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Abstract

We provide a brief overview on some hot topics in the
area of evolutionary computation. Our main focus is on re-
cent developments in the areas of combinatorial optimiza-
tion and real-world applications. Furthermore, we highlight
recent progress on the theoretical understanding of evolution-
ary computing methods.

Introduction

There are a large variety of high performing optimization
methods available for convex optimization problems. How-
ever, many problems arising in important application do-
mains such as supply chain management and planning pose
non-convex problems. In particular, these problems are of-
ten noisy, stochastic and/or have dynamically changing con-
straints. This is where evolutionary computation methods
are often applied as they have been shown to be highly suc-
cessful when dealing with such difficult problem domains.
We will highlight some important recent real-world appli-
cation techniques of evolutionary computing, discuss recent
developments in the area of combinatorial optimization, and
finally report on recent theoretical studies on the foundations
of evolutionary computing.

Real-World Applications

In the area of real-world applications, evolutionary algo-
rithms have been used for a wide range of planning tasks. In
particular, Unmanned Aircraft Vehicles (UAVs) have gained
increasing attention. The evolutionary planner presented in
(Perez-Carabaza et al. 2016) optimizes the target detection
time taking into account the uncertainty of the target loca-
tion and the UAV motion and sensory model. To do this, the
approach uses a Bayesian approach to handle uncertainty
and a kinematic model taking into account environmental
effects. The planning process is carried out by splitting the
planning task into subsequences and optimizing each sub-
sequence by an evolutionary algorithm based on the ending
state of the previous subsequence. Furthermore, evolution-
ary algorithms have been considered in (Ellefsen, Lepikson,
and Albiez 2016) for 3D path planning. The authors investi-
gate the problem of inspecting three dimensional structures
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and use an evolutionary multi-objective algorithm to opti-
mize the coverage degree and the energy usage at the same
time. The energy usage is relatively simple to compute and
the estimated coverage of a plan is the computationally ex-
pensive part as it has to take geometry of the 3D object (in
this case a 3D Warehouse) into account.

Finally, the area of bilevel optimization has received a lot
of attention in recent years. In (Lu, Deb, and Sinha 2016),
a new approach for dealing with bilevel problems having
uncertainties is presented. The authors study the interactions
of uncertainties in the upper and lower level variables and
show that their new approach performs well on a wide range
of benchmark test case as well as a real-world Navy ship
design problem.

Combinatorial Optimization

In the area of combinatorial optimization multi-component
problems are a hot topic. Multi-component problems arise
frequently in real-world applications such as supply chain
management and the goal is to study the interactions aris-
ing from the combination of different combinatorial prob-
lems in a systematic way. A prominent problem which has
gained significant attention during the last three years is
the traveling thief problem (TTP). TTP combines the clas-
sical traveling salesperson problem (TSP) and the standard
knapsack problem (KP) in a non-linear way. Given that
both TSP and KP have been widely studied in the litera-
ture, this knowledge sets the basis for dealing with the inter-
actions arising in TTP. Different heuristic approaches have
been proposed for variants of TTP (Yafrani and Ahiod 2016;
Chand and Wagner 2016; Mei, Li, and Yao 2014) and a large
benchmark set to compare these algorithms has been estab-
lished in (Polyakovskiy et al. 2014; Przybylek, Wierzbicki,
and Michalewicz 2016). Recent investigations have consid-
ered the impact of the renting rate which connects the TSP
and KP part of the problem (Wu, Polyakovskiy, and Neu-
mann 2016).

Furthermore, the features and their impact on the perfor-
mance of different evolutionary computation methods are an
research area of high interest. Features occur in different ar-
eas. On the one hand, fitness landscape analysis has a long
tradition in the area of evolutionary computation. Here one
studies the landscape defined by search points and “natu-
ral" neighbourhoods of an underlying combinatorial opti-
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mization problem in order to understand the performance
of popular algorithms. Recent investigations have shown
that fitness landscapes for combinatorial optimization prob-
lems often consists of several funnels in the landscape that
makes search difficult. Clustering approaches for commu-
nity detection have been investigated to detect funnels for
NK landscapes (Herrmann, Ochoa, and Rothlauf 2016) and
it has been shown that the number of clusters and the size
of the cluster containing the optimal solution are an impor-
tant factor for determining search difficulty of a landscape.
For the traveling salesperson problem and the Chained Lin-
Kernighan heuristic, a data driven approach to examine fun-
nels has been presented (Ochoa and Veerapen 2016) which
examines the landscape of various TSP instances.

