Resampling vs Recombination:
a Statistical Run Time Estimation

Tobias Friedrich
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Francesco Quinzan
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

ABSTRACT

Noise is pervasive in real-world optimization, but there is
still little understanding of the interplay between the op-
erators of randomized search heuristics and explicit noise-
handling techniques, such as statistical resampling. In this
paper, we report on several statistical models and theoreti-
cal results that help to clarify this reciprocal relationship for
a collection of randomized search heuristics on noisy func-
tions.

We consider the optimization of pseudo-Boolean func-
tions under additive posterior Gaussian noise and explore
the trade-off between noise reduction and the computational
cost of resampling. We first perform experiments to find the
optimal parameters at a given noise intensity for a mutation-
only evolutionary algorithm, a genetic algorithm employ-
ing recombination, an estimation of distribution algorithm
(EDA), and an ant colony optimization algorithm. We then
observe how the optimal parameter depends on the noise
intensity for the different algorithms. Finally, we locate the
point where statistical resampling costs more than it is worth
in terms of run time. We find that the EA requires the
highest number of resamples to obtain the best speed-up,
whereas crossover reduces both the run time and the num-
ber of resamples required. Most surprisingly, we find that
EDA-like algorithms require no resampling, and can handle
noise implicitly.

Keywords

Evolutionary Algorithm; Genetic Algorithm; Crossover; Es-
timation of Distribution Algorithm; Ant Colony Optimiza-
tion; Robustness; Noise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

FOGA 17, January 12 - 15, 2017, Copenhagen, Denmark

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4651-1/17/01. .. $15.00

DO http://dx.doi.org/10.1145/3040718.3040723

25

Timo Kétzing
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Andrew M. Sutton
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

1. INTRODUCTION

In many practical optimization problems, the objective
function has some kind of stochastic component that arises
out of different factors, such as measurement error, simula-
tion nonlinearities, the finite precision of Monte Carlo sam-
pling, or other environmental effects. In these scenarios, the
direct evaluation of the objective function is not very reli-
able, and optimization algorithms must employ some kind
of noise-handling strategy.

The most common type of noise-handling technique is sta-
tistical resampling. In this scenario, an algorithm estimates
the true value of a function at a specific point by repeatedly
sampling the corresponding value, to increase the signal to
noise ratio. This approach comes at a computational cost, as
the extra function evaluations must count toward the total
run time of the algorithm. The idea of statistical resam-
pling to address noise in the context of genetic algorithms
has been studied as far back as 1988. In a paper by Fitz-
patrick and Grefenstette [9], it was argued that the implicit
parallelism of a GA is a sufficient mechanism for handling
noise. They found that the amount of explicit resampling
can be reduced in a GA by increasing the population size.

In the context of Evolution Strategies (ES) Arnold and
Beyer [3] also found that increased population sizes are
preferable to resampling as long as mutation strength is op-
timally adapted. Goldberg et al. [12] studied the influence
of GA population size in the presence of noisy functions,
but also with more general sources of noise (such as noisy
operators). Arnold and Beyer [4] also noticed that the same
algorithm may react in different ways to different types of
posterior noise distributions.

The issue of resampling as a noise-handling technique has
been approached from many different perspectives over the
last few decades. Aizawa and Wah [I] proposed a detailed
adaptive strategy for modelling the underlying noise, in or-
der to determine the appropriate number of samples to be
drawn from each individual. Stagge [23] recognized that
noise can be reduced by repeated sampling, even at the cost
of a higher number of function evaluations. However, he
argues that computational effort can be saved by focusing
only on resampling for the best individuals in the popula-
tion. Many other detailed sampling frameworks have been

http://dx.doi.org/10.1145/3040718.3040723

proposed, such as ones based on selection races from the
machine learning community [15] 22].

Branke and Schmidt [5} [6] also recognised that resampling
strategies produce a trade-off between noise reduction and
computational effort. They consider a number of different
sampling procedures that attempt to characterize the error
probability during the selection step. They also raise the
interesting point that sometimes noise can be beneficial to
stochastic search algorithms (e.g., for promoting objective
space exploration), and therefore attempting to eliminate
noise completely may not always be the best strategy.

Akimoto et al. [2] explicitly study the run time effect of
resampling on various noise models to derive the extra cost
incurred by performing enough resampling to ensure the un-
derlying optimization algorithm “sees” a noiseless function.
For Gaussian noise, they show the existence of a resampling
scheme such that any optimization algorithm that requires
r(0) function evaluations to optimize a noise-free function f
with probability 1 — 4§ requires O(r(8) max{1, o2 log(rd)/5})
evaluations to optimize f+A (0, 0?) with probability (1—§)2
under their resampling scheme.

Recently, Friedrich et al. [10] proved that an Estimation
of Distribution Algorithm (EDA) called the Compact Ge-
netic Algorithm (cGA) can scale gracefully with noise: its
runtime on a noisy OneMax function is bounded by a poly-
nomial in the variance, regardless of noise intensity. The
c¢GA does not explicitly keep a population in memory, but
only an array of so-called allele frequencies that represent
the product distribution of alleles in an implicit population
(cf. Goldberg et al. [14]). Offspring are then generated
by drawing from this product distribution, and this has the
same effect as gene pool recombination: all members of the
population participate in recombination (rather than, e.g.,
two) to produce an offspring. On the other hand, they also
proved that a mutation-only evolutionary algorithm exhibits
superpolynomial runtime due to its reliance on hill-climbing
a gradient that becomes obscured in the presence of heavy
noise.

The array of allele frequencies employed by the cGA is
similar to the pheromone values stored by Ant Colony Opti-
mization (ACO) algorithms. In the latter, the update rule is
distinct, but we should still expect similar protection against
noise, which has also been recently noted [I1].

