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Abstract

We contribute to the theoretical understanding of evolution-
ary algorithms and carry out a parameterized analysis of evo-
lutionary algorithms for the Euclidean traveling salesperson
problem (Euclidean TSP). We exploit structural properties re-
lated to the optimization process of evolutionary algorithms
for this problem and use them to bound the runtime of evolu-
tionary algorithms. Our analysis studies the runtime in depen-
dence of the number of inner points k and shows that simple
evolutionary algorithms solve the Euclidean TSP in expected
time O(n4k(2k − 1)!). Moreover, we show that, under rea-
sonable geometric constraints, a locally optimal 2-opt tour
can be found by randomized local search in expected time
O(n2kk!).

Introduction
Stochastic search algorithms such as evolutionary algo-
rithms (EAs) (Eiben and Smith 2007) and ant colony op-
timization (ACO) (Dorigo and Stützle 2004) have been ap-
plied to a wide range of combinatorial optimization prob-
lems. In contrast to numerous applications of these algo-
rithms, it is hard to understand their behavior from a the-
oretical point of view. Our goal is to gain new insights into
the working principles of these algorithms and show by rig-
orous analysis when and why this class of algorithm works.
With this paper, we contribute to the theoretical understand-
ing of evolutionary algorithms for combinatorial optimiza-
tion problems by studying their computational complexity.

Related Work
Initial studies on the computational complexity of evolu-
tionary algorithms have considered the behavior of these
algorithms on artificial pseudo-Boolean functions (Droste,
Jansen, and Wegener 2002; He and Yao 2001; 2003; Yu and
Zhou 2006). The goal of these studies is to understand the
impact of the different modules of an evolutionary algorithm
and to develop new methods for their analysis. Furthermore,
classical problems from combinatorial optimization such
as minimum spanning trees (Neumann and Wegener 2007;
2006) and shortest paths (Scharnow, Tinnefeld, and We-
gener 2004; Baswana et al. 2009; Doerr, Happ, and Klein
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2007) have been considered. One cannot hope to beat the
best problem-specific algorithms for these classical polyno-
mial solvable problems, but these studies provide interest-
ing insights into the search behavior of these algorithms and
show that many classical problems are solved by general
purpose algorithms such as evolutionary algorithms in ex-
pected polynomial time. Studies on classic NP-hard combi-
natorial optimization problems such as makespan schedul-
ing (Witt 2005), covering problems (Friedrich et al. 2009;
Oliveto, He, and Yao 2009; Friedrich et al. 2010), and multi-
objective minimum spanning trees (Neumann 2007) show
that these algorithms achieve good approximations for these
problems in expected polynomial time. For a comprehensive
presentation of the different results that have been achieved
see (Neumann and Witt 2010).

A promising approach to gain further insights into the be-
havior of evolutionary algorithms is to study them in the
context of parameterized complexity (Downey and Fellows
1999). This approach allows one to analyze the runtime of
evolutionary algorithms in dependence of the structure of a
problem instance. The parameterized analysis of evolution-
ary algorithms has been started only recently. Results have
been obtained for the vertex cover problem (Kratsch and
Neumann 2009) and the problem of computing a spanning
tree with a maximal number of leaves (Kratsch et al. 2010).

Our Contribution
We consider the traveling salesperson problem (TSP) which
is one of the most famous NP-hard combinatorial opti-
mization problems and analyze the influence of TSP prob-
lem structure on solubility by evolutionary algorithms. We
present a parameterized analysis of simple evolutionary al-
gorithms on the Euclidean TSP by investigating the runtime
complexity of simple EAs in dependence of the number of
interior points that an instance has. The number of interior
points is computed by taking the convex hull given by the
points of the input instance and counting the points lying
within the convex region.

We show that if the points of a Euclidean TSP instance
are embedded into a grid and are in convex position, both
a simple randomized local search and a simple (1+1) evo-
lutionary algorithm can solve the problem in polynomial
time. We also show that if the angles between any three
points are not arbitrarily small and the number of interior
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points is fixed by a constant k, we show that within expected
time O(nf(k)) where f depends only on k, randomized lo-
cal search has found a local optimum and the (1+1)-EA has
solved the TSP. This proves that the (1+1)-EA is a (random-
ized) XP-algorithm (Downey and Fellows 1999) for the Eu-
clidean TSP when the requisite constraint on angles holds.

