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Abstract—Hybrid methods are very popular for solving prob-
lems from combinatorial optimization. In contrast to this the
theoretical understanding of the interplay of different optimiza-
tion methods is rare. The aim of this paper is to make a first step
into the rigorous analysis of such combinations for combinatorial
optimization problems. The subject of our analyses is the vertex
cover problem for which several approximation algorithms have
been proposed. We point out specific instances where solutions
can (or cannot) be improved by the search process of a simple
evolutionary algorithm in expected polynomial time.

I. INTRODUCTION

Evolutionary Algorithms (EAs) have been widely applied
to various optimization problems in practice [8, 10, 13].
Especially for combinatorial optimization problems they have
been shown to produce good solutions. To be competitive
with other methods such as approximation algorithms [23],
Tabu Search [7], Branch and Bound [1], or Linear Program-
ming [20] often not a “pure” EA is used but some knowledge
is incorporated into the algorithm.

In the case of well-studied combinatorial optimization prob-
lems often the initial population is produced by running some
approximation algorithm on the given input. Such solutions
are later on improved by the EA and it turns out that
these improved solutions are often not far from optimal.
It contrast to the assumption that using hybridization in
evolutionary computation often yields better results than a
more general approach with problem-specific knowledge, there
are up to now no theoretical investigations with respect to
the runtime behavior of such algorithms. In recent years, a
lot of theoretical results giving bounds on the runtime of
simple evolutionary algorithms for combinatorial optimization
problems have been obtained. Among these problems, there
some of the most popular polynomially solvable problems
such as sorting and shortest path [19], the computation of a
maximum matching [5, 6], the Eulerian cycle problem [2, 15],
and the computation of minimum spanning trees [16, 17]. In
the case of NP-hard problems, results have been obtained for
a scheduling problem on two machines [25] and the multi-
objective minimum spanning tree problem [14]. Especially, in
the case of well-known NP-hard combinatorial optimization
problems often the initial solution is computed by an ap-
proximation algorithm and later on improved by a heuristic
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method. None of previous works on the runtime analysis
of combinatorial optimization problems has considered this
scenario. All investigations considered the case where the
solution is drawn uniformly at random from the considered
search space. Our aim is to make a first step to understand in
which situations evolutionary algorithms are able to improve
solutions obtained by specialized approximation algorithms.
We do not aim to show general results on improving the
approximation ratio of such a problem as this would be a
statement which has to be made about all possible instances.
We either focus on describing different situations where the
random search process of an evolutionary might (or might not)
be useful.

The subject of our investigations is the vertex cover prob-
lem. Different EAs have been applied to this problem [3, 12].
In [11] it has been shown in an experimental study that in the
case of random graphs solutions obtained by a well-known
approximation algorithms are often far from optimal and may
be improved in a small number of iterations by evolutionary
algorithms such that nearly optimal ones are obtained. The
first rigorous runtime analysis on classes of instances for this
problem is given in [9]. Recently, it has been shown that
the well-known (1+1) EA is not able to produce a good
approximation for the vertex cover problem [4]. In this work,
it has been proven that even in the case of bipartite graphs the
approximation ratio achievable by this algorithm in expected
polynomial time is almost as bad as the trivial cover choosing
all vertices of the given graph.

Such a bad approximation quality can be prevented by start-
ing with an initial solution that has been obtained by running
a good approximation algorithm for the given problem. In
the case of the vertex cover problem several approximation
algorithms are known. The first idea for such an algorithm is
to start with the empty vertex set and add in each iteration
a vertex covering the largest number of uncovered edges. It
is well-known that this approach achieves an approximation
ratio of ©(logn), where n is the number of vertices in the
given graph. Some simple ones obtain an approximation ratio
of 2 which is asymptotically the best known up to now. Such
an approximation quality can e. g. be obtained by computing a
maximal matching of the given graph and including for each
edge of this matching both endpoints into the cover.
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The aim of this paper is to investigate for which cases
the solutions obtained by the two described approximation
algorithms can be improved by the random search process
of an evolutionary algorithm. We investigate the (1+1) EA
starting with such a solution and point out situations where
such a search process has (or has not) the ability to improve
solution constructed by the approximation algorithms.

