢ (Lemma 7).

Details: Key to deriving strong bounds on the lasting di-
versity population is that we show that the majority species
has a higher probability of decreasing its cardinality y than
increasing it (Lemma 5). This difference in probability is
proportional to (¢ — y)/w. That is, initially, it is not very
well pronounced and only in the order of 1/u, but with de-
creasing y, it becomes more likely, until it is constant. Once
it is constant, it is very unlikely to reduce quickly.

To be more formal, for species s (where s is just a sym-
bol), we view its size Y; as a random process over [0..]. In
the following, we analyze the transition probabilities of this
random process, which we define for all y € [u], all t € N,
and all events A with non-zero probability as

POy | A) = PrlY(t +1) - Ya(t) = 1Ya(t) =y, 4],
2
POy | A) = PrlY(t+1) = Ya(t) = 1Y (1) = y, A].

When analyzing the transition probabilities above, we
make a case distinction with respect to how the offspring in
an iteration is created. For some of these cases, we use the
bounds derived by Dang et al. (2018). However, we improve
the following cases: Lemma 3 assumes that crossover (fol-
lowed by mutation) is performed with parents whose Ham-
ming distance is at most 2. Lemma 4 assumes that only mu-
tation is performed.

The following bound incorporates the constant in the mu-
tation rate more closely than the analysis of Dang et al.
(2018).

Lemma 3. Consider the (i + 1) GA with the assumptions
take at the beginning of this section optimizing JUMPy, with
k = o(n). Consider a single iteration t € N. Let A denote
the event that the entire population P) is on the plateau
and that the offspring produced this iteration is created via
crossover of two parents whose Hamming distance is at
most 2 (followed by mutation). Assume that A has a posi-
tive probability of occurring. Last, let s be a species of PV,

Then, for the transition probabilities defined in equa-
tion (2) and for all y € [ — 1], it holds that

y(r—y) (u(1 + 3x) + 39x) (1 B X)".

(s:t)
Py | 4) > T T

The next lemma considers the transition probabilities of a
species under the assumption that only mutation is applied.
This case is not present in the original analysis of Dang et al.
(2018), as they assume a crossover rate of 1, whereas we
allow for constant values less than 1. It is essential to ana-
lyze these transition probabilities carefully, as they can oc-
cur with constant probability and thus have a great impact

on the difference of the transition probabilities. Our bounds
show that there is actually a slight bias towards increasing
the size of the largest species. However, as this bias is in
the order of 1/n whereas the probability of decreasing is at
least in the order of 1/, the assumption 1 = o(n) overall
guarantees that the largest species is more likely to decrease.

Lemma 4. Consider the (1 + 1) GA with the assumptions
take at the beginning of this section optimizing JUMP, with
k = o(n). Consider a single iteration t € N. Let B denote
the event that the entire population P() is on the plateau
and that the offspring produced this iteration is created via
mutation (and no crossover). Assume that B has a positive
probability of occurring. Last, let s be a species of P().

Then, for the transition probabilities defined in equa-
tion (2) and for all y € [u), it holds that

P (y | B) = y(p—y) (1 B §>"+O((uy)2>’ and

IR ny
(s,t) yr—y) (,  X\"
P (y‘B)Zu(uH)(l n> '

Using the mainly the transition probabilities from the two
lemmas above, we bound the crucial difference in the overall
probabilities to increase or decrease a species.

Lemma 5. Consider the (i + 1) GA with the assumptions
taken at the beginning of this section and ;i = o(n)) optimiz-
ing JUMPy, with k = o(n). Let T be a (random) iteration
such that the entire population PT) is on the plateau. Last,
let s be a species of P,

Then, for the transition probabilities defined in equa-
tion (2) and for all y € [5..;u — 1], it holds that

(s,T) (1) _ (1) (T) Hr—Y
p= Ny | PYY) =y | PYY) 2 CTAS
Utilizing Lemma 5, the next lemma bounds the expected
time for a species to reach a size of at most £. We improve
the previous result by Dang et al. (2018, Lemma 6), which
pessimistically assumed an unbiased random walk, resulting
in a bound of O(pn + p? log(11)). Our bound improves both
terms almost by a factor of p by carefully considering that
the size of the species decreases more likely the smaller it is.