The remainder of the paper is organized as follows. We
begin by introducing the Euclidean TSP and simple evolu-
tionary algorithms tasked to solve it. We then study struc-
tural properties that facilitate the technical analysis. We ana-
lyze the runtime of simple evolutionary algorithms on points
in convex position and then bound their runtime parameter-
ized by the number of interior points. We investigate the
parameterized complexity of finding locally optimal 2-opt
tours and solving the TSP to optimality with a simple (1+1)
evolutionary algorithm.

Simple EAs and the Euclidean TSP
Let V be a set of n points in the plane labeled as [n] =
{1, . . . , n} such that no three points are collinear. We
consider the complete, weighted Euclidean graph G(V,E)
where E is the set of all 2-sets from V . The weight of an
edge {u, v} ∈ E is equal to d(u, v): the Euclidean dis-
tance separating the points. The goal is to find a set of n
edges of minimum weight that form a Hamiltonian cycle
in G. A candidate solution of the TSP is a permutation x
of V which we consider as a sequence of distinct elements
x = (x1, x2, . . . , xn), such that xi ∈ [n]. The Hamiltonian
cycle in G induced by such a permutation is the set of n
edges

C(x) = {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}, {xn, x1}} .
The optimization problem is to find a permutation x which
minimizes the fitness function

f(x) =
∑

{u,v}∈C(x)

d(u, v). (1)

The inversion operator is closely related to the well-
known 2-change (or 2-opt) operation for TSP. A permuta-
tion x is transformed into a permutation σij [x] by inverting
the subsequence in x from position i to position j where
1 ≤ i < j ≤ n. The usual effect of the inversion oper-
ator is to delete the two edges {xi−1, xi} and {xj , xj+1}
from C(x) and reconnect the tour C(σij [x]) using edges
{xi−1, xj} and {xi, xj+1}. Here and subsequently, we con-
sider arithmetic on the indices to be modulo n, i.e., 1−1 = n
and n+ 1 = 1. Since the underlying graph G is undirected,
when (i, j) = (1, n), the operator has no effect since the
current tour is only reversed. There is also no effect when
(i, j) ∈ {(2, n), (1, n − 1)}. In this case, it is straightfor-
ward to check that the edges removed from C(x) are equal
to the edges replaced to create C(σij [x]).

Many randomized search heuristics such as evolutionary
algorithms applied to the TSP operate by iteratively gener-
ating successive permutations using applications of the in-
version operator. Such an algorithm starts from a random
initial permutation x(1) and generates successive permuta-
tions x(t+1) that attempt to improve upon x(t). The general
form of a simple evolutionary algorithm is as follows.

x← a random permutation of [n].
repeat forever

y ← MUTATE(x)
if f(y) < f(x) then x← y

Note, that in practice a stopping criteria is required.
For our theoretical investigations, we consider the infinite
stochastic process (x(1), x(2), x(3), . . .) where x(t) equals
the permutation x after the t-th step of the algorithm. We
are interested in the expected value of t such that x(t) is for
the first time a candidate solution of interest (for example,
an optimal solution). We call this the expected time to reach
the desired goal.

In this paper, we will analyze two algorithms called ran-
domized local search (RLS) and (1+1) evolutionary algo-
rithms ((1+1)-EA) which are commonly studied in the com-
putational complexity analysis of evolutionary algorithms
(see e.g. (Droste, Jansen, and Wegener 2002; Neumann and
Witt 2010). In the case of the TSP, a natural choice for the
mutation operator is based on a random inversion opera-
tion. A random inversion of a permutation x is a permuta-
tion obtained from applying the inversion operator σij [x]
where {i, j} is selected uniformly at random from the set
of
(
n
2

)
distinct 2-subsets of [n]. RLS and the (1+1)-EA are

both characterized by the above pseudocode but differ in im-
plementation of the MUTATE procedure. In RLS, the mu-
tation step MUTATE(x) is defined by performing a single
random inversion σij [x]. In the (1+1)-EA, the mutation step
MUTATE(x) is defined by performing r + 1 random inver-
sions where r is drawn from a Poisson distribution with pa-
rameter λ = 1. The motivation for this kind of operation is
that the Poisson distribution with parameter 1 is the limit-
ing case to the binomial distribution with probability 1/n.
Therefore, for n sufficiently large, the number of distinct
inversion operations in each mutation is approximately dis-
tributed the same as the number of distinct bit-flip operations
in traditional uniform bitstring mutation.