None of these cases employ resampling, but instead rely on
the implicit mechanisms of the GA/EDA/ACO to somehow
“filter” the noise. Priigel-Bennett, Rowe and Shapiro [20]
proved that a generational evolutionary algorithm using uni-
form crossover finds the optimum in O(c?log®(c?)) fitness
evaluations, on OneMax with additive Gaussian noise of
standard deviation o. This result is in line with various stud-
ies on the effectiveness of population-based heuristics to deal
with noise (Hellwig [I7]). Dang and Lehre observe that for
some cumulative distributions, the 2-tournament EA gives
positive result on OneMax and LeadingOnes with additive
posterior noise (cf. Dang [7]). Similarly, Hellwig and Beyer
experimentally show that a population size controlled ES
performs well in noisy environments. On the other hand, it
has been argued that for some instances constant resampling
operators are not useful in dealing with additive posterior
gaussian noise (cf. Qian [21]).

In the context of continuous optimization, Hansen et. al.
developed a heuristic to adapt the resampling based on the
noise level of the rank (cf. Hansen [13]). They argue that if

26

there are many rank changes when reevaluating a point, than
the number of resampling should be geometrically increased.
This suggests that in some cases non-constant resampling is
beneficial. A similar idea has been discussed more formally
in the form of Bernstein-Races (cf. Heidrich-Meisner [16]).
However, the trade-off between resampling, recombination,
and implicit methods is still not clear.

In this paper we want to take a first look at the interplay
between resampling and implicit noise-handling exhibited
by genetic algorithms employing crossover and estimation
of distribution algorithms. We perform extensive statistical
analysis on the run time of two genetic algorithms and two
EDAs, to determine their asymptotic behavior.

2. SETTING AND ALGORITHMS
2.1 The test function

All tests are carried out by performing a global optimum
search of the following function:

n
OneMax: (z1,...,Tn) —> E T;
i=1

with z; € {0,1} for all ¢ = 1,...n, and with objective space
consisting of all pseudo-Boolean strings of fixed size n. We
add posterior Gaussian noise in order to simulate an envi-
ronment where errors of controlled standard deviation are
produced. In other words, if we denote with o the posterior
noise standard deviation, the fitness function is

OneMax + N (0, 0%)

with A/(0,0?) the centered Gaussian distribution. In some
cases we simulate a resampling operator: we compute the
fitness function r times, and take the average. Thus the test
function in its generic form is:

% Z (OneMax + N (0,57))
j=1

1 — 5
— OneMax + — >
OneMax + Tj=1./\/'(0,a)

for a given » > 0. The OneMax function has the advan-
tage of being symmetric, well-understood, and extensively
studied. The goal of the hereby presented experiments is to
statistically infer the asymptotic trend of some algorithms
in view of a broader theoretical setting.

2.2 Algorithms

We consider four algorithms, namely (u+ 1)-EA, (u+1)-
GA, cGA, and A-MMASib. (p+ 1)-EA and (p+ 1)-GA are
search heuristics inspired by the process of natural selection
(cf. Algorithm [T] and Algorithm [2).

Typically, they require as input a population of strings of
fixed length n. After an offspring is generated, a mutation
factor is introduced, to ensure full objective space explo-
ration. The fitness is then computed, and the less desirable
result is discarded. The (u+ 1)-EA and the (p + 1)-GA dif-
fer in how the offspring is generated. In the first case, the
offspring is selected u.a.r. from the input population, while
in the latter case a crossover operation is performed on two

Algorithm 1: (p+ 1)-EA

1t 0;

2 Choose a population Py C {0,1}" s.t. |Po| = p u.a.r;

3 while convergence criterion not met do

Select a parent z € P; u.a.r;

Generate offspring y by flipping each bit of z w/p %;
Choose z € P, U {y} s.t. f(z) = maxzcp, f(2);
Define population P11+ (P U {y}) \ {z};
t—t+1;

o N o o A

Algorithm 2: (¢ + 1)-GA

1t 0

2 Choose population Py C {0,1}" s.t. |Po| = p w.a.x;

3 while convergence criterion not met do

Select parents z1,z2 € P; u.a.r;

Generate offspring y by recombining 1 and z2 u.a.r;
Choose z € P, U{y} s.t. f(z) = maxqzecp, f(2);
Define population P11 < (P: U {y}) \ {z};
t—t+1;

[e IR BRIV BN

u.a.r. chosen parents. We use uniform crossover, which con-
sists of assembling a new element by choosing coefficients of
one parent or the other with probability p = 0.5.

The c¢GA is a search heuristic similar to (¢ + 1)-EA and
(1 + 1)-GA. As shown in Algorithm [3] this process consists
of sampling two individuals with given probability distribu-
tion, and swapping them according to the fitness evaluation.
At each step, the distribution by which individuals are cho-
sen is updated according to the fitness gain, and proportion-
ally to a parameter K. The offspring generation procedure
of the Compact Genetic Algorithm is equivalent to a con-
crete population with the same allele frequencies engaging
in gene pool recombination introduced by Miihlenbein and
PaaB§ [19]. In gene pool recombination, all members of the
population participate as parents in uniform recombination.
The correspondence between EDAs and models of sexually
recombining populations has already been noted (cf. Miih-
lenbein and Paaf [18]).

The A-MMASib is an ant colony optimization method (cf.
Algorithm . Algorithms of this kind can be described in
terms of A\ ants exploring given paths, which correspond to
pseudo-Boolean arrays of length n. The probability distri-
bution by which ants choose one path over another is called
pheromone vector, and it is updated at each step according
to the fitness evaluation, and proportionally to a parameter
p. Both ¢cGA and A-MMASib are an estimation of distribu-
tion algorithms (EDAs).