The outline of the paper is as follows. In Section II we
introduce the vertex cover problem and the EA that is sub-
ject to our investigations. Section III considers improvements
achievable by the EA for the greedy approximation algorithm
and Section IV investigates the combination with the maximal
matching approach. Finally, we finish with some conclusions.

II. THE VERTEX COVER PROBLEM AND THE (1+1) EA

The vertex cover problem is one of the most studied NP-
hard combinatorial optimization problems. Given an undi-
rected graph G = (V, E) where |V| = n and |E| = m, the
aim is to find a subset V/ C V of minimum cardinality such
that for each e € E, eN' V' # () holds.

We consider the well-known (1+1) EA (see Algorithm 1)
for the vertex cover problem. The search space is {0,1}" and
each bit x; of a solution x corresponds to a vertex v; € V.
The vertex v; is chosen in the current solution z if x; = 1 and
otherwise it is unchosen.

Algorithm 1. (1+1) EA
1) Choose an initial solution = € {0,1}"™.
2) Repeat
o Create ©' by flipping each bit of x with probabil-
ity 1/n.
o If f(2') < f(x), set x =2

Denote by |z|; and |z]p the number of ones respectively
of zeros in a bitstring x. The fitness of a search point z is
given by f(z) = (u(x),|z|1) where u(x) denotes the number
of uncovered edges of the solution z. In the case of the
(1+1) EA, the function should be minimized with respect to the
lexicographic order. This setting has already been examined
in [4] for randomly chosen initial solutions. We examine the
effect of using an initial solution that has been computed by
some approximation algorithm. Here in any case all edges are
covered and the (1+1) EA does not accept solutions that do
not constitute a vertex cover.

Our aim is to analyze the (1+1) EA by a rigorous run-
time analysis until it has produced good solutions for the
vertex cover problem. The measure of interest is the number of
constructed solutions until certain goals have been achieved.
Often the expectation of this value is considered and called
the expected time to achieve such a goal.

Most of our investigations consider the approximation abil-
ity of the proposed algorithms. The worst-case approximation
ratio of an algorithm A for a given minimization problem R
is defined as max;cp % where A(I) denotes the value
obtained by A when applied to an instance I of R and OPT(I)
denotes the value of an optimal solution for the given instance.
We are mainly interested in upper and lower bounds for the

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

number of constructed solutions until a certain approximation
ratio has been achieved by the introduced algorithms.

As the (1+1) EA does not accept worsenings the approxi-
mation ratio achieved is at least as good as the approximation
ratio of the algorithm to compute the initial solution.

III. ANALYSIS OF HYBRID EAS WITH GREEDY METHOD

In this section we examine how an initial solution produced
by a greedy algorithm can be improved by the (1+1) EA.
Whe show that the success of such a Hybrid EA depends
on the specifics of the examined graphs. We introduce two
graph classes and show that the Hybrid EA may fail on the
first one to find a solution with approximation ratio o(logn) in
polynomial time and finds the optimum quickly for the second
class of graphs.

The greedy method is based on the following idea. In the
vertex covering problem, the aim is to find a vertex cover
which uses the minimum number of vertices to cover all edges.
Therefore, a vertex with a larger degree is more likely to
appear in the optimal vertex cover. However, this is only a
heuristic knowledge and it will not lead to an optimal solution
in general.

We consider the greedy method described in [18] to com-
pute the initial solution x:

Algorithm 2. Greedy Vertex Cover
1) Set x =0"
2) Choose a vertex vy, having the largest degree in G.
3) Setxy =1,V :=V\{vg}, and E = E\{e | envy, # 0}
4) If G is not empty go to 2).

The greedy approach achieves an approximation ratio of
O(logn). We obtain a simple hybrid algorithm by computing
the initial solution of the (1+1) EA using Algorithm 2. The
resulting algorithm we will denote by (1+1) EA. It achieves
the same approximation ratio O(log n) as the greedy approach
as it does not accept solutions that are worse than the initial
one.

