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ABSTRACT

We consider the influence maximization problem over a temporal
graph, where there is a single fixed source. We deviate from the
standard model of influence maximization, where the goal is to
choose the set of most influential vertices. Instead, in our model we
are given a fixed vertex, or source, and the goal is to find the best
time steps to transmit so that the influence of this vertex is maxi-
mized. We frame this problem as a spreading process that follows a
variant of the susceptible-infected-susceptible (SIS) model and we
focus on three objective functions. In theMaxSpread objective, the
goal is to maximize the total number of vertices that get infected at
least once. In the MaxViral objective, the goal is to maximize the
number of vertices that are infected at the same time step. Finally,
in MaxViralTstep, the goal is to maximize the number of ver-
tices that are infected at a given time step. We perform a thorough
complexity theoretic analysis for these three objectives over three
different scenarios: (1) the unconstrained setting where the source
can transmit whenever it wants; (2) the window-constrained setting
where the source has to transmit at either a predetermined, or a
shifting window; (3) the periodic setting where the temporal graph
has a small period. We prove that all of these problems, with the
exception of MaxSpread for periodic graphs, are intractable even
for very simple underlying graphs.
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1 INTRODUCTION

“When is the right time to post our content online? Which days should

we place our advertisements so our video goes viral? What’s the best

strategy to maximize the word-of-mouth effect?” These are some of
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the questions every advertiser, political party, and individual influ-
encer try to answer. In every case, the goal is the same: maximize
their influence over their social network.

By now, influence maximization is a well-established problem
in Computer Science. The seminal paper of Kempe et al. [24] intro-
duced the basic mathematical model of influence maximization and
became the foundation for a plethora of follow-up models. There,
the input consists of a static network and the task is to find a set of
initial spreaders, or sources, that maximizes the expected outbreak
size of a spreading process occurring over the network.

In real-world networks though, many situations and applica-
tions exhibit an inherited temporal structure: a person will check
their social media just a few times during their day; a user will go
through their favorite webpages every couple of days; people meet
with their friends every few days. Furthermore, the effectiveness
of word-of-mouth for a specific post/product/advert deteriorates
as time passes if there are no interactions, or discussions, about
it. Arguably, if a person has not recently seen a post from their
favourite artist, they are unlikely to discuss with their friends a
post that the artist made a long time ago. Motivated by the increase
of social media influence in marketing strategies and the belief that
the data provided will become more detailed in the future, the base
model of [24] was suitably augmented in order to capture the above
mentioned scenarios.

Temporal graphs [21, 23] form a solid basis that naturally cap-
tures the temporal structure of the aforementioned instances; in
a temporal graph there is a fixed set of vertices and the connec-
tions between them change between consecutive time steps. Fur-
thermore, when a temporal graph is coupled with a susceptible-
infected-susceptible (SIS) spreading process, then it becomes an
excellent framework to analyze the influence maximization prob-
lems described previously. So, now the task is not only to choose the
vertices that will become the sources, but in addition decide when,
i.e., at which time step, each source will become active [17]. In fact,
marketing companies are very interested about the “when-to-post"
problem, since different times of posting new content can yield
vastly different results. This problem has already been studied both
within computer science [30, 35] and in the field of marketing [22].

Since the influence maximization problem on temporal graphs is
a generalization of the base model of [24], the NP-hardness results
derived for the more constrained setting immediately apply here
too. On the other hand, all the models so far assume that we can



choose each vertex only once [17]. Thus, the implied intractability
of the problem comes from the choice of the sources and not from
the activation times. In reality though, the set of possible sources
someone can choose from is rather limited and not the whole set of
vertices of the graph. In fact, there are several cases where there is
only a single, fixed source; for example “youtubers” are independent
and the only power they have is just to choose the time they will
release their videos online. In this case, the NP-hardness from [24]
does not apply any more. Our goal is to remedy this situation by
establishing the tractability frontier for this scenario.

1.1 Our contribution

Our contribution is two-fold. Firstly, we formally define three dif-
ferent influence-maximization objectives on temporal graphs with
a fixed source, where each variant captures a different aspect of
the problem. Then, we perform a complexity-theoretic analysis for
them, under three different variants that arise in real-life scenarios.

The input in each problem consists of a temporal graph, known
in advance, a fixed source, and budget of allowed “posts”, or trans-
missions. The goal is to choose a transmission schedule, i.e., the time
steps the source transmits, in order tomaximize an influence-related
objective. We follow an SIS-style spreading process: an inactive, i.e.,
not currently influenced, vertex becomes active at time step 𝑡 + 1 if
at time step 𝑡 is adjacent to an active vertex. Every active vertex is
associated with a counter which shows for how many time steps it
will remain active. If at time step 𝑡 a vertex is adjacent to an active
vertex, then its counter resets to a fixed number 𝛿 . The parameter 𝛿
resembles the maximum time an agent will be under the influence
of the source, and thus the vertex will diffuse the information it has
about the source.

The first objective, termed MaxSpread, aims to maximize the
number of different vertices that became influenced at some point
in time. This is probably the most natural objective, since it aims to
maximize the exposure of the source to different customers. The
goal of the second objective, termedMaxViral, is to create a “viral
effect”: maximize the number of simultaneously-active vertices.
Finally, the target of the objective MaxViralTstep is to maximize
the number of active vertices at a predetermined time step. For
example, this objective is desirable when a political party wants
to maximize the number of active voters on elections day, or a
company wants to maximize its active customers on a product-
launch day.

The first scenario we study is when there are no constraints on
the transmission schedule, i.e., the source can transmit at any time
step. In the second scenario, we consider transmission schedules
that have to follow window constraints, a type of constraints that
actually occur in real life. When a company chooses an influencer,
they specify strict times and dates where each individual post has
to be done. The timing mainly depends on abstract analytics that
specify the influencer’s highest engagement in the day but the data
currently provided are not pinpoint and they are bundled in 3-hour
slots. We consider two cases of window constraints. In the fixed
window case, the time is split into intervals of length 𝑤 and the
source has to transmit exactly once in each window. In the (𝑥,𝑦)-
shifting window case, any two consecutive transmissions of the
source have to be at least 𝑥 time steps apart and at most 𝑦 time

steps apart. In the last scenario, we consider periodic graphs. In this
case the temporal graph has infinite lifetime with period 𝑡max. This
means that the edges that are available at time step 𝑖 ∈ [1, 𝑡max],
appear at time step 𝑖 + 𝑗 · 𝑡max, for every 𝑗 ∈ N.

Our results.We perform a thorough complexity-theoretic study
for the three objectives in each of the aforementioned scenarios.
With the exception of MaxSpread for periodic graphs, we prove
that the problems are intractable even for very restricted settings!
In particular, we prove the following results. For the unconstrained
setting, all three problems are NP-complete and W[2]-hard when
parameterized by the number of transmissions of the source, even
when the underlying graph is a binary tree. For the fixed window
setting, all problems are NP-complete even when the window has
size two. In addition, forMaxSpread the underlying graph is a star,
at most three edges appear at any time step, and every edge appears
at most twice. For MaxViral and MaxViralTstep the underlying
graph is a subdivision of a star. For the shifting window setting,
we prove that the problems are NP-complete for every (2𝛿, 4𝛿)-
shifting window and the underlying graph is a star, or a subdivision
of a star. Finally, for periodic graphs our results are as follows.
ForMaxSpread, we derive a fixed parameter tractable algorithm
parameterized by 𝑡max; in other words, the problem is polynomial-
time solvable when the period is constant. For problemsMaxViral
andMaxViralTstep, we prove that they are NP-hard even when
𝑡max = 2, i.e., the graph has period 2.