Theoretical Foundations
A major challenge to the theoretical analysis of evolution-
ary computing is developing a rigorous understanding of
how they behave on important optimization problems. The
role of crossover in evolutionary computation is still a ma-
jor open problem in the theory of evolutionary algorithms.
In some cases, it can be provably helpful for optimization
obtaining quantifiable speed-ups on artificial test functions
like JUMP and ONEMAX, and particular combinatorial opti-
mization problems on graphs (Doerr, Happ, and Klein 2012;
Doerr et al. 2013; Lehre and Yao 2011; Sudholt 2012;
Dang et al. 2016a; 2016b). It has further been shown that in-
creasing the effective recombination rate promotes the evo-
lution of robustness (Friedrich, Kötzing, and Sutton 2016).

A major aspects in theoretical research of evolutionary
computing has been the presence of uncertainty. Uncertain
and dynamic problems are pervasive in practice, and prac-
titioners often rely on heuristic techniques in these settings
because classical tailored approaches often cannot cope with
uncertain environments such as noisy objective functions
and dynamically changing problems (Bianchi et al. 2009;
Jin and Branke 2005).

It is therefore very important to understand the effect that
different properties of uncertainty have on algorithm behav-
ior. In stochastic optimization, the fitness of a candidate
solution does not have a deterministic value, but instead
follows some given (but fixed) noise distribution. Most re-
search on stochastic optimization is concerned with the mag-
nitude of noise (usually measured by the variance). There
are a number of recent papers on the theoretical analysis
of evolutionary computing in stochastic environments. For
evolutionary algorithms, (Gießen and Kötzing 2014) ana-
lyzed the (μ+ λ)-EA on noisy ONEMAX and LeadingOnes
and found that populations make the EA robust to specific
distributions of prior and posterior noise, while (Dang and
Lehre 2014) consider non-elitist EAs and give run time
bounds in settings of partial information. Posterior noise
from a Gaussian was considered in (Friedrich et al. 2015;
Prügel-Bennett, Rowe, and Shapiro 2015) for various algo-
rithms. Also the effect of different kinds of distributions has
been studied (Friedrich et al. 2016).

In dynamic optimization, the problem at hand under-
goes dynamic changes with respect to the objective func-
tion and/or the given constraints of the problem. Evolution-

ary algorithms are able to adapt to dynamic changes and re-
compute new good solutions without having to start from
scratch. Understanding this from a theoretical perspective
and analyzing the time required for the recomputation af-
ter a dynamic change has happened is another important
topic. Theoretical studies for dynamically changing prob-
lems have been carried out for classical example functions
such as ONEMAX (Kötzing, Lissovoi, and Witt 2015) and
the NP-hard makespan scheduling problem (Neumann and
Witt 2015).

Another recently very popular concept are self-adjusting
algorithms in discrete spaces. In continuous optimization it
is obvious that static parameter choices are not very mean-
ingful. This is why in continuous spaces several examples
exist where adaptive parameter choices are required and
well-studied (see e.g. (Auger and Hansen 2016; Jägersküp-
per 2008)). For the discrete domain, several empirical works
exist that suggest an advantage of adaptive parameter up-
dates (see e.g. (Eiben, Hinterding, and Michalewicz 1999;
Karafotias, Hoogendoorn, and Eiben 2015) and (Eiben and
Smith 2003, Chapter 8)). The first work formally showing an
asymptotic gain over static parameter selection is the self-
adjusting choice of the population size of the genetic al-
gorithm proposed and analyzed in (Doerr and Doerr 2015).
Furthermore, there are theoretical investigations of adaptive
parameter choices in discrete optimization that show advan-
tages of a fitness-dependent mutation rate (Böttcher, Do-
err, and Neumann 2010; Doerr, Doerr, and Yang 2016b), a
fitness-dependent population size (Doerr, Doerr, and Ebel
2015), a self-adjusting mutation rate (Doerr, Doerr, and
Yang 2016a; Dang and Lehre 2016), a self-adjusting popula-
tion size (Doerr and Doerr 2015), and a self-adjusting choice
of the number of parallel evaluations in a parallel EA (Lässig
and Sudholt 2011).
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