Friedrich et al. [4] have shown that the (1+1) EA starting
with a solution that is chosen uniformly at random from the
search space is not able to obtain a good approximation for a
specific class of bipartite graphs in expected polynomial time.
They have also shown that a greedy approach in form of multi-
objective EA is able to produce optimal solutions for such
problems quickly. The same holds for Algorithm 2. Hence,
using the greedy procedure for the initial solution can make the
difference between obtaining an optimal solution or achieving
only a bad approximation of such a solution.

Compared with other approximation algorithms that achieve
an approximation ratio of 2 for the vertex cover problem, the
greedy approach behaves badly in the worst case. Therefore,
the question arises whether a solution that is far from optimal
can always be improved by the (1+1) EA. The following
example shows that this is not always the case. The solution
for Graph 1 computed by the greedy approach might be far
from optimal and the (1+1) EA¢ is likely to achieve not even
a single improvement.
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Fig. 1. An illustration of Graph 1 for k = 4. The grey straps should indicate
complete bipartite subgraphs. For better clarity, the edges incident to Wo are
omitted.

Graph 1. Let the vertex set be Wy U W, U|JF_ (k)21 Vi with

Wei={we; |j=1,...,2F} for all £ € {1,2}
Vii={vi;|j=1,...,2%} forall [k/2] <i<k

and the edge set be

E={{vij,wej} | [k/2] <i<k, £e{1,2},
1< g1, g2 < 2%, [51/2'7 = [j2/2'1}.

The number of vertices is n = (|k/2] + 3)2" and the
vertices in set W; and W, have degree Zf:[k /21 28 =
2k+1 _ 9lk/2] while the vertices in V; have degree 2'7!. The
optimal cover is

C* = W1 U WQ.

In the following, we show that Algorithm 2 produces a factor
Q(logn) approximation of an optimal solution and that such
a solution is hard to improve by the search procedure of the
(1+1) EA.

Theorem 1. On Graph I the expected time for the (1+1) EAg

to obtain a solution whose approximation ratio is o(logn) is
2(2(\/n10g n)

Proof: We first show that the solution produced by
Algorithm 2 is only a factor Q(log n) approximation and lower
bound the expected time to improve such a solution afterwards.

As the vertices in sets Vi, have the largest degree, the greedy
Algorithm 2 first choses all vertices from V},. After removing
these nodes, the vertex degrees in W; and Ws decrease to
Zf:_(lk/ﬂ 27 = 2k _ 2[%/2] while the vertices in V; still have
degree 2' for ¢ < k. Hence, the greedy method chooses the
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vertices of Vj_; to be added next to the cover. Iterating this
procedure, the greedy method obtains the cover

CszUVk,lu...UV“C/QW
and the approximation ratio

|C1 _ [k/2]2

|Cx| 22k
Hence, Graph 1 is, up to a constant factor, a worst case
example for Algorithm 2 with respect to approximability.

To gain an improvement if C is the current solution, a
certain number of vertices of W7 UW5 have to be added while
a larger number of vertices of | J; V; have to be removed. As
the minimum vertex degree in Graph 1 is § = 2[¥/21+1 at Jeast
26 bits have to be flipped to gain an improvment. It remains
to bound the probability that the (1+1) EA¢ achieves such an
improvement in one mutation step. For this, we use Stirling’s
formula, the identity n = 2105”, and (for sufficiently large n)
4 2 logn and <% \/ logn)
an improvement can be upper bounded by

= 0(k) = O(logn).

> n. Hence, the probability of

n —26 2 —a—
(26) < 1 E < n*g\/@ _ 2—§Z(x/nlogn)‘
n2 — (26)! ~ \ e -
which proves the theorem. |

Theorem 1 shows that the (1+1) EAg may be unable to
improve a bad greedy solution. We will now show that there
are also graph classes on which above hybrid EA can play a
positive role. On the following Graph 2, the (1+1) EA always
finds the optimal vertex cover in small polynomial time.

Consider the following well-known graph given in [18].