1.2 Related Work

After the seminal paper of Kempe et al. [24], influence maximization
problems have received a tremendous amount of attention; see for
example the surveys [4, 7, 20, 26, 31, 32, 37] and the references
therein. More related, but still quite different, to our model are time-

aware diffusion models, that study both discrete-time settings [8,
25, 27], or continuous-time models [28, 29, 34].

Closer to our work are the papers that studied networks that
change over time - these networks/graphs can be either temporal,
like ours, or graphs that evolve according to different procedures.
Aggarwal et al. [1] propose efficient heuristics for finding a set of
sources that maximises influence at a later time step. Zhang et al.
[36] assume that the temporal graph is unknown and changes can
only be detected periodically. Zhu et al. [39] introduce a continuous-
time Markov chain model, an information diffusion model based on
the independent cascade model [18, 19] and their experiments illus-
trate how to find a small set of sources. Wang and Street [33] focus
on tracking the diffusion and aggregation of influence through the
network in the context of viral marketing. They provide heuristics
for finding a good initial set of influencers (referred to in their work
as adopters). Another line of research considers location-aware
influence maximisation, where the diffusion is focused on vertices
located in certain areas rather than a general spread. Zhou et al. [38]
focus on a distance-aware weighted model and go beyond generic
influence maximisation algorithms, providing a location-based in-
fluence maximisation algorithm.

Recently, a new line of work established to capture the nature of
real world social networks moving from static graphs to temporal
graphs [6]. They study the complexity of competitive diffusion
games [3, 15] and Voronoi games [2, 12].



In more recent work, Erkol et al. [13] studies influence maximi-
sation under the susceptible-infected-recovered (SIR) model and
analyses the performance of approximation algorithms over sev-
eral temporal networks; in addition they study a special temporal
network setting where the influence function is not submodular.
In [14], the same set of authors answer some of their open questions
and they find that greedy optimization is an effective method for
finding a set of sources that has very high performance.
Statements where proofs or details are omitted due to space constraints

are marked with ★. A version containing all proofs and details is

provided as supplementary material.

2 PRELIMINARIES

For 𝑛 ∈ N, we denote [𝑛] := {1, 2, . . . , 𝑛}. A temporal graph G :=
⟨𝐺, E⟩ is defined by an underlying graph𝐺 = (𝑉 , 𝐸) and a sequence
of edge-sets E = (𝐸1, 𝐸2, . . . , 𝐸𝑡max ). It holds that 𝐸 = 𝐸1∪𝐸2∪ · · ·∪
𝐸𝑡𝑚𝑎𝑥

. The lifetime of G is 𝑡max. An edge 𝑒 ∈ 𝐸 has label 𝑖 , if it is
available at time step 𝑖 , i.e., 𝑒 ∈ 𝐸𝑖 . In addition, an edge has 𝑘 labels,
if it appears in 𝑘 edge-sets.

Spreading process. We follow a spreading process that resembles
the Susceptible Infected Susceptible (SIS) model. In our model, we are
given a fixed vertex 𝑠 ∈ 𝑉 , called the source. In addition, at every
time step each vertex has a state, which is active or inactive and it is
determined by a counter that gets integer values in [0, 𝛿], for some
given natural 𝛿 > 0. The state of a vertex is active if 𝛿 > 0 and
inactive otherwise. Initially, every vertex is inactive. The source
can choose which time steps to transmit. If 𝑠 decides to transmit at
time step 𝑡 , then it sets its counter to 𝛿 , i.e. becomes active and it
remains active until time step 𝑡 + 𝛿 . The remaining vertices evolve
as follows.

• If at time step 𝑡 there is a vertex 𝑣 ≠ 𝑠 that has an edge with
an active vertex 𝑢, i.e., 𝑢𝑣 ∈ 𝐸𝑡 , then at time step 𝑡 + 1 the
counter of 𝑣 is set to 𝛿 .

• If at time step 𝑡 there is a vertex 𝑣 that is active and all of
its adjacent vertices are inactive, i.e., all 𝑢 ∈ 𝑉 with 𝑢𝑣 ∈ 𝐸𝑡
are inactive, then at time step 𝑡 + 1 the counter of vertex 𝑣
decreases by 1.

Observe that the procedure above allows “renewal” of the active
state for a vertex. In other words, it resets the counter of a vertex to
𝛿 after any time step it is adjacent to an active vertex. In contrast,
the standard SIS model does not allow renewals. We discuss the
differences between our model and SIS in Section 6.

A transmission schedule T = (𝜏1, 𝜏2, . . . , 𝜏𝑏 ) is a set of time steps
where the source transmits. Let (𝛿,T) − active𝑡 (G, 𝑠) denote the
set of active vertices at time step 𝑡 under the transmission schedule
T for source 𝑠 , when the counter is 𝛿 .

Problems.We study three problems. In every case, the input is a
temporal graph G, a source 𝑠 , a budget 𝑏 and positive integers 𝛿 ,
and 𝑘 .

• MaxSpread. Is there a transmission schedule T , such that��⋃
𝑡 ∈[𝑡max ] (𝛿,T) − active𝑡 (G, 𝑠)

�� ≥ 𝑘 and |T | ≤ 𝑏? Put
simply, the goal for MaxSpread is to maximize the number
of different vertices that become active.

• MaxViral. Is there a transmission schedule T , such that
max𝑡 ∈[𝑡max ] | (𝛿,T) − active𝑡 (G, 𝑠) | ≥ 𝑘 and |T | ≤ 𝑏? So,

the goal for MaxViral is to maximize the number of active
vertices at any time step.

• MaxViralTstep. Here, we have in addition a time step
𝑡∗ ∈ [𝑡max]. Is there a transmission schedule T , such that
| (𝛿,T) − active𝑡∗ (G, 𝑠) | ≥ 𝑘 and |T | ≤ 𝑏? In other words,
the goal forMaxViralTstep is to maximize the number of
active vertices at a given time step 𝑡∗.

Parameterized complexity.We refer to the standard books for
a basic overview of parameterized complexity theory [9, 11]. At a
high level, parameterized complexity studies the complexity of a
problem with respect to its input size, 𝑛, and the size of a parameter
𝑘 . A problem is fixed parameter tractable by 𝑘 , if it can be solved in
time 𝑓 (𝑘)·poly(𝑛), where 𝑓 is a computable function. If a problem is
W[2]-hard with respect to 𝑘 , then it is unlikely to be fixed parameter
tractable by 𝑘 .
SetCover. An instance of SetCover consists of a collection 𝑆 =

{𝑆1, 𝑆2, . . . , 𝑆𝑚} of subsets of a set 𝑁 of 𝑛 elements, and a positive
integer 𝑏. The task is to decide if there are 𝑏 sets 𝑇1,𝑇2, . . . ,𝑇𝑏 in 𝑆 ,
such that𝑇1∪𝑇2∪· · ·∪𝑇𝑏 = 𝑁 . SetCover is known to be W[2]-hard
when parameterized by 𝑏 [10].