2.3 Statistical and experimental setting

For each set of experiments we look at the sample mean,
sample standard deviation, and infer the trend toward
asymptotic behaviour via model regression. All samples
considered are of size N > 10%; the exact size and relevant
information is given in the description of each experiment.
Statistical models with different properties are considered:

e polynomial models: X ~ az* + 3;

: G
e rational models: X ~ ————=;

27

Algorithm 3: cGA

1 t40;

2 D1t 4= P2t & 0 Dnyt + 0.5

3 while convergence criterion not met do

4 fori=1...ndo

5 x; < 1 w/ prob. pi, x; < 0 w/ prob. 1 — p;;
6 L yi < 1 w/ prob. pit, yi < 0 w/ prob. 1 — p;¢;
7 if f(z1,...,2n) < f(y1,...,yn) then

8 L Swap (21,...,zn) wWith (y1,...,yn);

9 fori=1...ndo

10 if ; > y; then

11 ‘ Dit+1 < min (max (pi,t + %, TIL) ;1 — %),
12 else if z; < y; then

13 ‘ Di,t+1 < min (max (pi,t — %, %) 1 — %),
14 else

15 | Pitt1 < Dit;

16 t+—t+1;

Algorithm 4: A-MMASib

1t 0

2 D1t 4 P2t & Dnyt + 0.5

3 while convergence criterion not met do

4 fori=1...Ado

5 L Generate x; w/ prob. pr = (P1,t,-..,Dn,t)
6 Choose z € {z1,..., 22} s.t. f(2) = ming{f(z:)};
7 fori=1...ndo

8 if z; = 1 then

9 ‘ Pi,t+1 <+ min (pt,i(l —-p)+p1— %)7
10 else
11 L pitr1 < max (pei(1—p), 1);
12 | t+—t+1;

e square-root models: X ~ o/ + 53;
e square-root exponential models: X ~ ae®V?;

e any linear combination of the above;

In all cases, tests on the predictions made by the fitting
models are performed. For a given experiment described by
pairs {(zi, yi) }icr, denote with g the sample mean, and let
{fi}ier be the predictions of a given model. Consider the
quantities

SSres = Z(yz - fz)z

iel

S = S (i~ 0)°
iel
and consider the coefficient of determination
SSres
 SSiot

We assume that the model is valid if B2 > 0.95. This choice
is intuitively motivated by the fact that R? is the “percent
of variance explained” by the model.

We perform a Student’s t-Test on the each model, to de-
termine whether it outperforms “random noise” as a predic-
tor. We look at the corresponding p-value, and consider the

R*:=1

algorithm | parameter | description

cGA K distribution parameter
(n+1)-EA o population size
(p+1)-GA I population size
A-MMASib p evaporation factor
A-MMASib A number of ants

Table 1: Parameters for the four algorithms.

model valid only for p-value < 0.05. We accept variables
such that the probabilities pj; of obtaining a corresponding
value outside the confidence interval are pj; < 1075, Thus
all variables have a very high level of significance.

All tests are carried out on MacBook Pro (13” Retina,
Beginning 2015), with operating system Mac OS X Version
10.11.1, processor 2.7GHz dual-core Intel Core i5 (Turbo
Boost up to 3.1GHz) with 3MB shared L3 cache, and mem-
ory 8GB of 1866MHz LPDDR3. All algorithms are im-
plemented in C++ on Xcode Version 7.3.1 (7D1014), and
implemented as OSX command line executables.The fitting
was performed using least-square methods implemented by
the ‘lm’ command of R 3.2.2 GUI 1.66 Mavericks build
(6996). Code is available upon request.

Pseudo-random numbers are generated with the Mersenne
Twister generator (64 bit) with a state size of 19937 bits, im-
plemented with the ‘std::mt19937_64’ template instantation
in the <random> library of C+-+11. The engine has an in-
ternal state sequence of n integer elements, which is filled
with a pseudo-random series generated on construction or by
calling member function seed. The internal state sequence
becomes the source for n elements: when the state is ad-
vanced, the engine alters the state sequence by twisting the
current value. The random numbers thusly generated have
a period equivalent to the Mersenne number 2"~ D** _ 1.

3. EXPERIMENTAL RESULTS

3.1 Parameter tuning

Each algorithm depends on one or two parameters, as
shown in Table The goal of parameter tuning is to re-
duce the expected number of fitness evaluations until the
optimum search point is found. We refer to the optimal
configuration by which the expected number of fitness eval-
uations is minimal as the sweet spot.

For every algorithm, parameter tuning is performed by
brute force. We go through a list of possible input param-
eters and count the number of fitness calls that the algo-
rithm needs with a given parameter; we make 10? indepen-
dent runs and take the arithmetic mean. Note that since we
count fitness evaluations and not wall clock time, this tuning
is independent of the underlying machine. To perform pa-
rameter calibration for A-MMASib, pairs of optimal choices
for p, \ are tested, thus taking into account a possible cor-
relation between the two. We give exemplary plots for the
case of 02 = 10 in this section. The problem size is always
fixed at n = 10°.

Figure shows the dependence of the optimization time of
the (1+1)-EA and (u+1)-GA on the parameter p. Note that
both axes use a logarithmic scale. We see that optimization
is slow for very small population sizes p, quickly improves
to best performance, and then slowly worsens again. This

28

Algorithm
EA
- GA
105.5-
c
(=R PO SO S OOt SUUUUUN SUURPUOS SURUUUIRY FEUSORNE RPN FORUUURN SUURTOS IOVRURIN o
Q
£
o 10°7
Q.
£
= OO AU SOUUUUUUOS NUUOUNOE SOURUURUUS UUUURUUS SOUUOPTS! NUSRUUROE UVURRURY ASUPRRRROOE o
2,
Q
E10°%
c
S L SR e
5 \
10 2 -
\ N ot
Ay | i
10444 e e
6 10 16 25 40

Figure 1: Number of fitness evaluations (run time) for a
given parameter choice (u) for the (u+ 1)-EA and (u + 1)-
GA. The problem size is fixed at n = 10%.The run time is
the average over 102 runs, and the shading is proportional to
the sample standard deviation. Note that both axes follow
a logarithmic scale. In both cases we see a unimodal trend.
For the (u + 1)-EA we see a sweet spot for u = 12, and for
the (@ + 1)-GA the sweet spot is u = 9.

is in contrast to the well-known fact that, in the absence of
noise, a choice of =1 is optimal for the (u + 1)-EA.