Structural Properties
In the following, we show some structural properties that
will later be used for the runtime analysis of the algorithms.
Geometrically, it will often be convenient to consider an
edge {u, v} as the unique planar line segment with end
points u and v. We say a pair of edges {u, v} and {s, t}
intersect if they cross at a point in the Euclidean plane. An
important observation, which we state here without proof, is
that any pair of intersecting edges form the diagonals of a
convex quadrilateral in the plane.
Proposition 1. If {u, v} and {s, t} intersect at a point p,
they form the diagonals of a convex quadrilateral described
by points u, s, v, and t. Hence edges {s, u}, {s, v}, {t, v}
and {t, u} form a set of edges that mutually do not intersect.

We say the tour C(x) is intersection-free if it contains no
pairs of edges that intersect. If a tour is not intersection-free,
an intersection can always be removed by an inversion. This
notion is captured by the following lemma.
Lemma 1. Let x be a permutation such that C(x) is not
intersection-free. Then there exists an inversion that removes
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a pair of intersecting edges and replaces them with a pair of
non-intersecting edges.

Proof. Suppose {xi−1, xi} and {xj , xj+1} intersect in
C(x). Let y = σij [x]. Then

C(x) \ C(y) = {{xi−1, xi}, {xj , xj+1}} , and
C(y) \ C(x) = {{xi−1, xj}, {xi, xj+1}} .

By Proposition 1, since {xi−1, xi} and {xj , xj+1} intersect,
the two new edges introduced to C(y) by σij [·] do not in-
tersect. Note that it is still possible that the introduced edges
intersect with some of the remaining edges in C(y).

Angle-bounded point sets
A challenge to the the runtime analysis of algorithms that
employ edge exchange operations such as 2-opt is that,
when points are allowed in arbitrary positions, the mini-
mum change in fitness between neighboring solutions can be
made arbitrarily small. Indeed, proof techniques for worst-
case analysis often leverage this fact (Englert, Röglin, and
Vöcking 2007). To circumvent this, we impose bounds on
the angles between points, which allows us to express run-
time results as a function of trigonometric expressions in-
volving these bounds. Momentarily, we will refine this fur-
ther by introducing a class of TSP instances embedded in
an m × m grid. In that case, we will see that the resulting
trigonometric expression is bounded by a polynomial in m.

We say V is angle-bounded by ε > 0 if for any three
points u, v, w ∈ V , 0 < ε < θ < π − ε where θ denotes
the angle formed by the line from u to v and the line from v
to w. This allows us to express a bound in terms of ε on the
change in fitness from a move that removes an inversion.

Lemma 2. Suppose V is angle-bounded by ε. Let x be
a permutation such that C(x) is not intersection-free. Let
y = σij [x] be the permutation constructed from an inver-
sion on x that replaces two intersecting edges in C(x) with
two non-intersecting edges.1 Then, if dmin denotes the min-
imum distance between any two points in V , f(x)− f(y) >
2dmin

(
1−cos(ε)
cos(ε)

)
.

Proof. The inversion σij removes intersecting edges {u, v}
and {s, t} from C(x) and replaces them with the pair {s, u}
and {t, v} to form C(y). We label the point at which the
original edges intersect as p.

Denote as θu and θv the angles between the line segments
that join at each point u and v, respectively. Since all angles
are strictly positive, the points u, s, and p form a nondegen-
erate triangle with angles θs, θu, and (π− (θs+θu)). By the
law of sines we have

d(s, u)

sin (π − (θs + θu))
=

d(s, u)

sin (θs + θu)
=
d(u, p)

sin(θs)
=

d(s, p)

sin(θu)
.