3 UNCONSTRAINED SCHEDULES

In this section we study the complexity of the three objectives
under unconstrained transmission schedules. We show that all of
them are intractable, even on trees of maximum degree three. For
clarity of exposition, when we write that “vertex𝑢 influences vertex
𝑦” we mean that vertex 𝑦 became active via a sequence of vertex
activations that includes vertex 𝑠 .

3.1 MaxSpread

We prove that MaxSpread is NP-complete and W[2]-hard when
parameterized by 𝑏. Containment in NP is straightforward, since
given a transmission schedule, we can simulate the process and
check whether every vertex becomes active at least once. Now, we
describe the construction and prove some key properties our con-
struction satisfies. Then we provide the proof of the main theorem
of the section.

Construction.We reduce from SetCover. In what follows we will
assume, that 𝑛 = 2𝑘 for some positive integer 𝑘 . Observe that this
is without loss of generality, since we can augment any instance by
adding a dummy set that contains the required number of elements,
and by asking for a solution of size 𝑏 + 1. We construct a perfect
binary tree 𝑃1 with 𝑛 leaves, where the root of the binary tree is the
source, 𝑠 , and its leaves are 𝑥1, 𝑥2, . . . , 𝑥𝑛 from “left to right" and let
ℎ = log 2𝑛 be the current height of the tree. Note that such a tree
always has 2𝑛 vertices and is uniquely defined. For every 𝑗 ∈ [𝑚]
and for every 𝑙 ∈ [ℎ], we add label (𝑙 − 1)𝛿 + ( 𝑗 − 1) (𝛿 + 1) + 1 to
every edge of the tree between levels 𝑙 and 𝑙 + 1. Then we construct
vertices 𝑦1, 𝑦2, . . . , 𝑦𝑛 and for every 𝑖 ∈ [𝑛], we add edge 𝑥𝑖𝑦𝑖 . Note
now that 𝑃1 has ℎ + 1 levels. For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], if 𝑖 ∈ 𝑆 𝑗 ,
we add label ℎ𝛿 + ( 𝑗 − 1) (𝛿 + 1) + 1 to edge 𝑥𝑖𝑦𝑖 ; see Figure 1.

Intuitively, the goal of this construction is to have the following
properties:
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Figure 1: An example of the construction used in Theorem3.4,

when 𝛿 = 3. The subsets of the SetCover problem are 𝑆1 =

{𝑢1, 𝑢2, 𝑢3}, 𝑆2 = {𝑢3, 𝑢7, 𝑢8}, 𝑆3 = {𝑢4, 𝑢5, 𝑢6} and 𝛿 = 3

• Each transmission of vertex 𝑠 acts like a monotone wave,
that goes from the vertex to the leaves, i.e., no vertex can
influence its parent.

• For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], a transmission of vertex 𝑠

will influence a vertex 𝑦𝑖 only if 𝑠 transmits at a time step
𝑡 𝑗 = ( 𝑗 − 1) (𝛿 + 1) + 1, such that set 𝑆 𝑗 includes element 𝑖 in
the SetCover instance.

In the next part, we formally list these properties which are vital
for the proof of theorem 3.4.

Lemma 3.1 (★). Consider constructed graph 𝑃1. Let 𝑡 𝑗 = ( 𝑗−1) (𝛿 +
1) + 1. If vertex 𝑠 transmits between time steps 𝑡 𝑗 − (𝛿 − 1) and 𝑡 𝑗 ,
then every vertex 𝑣 ∈ 𝐶 at level 𝑙 will become active at time step

(𝑙 − 2)𝛿 + ( 𝑗 − 1) (𝛿 + 1) + 2. Additionally the vertices become active

once per such a transmission and an active vertex 𝑣 in level 𝑙1 can never
influence a vertex 𝑤 in level 𝑙2, such that 𝑙2 < 𝑙1 (the transmission

goes from the root of the tree towards the leaves).

Proposition 3.2 (★). Consider constructed graph 𝑃1. For every
𝑗 ∈ [𝑚], if vertex 𝑠 transmits at time step 𝑡 , such that 𝑡 𝑗 − (𝛿 − 1) ≤
𝑡 ≤ 𝑡 𝑗 , then no other vertex will become active by this transmission.

Lemma 3.3 (★). Consider constructed graph 𝑃1. For every 𝑗 ∈ [𝑚]
and 𝑖 ∈ [𝑛], a vertex 𝑦𝑖 will become active by the transmission of

vertex 𝑠 , only if the transmission starts between time steps 𝑡 𝑗 − (𝛿 − 1)
and 𝑡 𝑗 , and only if 𝑖 ∈ 𝑆 𝑗 .

Theorem 3.4. For any 𝛿 ≥ 1, MaxSpread is NP-hard and W[2]-
hard when parameterized by 𝑏 on tree graphs with degree 3.

Proof. We claim that there exists a solution to MaxSpread
on constructed graph 𝑃1, such that 𝑠 influences 3𝑛 vertices, if 𝑠
transmits at |𝑏 | time steps at most in the constructed graph, if and
only if there is a solution 𝑇 = 𝑇1 ∪ 𝑇2 ∪ · · · ∪ 𝑇𝑏 to the original
SetCover instance.

Let 𝑡 𝑗 = ( 𝑗 − 1) (𝛿 + 1) + 1. Assume that we have solution𝑇 to the
SetCover set problem. We can construct a solution forMaxSpread
by having vertex 𝑠 transmit at each time step 𝑡 𝑗 , such that 𝑆 𝑗 ∈ 𝑇 .
We can guarantee that this is a solution forMaxSpread since every
𝑖 ∈ [𝑛] is included in at least one set 𝑆 𝑗 and by Lemma 3.3 every
vertex 𝑦𝑖 will become active by at least one transmission of vertex 𝑠 .

For the reverse direction, consider that we have a solution to
MaxSpread which is a transmission schedule T = (𝜏1, 𝜏2, . . . , 𝜏𝑏 ).
This means that if vertex 𝑠 transmits at time steps 𝜏1, 𝜏2, . . . , 𝜏𝑏 , then

every vertex in the graph will become active including vertices
𝑦1, 𝑦2, . . . , 𝑦𝑛 . To construct a solution for the SetCover problem
we do the following. For every 𝑡 ∈ [𝑏] and every 𝑗 ∈ [𝑚], if
𝑡 𝑗 − (𝛿 − 1) ≤ 𝜏𝑡 ≤ 𝑡 𝑗 , we add set 𝑆 𝑗 to solution 𝑇 of the SetCover
problem (ignoring duplicate additions). By definition, the size of 𝑇
is at most 𝑏. Note also that every element 𝑖 ∈ [𝑛] is included in 𝑇
since every vertex 𝑦𝑖 becomes active by at least one transmission
of vertex 𝑠 and by Proposition 3.2 and Lemma 3.3 this only happens
when 𝑖 ∈ 𝑆 𝑗 . This completes the proof. □

3.2 MaxViral andMaxViralTstep

We will now show that MaxViral is NP-complete and W[2]-hard
when parameterized by 𝑏 on tree graphs with degree 3. Contain-
ment in NP is straightforward, since given a transmission schedule,
we can simulate the process and check the maximum active vertices
for any time step. We will use a similar construction to the previous
theorem and prove some key properties that we need; the construc-
tion differentiates in several parts in order to accommodate the
different objectives. The proof will be again via a reduction from
SetCover. Note also that the following construction/proofs can
also be easily modified to show that MaxViralTstep is NP-hard
and W[2]-hard and as such, we will not provide one.