In Figure [2] we can see a similar trend for the cGA. In
this case, however, we observe a slightly different behaviour.
In fact, higher K gives better worst-case and worse average-
case. This observation has been already framed theoretically
(cf. Droste [8]). For the cGA without boundaries on the
distribution adjustment, there is a non-zero probability that
the algorithm converges in infinite time (p(4+o0c0) > 0). In
our case, we put boundaries on the distribution adjustment
(cf. Algorithm , and we expect p(+o00) = 0. However,
during some runs the algorithm still may take a very long
time to reach the optimum.

The case of A-MMASIib is more involved, since we have to
optimize two parameters in parallel. Again we approach this
problem with brute force and display here only an interesting
selection of parameters p. As we can see in Figure [3 an
evaporation factor slightly below 0.05 with a number of ants
of around 5 is optimal.

In all cases there exists a sweet spot for the choice of
parameters, at which the algorithm performs best. The dif-
ference between the sweet spot and the optimal parameter
with absence of noise depends on the algorithm’s stability
to fitness evaluation errors.

We run statistical analysis on the parameter tuning ex-
periments for the (14 1)-EA; and (u+ 1)-GA, as described
in Section In both cases we find that the parameter
tuning trend is best described in term of rational function,
as displayed below.

OBSERVATION 1. Let A(p) be one of (n+1)-EA, (p+1)-
GA, with p the p-parameter. Let T, o the corresponding ran-
dom variable that returns the number of fitness evaluations

25000

: E cGA run time :
1| — Adjusted sample mean i
! Sample mean

20000+

For K < 135 the algorithm
may exceed the maximal
number of steps.

15000

10000

run time [sample mean]

5000 1

63 100 251 398

Figure 2: Number of fitness evaluations (run time) for
the parameter K for the cGA. The problem size is fixed at
n = 10%. The run time is the average over 10% runs, and the
shading is proportional to the sample standard deviation.
We see a unimodal trend, and a sweet spot for K = 135. The
adjusted sample mean does not consider the points at which
the algorithm hits the maximal number of steps allowed, and
returns a wrong result.

until convergence, for a given posterior noise standard devi-
ation o. Consider the map:

fa i pr— E[7u0]

Then there exist c1,c2,c3 € Rsg s. t.

c c

fa~c— =2 + %

noop
We perform nonlinear regression in the case of the cGA. We
find that the most suitable model is
2
fCGA ~coK3 + % —cC1

for c1,ca,c3 € Rso. This model seems to be more unnatural
than the corresponding one for (1 + 1)-EA or (u + 1)-GA.
This is probably due to the fact that the outcome of the
cGA parameter tuning depends on the user-defined maxi-
mal number of steps allowed. Thus this model, which is
statistically valid, may differ slightly from the underlying
true equation. In the case of A-MMASib we find that the
model is

C. Cs
FAMMASib ~ €1+ 2+ esp+ 1 + "

with A the number of ants, p the evaporation factor, and
c1,C2,C3,c4,05 € Ry constants. Again, the model is sta-
tistically valid, and all parameters are chosen to be very
significant. However, the experimental data for A-MMASib
are a bit more sparse than in the other cases, probably be-
cause the parameters are tuned concurrently. Therefore, for
the cGA and A-MMASib sweet spot experiments, we claim
a weaker result:

OBSERVATION 2. Let A(x) be one of cGA, \-MMASib,
with © a parameter. Let T, - be the corresponding random

29

Evaporation | |
p=0.042
—-p=0.044
-— p=0.046
— p=0.048
p=0.05

5000 1

40001

run time [sample mean]

30001

20001

Figure 3: Number of fitness evaluations (run time) for
a given pair of parameters (A, p) for the A-MMASib. The
problem size is fixed at n = 10%. Note that the A-axis follows
a logarithmic scale. The run time is the average over 107
runs, and the shading is proportional to the sample standard
deviation. We see a unimodal trend, and a sweet spot for
A =5 and p = 0.046.

variable that returns the number of fitness evaluation until
convergence, and consider the function

fa iz r— E[1s,0]

Then there exists a parameter choice x. such that x, =
ming<4oo{fa(z)}. Moreover, fa(y) > fa(y+e€) fory <=z
and fa(y) < fa(y+e) fory > =, for all e > 0.

The next set of experiments focuses on finding the optimal
parameters in dependence on the standard deviation o of
the noise. We exploit the unimodal shape of the depen-
dence on the parameter, and perform a descent with a local
search. The performance of this approach depends on find-
ing a good starting value, preferably near the optimum. We
increase o slowly, and start the search where the optimum
of the previous ¢ was found. Since a small change in the
standard deviation results only in a small change of optimal
parameter, this leads to faster search for the optimum.

The optimal parameters dependent on the noise are de-
picted in Figure [and []] We can see a polynomial relation
(roughly linear) for the (p + 1)-EA, (1 + 1)-GA, and cGA.
The A-MMASib uses a decreasing evaporation rate while
keeping the number of ants constant. In all cases we per-
form model regression:

OBSERVATION 3. Let A(x) be one of the four tested algo-
rithms, with x a parameter, and let fa be as above. Consider
the function

Minz<too{fa(z)} : 0 —> x4

that returns the optimal parameter for a given posterior
noise standard deviation. Then

minz<+oo{fA($)} ~ P(U)

for a polynomial P.