Hence,

d(u, p) + d(s, p) = d(s, u)

(
sin(θs) + sin(θu)

sin (θs + θu)

)
. (2)

1Lemma 1 guarantees the existence of such an inversion.

Since u, s, and p form a triangle, 0 < (θs+ θu) < π and we
have 0 < sin(θs) < 1 (since 0 < θs < π), 0 < sin(θu) < 1
(since 0 < θu < π), and 0 < sin (θs + θu) < 1 (since
0 < θs + θu < π).

Furthermore, since V is angle-bounded by 0 < ε < π− ε,
by (2),

d(u, p) + d(s, p) > d(s, u)

(
sin(ε) + sin(ε)

sin(ε+ ε)

)
> d(s, u).

(3)
Since there is also a nondegenerate triangle formed by the
points t, v, and p, a symmetric argument holds and thus

d(t, p) + d(v, p) > d(t, v)

(
sin(ε) + sin(ε)

sin(ε+ ε)

)
> d(t, v).

(4)
Combining Equations (3) and (4) we have

f(x)− f(y) = [d(u, v) + d(s, t)]− [d(t, v) + d(s, u)]

= d(u, p) + d(v, p) + d(t, p) + d(s, p)− [d(t, v) + d(s, u)]

> [d(t, v) + d(s, u)]

(
2 sin(ε)

sin(2ε)

)
− [d(t, v) + d(s, u)] > 0

The constraint that the difference is strictly positive follows
directly from Equations (3) and (4). Hence,

f(x)− f(y) > [d(t, v) + d(s, u)]

(
2 sin(ε)

sin(2ε)
− 1

)
≥ 2dmin

(
2 sin(ε)

sin(2ε)
− 1

)
= 2dmin

(
1− cos(ε)

cos(ε)

)
.

Since each inversion which removes an intersection re-
sults in a permutation whose fitness is improved by the
amount bounded in Lemma 2, it is now straightforward to
bound the time it takes for RLS to discover a permuta-
tion that corresponds to an intersection-free tour. This time
bound is expressed as a function of the angle bound ε.
Lemma 3. Let V be a set of planar points angle-
bounded by ε > 0. Furthermore, suppose dmax and
dmin denote the maximum and minimum distance between
any two points, respectively. Then the expected time un-
til the RLS finds an intersection-free tour is bounded by
O
(
n3
(
dmax

dmin
− 1
)(

cos(ε)
1−cos(ε)

))
.

Proof. Let x be an arbitrary permutation. As long as C(x)
is not intersection-free, by Lemma 1, there is an inversion
σij which removes a pair of intersecting edges and replaces
them with a pair of non-intersecting edges. Moreover, by
Lemma 2, such an inversion results in an improvement of at
least 2dmin (1− cos(ε)) / (cos(ε)).

Consider an optimal solution x?. As long as C(x) is not
intersection-free, f(x) > f(x?) since Lemmas 1 and 2
guarantee an improving inversion. From x, there can be
at most f(x)−f(x?)

2dmin

(
cos(ε)

1−cos(ε)

)
improving inversions until

an intersection-free tour is found. For any permutation x,
ndmin ≤ f(x) ≤ ndmax since |C(x)| = n. It follows that
for all permutations x, the number of inversions required to
transform x into a permutation z where C(z) is intersection-
free is bounded above by n(dmax−dmin)

2dmin

(
cos(ε)

1−cos(ε)

)
. In
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each step, RLS chooses an inversion that removes a pair
of intersecting edges with probability at least

(
n
2

)−1
, thus

the time until an intersecting pair is removed is geo-
metrically distributed with expectation O(n2). It follows
that the total expected waiting time to reach a solution
z where C(z) is intersection-free is bounded above by
O
(
n3
(
dmax

dmin
− 1
)(

cos(ε)
1−cos(ε)

))
.