Construction. We reduce from SetCover. We construct a perfect
binary tree 𝑃2 with 𝑛 leaves, where the root of the binary tree is
called 𝑠 and the leaves of the binary tree are called 𝑥1, 𝑥2, . . . , 𝑥𝑛
from “left to right" and let ℎ = log 2𝑛 be the height of the current
tree. Note that we will not update the value of ℎ once more vertices
are added to the tree. Also, note that such a tree always has 2𝑛 − 1
vertices and is uniquely defined. Let set 𝐶 contain every vertex of
the current graph. For every 𝑗 ∈ [𝑚 + 1] and for every 𝑙 ∈ [ℎ], we
add label (𝑙 − 1)𝛿 + ℎ( 𝑗 − 1) (𝛿 + 1) + 1 to every edge of the tree
between levels 𝑙 and 𝑙 + 1. Then we construct vertices 𝑦1, 𝑦2, . . . , 𝑦𝑛
and vertices 𝑧1, 𝑧2, . . . , 𝑧𝑛 and for every 𝑖 ∈ [𝑛], we add edge 𝑥𝑖𝑦𝑖
and 𝑦𝑖 , 𝑧𝑖 . For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚 + 1], if 𝑖 ∈ 𝑆 𝑗 , we add
label ℎ𝛿 + ℎ( 𝑗 − 1) (𝛿 + 1) + 1 to edge 𝑥𝑖𝑦𝑖 . For every 𝑖 ∈ [𝑛] and
𝑗 ∈ [ℎ(𝑚+1)], we add labels ( 𝑗−1) (𝛿+1)+1, ( 𝑗−1) (𝛿+1)+2 to edge
𝑦𝑖𝑧𝑖 . This completes the construction; see Fig. 2 for an example.

Intuitively, the goal of this construction is to have the following
properties:

• Each transmission of vertex 𝑠 acts like a monotone wave,
that goes from the vertex to the leaves, i.e., no vertex can
influence its parent.

• For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], a transmission of vertex 𝑠

will influence a vertex 𝑦𝑖 only if 𝑠 transmits at a time step
𝑡 𝑗 = ℎ( 𝑗 − 1) (𝛿 + 1) + 1, such that set 𝑆 𝑗 includes element 𝑖
in the SetCover instance.

• For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚+1], once vertex𝑦𝑖 is influenced
at some time step ℎ𝛿 +ℎ( 𝑗1 − 1) (𝛿 + 1) + 1 by a transmission
from vertex 𝑠 , vertex 𝑦𝑖 , 𝑧𝑖 will always be active at time step
ℎ𝛿 + ℎ( 𝑗 − 1) (𝛿 + 1) + 3, where 𝑗1 < 𝑗 .

Next, we formally list these properties which are vital for the
proof of Theorem 3.10.

Lemma 3.5 (★). Consider constructed graph 𝑃2. Let 𝑡 𝑗1 = ℎ( 𝑗 −
1) (𝛿 + 1) + 1. If vertex 𝑠 transmits between time steps 𝑡 𝑗1 − (𝛿 − 1)
and 𝑡 𝑗1 , then every vertex 𝑣 ∈ 𝐶 at level 𝑙 will become active at time
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Figure 2: An example of the construction used to prove

that MaxViral is W[2]-hard, when 𝛿 = 3. The subsets of

the SetCover problem are 𝑆1 = {𝑢1, 𝑢2, 𝑢3}, 𝑆2 = {𝑢3, 𝑢7, 𝑢8},
𝑆3 = {𝑢4, 𝑢5, 𝑢6},

step (𝑙 − 2)𝛿 + 𝑡 𝑗1 + 2. Additionally vertices 𝑣 ∈ 𝐶 become active once

per such a transmission and an active vertex 𝑣 in level 𝑙1 can never

influence a vertex 𝑤 in level 𝑙2, such that 𝑙2 < 𝑙1 (the transmission

goes from the root of the tree towards the leaves).

Corollary 3.6 (★). Consider any pair of vertices 𝑣,𝑤 ∈ 𝐶 \ (𝑠),
where 𝑣,𝑤 belong to different levels of 𝑃2. There exists no such pair of

vertices such that both vertices can be active at the time step.

Proposition 3.7 (★). Consider constructed graph 𝑃2. For every
𝑗 ∈ [𝑚+1], if vertex 𝑠 transmits at time step 𝑡 , such that 𝑡 𝑗 −(𝛿−1) ≤
𝑡 ≤ 𝑡 𝑗 , then no other vertex will become active by this transmission.

Lemma 3.8 (★). For every 𝑖 ∈ [𝑛], vertex𝑦𝑖 cannot influence vertex
𝑥𝑖 .

Lemma 3.9 (★). Consider constructed graph 𝑃2. Let 𝑡 𝑗 = ℎ( 𝑗 −
1) (𝛿 + 1) + 1. For every 𝑗 ∈ [𝑚 + 1] and 𝑖 ∈ [𝑛], a vertex 𝑦𝑖 will

become active at time step ℎ𝛿 + 𝑡 𝑗1 + 3 by the transmission of vertex 𝑠 ,

only if the transmission starts between time steps 𝑡 𝑗1 − (𝛿 − 1) and 𝑡 𝑗1 ,
where 𝑗1 < 𝑗 , and only if 𝑖 ∈ 𝑆 𝑗 . Additionally, once vertex 𝑦𝑖 becomes

active at time step ℎ𝛿 + 𝑡 𝑗1 + 3 by the transmission of vertex 𝑠 , vertices

𝑦𝑖 , 𝑧𝑖 will be active at every time step ℎ𝛿 + 𝑡 𝑗1 + 3 > ℎ𝛿 + 𝑡 𝑗 + 2, for
every 𝑗 ∈ [𝑚 + 1].

Theorem 3.10. For any 𝛿 ≥ 1, MaxViral is NP-hard and W[2]-
hard when parameterized by 𝑏 on tree graphs with degree 3.

Proof. We claim that there exists a solution to MaxViral on
constructed graph 𝑃2, such that wemaximize the number of vertices
that are active at any one time step 𝑡 if 𝑠 transmits at |𝑏 | time steps
at most in the constructed graph, if and only if there is a solution
𝑇 = 𝑇1 ∪𝑇2 ∪ · · · ∪𝑇𝑏 to the original SetCover instance.