Graph 2. Let k € N. Let the vertex set be BU Ule A; with

BZZ{bj |J=1,,]€}7
Ai ::{ai,j |j:1,,Lk/zJ}f0ralllﬁz§k

and the edge set be
E={{bjaim}t1<i<k 1<j<ilk/i]}.

Graph 2 has the following properties. Since every vertex
in A; is connected with exactly ¢ vertices in B and no two
vertices in B have a common neighbor in any A;, all vertices
in B have degree at most k and all vertices in A; have degree
i. Let us denote the total number of vertices by n. Then n =
O(klogk). Due to [18], the greedy algorithm (Algorithm 2)
can determine the set |J;_; A; as a vertex cover. This set is
a factor of Q(logn) away from the optimal vertex cover B.
In contrast to the behavior of the (1+1) EAg on Graph 1, the
(141) EAg determines the optimal vertex cover in expected
time O(n®). We formulate this result in a more general way
in the following theorem.

Theorem 2. The expected optimization of the (1+1) EA is
O(n?) for each initial search point.

Proof: In [4] it is shown that the (1+1) EA produces
a vertex cover in expected time O(nlogn) regardless of the
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setB

sets A,,...,Aq set A,

Fig. 2. An illustration of Graph 2 for k = 6.

chosen initial solution. Therefore, we now assume that a vertex
cover has been obtained and upper bound the expected time
to produce an optimal solution which consists of the vertex
set B. If the current cover is not a minimal one at least
one vertex can be removed to achieve an improvement. The
corresponding probability for such an event is Q(1/n) and its
expected waiting time is O(n).

If the current solution is minimal but not a minimum vertex
cover at least one vertex v in Ay has been chosen. Otherwise,
all vertices of B must be selected (to cover all edges between
Ao and B) and no other vertex can be chosen due to the
minimality of the vertex cover. But this is the mimimum vertex
cover. The chosen vertex v, of Ag has two neighbors ve and vs
in B. In addition vy is adjacent to a vertex v4 in A; and vs is
adjacent to a vertex vs in B. As the current solution is a cover
which is minimal only two vertices of {vs,vs,v4,v5} have
been chosen and at least one of the chosen vertices belongs
to A;. The probability of deleting a chosen vertex of A; and
including its neighbor of B (or vice versa) in the next step
is Q(1/n2). If not both vertices of B have been chosen, the
probability of increasing the number of vertices in B in such
a step is at least 1/2 as at least one of the two vertices of
B is missing. Two of such steps are sufficient to have both
vertices of B chosen and happen with probability at least 1/4
in two consecutive operations swichting vertices from A; to
B or vice versa. Hence, after an expected number of O(n?)
steps both vertices of B are chosen. Now the solution is not
minimal as the vertex v; can be removed. The probability that
the vertex v; is removed before v, respectively vs are replaced
by vy respectively vs is 1 — 0(717)

Thus, the expected waiting time for such an improvement
is O(n?) in any case and the number of vertices is O(n).
This implies that a minimum vertex cover is obtained after an
expected number of O(n?) steps. ]

IV. ANALYSIS OF HYBRID EAS WITH 2- APPROXIMATION
HEURISTICS

It has been known for a long time (see e. g., [18]) that the
vertex cover problem admits a 2-approximation using so-called
maximal matchings. A matching is a subset of pairwise disjoint
edges of a given undirected graph. Thus, the empty set is
always a matching. A matching is called maximal if there is no
edge left that can be added to the subset without violating the
matching property. Therefore the maximal matching problem
can be solved in linear time w.r.t. the number of edges
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by greedily adding edges to the current matching until the
matching is maximal.

Note that a maximal matching is not necessarily a matching
of maximum cardinality. From an algorithmic point of view,
the latter problem—called the maximum matching problem—
is more complicated yet can also be solved in polynomial
time [18]. It is interesting that almost-maximum matchings
can be found in polynomial time using pure evolutionary
algorithms [6].

The proposed 2-approximation algorithm works as follows:

Algorithm 3. Maximal Matching Vertex Cover

1) Compute a maximal matching.
2) Output all endpoints of the edges of the matching.