We can also prove a similar result for the (1+1)-EA. In
this case, we can show that, though the stochastic process
is infinite, the number of iterations spent on tours which are
not intersection-free is finite in expectation. In fact, the fol-
lowing lemma provides a bound on this expectation.
Lemma 4. Suppose V is angle bounded by ε. Let
(x(1), x(2), . . . , x(t), . . .) denote the sequence of permuta-
tions generated by the (1+1)-EA. Let α be an indicator vari-
able defined on permutations of [n] as

α(x) =

{
1 if C(x) contains intersections;
0 otherwise.

Denoting the expectation operator as E(·), we have

E
(∑∞

t=1 α(x
(t))
)
= O

(
n3
(
dmax

dmin
− 1
)(

cos(ε)
1−cos(ε)

))
.

Proof. Since there is a nonzero probability to make an im-
proving move at any suboptimal step, the optimal solution
must be reached almost surely as t → ∞. Since an optimal
solution is intersection-free, the expectation in the claim ex-
ists and is finite.

Consider the stochastic process (y(1), y(2), . . . , y(i))
which is the restriction of (x(1), x(2), . . .) constructed by
taking only permutations y(t) that correspond to non-
intersection-free tours in the order they are visited by the
(1+1)-EA. It follows that E

(∑∞
t=1 α(x

(t))
)
= E(i).

Since, for all t ≤ i, C(y(t)) is not intersection-free, by
Lemma 2, there exists an inversion mutation that results in
an offspring that improves on the fitness of f(y(t)) by at least
2dmin (1− cos(ε)) / (cos(ε)). Hence, from y(t), the proba-
bility of improving the fitness by at least the above amount
is greater than or equal to (en(n− 1)/2)−1: the probability
that Poisson mutation selects exactly one specific inversion
(i.e., one which removes an intersection).

For any arbitrary permutation x, ndmax ≥ f(x) ≥ ndmin
so there can be at most n(dmax−dmin)

2dmin(1−cos(ε))/cos(ε) such improve-
ments until a global optimum is reached. By the above ar-
gument, the expected number of permutations y(t) before
such an improvement is bounded by O(n2). This yields the
claimed bound.

Quantized point sets
The lower bound on the angle between any three points in
V provides a constraint on how small the change in fitness
between neighboring inversions can be. This lower bound is
useful in the case of a quantized point-set. That is, when the
points can be embedded on an m × m grid. Quantization,
for example, occurs when the x and y coordinates of each
point in the set are rounded to the nearest value in a set of

Figure 1: If the slope of the lines from v to u and u to v
are of opposite sign, they form the hypotenuses of two right
triangles and θ ≥ 2 arctan((m− 1)−1).

m equidistant values (e.g., integers). We point out that it is
still important that the quantization preserves the constraint
on collinearity since collinear points violate a nonzero angle
bound. We have the following lemma.

Lemma 5. Suppose V is a set of points that lie on anm×m
unit grid, no three collinear. Then V is angle-bounded by
arctan

(
1/(2(m− 2)2)

)
.

Proof. The grid imposes a coordinate system on V in which
the concept of line slope is well-defined. Let u, v, w ∈ V be
arbitrary points. We consider the angle θ at point v formed
by the lines from v to u and v to w. Let s1 and s2 denote
the slope of these lines, respectively. If the slopes are of op-
posite sign, then θ ≥ 2 arctan((m − 1)−1) since the lines
form hypotenuses of two right triangles with adjacent sides
of length at most m − 1 and opposite sides with length at
least 1 (see Figure 1).

We now consider the case where the slopes are nonnega-
tive. The nonpositive case is handled identically (or by sim-
ply changing the sign of the slopes by the appropriate trans-
formation). Without loss of generality, assume s1 > s2 ≥ 0.
Equality is impossible since u, v, and w cannot be collinear.
Since the points lie on an m×m grid, s1 and s2 must be ra-
tios of whole numbers at most m − 1, say s1 = a/b and
s2 = c/d. The angle at point v is θ = arctan(a/b) −
arctan(c/d) = arctan

(
ad−cb
bd+ac

)
. The minimum positive

value for the expression (ad − cb)/(bd + ac) over the in-
tegers from 0 to m − 1 is 1

2(m−2)2 . Since the inverse of the
tangent is monotone, the minimum nonzero angle must be
θ ≥ arctan

(
1/(2(m− 2)2)

)
.