Lemma 6. Consider the (u + 1) GA with the assumptions

taken at the beginning of this section and p = o(n) optimiz-

ing JUMPy, with k = o(n). Further, let s be a species, and let

t* € N be an iteration such P*") is entirely on the plateau.

In addition, let Y;(t*) be defined as above equation (2).
Let T = inf{t € N| Y,(t" +t) < £}. Then

E[T [ Ys(t7)] = O((% + 1) log(p))-

Last, the following lemma shows that once a species has
a size of at most £, then, for any constant A € (%, 1),
its size does not reach Ay with high probability in a num-
ber of iterations exponential in p. This drastically increases
the previously best known probability by Dang et al. (2018,
Lemma 7), which is only quadratic in u.

Lemma 7. Consider the (i + 1) GA with the assumptions
take at the beginning of this section and = o(n) opti-
mizing JUMPy with k = o(n). Further, let s be a species,



and let t* € N be an iteration such P®") is entirely on the
plateau. Assume that Ys(t*) (as defined above equation (2))
is at least &. Let X\ € (3,1), and let T = inf{t € N |

Ys(t +t*) > Au}. Last, let C = %pc. Then, for

all t € N, it holds that Pr[T < t] < t? - exp(—Cp).

S Runtime Analysis

In this section, we prove our main result on the runtime of
the (1 + 1) GA optimizing the JUMP; benchmark.

Theorem 8. Let C' = ﬁpc. Under the general assump-
tions takes at the beginning of Section 4, the (u+ 1) GA
with population size ;. = o(n) optimizes the JUMPy, bench-
mark with k = o(n) in an expected time (number of itera-
tions or fitness evaluations) of

0 (n(u log(u) + log(n))

(n/k + ) log (1) N (”>H>.

(n/x)~*+ L min(exp(F), (n/x)* 1)~ \X

To prove this result, we first show how the (1 + 1) GA
reaches a population that is fully contained on the plateau
of local optima and then apply our new understanding of
the population dynamics. For this first part of the run, we
show the following runtime estimate. Since in this part of the
optimization we do not profit from crossover, we do not need
the requirement that the crossover rate satisfies p. = (1).

Theorem 9. Under the general assumptions taken in Sec-
tion 4, but allowing an arbitrary crossover rate p. € [0, 1],
we consider the (i + 1) GA optimizing the JUMPy, bench-
mark (with k < n/2). Then the expected time until either the
optimum is found or the entire population is on the plateau

is O(n(plog(p) +log(n))).

This result improves the time proven in (Dang et al. 2018,
Lemma 1) by a factor of v/k. This factor has no influence on
the final runtime, as this is strongly dominated by the time to
leave the plateau, but we found it useful to show that the time
of this phase is independent of the problem parameter k,
which is very natural. We also note that our proof, omitted
here for reasons of space, while reusing several arguments of
the previous work, avoids the use of the technical population
fitness level argument (Dang et al. 2018, Theorem 1).

We are now ready to prove our main runtime result.

Proof sketch of Theorem 8. We split the analysis into two
parts. The first part bounds the time it takes until the entire
population of the (1 + 1) GA is on the plateau. By Theo-
rem 9, this expected time is O (n(ulog(u) + log(n))).

For the second part, we consider, for appropri-
ately chosen constants ¢; and co and a value t =
min(exp(<41), p:‘cZ (%)’“‘1), phases of a fixed length ¢ =
2¢1((% + p)log(u)) + t. For each phase, we bound the
probability from below that the (1 + 1) GA generates a suf-
ficiently diverse population such that creating the optimal
solution is more likely. For appropriately chosen values,
by Lemma 6 and Markov’s inequality, with probability at

least %, the (1 + 1) GA creates a sufficiently diverse popu-
lation in 2¢; (7 +p) log (i) iterations. By Lemma 7, for ap-
propriate values, this diversity remains with constant prob-
ability for the remaining ¢ iterations of a phase. Then, by
Lemma 1, the (12 + 1) GA has a probability of Q((2)~**1)
to create the optimum in a single iteration. This results in

an overall probability of at least Q( (%)_Hl L) to create the

optimum in a single phase. Calculating the expected number
of phases yields the result. O