The set of vertices we obtain is a vertex cover since
otherwise, the matching would not have been maximal. More-
over, the set forms a 2-approximation since at least one
endpoint of each edge in the matching must be chosen for a
minimum vertex cover. We obtain a simple hybrid algorithm
by computing the initial solution of the (1+1) EA using
Algorithm 3. In the following, this is called the Maximal
Matching (1+1) EA ((1+1) EA ). Note that in fact, a family
of algorithms is considered since the component computing
the maximal matching has not been specified yet.

In the following, we study the interplay of the maximal
matching component and the (1+1) EA in our hybrid algo-
rithm. Due to the NP-hardness of the vertex cover problem, we
cannot expect the (1+1) EAj to always find optimal solutions
in expected polynomial time. In fact, we do not believe
that there are instances where it fails to find in polynomial
time solutions that are significantly better than 2-approximate.
The best known polynomial-time approximation algorithm for
vertex cover has an approximation ratio of still 2 — o(1),
so we cannot hope to show better results for our simple
hybrid algorithm. However, a simple observation proves that
the evolutionary component helps to improve solutions that
are exactly 2-approximate.

Proposition 1. With probability Q(1), the (1+1) EAp pro-
duces in expected polynomial time a vertex cover with an
approximation ratio of 2 — 2/n.

Proof: Suppose that the optimal vertex cover has size k.

If the solution of the maximal matching component is not
(2 — 2/n)-approximate, k¥ < n/2 must hold and the solution
must be of cardinality greater than 2k — 2k/n, hence of
cardinality 2k. This means that an optimal cover consists of
exactly one endpoint of each edge in the matching. With
probability (1), the first step that flips one of the 2k bits
of the solution flips only one of the bits that do not belong to
the optimal vertex cover. The new solution of 2k — 1 vertices
is a (2 — 2/n)-approximation. |
The following considerations show that the choice of the
maximal matching can be crucial for the performance of the
hybrid algorithm. We describe two examples where specific
matchings are likely to lead the (1+1) EA into local optima of
bad quality. The first one is composed of bipartite subgraphs

2617



JAY JANY JAY
- A4 N\ -
set V, set V, set V, setV, set Vg
Fig. 3. An illustration of Graph 3 for k = 4.

on vertex sets of size k = n/5. These bipartite subgraphs are
connected in a chain-like manner such that the whole graph
still is bipartite. Figure 3 depicts the graph for n = 20.

Graph 3. Let the vertex set be the union of
Vi={vi1,...,vik}
for 1 <i <5 and the edge set be the union of the sets
{{viﬂr,vi_,_lvs} [1<rs< k}
for1 <i<A4.

An optimal vertex cover for Graph 3 is obtained by choosing
the sets V2 and V. A suboptimal vertex cover of approxima-
tion ratio 3/2 is given by V3 UV3 UV,. Both vertex covers are
likely to be reached if the initial solution of the (1+1) EA is
V1 U Vo U V3 U V. This initial solution is created by, e. g., the
maximal matching

k
M = U {vi,rv2,0} U{vsr, var

r=1

)

Theorem 3. Suppose the maximal matching component of the
(1+1) EAp creates the cover Vi U Vo U Vs UVy for Graph 3.
Then with probability (1) each,
o the (1+1) EA creates the globally optimal solution VoUV,
in polynomial time,
e stays at the locally optimal solution Vi1 U Vs U Vy for a
superpolynomial number of steps.

Sketch of Proof: We first observe that no vertex from Vj
can be removed from the cover unless a step adds all missing
vertices from V5 simultaneously to the cover. The latter has
probability 7= ") = n=%") if there are still Q(k) vertices
from V5 missing. One can show that only with a probability
279 00 many vertices from V; are added to the cover
before a local or a global optimum is reached. We therefore
assume that no vertex from V; is removed from the cover
in a phase of n°" steps, where the constant ¢ is chosen
appropriately.