Lemma 5 allows us to translate the somewhat awkward
trigonometric expression in the claim of Lemma 2 (and sub-
sequent lemmas that depend on it) into a convenient polyno-
mial that can be expressed in terms of m.

Lemma 6. Let V be a set of n points that lie on an m×m
unit grid, no three collinear. Then, V is angle-bounded by ε
where cos(ε)/(1− cos(ε)) = O(m4).

Proof. It follows from Lemma 5 that the angle bound on V
is ε = arctan

(
1/(2(m− 2)2)

)
. Since cos(arctan(x)) =

1/
√
1 + x2 we have cos(ε)

1−cos(ε) =
2(m−2)2√

1+4(m−2)4−2(m−2)2
. and

since z/(
√
1 + z2 − z) = O(z2) , setting z = 2(m − 2)2

completes the proof.
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Analysis for Convex Position
A finite point set V is in convex position when every point
in V is a vertex of its convex hull. Deı̆neko et al. (2006)
observed that the Euclidean TSP is easy to solve when V is
in convex position. In this case, the optimal permutation is
any linear ordering of the points which respects the ordering
of the points around the convex hull. Such an ordering can
be found in time O(n log n) (de Berg et al. 2008).

In the context of evolutionary algorithms, the natural
question arises, if V is in convex position, how easy is it for
a simple EA? In this case, a tour is intersection-free if and
only if it is globally optimal, hence finding an optimal so-
lution is exactly as hard as finding an intersection-free tour.
We can thus immediately apply the results derived in the last
section to answer this question for angle-bounded point sets.

Theorem 1. If V is in convex position and angle-bounded
by ε, then both RLS and the (1+1)-EA solve the TSP on V in
expected time O

(
n3
(
dmax

dmin
− 1
)(

cos(ε)
1−cos(ε)

))
.

Proof. Since V is in convex position, any intersection-free
tour is globally optimal. In the case of RLS, the claim fol-
lows directly from Lemma 3.

In the case of the (1+1)-EA, let x(t) denote the
first permutation in the stochastic process such that
C(x(t)) is intersection-free. Lemma 4 states that the ex-
pected number of permutations in (x(1), x(2), . . .) that do
not correspond to intersection-free tours is bounded by
O
(
n3
(
dmax

dmin
− 1
)(

cos(ε)
1−cos(ε)

))
, hence the expectation of t

is at most this.

If the points are quantized in an m ×m grid, we can im-
mediately appeal to Lemmas 5 and 6 to derive a polynomial
time bound on the expected runtime for both algorithms.

Theorem 2. If V is in convex position and embedded in an
m ×m grid with no three collinear, then both the RLS and
the (1+1)-EA solve the TSP on V in expected timeO(n3m5)

Proof. The bound follows directly from Theorem 1 since, by
Lemma 5, V is angle-bounded by arctan

(
1/(2(m− 2)2)

)
.

In this case, dmax = (m − 1)
√
2 and dmin = 1. Finally,

appealing to Lemma 6, cos(ε)/(1− cos(ε)) = O(m4). Sub-
stituting these terms into the claimed bound of Theorem 1
completes the proof.

Parameterized Analysis
Parameterized complexity theory is an extension to tradi-
tional computational complexity theory in which the anal-
ysis of hard algorithmic problems is decomposed into pa-
rameters of the problem input. This approach illuminates
the relationship between hardness and different aspects of
problem structure because it often isolates the source of ex-
ponential complexity in NP-hard problems.

A parameterization of a problem is a mapping of problem
instances into the set of natural numbers (for a detailed de-
scription, see, e.g., (Flum and Grohe 2006)). Given a prob-
lem of size n and parameter k, a parameterized analysis is
an expression of the complexity in terms of both n and k.

We will express their complexity in terms of the parameter-
ization to show their dependence on the cardinality of the
interior point set.