Discussion: In comparison to the results of Dang et al.
(2018), our result (Theorem 8) holds for any mutation rate
X, not just for x > 1, and for all x = o(n). More impor-
tantly, we get a better understanding of how y influences the
overall expected run time, which was not possible before to

this extent. For constant p (and & > 2), we get a bound
of O(Xk"i,klk), which shows that this term gets closer to the
term (%)’f_1 with increasing k. For u = o(log(n)), we see

n* _ log(p)
x"~1k exp(p)
smaller with increasing . Once 1 = Q(log(n)) and k > 3,

the bound becomes O((%)k_l), which is better by a fac-

tor of x**1 for y > 1 compared to the results of Dang
et al. (2018). This is the regime with the largest speed-up
compared to the ©(n*) runtime of the (1 + 1) EA without
crossover (Jansen and Wegener 2002).

how the dominating term becomes drastically

6 Experimental Evaluation

Our runtime analysis in Section 5, especially Lemma 7,
shows that once the entire population of the (p + 1) GA is
on the plateau, there are phases of length exponential in p
during which the largest species (that is, identical individu-
als) is at most % . During this time, it is possible that vari-
ous species get produced. The larger the Hamming distance
of two species, the easier it is to find the optimum of JUMP
(Lemma 1), potentially improving the runtime. In fact, ex-
periments by Dang et al. (2018, Fig. 6) suggest that the ex-
pected runtime of the (u + 1) GA on JUMP, is rather in the
order of nIn(n) + 4F for certain mutation rates.

Since the key to improving our result (Theorem 8) is to
better understand how diverse the population on the plateau
really is during phases of lasting diversity, we investigate
these population dynamics empirically in this section. As
Dang et al. (2018) present an extensive empirical analysis
of the runtime of different algorithm variants on JUMPy, we
focus on a quantity they did not cover, namely, the relative
frequencies of all pairwise Hamming distances in the popu-
lation. A higher ratio of a larger Hamming distance implies
a larger probability to create the optimum. Thus, these num-
bers provide strong insights into how well the population is
spread out in order to create the optimum.

Our code is available on GitHub (Doerr et al. 2023a).

Frequencies of Pairwise Hamming Distances

We analyze and discuss how the relative frequencies of
pairwise Hamming distances in the population of the
(£ + 1) GA on the plateau of JUMP, evolve over the algo-
rithm’s iterations. Figure 1 shows our results and explains
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(b) A single run of the (i + 1) GA on JUMP}, with the parameters
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Figure 1: The relative frequencies of the different Hamming distances of the population of the (1 + 1) GA (Algorithm 1) on
the plateau of JUMP, (equation (1)), for the respective parameter settings. Each plot depicts a single run of the (4 1) GA on
JuMP;, starting with the entire population on the plateau. The initial population is chosen such that it consists of a single species
(i.e., p copies of the same individual), chosen uniformly at random among all individuals with exactly k£ Os and n — k 1s. The
run is stopped once the algorithm creates the global optimum. The x-axis denotes the number of iterations of the algorithm. The
different colors refer to the different Hamming distances in the population. The y-axis depicts the relative frequency of each
such Hamming distance among all ( ) pairs of individuals. Since all individuals are on the plateau, the Hamming distances are
always even numbers. The maximum number is twice the gap size, i.e., 2k. Please refer to Section 6 for more information.

our experimental setup. We see both in Figures la and 1b
that the different possible Hamming distances (from 0 to 10,
in steps of 2) emerge in increasing order of their value (that
is, first distance 0, then 2, and so on). This trend is qualita-
tively the same for both figures, with larger fluctuations for
the smaller dimension size (Figures 1a).

Initially, by the setup of the experiment, all individuals
have a Hamming distance of 0 to each other. However, after
a short time (relative to the entire runtime), the frequency for
distance 0 decreases rapidly and the one for distance 2 grows
rapidly. From this point on, the frequency for distance 0 re-
mains very low for the rest of the run. That is, the diversity
in the population is very high (and remains high). This sup-
ports the findings by Dang et al. (2018, Fig. 2), whose exper-
iments also show that the diversity in the population remains
very high during a run.

A similar behavior occurs for other neighboring pairs of
distances, such as 2 and 4, although this effect is far more
pronounced in Figure 1b. After the frequency of a distance
d € {2,4,6} grows, the frequency of distance d + 2 also
grows until it overtakes the value of d. From this point on,
the frequency of d typically remains below that of d + 2,
going so far that d is almost not present anymore after some
time (Figure 1b). This trend seems to also emerge for dis-
tances 8 and 10, although their frequencies barely meet,
since the optimum is found by then. These dynamics suggest
that the population does not only diversify in the number of
species over time but also increases in pairwise distances.