We are now faced with a situation like in the study of the
(1+1) EA on the bipartite graph B in the paper by Friedrich
et al. [4, Theorem 5]. The set V; UV3 of Graph 3 plays the role
of V5 of graph B and V; plays the role of V;. With probabil-
ity (1), a vertex from V3 UV3 of Graph 3 is removed before a
vertex from V5 is removed. Then we apply the argumentation
concerning the second phase in the proof of Theorem 5 in [4],
which shows us that all vertices from V; U V3 are removed in
polynomial time with constant probability. Hence, the global
optimum is reached with constant probability.
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set Vg

set V, setV, set V, setV,

Fig. 4. An illustration of Graph 4 for k = 4.

The second claim follows by the same arguments. With
probability Q(1), a vertex from V5 is removed first and the
local optimum is reached with constant probability. To leave
the local optimum, a step that flips & bits simultaneously has
to occur. This has probability n~2(") and with probability
1—n—%")_ does not happen in a superpolynomially long phase
of n" steps for a small enough constant ¢ > 0. ]

It seems tempting to decrease the size of V5 in Graph 3
to trick the (1+1) EA into local optima with a even worse
approximation ratio than 3/2. This, however, does not work
since the maximal matching component would choose only a
subset of V; and V3 then.

Using a less obvious, non-bipartite graph, we can show that
the (1+1) EA is very likely to get stuck at (2 — o(1))-optimal
solutions if the initial maximal matching is chosen badly. The
idea is to use a composition of bipartite subgraphs on vertex
sets of size k = Q(n) and to add an extra component of
only logn bits that is fully connected to all all other vertices.
Figure 4 shows Graph 4 for n = k = 4.

Graph 4. Let n = 4k + logn. Let the vertex set be the union
of

Vi={vi1, .-, vik}

for1 <1 <4 and

Vs = {uvs,1,..

<3V logn }
and the edge set be the union of the sets
{H{virvigr,s} | 1 <15 <k}
for1<i<3and
{{vir,vs,s} |1 <i<4,1<r<k,1<s<logn}.

To obtain a minimum vertex cover, we must choose the
special set V5 and two appropriate sets from V; UVo UV UV,
e.g., V1 and V3. An optimal vertex cover, therefore, is of size
2k+logn. A bad initial solution for the (1+1) EA is produced
if all vertices V; UV, UV3 UV, are chosen but the vertices from
V5 are missing. This happens, e. g., if the maximal matching
again equals M* (Equation 1). The following theorem shows
that it is really hard to obtain improvements from this initial
solution.
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Fig. 5. An illustration of Graph 5 for k = 10 and £ = 5.

Theorem 4. Suppose the maximal matching component of the
(1+1) EAyy creates the cover Vi U Vo U V3 U Vy for Graph 4.
Then with probability 1 — 2~ S(log” ") the (1+1) EA needs
2% (log” n) steps to obtain a solution whose approximation ratio
is better than 2 — O(1/logn).

Proof: Note that the initial cover is of approximation ratio
4k/(2k 4+ logn) = 2 — O(1/logn). To remove one of the
vertices in V3 U Vo U V3 UV, from the cover, all vertices from
V5 must to be added simultaneously. The latter has probability
at most (1/n)len = 2-(oe” ") Hence, the probability of an
improvement in a phase of gclog® n steps is still 2-Qlog?n) jf
c is chosen small enough but constant. |

In the examples above, the search of the (1+1) EAy is likely
to get stuck at local optima since a worst-case initial maximal
matching is assumed. We now turn to a more general view. In
the following, we use the above-mentioned greedy algorithm
to compute the maximal matching in the (1+1) EA,s. This
means that we choose uniformly free edges until there are
no such edges left. Let the obtained algorithm be called
greedy (1+1) EApr ((1+1) EAguy).

With respect to the previous example Graphs 3 and 4, the
probability that the search of the (1+1) EA leads to an optimal
vertex cover seems to become higher when using the greedy
maximal matching algorithm. (We do go into the details here.)
As stated above, we however cannot expect the (1+1) EAgy
to find efficiently optimal solutions on arbitrary instances. The
following example shows that when it is indeed likely to run
into local optima of bad quality.

We define the bipartite graph B(k, /), { < k, on 2k + ¢
vertices as follows.