[Parameter | et
u-EA 2
501 Au-GA
- TR
© :
o |
@ :
S | e T T
€ . A
3 5 A
=30 A
2 NTAY
£ YW i
g .. s 3 1V, SERTRE
Q. A N
T 20 AAA AA
E NP
a AN
o
10 LAAAAA
oA

00 25 50 75 100

noise standard deviation

Figure 4: Optimal parameter choice for the (u+1)-EA and
(1 + 1)-GA, for a given posterior noise standard deviation
0. The problem size is n = 10%. In both cases, the opti-
mal choice of the pu parameter increases polynomially with
respect to the noise standard deviation. Each point is the
sample mean of 10% runs. The run time for both algorithms
with this parameters choice is presented in Figure

3.2 Run time estimation

For each algorithm we approximate the run time function
in dependence of the standard deviation and optimal pa-
rameter choice. This function returns the number of fitness
evaluations to reach the optimum, with optimal parameters
tuning, posterior error of fixed standard deviation, and no
re-sampling. Let A be one of cGA, (i + 1)-EA, (1 + 1)-
GA, A-MMASib. For a given algorithm and given standard
deviation o, we let

o — Elr5]

be the expected run time of A with posterior noise standard
deviation o and optimal parameters choice as in Section [3.1]
This set of experiments aims at giving an estimate of E[7,].
The problem size is always fixed at n = 10%, unless otherwise
specified. Every observation is the arithmetic mean of 102
runs (see Figure7)

The run time plot in Figure[7] shows that the (u + 1)-EA
quickly becomes inefficient, when increasing posterior noise
standard deviation. In the case of the (u + 1)-GA, results
seem to be slightly better. However, we still can see that
this algorithm significantly worsens with increasing posterior
noise standard deviation. In the case of the A-MMASib we
see further improvement. The results in Figure [7] show that
it reacts much better to increasing posterior noise standard
deviation. Still, we observe a polynomial trend, with degree
clearly greater than one (cf. Figure . We see a similar
trend for the cGA.

As in the case of the parameter tuning experiments, we
perform statistical regression:

OBSERVATION 4. Let 75 be the runtime of (1 + 1)-EA or
(n+ 1)-GA, for a given posterior noise standard deviation.

30

: : X ><E><><><>2<><><><><><><><><:><><><><><><
N >o<><><3><><><><><><x><><><><><>3<><><><><><><><><>< X : :
X ; : :

""'<>”0'"<'>"'<'>'<;'<§'<”>”<'>'{> 'o{'>'<'>”{'>”<'>”<">'£>¢'<§ Lo <§"<'>'"' -
000000006” OOO“N>O“N>OO“»

=
©
Q
£
k)
g
g 20
o
° Parameter
E 11| xK-cGA
8 & A - MMASIib
E p - MMASIb
°a B
o
0.0 25 50 75 10.0

noise standard deviation

Figure 5: Optimal parameter choice for the cGA and \-
MMASIDb, for a given posterior noise standard deviation o.
The problem size is fixed at n = 10%. Each point is the
sample mean of 10? runs. Note that the optimal parameter
axis is in logarithmic scale. The K and A parameters linearly
increase for increasing posterior noise standard deviation,
while the p parameter linearly decreases. The run time for
both algorithms with this parameters choice is presented in

Figure [7}

Then

E[rs] ~ c1e°2V7

for c1,c2 € Ry constants.

These results confirm the generic fact that, without employ-
ing any additional operator, the (u+1)-EA and (p+1)-GA
perform poorly with noise. According to our statistical mod-
els, however, the (u+1)-GA has coefficient c2 lower than the
(1 + 1)-EA, while ¢; is the same for both algorithms. Thus
the difference of the runtime in expected value is again expo-
nential. Therefore, it seems that the recombination operator
employed by the (u+ 1)-GA helps in dealing with posterior
noise.

The cGA and A-MMASib are much more stable under an
increase in the posterior noise standard deviation. This is
clear when looking at the data (cf. Figure , and it can be
formalised through statistical analysis:

OBSERVATION 5. Let 7, be the run time for cGA or A\-
MMASib, for a given posterior noise standard deviation o.
Then

E[rs] ~ 102 + ¢y
for c1,c2 € Rso constants.

Recently, attempts have been made to perform a theo-
retical analysis of the run time of the hereby presented al-
gorithms, solving OneMax with additive posterior gaussian
noise. Particularly useful in this direction was the defini-
tion of graceful scaling (cf. Friedrich et al. [I0]). Let
F be a family of pseudo-Boolean functions (F,)nen, with
F, a set of functions f : {0,1}" — R. Let D be a

family of distributions (Dy)vser such that for all D, € D,
E[D,] = 0. We define F with additive posterior D-noise as
the set F[D] := {fn + Dv : fn € Fn,Dy, € D}.

DEFINITION 1. An algorithm A scales gracefully with
noise on F[D] if there is a polynomial q such that, for all
gnw = fn+ Dy € F[D], there exists a parameter setting
such that A(z) finds the optimum of f, using at most q(n,v)
calls to gn,v -

Even though this definition does not give detailed informa-
tion regarding the run time, we can safely assume that an
algorithm that does not scale gracefully without noise shows
experimental run time trend significantly worse than one
that scales gracefully with noise. From this point of view,
it seems that the (1 + 1)-EA and (u + 1)-GA do not scale
gracefully with noise, while both cGA and A-MMASib do.
In fact, partial theoretical results in this direction have been
proven.

THEOREM 1
Consider the cGA optimizing OneMax with additive poste-
rior Gaussian noise of variance o2, and problem size n. If
K = w(o?*y/nlogn), then the cGA finds the optimum after
O(Ko?y/nlogKn) steps, with probability 1 — o(1).