Last, we see that the run ends in both cases once there

is a sufficiently high fraction of individuals with maximum
Hamming distance in the population. This conforms with the
hypothesis that the actual expected runtime is in the order of
nln(n) + 4*,

7 Conclusion

In this work, we detected and mathematically proved that the
diversity occurring when the (x + 1) GA optimizes JUMP
functions persists much longer than known before, namely
for a time exponential in the population size p instead of
quadratic. This result allowed us to prove superior runtime
guarantees, in particular, for small population sizes.

Our experiments support our finding that once the popu-
lation is not anymore dominated by a single genotype, this
diversity lasts for a long time. However, our experiments
also show that the diversity produced by the (4 1) GA is
even stronger than what our proofs show. Not only does no
genotype class dominate, but also the typical Hamming dis-
tance between individuals grows. If such an effect could be
proven, this would immediately lead to much stronger run-
time guarantees. This is clearly the most interesting, possi-
bly not very easy, continuation of this work.

From the viewpoint of designing effective genetic al-
gorithms, our work suggest to use crossover with con-
stant crossover rate, and without deviating from standard
parameter suggestions such as using a mutation rate of %
In our results, the greatest speed-up is achieved for popula-
tion sizes p logarithmic in n.



Acknowledgments

This research benefited from the support of the FMJH Pro-
gram PGMO. Some ideas of this paper were the result of dis-
cussions at Dagstuhl Seminar 22081—Theory of Random-
ized Optimization Heuristics.

References

Antipov, D.; Buzdalov, M.; and Doerr, B. 2021. Lazy
parameter tuning and control: choosing all parameters ran-
domly from a power-law distribution. In Genetic and Evo-
lutionary Computation Conference, GECCO 2021, 1115-
1123. ACM.

Antipov, D.; Doerr, B.; and Karavaev, V. 2019. A tight run-
time analysis for the (1 + (A, A)) GA on LeadingOnes. In
Foundations of Genetic Algorithms, FOGA 2019, 169—-182.
ACM.

Antipov, D.; Doerr, B.; and Karavaev, V. 2020. The
(14 (X A)) GA is even faster on multimodal problems.
In Genetic and Evolutionary Computation Conference,
GECCO 2020, 1259-1267. ACM.

Antipov, D.; Doerr, B.; and Karavaev, V. 2022. A rigorous
runtime analysis of the (1 4+ (A, \)) GA on Jump functions.
Algorithmica, 84: 1573-1602.

Auger, A.; and Doerr, B., eds. 2011. Theory of Randomized
Search Heuristics. World Scientific Publishing.

Bambury, H.; Bultel, A.; and Doerr, B. 2021. Generalized
jump functions. In Genetic and Evolutionary Computation
Conference, GECCO 2021, 1124-1132. ACM.

Bian, C.; and Qian, C. 2022. Better running time of the non-
dominated sorting genetic algorithm IT (NSGA-II) by using
stochastic tournament selection. In Parallel Problem Solving
From Nature, PPSN 2022, 428-441. Springer.

Bian, C.; Zhou, Y.; Li, M.; and Qian, C. 2023. Stochastic
population update can provably be helpful in multi-objective
evolutionary algorithms. In International Joint Conference
on Artificial Intelligence, IJCAI 2023, 5513-5521. ijcai.org.

Buzdalov, M.; and Doerr, B. 2017. Runtime analysis of the
(14 (A, A)) genetic algorithm on random satisfiable 3-CNF
formulas. In Genetic and Evolutionary Computation Con-
ference, GECCO 2017, 1343-1350. ACM.

Corus, D.; and Oliveto, P. S. 2018. Standard steady state
genetic algorithms can hillclimb faster than mutation-only
evolutionary algorithms. IEEE Transactions on Evolution-
ary Compututation, 22: 720-732.

Corus, D.; and Oliveto, P. S. 2020. On the benefits of pop-
ulations for the exploitation speed of standard steady-state
genetic algorithms. Algorithmica, 82: 3676-3706.

Corus, D.; Oliveto, P. S.; and Yazdani, D. 2020. When hy-
permutations and ageing enable artificial immune systems to
outperform evolutionary algorithms. Theoretical Computer
Science, 832: 166—-185.