Graph 5. Let the vertex set be

U2k} U {vokq1, ... Vopte}

=:C

7vk}u{vk+l7'“

=R

{1}1,...

=:L

and the edge set be
Honoea} li=1,...,k}
U{{vivarps} li=1,...k j=1,...,¢}.

Hence, we obtain the whole edge set from the induced
subgraph on L U R, which is a perfect matching, and the
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induced subgraph on L U C, which is a complete bipartite
graph. A minimum vertex cover chooses all L-vertices while
any vertex cover that leaves out an L-vertex in favor of its
adjacent R-vertex must choose all C-vertices. The following
theorem (note that & = 2(n)) shows that the latter event can
mislead the (1+1) EAg)s into a local optimum.

Theorem 5. Let { < k — 2logn. Then with probability Q(1 —
0/k), the (1+1) EAgy on B(k, ) needs at least 229 steps
to create a solution that is better than (1 + £/k)-approximate.

Proof: The proof outline is as follows. We first show
that the maximal matching routine will choose all C-vertices
with the claimed probability. Afterwards, it removes with
this probability at least Q(k — £) of the L-vertices from the
cover before a C-vertex flips. From this situation, it takes
with probability (1) at least 2k=0) steps to obtain a cover
that does not choose all C-vertices. Up to then, all covers
contain at least k + ¢ vertices and are, therefore, no better
than (1 + ¢/k)-approximate.

We call the edges that are incident on C-vertices C-edges
and the remaining edges, which are incident on R-vertices,
R-edges. We are interested in matchings that consists of ¢
C-edges and k—{ R-edges. If already i C-edges and j R-edges
have been chosen during the construction of the maximal
matching, there are ¢ — i free C-vertices and k — i — j free
L-vertices left. Hence, the number of free C-edges equals
(¢—1)(k—i—j) while there are only k—i—j free R-edges left.
The probability of choosing another R-edge in this situation

is
=ik —i—j) i
l—ik—i—§)+(k—i—7) L—i+1
Therefore, for i < ¢, the expected number of chosen R-edges

between the ¢-th and the (i 4 1)-st choice of a C-edge is at
most

{—i+1 1
L R, P
L—i

l—i
since the random number of steps between the two choices
follows a geometric distribution. Hence, the expected number
of chosen R-edges until ¢ C-edges have been chosen is at
most Zf;é 1/(¢ — i) < (Inf) + 1. By Markov’s inequality,
the number is at most k& — /, i.e., ¢/ C-edges are chosen, with
probability at least 1—(In £+1)/(k—£). Due to our assumption
on {, the last expression is positive and bounded from below
by Q(1 — ¢/k).

For the second part of the proof, we assume that a matching
with ¢ C-edges and k£ — ¢ R-edges has been created and
consider the subsets L* C L and R* C R consisting of
the k — ¢ vertices in L resp. R on which the R-edges of
the matching are incident. Starting from the vertex cover
corresponding to the matching, the (1+1) EA accepts each
step that flips only an L*-bit. We consider the probability
that an L*-vertex flips before a C- or R*-vertex flips. By
simple calculations, this probability is bounded from below
by (1 — k/¢). We assume that such a flip occurs. Let v* be
the flipping L*-vertex. As long as v* is not added to the cover
again, no C-vertices can be removed.
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In the following, we are interested in the event of reducing
the number of chosen L*-vertices even further. Consider a
phase consisting of the n/4 steps after v* has been removed.
With probability (1), v* is not chosen again during the phase.
We assume this to happen. The expected number of flipping
R*-bits in the phase is bounded from above by (k — ¢)/4.
By Chernoff bounds, the number is at most (k — £)/2 with
probability 1—2~2(*=5 Tf this event holds, there are through-
out the phase still (k — ¢)/2 — 1 L*-vertices left that can be
(or already have been) removed without violating the cover.
We apply Chernoff-bound arguments again. Altogether, in the
end of the phase, we have with probability (1) — 2~ (k=4
arrived at a cover that contains all C-vertices but misses at
least Q(k — £) of the L-vertices. We assume to be in such a
situation.