In the case of the TSP, we are interested in expressing the
runtime complexity as a function of n and k where n = |V |
and k is the number of vertices that lie in the interior of the
convex hull of V . Note that the problem at hand is fixed-
parameter tractable as there is a dynamic programming al-
gorithm which solves the problem in time f(k) · p(n) where
p is a polynomial in n (Deı̆neko et al. 2006). However, it is
an open question whether general evolutionary algorithms
such as the ones that we consider can solve the problem
within such a time bound.

We denote by H(V ) ⊆ V the convex hull of V . A per-
mutation x respects hull-order if any two points in the sub-
sequence of x induced by H(V ) are consecutive in x if and
only if they are consecutive on the hull.

Lemma 7. If C(x) is intersection-free, then x respects hull-
order.

Proof. This follows immediately from the proof of Theorem
2 in (Quintas and Supnick 1965).

Lemma 7 entails the following bound on the number of
unique permutations that yield intersection-free tours.

Lemma 8. Suppose |V \H(V ) | = k. Then there are at most
(n− k)kk! unique intersection-free tours.

Proof. For any set of 1 < p < n points, there are
pn−p(n − p)! permutations in which the p points remain in
the same order. Since |H(V ) | = (n − k), there are exactly
(n − k)kk! permutations that respect hull-order. Since each
intersection-free tour must respect hull-order, we have the
claimed bound.

We can also derive from Lemma 7 a convenient bound on
the minimal number of inversions necessary to transform an
intersection-free tour into a permutation that corresponds to
a globally optimal tour.

Lemma 9. Suppose |V \ H(V ) | = k and C(x) is an
intersection-free tour on V . Then there is a sequence of at
most 2k inversions that transforms x into an optimal permu-
tation.

Proof. For any permutation x, a component in position i
can be shifted into position j by at most two consecutive
inversion operations. If |i − j| = 1, a single inversion suf-
fices. If |i − j| > 1, then when i < j, the two operations
are σi(j−1)[σij [x]]. When i > j, the two operations are
σ(j+1)i[σji[x]]. The relative ordering of the other compo-
nents is not affected.

By Lemma 7, since C(x) is intersection-free, it must be
hull-respecting. Let x? be an optimal permutation such that
the elements in H(V ) have the same linear order in x? as
they do in x. Then x can be transformed into x? by moving
each of the k interior points into their correct position. By
the above argument, each can be moved into place by at most
2 inversions and the claim is proved.
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Runtime complexity of local optima
When H(V ) 6= V , RLS does not necessarily converge to the
global optimum with probability one since it can become
trapped in a local optimum. However, if the number of inte-
rior points is sparse (i.e.,O(1)), we can use the above results
to bound the complexity of finding local optima.

For RLS, a permutation x is locally optimum if there does
not exist an inversion y = σij [x] such that f(y) < f(x). In
this case, RLS cannot make further improvements. Indeed,
if no three points are collinear in V , then if x is locally op-
timal, C(x) must be intersection-free since, if it were not,
Lemma 1 guarantees an inversion exists that removes an in-
tersection and, by the quadrangle inequality, the resulting
offspring would have improving fitness. It is important to
note that the converse is not necessarily true. However, we
may show the following.

Lemma 10. SupposeC(x) is intersection-free. Then for any
neighboring inversion y = σij [x] with f(y) < f(x), C(y)
is also intersection-free.

Proof. Suppose for contradiction that y = σij [x] with
f(y) < f(x), but C(y) is not intersection-free. Since C(x)
was intersection-free, it follows that the pair of edges intro-
duced by the inversion must intersect. By the quadrangle in-
equality, the total length of these edges must be greater than
the edges they replaced, contradicting that f(y) is strictly
less than f(x).

Theorem 3. Suppose V is angle bounded by ε and that |V \
H(V ) | = k. Then the expected time until RLS finds a local

optimum is O
(
n3
(
dmax

dmin
− 1
)(

cos(ε)
1−cos(ε)

))
+O

(
n2kk!

)
.

Proof. After RLS finds an intersection-free tour, by
Lemma 10, all subsequent tours will also be intersection
free. The total number of intersection-free tours hence serves
as a bound on the number of possible improving moves after
the first intersection-free tour is encountered. By Lemma 8,
this bound is (n− k)kk!.