Dang, D.; Friedrich, T.; Kotzing, T.; Krejca, M. S.; Lehre,
P. K.; Oliveto, P. S.; Sudholt, D.; and Sutton, A. M.
2016. Escaping local optima with diversity mechanisms and

crossover. In Genetic and Evolutionary Computation Con-
ference, GECCO 2016, 645-652. ACM.

Dang, D.; Friedrich, T.; Kotzing, T.; Krejca, M. S.; Lehre,
P. K.; Oliveto, P. S.; Sudholt, D.; and Sutton, A. M. 2018.
Escaping local optima using crossover with emergent diver-
sity. IEEE Transactions on Evolutionary Computation, 22:
484-497.

Dang, D.-C.; Opris, A.; Salehi, B.; and Sudholt, D. 2023. A
proof that using crossover can guarantee exponential speed-
ups in evolutionary multi-objective optimisation. In Con-
ference on Artificial Intelligence, AAAI 2023, 12390-12398.
AAALI Press.

Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6: 182—
197.

Doerr, B. 2016. Optimal Parameter Settings for the (1 +
(A, A)) Genetic Algorithm. In Genetic and Evolutionary
Computation Conference, GECCO 2016, 1107-1114. ACM.

Doerr, B. 2021. The runtime of the compact genetic algo-
rithm on Jump functions. Algorithmica, 83: 3059-3107.

Doerr, B.; and Doerr, C. 2018. Optimal static and self-
adjusting parameter choices for the (1 + (A, A)) genetic al-
gorithm. Algorithmica, 80: 1658—1709.

Doerr, B.; Doerr, C.; and Ebel, F. 2013. Lessons from the
black-box: fast crossover-based genetic algorithms. In Ge-
netic and Evolutionary Computation Conference, GECCO
2013, 781-788. ACM.

Doerr, B.; Doerr, C.; and Ebel, F. 2015. From black-box
complexity to designing new genetic algorithms. Theoreti-
cal Computer Science, 567: 87-104.

Doerr, B.; Echarghaoui, A.; Jamal, M.; and Krejca, M. S.
2023a. Code repository of this paper. https://github.com/
TheMor/ga-jump-diverse-populations.

Doerr, B.; Echarghaoui, A.; Jamal, M.; and Krejca, M. S.
2023b. Lasting Diversity and Superior Runtime Guarantees
for the (u+1) Genetic Algorithm. CoRR, abs/2302.12570.

Doerr, B.; Happ, E.; and Klein, C. 2012. Crossover can
provably be useful in evolutionary computation. Theoreti-
cal Computer Science, 425: 17-33.

Doerr, B.; Johannsen, D.; Kotzing, T.; Neumann, F.; and
Theile, M. 2013. More effective crossover operators for the
all-pairs shortest path problem. Theoretical Computer Sci-
ence, 471: 12-26.

Doerr, B.; Le, H. P.; Makhmara, R.; and Nguyen, T. D. 2017.
Fast genetic algorithms. In Genetic and Evolutionary Com-
putation Conference, GECCO 2017, T77-784. ACM.

Doerr, B.; and Neumann, F., eds. 2020. Theory of
Evolutionary ~ Computation—Recent  Developments in
Discrete Optimization. ~ Springer.  Also available at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doert/
doerr_neumann_book.html.

Doerr, B.; Neumann, F.; and Sutton, A. M. 2017. Time com-
plexity analysis of evolutionary algorithms on random satis-
fiable k-CNF formulas. Algorithmica, 78: 561-586.

Doerr, B.; and Qu, Z. 2023. From understanding the pop-
ulation dynamics of the NSGA-II to the first proven lower



bounds. In Conference on Artificial Intelligence, AAAI 2023,
12408-12416. AAAI Press.

Doerr, B.; and Theile, M. 2009. Improved analysis methods
for crossover-based algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2009, 247-254. ACM.

Doerr, B.; and Zheng, W. 2021. Theoretical analyses of
multi-objective evolutionary algorithms on multi-modal ob-
jectives. In Conference on Artificial Intelligence, AAAI
2021, 12293-12301. AAAI Press.

Droste, S.; Jansen, T.; and Wegener, 1. 2002. On the analysis
of the (1+1) evolutionary algorithm. Theoretical Computer
Science, 276: 51-81.