To obtain a cover without C-vertices from this situation, all
L-vertices have to be chosen at at least one point of time. We
consider the Q(k — ¢) R-edges whose L-vertex is unchosen.
The random number of unchosen L-vertices can be increased
or decreased. This process can be identified with the random
walk of the (1+1) EA on a needle-in-a-haystack function where
the R-edges correspond to bits and an unchosen L-vertex of
an R-edge corresponds to a 0-bit and and unchosen R-vertex
to a 1-bit. With Q(k—¢) bits and starting from Q(k—¢) 0-bits,
the time until the all-ones string is reached is bounded from
below by 2= with probability 1 —2~%*=) = Q(1—k/¢)
(using the results in [24]). [ ]

Theorem 5 provides only a lower bound Q(1 — ¢/k) on
the probability of reaching the local optimum which seems to
be too pessimistic for small ¢ since the bound is only (1)
then. If ¢/k converges to 0, we however conjecture that the
probability converges to 1. This can be made precise for the
special case ¢ = 1.

Theorem 6. Let ¢ = 1. Then with probability 1—O(1/y/n), the
(1+1) EAgy on B(k,£) needs at least 2°™) steps to create
a solution that is better than (1 + 1/n)-approximate.

Proof: The proof follows the same lines as the one of
Theorem 6. Using the arguments from the first part of the
proof, it is easy to see that the greedy maximal matching
algorithm chooses with probability at least 1 —1/n one C-edge
and n — 1 R-edges. This case means that the initial solution
of the (1+1) EA chooses the single C-vertex and n—1 L- and
R-edges. We assume this to happen.

Next consider the phase of the \/n steps after initialization.
With probability 1 — O(1/y/n), the C-vertex does not flip in
the phase. Using the Chernoff-bound arguments from the proof
of Theorem 6, we prove that with probability 1 — 2~ (V")
at least Q(/n) L-vertices are removed from the cover. Note
that we need not assume that an L-vertex flips before the first
R-vertex flips.

Assuming that Q(y/n) L-vertices have been removed by the
end of the phase, we apply the ideas from the last paragraph
of the proof of Theorem 6. Hence, the probability that all
L-vertices are in the cover again—which is necessary for the
C-vertex to flip—before 22(™) steps have elapsed is 22", m
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We are left with several interesting open problems. It would
be desirable to have an example where the (1+1) EAgy
gets stuck at (2 — o(1))-optimal solutions with probability
1 — o(n™°) for any constant ¢, i.e., the success probabil-
ity should be only superpolynomially small. Such examples
should exist if the vertex cover problem does not admit
approximations with a constant factor less than 2. Moreover,
one could work on generalizations of Proposition 1. Since
the (1+1) EA is able to flip any given subset of Inn/Inlnn
bits in a single step with probability n~°(), it might happen
that it is able to explore in polynomial time the Hamming
ball of radius Inn/Inlnn centered around the initial solution.
This would imply that solutions with approximation ratio
2 — O(Inn/(nlnlnn)) could be found in polynomial time
with at least polynomially small probability.

V. CONCLUSIONS

In the case of combinatorial optimization problems often
hybrid methods are used to obtain good solutions for a certain
problem. The theoretical understanding of combining evolu-
tionary algorithms with other methods is rather weak. We have
made a first step into the rigorous analysis of such methods by
considering the combination of well-known approximation al-
gorithms with a simple evolutionary algorithm. In our analyses
we have pointed out situations where approximate solutions
can (or cannot) be improved by the search procedure of an
EA.

There are several open questions concerning the topic of
analyzing the combination of evolutionary algorithms with
other methods. Some regarding the vertex cover problem and
starting with solutions computed by the considered approxi-
mation algorithms have been pointed out in the Sections III
and IV. We also want to state a more general question. The
EAs considered in this paper only use an initial solution that
has been computed by another method. In general a different
optimization procedure is applied more often during the run
of an EA. These so-called memetic approaches have already
been analyzed w.r.t. their runtime on toy problems [21, 22].
It would be nice to have some results on such methods by
rigorous analyses on a well-known combinatorial optimization
problem.
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