First note, that due to Corollary 3.6, the maximum vertices that
can be influenced in the graph is exactly the set that contains
vertices 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 . Let 𝑡 𝑗 = ℎ( 𝑗 − 1) (𝛿 + 1) + 1. Assume that we have
solution 𝑇 to the SetCover set problem. We split, the analysis into
two cases: (i) 1 ≤ 𝛿 ≤ 2 and (ii) 𝛿 ≥ 2. For case (i), we can construct
a solution forMaxViral by having vertex 𝑠 transmit at each time
step 𝑡 𝑗 , such that 𝑆 𝑗 ∈ 𝑇 . We can guarantee that this is a solution

forMaxViral since every 𝑖 ∈ [𝑛] is included in at least one set 𝑆 𝑗
and by Lemma 3.9, for every 𝑖 ∈ [𝑛], every vertex 𝑦𝑖 will become
active by at least one transmission of vertex 𝑠 . Additionally, due
to Lemma 3.9, every vertex 𝑥𝑖 , 𝑧𝑖 will be active at every time step
ℎ𝛿 + 𝑡 𝑗1 + 3 for 𝑡 𝑗+1 > 𝑡 𝑗 . Finally, 𝑠 performs one final transmission
at (𝑚+1−1) (𝛿 +1) +1, so that all vertices 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are active at time
step ℎ𝛿 +ℎ(𝑚+1−1) (𝛿 +1) +3. For case (ii), assume that the last set
is called 𝑆𝑓 . We create the same solution as case (i) but we do not
add the final transmission. This is because once vertex 𝑠 transmits
at time step (𝑓 − 1) (𝛿 + 1) + 1, at time step ℎ𝛿 +ℎ(𝑓 − 1) (𝛿 + 1) + 3,
every vertex 𝑥𝑖 will be active by the transmission at time step
(𝑓 − 1) (𝛿 + 1) + 1, or by a previous transmission. This was not true
for case (i), because influence time is small, and vertices 𝑥𝑖 will have
stopped being active at time step ℎ𝛿 + ℎ(𝑓 − 1) (𝛿 + 1) + 3 by the
transmission that fired at time step (𝑓 − 1) (𝛿 + 1) + 1.

For the reverse direction, we again split the analysis in two cases:
(i) 1 ≤ 𝛿 ≤ 2 and (ii) 𝛿 ≥ 2. Consider that we have a solution to
MaxViral which is a transmission strategy T = (𝜏1, 𝜏2, . . . , 𝜏𝑏 ).
For case (i) this means that if vertex 𝑠 transmits at time steps
𝜏1, 𝜏2, . . . , 𝜏𝑏 , then due to Lemma 3.9, vertices 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 in the graph
will be active at time step ℎ𝛿 +ℎ(𝑚 +1−1) (𝛿 +1) +3. To construct a
solution for the SetCover problem we do the following. For every
𝑡 ∈ [𝑏 − 1] and every 𝑗 ∈ [𝑚], if 𝑡 𝑗 − (𝛿 − 1) ≤ 𝜏𝑡 ≤ 𝑡 𝑗 , we add
set 𝑆 𝑗 to solution 𝑇 of the SetCover problem (ignoring duplicate
additions). We do not add the last set 𝑏 because this transmission
was used only to influence vertices 𝑥𝑖 . By definition the size of 𝑇
is at most 𝑏. Note also that every element 𝑖 ∈ [𝑛] is included in 𝑇
since every vertex𝑦𝑖 , 𝑧𝑖 becomes active by at least one transmission
of vertex 𝑠 and by Proposition 3.7 and Lemmas 3.8,3.9 this only
happens when 𝑖 ∈ 𝑆 𝑗 . For case (ii), we do the exactly the same but
we also add set 𝑏 to the solution. □

3.3 Approximation Algorithm

In this subsection, we show that all of the problems we study ad-
mit a constant factor approximation. That is, while the problems
are NP-hard, we will show that for each of the problems there ex-
ists a polynomial time algorithm that either finds a transmission
schedule T = (𝜏1, 𝜏2, . . . , 𝜏𝑏 ) that achieves at least 1 − 1

𝑒 ≈ 0.632
fraction of the influence target 𝑘 , or we correctly output that the
influence target 𝑘 cannot be achieved. More precisely, we give a
reduction from each of our problems toMaximumCoverage (the
maximization version of SetCover) that preserves both influence
target 𝑘 and budget 𝑏; here 𝑏 will be the number of sets we wish
to select and 𝑘 the number of elements of the universe we wish to
cover. Moreover, we show that there is one-to-one correspondence
between transmission schedules and the collections of selected sets.

The following lemma serves as the main tool in this section. It
basically states that if we have some transmission schedule T , then
the set of all vertices active at some time step 𝑡 is precisely the
union over all 𝜏 ∈ T of the vertices active at time step 𝑡 if we only
transmit at time step 𝜏 .

Lemma 3.11 (★). Given a temporal graph G := ⟨𝐺, E⟩ with life-

time 𝑡max, a source vertex 𝑠 , a time step 𝑡 ∈ [𝑡max], integer 𝛿 > 0,
a transmission schedule T , it holds that (𝛿,T)-active𝑡 (G, 𝑠) =⋃

𝜏 ∈T (𝛿, 𝜏)-active𝑡 (G, 𝑠).



Given the above lemma, it is rather straightforward to construct
an instance of SetCover or MaximumCoverage from each of our
problems. Before we do so, let us formally define the Maximum-
Coverage problem. An instance of MaximumCoverage consists
of a collection S = {𝑆1, 𝑆2, . . . , 𝑆𝑚} of subsets over some universe
𝑈 and a positive integers 𝑏 and 𝑘 , and we need to decide if there is a
sub-collection T ⊆ S of size 𝑏, such that |⋃𝑆 ∈T 𝑆 | ≥ 𝑘 . To obtain
our results we use the well-known result that forMaximumCov-
erage, there is a polynomial-time algorithm that either outputs a
collection T ⊆ S such that |T | = 𝑏 and |⋃𝑆 ∈T 𝑆 | ≥ (1 − 1

𝑒 ) · 𝑘 or
correctly outputs that no collection of at most 𝑏 sets covers at least
𝑘 elements.

Theorem 3.12 (★). There is a polynomial-time algorithm that

finds a (1− 1
𝑒 )-approximate solution forMaxSpread,MaxViral, and

MaxViralTstep.

4 WINDOW CONSTRAINED SCHEDULES

In this section we consider two types of so called “window con-
straint” schedules, where we are only interested in transmission
schedules satisfying some additional constraints. First we study
fixed-window schedules. There the lifetime of the temporal graph is
split into a number of disjoint time intervals and the transmission
schedule needs to have exactly one transmission in each of the
intervals. Then, we shift our attention to (𝑥,𝑦)-shifting window
schedules, where the difference between two consecutive transi-
tions should be between 𝑥 and𝑦. Both scenarios are associated with
a new natural parameter: the size,𝑤 , of the window.

Note, if we do not restrict size of the window, then the results
from the previous section extend rather straightforwardly. To see
this, consider the fixed window case. Assume that we have an
instance of MaxSpread for the unconstrained setting, on the tem-
poral graph G = ⟨𝐺, E⟩. Then, we could just create a new temporal
graphG′ = ⟨𝐺 ′, E ′⟩ such that𝐺 ′ = 𝐺 and E ′ is a concatenation of𝑏
copies of the sequence E. We then set the windows to have size 𝑡max
each, i.e., first window contains time steps 1 to 𝑡max, second window
from 𝑡max to 2𝑡max and so on. It is rather straightforward to see that
this reduction immediately gives hardness forMaxSpread. It is also
not too hard to verify that using similar reductions as in previous
section would give hardness forMaxViral andMaxViralTstep,
when the size of the window is not bounded by a constant. We
can easily get hardness for shifting window schedules, using an
argument that is nearly the same. This time, between the two con-
secutive copies of E, we introduce 𝑡max many time steps without
any edge, and we let 𝑥 = 𝑡max and 𝑦 = 2𝑡max.