This result is consistent with the model given in Observation
A similar, negative result holds for (x + 1)-EA. In this
case, if we look at the p parameter, it can be proven that
it does not scale polynomially with respect to the problem
size. Since our unit of measurement is the number of fitness
evaluations, this implies that the (1 + 1)-EA does not scale
gracefully with noise.

THEOREM 2 (THEOREM 5 IN FRIEDRICH ET AL. [I0]).
Let p > 1 and let D be a distribution on R. Let Y be
the random wariable describing the minimum over u
independent copies of D. Suppose

> b
T 2(p+1)
Consider optimisation of OneMaz with reevaluated additive
posterior noise from D by (u+ 1)-EA. Then, for u bounded

from above by a polynomial, the optimum will not be evalu-
ated after polynomially many iterations w.h.p.

Pr(Y >D+n)

Again, this result validates the exponential trend given in
Observation 4 Weather the (¢ + 1)-GA or the A-MMASib
scale gracefully with noise is still an open question. Based
on Theorem [I] and Theorem [2] it has been argued that
recombination helps dealing with additive posterior Gaus-
sian noise. This generic idea is confirmed by our observa-
tions: the (u + 1)-GA, which employs recombination, per-
forms better then the (1 + 1)-EA. The fact, however, that
they both perform significantly worse than the EDA coun-
terparts, leads us to claim that there are other structural
elements which come into play when dealing with posterior
noise.

We conclude with a description of the run time trend for
the cGA and A-MMASib, for increasing problem size and
posterior noise standard deviation fixed at ¢ = v/10. The
results are displayed in Figure[f] The experiments show that
both algorithms have very similar run time. The cGA seems
to perform slightly better then the A-MMASib, probably due
to the fact that it uses an implicit recombination operator,

(THEOREM 11 IN FRIEDRICH ET AL. [10]).

31

Algorithm
1--cGA
- MMASIib

20001

1000 4

run time [sample mean]

0 25 50 75 100

problem size

Figure 6: Number of fitness evaluations (run time) for a
given problem size, taken to be the arithmetic mean of 107
runs, with optimally tuned parameters. Posterior noise stan-
dard deviation is fixed at ¢ = v/10. The size of each point is
proportional to the standard deviation. We see that the cGA
performs slightly better then the A-MMASib, even though
they give very similar results. A linear approximation of
the midpoint between the respective run time functions is
highlighted in gray.

that may positively affect its performance in the presence of
posterior gaussian noise. As in the other cases, we perform
statistical analysis on the hereby presented data:

OBSERVATION 6. The run time of the cGA, solving
OneMax + N (0,02), for a fized posterior noise standard de-
viation o is 7, = O(nlog(n)). Similarly, the run time of
the \-MMASib is 7, = O(n’log(n)). Moreover, the differ-
ence between the respective run times is at least linear for
mncreasing n.

Note that the run time of the ¢cGA is consistent with the
results presented in Theorem

3.3 Resampling

We show that there exists a sweet spot for the resampling
operator, as in the case of the parameter tuning experiments,
for fixed problem size n = 10%. This time, we do not need
to compute directly the optimal setting for the resampling
operator: there exists a clear relationship between the run
time with and without resampling, which can be effectively
described theoretically. In fact, the following equations hold:

2

1 1
Var (r ;N(O,02)> = T—QVar (N(0,70%)) = Or

Let 75,» be the random variable that returns the run time
of an algorithm A, for a given posterior noise standard de-
viation and number of resampling . Due to the property of
the noise variance mentioned above, we can approximate

E[ry.,] = rE [Tﬁ] (1)

Algorithm :
EA[no resampling] |:
EA[resampling]

-+~ GA[no resampling] | :
GA[resampling]

- cGA

-~ MMASIb

2e+051

1e+05 1

run time [sample mean]

0e+00 1

00 25 50 75 100

noise standard deviation

Figure 7: Number of fitness evaluations (run time) for
the(p+1)-EA and (1 +1)-GA with optimal resampling, and
the ¢cGA, (p+ 1)-EA, (p + 1)-GA and A-MMASib with no
resampling, for a given posterior noise standard deviation.
The problem size is fixed at n = 10, The (u + 1)-EA and
(141)-GA with optimal number of samples are derived from
Equation while in the other cases we performed direct
experiments, with optimal parameter choice as in Figure [
and Figure 5, and run time given by the arithmetic mean of
a sample of 10? runs.

from which we obtain the following result:

el]}

with 7, the optimal amount of resampling for a given pos-
terior noise standard deviation o.

Using Equation [2] we can readily visualise the behaviour
and trend of the optimal r,. We only consider the case of
the (14 1)-EA: due to the fact that this algorithm performs
poorly and the trend of 7, is clearer than in other cases, even
for low 0. Much like all of the other parameters, we see a
unimodal trend and a sweet spot r, < +00. In Figure |§| we
see the trend of the optimal number of samples for a given
posterior noise standard deviation, and we can observe a
linear increase in o.

In Figure[7] we compare the run time trend of the (1 + 1)-
EA, with the run time trend of (u+1)-GA, both given when
the resampling operator is used and when it is not. The
(1w + 1)-EA and (g + 1)-GA with resampling are given by
means of the regression model described in Observation [4
For both algorithms we observe improvement. However, for
posterior noise standard deviation ¢ < 10, it seems that the
(u + 1)-EA with resampling still performs worse than the
(1 + 1)-GA without resampling.