Hevia Fajardo, M. A.; and Sudholt, D. 2022. Theoretical
and empirical analysis of parameter control mechanisms in
the (1 + (A, \)) genetic algorithm. ACM Transactions on
Evolutionary Learning and Optimization, 2: 13:1-13:39.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Huang, Z.; Zhou, Y.; Chen, Z.; and He, X. 2019. Running
time analysis of MOEA/D with crossover on discrete opti-
mization problem. In Conference on Artificial Intelligence,
AAAI 2019, 2296-2303. AAAI Press.

Jansen, T. 2013. Analyzing Evolutionary Algorithms — The
Computer Science Perspective. Springer.

Jansen, T. 2015. On the black-box complexity of example
functions: the real jump function. In Foundations of Genetic
Algorithms, FOGA 2015, 16-24. ACM.

Jansen, T.; and Wegener, 1. 2002. The analysis of evolu-
tionary algorithms — a proof that crossover really can help.
Algorithmica, 34: 47-66.

Kotzing, T. 2016. Concentration of first hitting times under
additive drift. Algorithmica, 75: 490-506.

Kotzing, T.; Sudholt, D.; and Theile, M. 2011. How
crossover helps in pseudo-Boolean optimization. In Genetic
and Evolutionary Computation Conference, GECCO 2011,
989-996. ACM.

Krejca, M. S. 2019. Theoretical Analyses of Univariate
Estimation-of-Distribution Algorithms. Ph.D. thesis, Uni-
versitit Potsdam.

Lehre, P. K.; and Yao, X. 2011. Crossover can be construc-
tive when computing unique input-output sequences. Soft
Computing, 15: 1675-1687.

Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A. 2023.
When move acceptance selection hyper-heuristics outper-
form Metropolis and elitist evolutionary algorithms and
when not. Artificial Intelligence, 314: 103804.

Mitchell, M.; Holland, J. H.; and Forrest, S. 1993. When will
a genetic algorithm outperform hill climbing. In Advances in
Neural Information Processing Systems, NIPS 1993, 51-58.
Morgan Kaufmann.

Neumann, F.; Oliveto, P. S.; Rudolph, G.; and Sudholt, D.
2011. On the effectiveness of crossover for migration in par-
allel evolutionary algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2011, 1587-1594. ACM.

Neumann, F.; and Theile, M. 2010. How crossover speeds
up evolutionary algorithms for the multi-criteria all-pairs-
shortest-path problem. In Parallel Problem Solving from
Nature, PPSN 2010, Part I, 667-676. Springer.

Neumann, F.; and Witt, C. 2010. Bioinspired Computation in
Combinatorial Optimization — Algorithms and Their Com-
putational Complexity. Springer.

Oliveto, P. S.; He, J.; and Yao, X. 2008. Analysis of
population-based evolutionary algorithms for the vertex
cover problem. In Congress on Evolutionary Computation,
CEC 2008, 1563-1570. IEEE.

Oliveto, P. S.; Sudholt, D.; and Witt, C. 2022. Tight bounds
on the expected runtime of a standard steady state genetic
algorithm. Algorithmica, 84: 1603—-1658.

Qian, C.; Yu, Y.; and Zhou, Z. 2013. An analysis on recom-
bination in multi-objective evolutionary optimization. Arti-
ficial Intelligence, 204: 99—-119.

Rajabi, A.; and Witt, C. 2022. Self-adjusting evolutionary
algorithms for multimodal optimization. Algorithmica, 84:
1694-1723.

Sudholt, D. 2012. Crossover speeds up building-block as-
sembly. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2012, 689-702. ACM.

Sutton, A. M. 2021.  Fixed-parameter tractability of
crossover: steady-state GAs on the closest string problem.
Algorithmica, 83: 1138-1163.

Witt, C. 2023. How majority-vote crossover and estimation-
of-distribution algorithms cope with fitness valleys. Theo-
retical Computer Science, 940: 18—42.

Zheng, W.; and Doerr, B. 2024. Runtime analysis of the
SMS-EMOA for many-objective optimization. In Confer-
ence on Artificial Intelligence, AAAI 2024. AAAI Press.
Zhou, Z.-H.; Yu, Y.; and Qian, C. 2019. Evolutionary Learn-
ing: Advances in Theories and Algorithms. Springer.