On the other hand, if both the budget, 𝑏, and window size, 𝑤 ,
were parameters, then we would immediately get that the lifetime
is bounded by 𝑏 times the (max) window size (or 𝑦 + 1 in the case of
(𝑥,𝑦)-shifting windows), so an exhaustive search already gives an
algorithm running in time

(𝑏 ·𝑤
𝑏

)
·poly( |𝑉 (𝐺) | ·𝑡max), where𝑤 is the

size of the window. For this reason, in the rest of the section we will
consider the cases, where the budget is large (or unrestricted) and
the size of the window is small. We will show that, unfortunately,
the problem remains NP-hard even for constant size windows.

4.1 Fixed Window Schedules

In this section we prove that all three problems are NP-hard even
for very restricted settings.

Theorem 4.1 (★). MaxSpread with fixed window constraints is

NP-hard for every 𝛿 ≥ 1 even when window size is 2𝛿 , in every time

step there are at most 3 active edges, every edge is active at most twice,

and the underlying graph is a star with center the source 𝑠 .

Proof. We show this by reduction fromVertexCover on graphs
with maximum degree three [16]. In the VertexCover problem,
we are given a graph 𝐻 = ⟨𝑉 , 𝐸⟩ and an integer ℓ , and the question
is whether there exists a set of vertices 𝑆 such that |𝑆 | ≤ ℓ and for
all 𝑒 ∈ 𝐸 we have |𝑒 ∩ 𝑆 | ≥ 1.

Now, let ⟨𝐻, ℓ⟩ be an instance of VertexCover such that the
degree of every vertex ℎ ∈ 𝑉 (𝐻 ) is at most three. We construct
a temporal graph G = ⟨𝐺, E⟩ as follows. First, for the sake of
presentation of the proof, let |𝑉 (𝐻 ) | = 𝑛, |𝐸 (𝐻 ) | = 𝑚, and let us
order the vertices and edges of 𝐻 in an arbitrary but fixed order.
That is let 𝑉 (𝐻 ) = {ℎ1, ℎ2, . . . , ℎ𝑛} and 𝐸 (𝐻 ) = {𝑒1, 𝑒2, . . . , 𝑒𝑚}.

The vertices of G are as follows:
• the source vertex 𝑠;
• the set 𝑉𝐸 containing𝑚 vertices, such that for every 𝑒 𝑗 ∈
𝐸 (𝐻 ) there is a vertex 𝑣 𝑗 ∈ 𝑉𝐸 ;

• the set 𝑈 containing 𝑛 vertices, such that for every ℎ𝑖 ∈
𝑉 (𝐻 ), there is a vertex 𝑢𝑖 ∈ 𝑈 .

The underlying graph 𝐺 is then a star with center the vertex 𝑠 and
𝑡max = 2𝛿 · ( |𝑉 (𝐻 ) | + 1). Every window will consist of 2𝛿 time steps
and will be associated with a single vertex of 𝑉 (𝐻 ). So, for every
𝑖 ∈ [𝑛] the window from time step 2𝛿 · (𝑖 − 1) + 1 to time step
2𝛿 · 𝑖 is associated with vertex ℎ𝑖 . The last window is a “dummy”
window that is only necessary in the case of 𝛿 = 1. In this case, we
might want to transmit at the time step 2𝛿 · |𝑉 (𝐻 ) | to activate some
vertices, which we can only do if there is one more time step to
activate the vertices adjacent to 𝑠 at time step 2𝛿 |𝑉 (𝐻 ) |. Consider
now the window associated with ℎ𝑖 . At the first step inside this
window, i.e. at 2𝛿 (𝑖 − 1) + 1, there will be edges between 𝑠 and every
𝑣 𝑗 ∈ 𝑉𝐸 such that ℎ𝑖 is incident with the edge 𝑒 𝑗 . Note that since
the degree of ℎ𝑖 is at most 3, at most 3 edges have label 2𝛿 (𝑖 − 1) + 1.
Moreover, in (𝛿 +1)-th time step inside the window (2𝛿 (𝑖−1) +𝛿 +1)
there is an edge between 𝑠 and 𝑢𝑖 . That is exactly one edge – the
edge 𝑠𝑢𝑖 – has the label 2𝛿 (𝑖 − 1) + 𝛿 + 1.

Given the above construction of the temporal graph G, we let 𝑘 =

𝑛+𝑚−ℓ andwe claim that there exists a window constraint transmis-
sion schedule T such that

��⋃
𝑡 ∈[𝑡max ] (𝛿,T) − active𝑡 (G, 𝑠)

�� ≥ 𝑘

if and only if 𝐻 admits a vertex cover with at most ℓ vertices. To
see this, we only need to show that it only makes sense to transmit
in 1st or 𝛿 + 1st step in each window. Given this, we then observe
that transmitting in the 1st time steps in the windows associated
with the vertices of a vertex cover 𝑆 and in 𝛿 + 1st windows in
the remaining time steps activates all but |𝑆 | many vertices in 𝑈

(precisely the vertices associated with the vertices in 𝑆). □

Similarly as in the previous section, we can rather straightfor-
wardlymodify the above proof to obtain the NP-hardness forMaxVi-
ral andMaxViralTstep.



Theorem 4.2 (★). MaxViral and MaxViralTstep with fixed win-

dow constraints are both NP-hard even when the window size is 2𝛿 ,
for every 𝛿 ≥ 1.

4.2 Shifting Window Schedules

The hardness results for the shifting windows case follow rather
easily from the proofs in the previous section. For MaxSpread, we
follow the same reduction as in Theorem 4.1, but: we add additional
𝛿 time steps between any two consecutive windows; each time step
will be empty, i.e. it will not contain any edges; we ask for (2𝛿, 4𝛿)-
shifting window. This guarantees that we can always transmit in
every window of size 3𝛿 , either at time step 3𝑖𝛿 + 1 or at time step
3𝑖𝛿 + 𝛿 + 1, which are the only two time steps within the window
than contain some edges. Moreover, the lower value of the window,
2𝛿 , guarantees that 𝑠 cannot be active during both of the time steps
within one window.

Theorem 4.3. MaxSpread with (2𝛿, 4𝛿)-shifting window con-

straints is NP-hard, for every 𝛿 ≥ 1, even when in every time step

there are at most 3 active edges, every edge is active at most twice,

and the underlying graph is a star with the center in the source 𝑠 .

Following a similar argument to Theorem 4.2 , we get.

Theorem 4.4. MaxViral and MaxViralTstep (2𝛿, 4𝛿)-shifting
window constraints is NP-hard for every 𝛿 ≥ 1.