Additional experiments show that the resampling sweet-
spot for the cGA and A-MMAS;ib is r, = 1. In Figure m we
compare the (u 4 1)-EA and (u + 1)-GA with resampling,
with the ¢cGA, and A-MMASib without resampling. We see
that the cGA and A-MMASib perform better then the (u +
1)-EA and (u + 1)-GA with resampling. This confirms the
fact that the benefit of resampling is limited, and noticeable

min
1<r<+oo

(2)

To =

32

250000

200000

run time

150000 4

100000 +

1 10 100

optimal re-sampling

Figure 8: Number of fitness evaluations (run time) for
a given number of samples. The problem size is fixed at
n = 102. Posterior noise standard deviation is fixed at
o = 5.0, and optimal parameter choice is implicitly given
in Equation Note that the axis for the optimal number
of samples is in logarithmic scale. We observe a unimodal
trend, with sweet spot at » = 7. In Figure |§| we display the
trend of the optimal r for a given posterior noise standard
deviation.

only with algorithms that perform particularly bad under
noisy environments. We can frame these ideas rigorously:

LEMMA 1. Let 7o, be the run time of an algorithm A, for
a given posterior noise standard deviation o, and number of
samples r. Define 7, = 71and let o be the optimal number
of samples. Suppose that

E[ro] ~ c1e2V?

for ci,c2 € Rso. Then for o sufficiently large, we have that
160\ >
E o,re| ™ 5
[T 5 o'] C3 (CS)
for a constant cs € R.

PROOF. We know from Equation [2] that

r'e = min {TIE [TL]}
1<r<+oo NG
Thus we study the minima of rE [T\%] To do so, we con-

sider the natural extension of this function over the non-
negative real numbers, which is continuous and differentiable
at each point. The derivative in r is

VT (a5 5 - o)
Ny

o (Bl)) =

o

optimal re-sampling

o

0.0 25 5.0 75 10.0
posterior noise standard deviation

Figure 9: Optimal number of samples for a given posterior
noise standard deviation. The optimal parameter choice is
given implicitly in Equation[2} We observe a linear increase.
For noise standard deviation o = 5.0, we obtain the sweet
spot displayed in Figure[§| (r = 7).

Therefore, all local optima of rE [T%] in (0,+00) C Rxo
satisfy the equation

2V vEte (4\/77\/% — 620)
=0
N

Standard calculations give us only one non-negative solu-

4 2
. l _ C20'
tion, namely 7. = 5.

Moreover,

4 (TE[T%]) <0for0<r<r,

dr
d
. (TE[T%]) >0 for r > r.

Therefore, r, is the absolute minimum of TE[T%] for r €

(0,400). The sweet-spot for the resampling operator is

given by the integer that best approximates this value, i.e.
cio?

44

To ~ Ty =

It follows that

from which it follows that E [,] = c3, for ¢z € R constant.
Therefore, we obtain that

2
[0-77‘0} To |: G] ~es (162)
Vo cs

where we used the approximation given in Equation (|

From Lemma [I] it follows that, if we consider valid the sta-
tistical models given in Observation [4] and Observation

algorithm | run time no | resampling | run time w/
resampling sweet spot | resampling

(n+1)-EA | O@Y7) 0(0?) 0(c”)

(1n+1)-GA | O(Y7) 0(0?) 0(c?)

cGA O(a?) 0(1) O(c?)

A-MMASib | O(c?) O(1) O(c?)

Table 2: Run time with and without resampling for the
four algorithms, with respect to posterior noise standard
deviation o.

then the (1 +1)-EA and (p+ 1)-GA with resampling have a
run time O(o?). Therefore, for very large o, (1+1)-EA and
(14 1)-GA with resampling perform at least as well as cGA
and A-MMASib without resampling. It is, thus, interesting
to understand weather with the latter algorithms we can
further improve performance. In this sense, the following
lemma holds:

LEMMA 2. Let 7o, To,r, and ro be as above. Suppose that
Elro] ~ c10” + c2

for ci,c2 € Rso constants. Then the optimal configuration
for the resampling operator is always ro = 1.

PrOOF. The proof is very similar to the one given in
Lemmall} we study the minima of the function

E[rs]

We observe, however, that this function is linear in r, and

()

for a constant ca > 0. Therefore, the function rE [7’\%} is

T

strongly monotonic non-decreasing and

o = min {TE[T%]}Zl

1<r<+oo T

O

Combining this result together with Theorem [1| we obtain
the following

COROLLARY 1. The resampling operator is redundant for
the cGA optimizing OneMax with additive posterior gaus-
sian noise N (0, 02). In particular, the cGA reaches the op-
timum in O(c?) fitness evaluations.

If we assume that the models presented in Observation [f
are correct, then we conclude that the resampling operator
is redundant for A-MMASib as well, regardless of the pos-
terior noise standard deviation. Therefore, when optimizing
OneMax with additive posterior gaussian noise N (0, or2)7 we
cannot hope to achieve a run time with order of complex-
ity smaller than O(c?), for any of the hereby tested algo-
rithms (cf. Table . These results are not in contrast with
the experiments displayed in Figure[7] In fact, the resam-
pling operator gives a faster run time for (1 + 1)-GA and
(1 + 1)-EA, but its effect is noticeable only for very large
posterior noise standard deviation o. In the case of o < 10,
the benefit of recombination overwhelms the effect of the re-
sampling operator. Nevertheless, for very large o, we expect

the (u + 1)-EA with resampling to give better performance
then the (1 + 1)-GA without resampling.

4. CONCLUSIONS

We compare empirically the run time behavior of four dif-
ferent bio-inspired search heuristics: (u+1)-EA, (1+1)-GA,
cGA, and A-MMASib. Our testbed is the fitness function
OneMax + N(0,0?), which is a simple unimodal function
with posterior noise. All algorithms have local parameters
(cf. Table, which influence their run time (cf. Figures.
We study the dependence of the parameter on the amount
of noise o and empirically determine for each algorithm the
optimal parameter setting depending on o (cf. Figures [4}[f)).
We give statistical predictions for each parameter’s asymp-
totic behavior.