As long as RLS has not yet found a local optimum, by
definition there exists an improving inversion; the expected
waiting time to find such an inversion is bounded by O(n2).
Thus, after the first time an intersection-free tour is encoun-
tered, the expected time until a local optimum is found is
bounded by O(n2kk!). Adding this to the bound from The-
orem 3 on the expected time to find an intersection-free tour
completes the proof.

Theorem 4. Suppose that V is quantized in an m×m grid
and that |V \ H(V ) | = k. Then the expected time until RLS
finds a local optimum is O

(
n3m5

)
+O

(
n2kk!

)
.

Proof. The proof is analogous to the proof of Theorem 3,
substituting dmax = (m− 1)

√
2 and dmin = 1, and appeal-

ing to Lemma 6 for the fact that, in this case, cos(ε)/(1 −
cos(ε)) = O(m4).

Runtime complexity of the (1+1)-EA
We now turn our attention to the (1+1)-EA. In Lemma 4,
we have already bounded the expected time the algorithm
spends in permutations that correspond to tours that are not
intersection-free. Thus it will suffice to bound the expected
time the (1+1)-EA spends on non-optimal intersection-free
tours and consider the total time spent in either phase. We
will make use of Lemma 7 which states that every permu-
tation that corresponds to an intersection-free tour respects
hull-order.

We now use this fact to show that when there are few inte-
rior points, intersection-free tours are in somehow “close” to
an optimal solution in the sense that relatively small pertur-
bations by the (1+1)-EA suffice to solve the problem. This
is easily combined with our previous stated bound on the
time spent on tours with intersections to yield the following
runtime result.

Theorem 5. Let V be a set of points quantized on anm×m
such that |V \H(V ) | = k. The expected time for the (1+1)-
EA to solve the TSP on V is O(n3m5) +O(n4k(2k − 1)!).

Proof. Let (x(1), x(2), . . .) denote the sequence of permu-
tations visited by the (1+1)-EA. Let x? denote an optimal
solution to the TSP instance. Consider the following pair of
indicator variables α and β defined on permutations of [n]
where α is defined as in Lemma 4 and

β(x) =

{
1 if C(x) is intersection-free and f(x) > f(x?)

0 if C(x) otherwise.

Let T be the smallest time such that f(x(T )) = f(x?).
Thus T is a random variable that corresponds to the run-
time of the (1+1)-EA on V . Note that T =

∑∞
t=1 α(x

(t)) +∑∞
t=1 β(x

(t)). By Lemmas 4 and 6, E
(∑∞

t=1 α(x
(t))
)
=

O(n3m5).
Now suppose C(x(t)) is some intersection-free tour such

that f(x(t)) > f(x?). By Lemma 9, there are at most 2k
inversion moves that transform x(t) into an optimal permu-
tation. The probability that the (1+1)-EA performs exactly

` inversions is Poisson distributed. Since there are
((n2)
`

)
`!

possible unique sequences of ` inversions, the probability of
performing a specific set of ` unique inversions in a partic-

ular order is at least 1
e(`−1)! ×

(((n2)
`

)
`!
)−1

. It immediately
follows that the waiting time until a specific sequence of `
inversions occurs is bounded byO(n2`(`−1)!) since

(
N
`

)
≤

N `/`!. Setting ` = 2k, the expected time to jump from an
intersection-free tour to an optimal permutation is bounded
above by E

(∑∞
t=1 β(x

(t))
)
= O(n4k(2k − 1)!).

Conclusion
In this paper, we have studied the runtime complexity of evo-
lutionary algorithms on the Euclidean TSP. We have carried
out a parameterized analysis that studies the dependence of
the hardness of a problem instance on the number of interior
points in the instance. Moreover, we have shown that under
reasonable geometric constraints (low angle bounds), simple
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evolutionary algorithms solve the convex TSP in polynomial
time. Furthermore, we showed that if the instance contains
k interior points, for a given, fixed angle bound, randomized
local search algorithms using the inversion (2-opt) move op-
erator find local optima in an expected O(n2kk!) iterations,
and simple evolutionary algorithms solve the Euclidean TSP
in an expected number of O(n4k(2k − 1)!) iterations.
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