5 SCHEDULES ON PERIODIC GRAPHS

In this section we investigate the complexity of our three problems
on periodic temporal graphs. A periodic temporal graph is given
to us in the exactly same way as the temporal graph defined in
Section 2. The only difference is that after reaching the time step
𝑡max instead of stopping the time, the temporal graph repeats itself
from time step 1. More precisely, given a temporal graphG := ⟨𝐺, E⟩,
where E = (𝐸1, 𝐸2, . . . , 𝐸𝑡max ), if we say that G is a periodic graph,
then edge with label 𝑖 ∈ [𝑡max] is available not only in time step 𝑖
but in every time step 𝑖 + 𝑗 · 𝑡max, where 𝑗 ∈ N. In this case, we call
𝑡max the period of G.

Note that while in previous sections we only needed to simulate
the spreading process until time step 𝑡max, this is now not the
case and the spreading process continues infinitely. However, our
questions still make sense andwe can even upper bound the number
of steps we need to simulate. It is not so difficult to see that there
are at most (𝛿 + 1) |𝑉 (𝐺) | different combinations of counter values
on the vertices of the graph 𝐺 . Thus, after simulating at most (𝛿 +
1) |𝑉 (𝐺) | · 𝑡max steps of the spreading process, some combination of
counters will appear at time steps 𝑖+ 𝑗 ·𝑡max and 𝑖+ 𝑗 ′ ·𝑡max for some
𝑖 ∈ [𝑡max]. Since the process is deterministic, if there is no new
transmission between these two time steps, we end up repeating
exactly the same sequence of combinations of counter values (and
hence active vertices), as we have between these two time steps.
Therefore, the time between any two consecutive transmissions in
a solution to any of our problems, does not need to be more than
(𝛿 + 1) |𝑉 (𝐺) | · 𝑡max steps apart. Thus, for any such solution we need
to simulate (𝛿 + 1) |𝑉 (𝐺) | · 𝑡max · (𝑏 + 1) steps, where 𝑏 is the budget
we are given.

In what follows, we consider the situation when the period 𝑡max
is small, i.e., we study the parameterized complexity of the problem

s
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Figure 3: Illustration of the reduction described in Theo-

rem 5.2. There is a path 𝑠, 𝑣1, . . . , 𝑣𝑚𝑡max with cycling labels

1, 2, . . . , 𝑡max, 1, 2 . . . and vertices 𝑢1, . . . , 𝑢𝑛 . Vertex 𝑣1 is adja-

cent to 𝑢1 and 𝑢2 with label 2 on the two edges representing

𝑆0 = {1, 2}. Similarly, 𝑣𝑡max+1 is adjacent to 𝑢3, 𝑢5, 𝑢6 with label

2, representing 𝑆1 = {𝑢3, 𝑢5, 𝑢6} and so on.

with respect to the parameter 𝑡max. Before we prove our results, we
would like to highlight that restricting the period is necessary if
we hope to get any positive results for the problem. This is because
adding 𝛿 + 1 new labels 𝐸𝑡max+1, 𝐸𝑡max+2, . . . , 𝐸𝑡max+𝛿+1 where 𝐸 𝑗 = ∅
for all 𝑗 between 𝑡max + 1 and 𝑡max +𝛿 + 1, gives us a periodic graph
in which all vertices (other than 𝑠) are always inactive when the
period starts. Hence, the idea described above effectively reduces
the problem on periodic temporal graphs to the problem when we
are given non-periodic temporal graphs.

Let us now considerMaxSpread. Since we only care about which
vertices are activated at least once, but do not care about synchronic-
ity, we immediately get from the application of Lemma 3.11 that
we only need to consider transmitting within the first period. So, if
𝑏 ≥ 𝑡max, then clearly an optimal solution is to just transmit 𝑡max
times in total – in every time step within the first period. On the
other hand, if 𝑏 < 𝑡max, then we can enumerate all

(𝑡max
𝑏

)
< 2𝑡max

possibilities to transmit in 𝑏 different time steps within the first
period. However, there is still one issue to resolve: our upper bound
(𝛿 + 1) |𝑉 (𝐺) | · 𝑡max · (𝑏 + 1) on the number of steps we need to
simulate is too large. In the next theorem we prove that, if we only
care about whether a vertex has been activated or not, then we can
overcome this large upper bound and show that the number of steps
we need to simulate is actually only at most ( |𝑉 (𝐺) | + 1) · 𝑡max · 𝛿 .

Theorem 5.1 (★). MaxSpread can be solved in 2𝑡max ·poly( |𝑉 (𝐺) |)
time on a periodic temporal graph G = ⟨𝐺, E⟩ with period 𝑡max.

Notice that if 𝛿 > 𝑡max, then every vertex with at least one neigh-
bor in the underlying graph will remain active forever after being
activated. Therefore, in this case, both MaxViral and MaxViralT-
step always require budget at most two: transmitting at time step 1
will make every connected component of𝐺−{𝑠} active by time step
|𝑉 (𝐺) | ·𝑡max; then transmit one more time to activate the singletons
in 𝐺 − {𝑠}. On the other hand, perhaps surprisingly, we will show
that the problem is NP-hard whenever 𝛿 < 𝑡max.

Theorem 5.2 (★). MaxViral and MaxViralTstep are NP-hard
and W[2]-hard parameterized by the budget 𝑏. Moreover, this holds

for every pair of 𝛿, 𝑡max, such that 𝛿 < 𝑡max, 𝑡max ≥ 2 and 𝛿 ≥ 1.

Proof. Let ⟨S, 𝑁 , 𝑏⟩ be an instance of SetCover such that S =

{𝑆0, 𝑆1, . . . , 𝑆𝑚−1}. Without loss of generality let us assume that
𝑁 = [𝑛] for some 𝑛 ∈ N. Given any 𝛿, 𝑡max, such that 𝛿 < 𝑡max,
𝑡max ≥ 2, 𝛿 ≥ 1, we are going to construct an input ⟨G, 𝑠, 𝛿, 𝑏, 𝑘⟩
for MaxViral and MaxViralTstep such that if S admits a set
cover of size at most 𝑏, then there exists a transmission schedule



T of size at most 𝑏 such that | (𝛿,T) − active𝑡 (G, 𝑠) | ≥ 𝑘 , where
𝑡 = (𝑚−1)·𝑡max+𝛿+2 andmax𝑡 ∈[𝑡max ] | (𝛿,T) − active𝑡 (G, 𝑠) | < 𝑘

otherwise. We set 𝑘 = 𝑛 + 𝑏 · 𝛿 .
The temporal graph G is constructed as follows. See also Figure 3

for the illustration of the reduction. The vertex set of G consists of:
1) source vertex 𝑠 ; 2)𝑞 =𝑚 ·𝑡𝑚𝑎𝑥 many vertices𝑉1 = {𝑣1, 𝑣2, . . . , 𝑣𝑞};
3) vertices 𝑉2 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, and the edges of G are: 1) edge
𝑠𝑣1 with label 1; 2) for every 𝑖 ∈ [𝑞 − 1], edge 𝑣𝑖𝑣𝑖+1 with label (𝑖
mod 𝑡max) + 1; 3) for every set 𝑆 𝑗 ∈ S and every 𝑖 ∈ 𝑆 𝑗 , there is an
edge between 𝑣 ( 𝑗 · 𝑡max) + 1 and 𝑢𝑖 with label 2.