We are then able to compare the algorithms with optimal
parameter settings depending on the level of noise. We ob-
serve a strict hierarchy in how well the algorithms can deal
with noise (cf. Figure[7). From worst to best this is (4 1)-
EA, (u+1)-GA, - MMASib, and cGA. We show statistically
that the (¢ + 1)-EA and (1 + 1)-GA have run time trend of
O(e°V?), and that the A-MMASib and cGA have run time
trend of O(c?). We observe that cGA and A-MMASib have
very similar run time, depending on the problem size.

A common technique to deal with noisy fitness functions
is resampling. We therefore also study the optimal number
of samples for a given noise level (cf. Figures . With
optimal resampling we observe improved run times for the
(# + 1)-EA and (p + 1)-GA, which scaled least graceful
with noise. However, with optimal resampling both of them
have run time O(c?). We prove that resampling is redun-
dant for any algorithm with run time 0(02), thus showing
that cGA and A-MMASib do not benefit from this operator
(cf. Lemma [T}f2). Therefore, all four algorithms reach run
time complexity of @(c?) at most (cf. Table .

Overall, this study shows that resampling is more bene-
ficial than crossover, for algorithms that perform poorly in
noisy environments. By far the best scaling behaviour was
achieved with EDAs, suggesting that such algorithms can
handle noise implicitly. We plan to validate all hereby pre-
sented statistical models analytically in the future.

Acknowledgements

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 618091 (SAGE)
and from the German Science Foundation (DFG) under
grant agreement FR 2988 (TOSU).

References

[1] A. Aizawa and B. W. Wah. Scheduling of genetic
algorithms in a noisy environment. FEvolutionary
Computation, 2(2):97-122, 1994.

[2] Y. Akimoto, S. Astete-Morales, and O. Teytaud.
Analysis of runtime of optimization algorithms for
noisy functions over discrete codomains. Theoretical
Computer Science, 605:42-50, 2015.

D. Arnold and H. G. Beyer. Efficiency and mutation
strength adaptation of the (u, 11, A)-ES in a noisy

34

[4]

[5]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

environment. In Proc. of PPSN ’00, pages 3948,
2000.

V. D. Arnold and G. H. Beyer. A general noise model
and its effects on evolution strategy performance.
IEEE Trans. Evolutionary Computation,
10(4):380-391, 2006.

J. Branke and C. Schmidt. Selection in the presence of
noise. In Proc. of GECCO 03, pages 766-777, 2003.

J. Branke and C. Schmidt. Sequential sampling in
noisy environments. In Proc. of PPSN 04, pages
202-211, 2004.

D.-C. Dang and P. K. Lehre. Efficient optimisation of
noisy fitness functions with population-based
evolutionary algorithms. In Proc. of FOGA ’15, pages
62-68, 2015.

S. Droste. A rigorous analysis for the compact genetic
algorithm for linear functions. Natural Computing,
5(4):257-283, 2006.

M. J. Fitzpatrick and J. J. Grefenstette. Genetic
algorithms in noisy environments. Machine Learning,
3(2):101-120, 1988.

T. Friedrich, T. Kétzing, M. S. Krejca, and A. M.
Sutton. The benefit of recombination in noisy
evolutionary search. In Proc. of ISAAC ’15, pages
140-150, 2015.

T. Friedrich, T. Kotzing, M. S. Krejca, and A. M.
Sutton. Robustness of ant colony optimization to
noise. In Proc. of GECCO ’15, pages 17-24, 2015.

D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
Complex Systems, 6:333-362, 1992.

N. Hansen, A. S. P. Niederberger, L. Guzzella, and

P. Koumoutsakos. A method for handling uncertainty
in evolutionary optimization with an application to
feedback control of combustion. IEEE Trans.
Evolutionary Computation, pages 180-197, 2009.

G. R. Harik, F. G. Lobo, and D. E. Goldberg. The
compact genetic algorithm. pages 523-528, 1998.

V. Heidrich-Meisner and C. Igel. Hoeffding and
bernstein races for selecting policies in evolutionary
direct policy search. In Proc. of ICML 09, pages
401-408, 2009.

V. Heidrich-Meisner and C. Igel. Hoeffding and
bernstein races for selecting policies in evolutionary
direct policy search. In Proc. of ICML 09, pages
401-408, 2009.

M. Hellwig and H.-G. Beyer. Evolution under strong
noise: A self-adaptive evolution strategy can reach the
lower performance bound - the pccmsa-es. In Proc. of
PPSN ’16, pages 26-36, 2016.

H. Miihlenbein and G. Paafl. From recombination of
genes to the estimation of distributions I. Binary
parameters. In Proc. of PPSN ’96, pages 178-187.
Springer-Verlag, 1996.

[19]

[20]

[21]

H. Miihlenbein and H. Voigt. Gene pool
recombination in genetic algorithms. In
Meta-Heuristics, pages 53-62. Springer US, 1996.

A. Priigel-Bennett, J. Rowe, and J. Shapiro. Run-time
analysis of population-based evolutionary algorithm in
noisy environments. In Proc. of FOGA ’15, pages
69-75. ACM, 2015.

C. Qian, Y. Yu, Y. Jin, and Z.-H. Zhou. On the
effectiveness of sampling for evolutionary optimization
in noisy environments. In Proc. of PPSN ’1, pages
302-311, 2014.

35

[22] P. Rolet and O. Teytaud. Bandit-based estimation of
distribution algorithms for noisy optimization:
Rigorous runtime analysis. In Proc. of LION ’10,
pages 97-110, 2010.

[23] P. Stagge. Averaging efficiently in the presence of
noise. In Proc. of PPSN 98, pages 188-200, 1998.

	Introduction
	Setting and Algorithms
	The test function
	Algorithms
	Statistical and experimental setting

	Experimental Results
	Parameter tuning
	Run time estimation
	Resampling

	Conclusions