Since edges 𝑣 𝑗𝑢𝑖 have all label 2 and 𝛿 < 𝑡max, it is easy to see
that vertices in 𝑉2 can only be activated in time step ℓ · 𝑡max + 3 for
some ℓ ∈ N and it will be active in time steps ℓ · 𝑡max + 3, ℓ · 𝑡max +
4, . . . , ℓ · 𝑡max + 𝛿 + 2. Similarly, 𝑣𝑖 for 𝑖 ∈ [𝑞] can only be activated
in time step ℓ · 𝑡max + (𝑖 mod 𝑡max) + 1 from 𝑣𝑖−1 (where 𝑣0 = 𝑠). It
is also straightforward to verify that we can assume that the source
𝑠 transmits only at time steps 𝜏 such that 𝜏 = ℓ · 𝑡max + 1. Now, if 𝑠
transmits at 𝜏 = ℓ · 𝑡max + 1, then at time step 𝑡 , only the vertices
𝑣𝑡−𝜏−𝛿 , . . . , 𝑣𝑡−𝜏−1 in 𝑉1 are active. Moreover, if 𝑡 − 𝜏 = 𝑗 · 𝑡max + 𝑟 ,
where 𝑟 ∈ {2, 3, . . . , 𝛿 + 1}, then at time step 𝑡 , the vertices 𝑢𝑖 ∈ 𝑉2
such that 𝑖 ∈ 𝑆 𝑗 are also active at the time step 𝑡 and these are
the only vertices of 𝑉2 that are activated at time step 𝑡 by the
transmission at the time step 𝜏 .

Given the above discussion and Lemma 3.11, we can quite easily
argue that a transmission schedule T = {𝜏1, . . . , 𝜏𝑏 } that activates
at least 𝑘 = 𝑛 + 𝑏 · 𝛿 many vertices at time step 𝑡 , then we can
construct a set cover of S of size 𝑏. Namely, it follows that if we
transmit at most 𝑏 times, then at most 𝑏 · (𝛿 − 1) many vertices in
𝑉1 can be active at the same time and in order for 𝑘 = 𝑛 +𝑏 ·𝛿 many
vertices to be active at time step 𝑡 , all the vertices in 𝑉2 have to
be active. It follows that T = {𝜏1, . . . , 𝜏𝑏 } such that for all 𝑖 ∈ [𝑏],
𝑡−𝜏𝑖 = 𝑗𝑖 ·𝑡max+𝑟𝑖 , where 𝑟𝑖 ∈ {2, 3, . . . , 𝛿+1}, and⋃𝑖∈[𝑏 ] 𝑆 𝑗𝑖 = [𝑛],
therefore S admits a set cover of size at most 𝑏.

On the other hand, we can easily revert the above construction
and postpone the first transmission such that the active vertices
on the path are in the blocks representing set cover exactly at time
step 𝑡 = (𝑚 − 1) · 𝑡max + 𝛿 + 2, at this time step all vertices in 𝑈

activated by the first vertex in these blocks are still active. □

6 DISCUSSION

In this paper we have explored the complexity of influence maxi-
mization on temporal graphs with a single fixed source. We have
focused on three objectives,MaxSpread,MaxViral, andMaxVi-
ralTstep, under three different settings, which are naturally moti-
vated by real life scenarios. We have proved that in almost every
case, the problem is intractable.

In this section we discuss the connections our model has with
some other problems arising in temporal graphs; we compare our
spreading dynamicswith the “standard” SISmodel; andwe highlight
some open questions that deserve extra study.

Comparison with the SIS model. As we have explained in Sec-
tion 2, the spreading dynamics we consider allow, “renewal” of the
influence. In other words, a vertex will reset its counter to 𝛿 every
time it is adjacent to an active vertex, even if it is already active.
In contrast, the original SIS model does not allow this; a vertex 𝑢
becomes active at time step 𝑡 + 1 only if at time step 𝑡 , vertex 𝑢
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Figure 4: Comparison between transmission schedules for

SIS and our spreading dynamics where 𝛿 = 2, on the temporal

path with vertices 𝑠, 𝑥,𝑦. (a) SIS dynamics with (a) T = (1, 3);
(b) SIS dynamics with T = (3); (c) our dynamics with T =

(1, 3). Solid vertices depict active vertices. The number below

each vertex is its counter at the specific timestep.

is (a) inactive and (b) adjacent to an active vertex. This difference
makes the two processes behave very differently. In fact, under
the SIS model, the size of active vertices does not monotonically
increase with the number of transmissions; Figure 4 demonstrates
this. It is not too difficult to verify that all of our hardness results,
both NP-hardness and W[2]-hardness, apply under the SIS spreading
model. This is because the structure of our instances is designed in
a way that does not allow for renewal. On the other hand though,
our positive result for periodic graphs is no longer valid under SIS
model. The complexity of the problem is an interesting question,
mainly because of the non-monotonicity of the active vertices when
SIS is used.

Open Problem 1. What is the complexity of MaxSpread for peri-
odic graphs under the SIS spreading model?

Connection to restless temporal walks. A temporal walk in
⟨𝐺, E⟩ from vertex 𝑣1 to vertex 𝑣𝑤 is a sequence of edges𝑊 =

(𝑣𝑖𝑣𝑖+1, 𝑡𝑖 )𝑤−1
𝑖=1 such that for every 𝑖 ∈ [𝑤] it holds that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸𝑡𝑖 ,

i.e. 𝑣𝑖𝑣𝑖+1 is available at time step 𝑡𝑖 and time steps are strictly
increasing, i.e. if 𝑖 < 𝑗 then 𝑡𝑖 < 𝑡 𝑗 . Observe that a vertex 𝑣 can
appear multiple times in a temporal walk; in a temporal path this is
not allowed. A temporal walk𝑊 = (𝑣𝑖𝑣𝑖+1, 𝑡𝑖 )𝑤−1

𝑖=1 is called 𝛿-restless
if 𝑡𝑖 < 𝑡𝑖+1 < 𝑡𝑖 + 𝛿 , for every 𝑖 ∈ [𝑤]. Then observe that (𝛿, 𝜏)-
active𝑡 (G, 𝑠) is equal to the set of vertices for which there exists
a (𝛿, 𝜏)-restless temporal walk from 𝑠 with arrival time between 𝑡

and 𝑡 − 𝛿 . Restless walks have been studied in the past [5], albeit
from a different point of view compared to ours.

Open questions. We have resolved the complexity of the three
objectives for almost every class of graphs. Though, there exist some
intriguing questions that will complete the complexity-landscape
of the problem.

Open Problem 2. Do MaxViral and MaxViralTstep on periodic
graphs belong to NP, or are they complete for some other class, like
PSPACE?



Observe that the infinite lifetime of the graph makes the problem
of verifying objectivesMaxViral andMaxViralTstep non triv-
ial. An intermediate question is the following, since our hardness
reduction cannot be trivially extended in order to resolve it.

Open Problem 3. AreMaxViral andMaxViralTstep on periodic
graphs NP-hard when 𝛿 = 𝑡max, i.e. when 𝛿 equals the period of the
graph?

The last question is concerned about the case where the underly-
ing graph is a path. Some initial observations show thatMaxSpread
in the unconstrained setting is tractable. However, for the remain-
ing combinations of objectives and transmission schedules, the
problem remains wide open.

Open Problem 4.What is the complexity of the three objectives
when the underlying graph is a path?
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