
Improved Runtime Bounds for the (1+1) EA on Random
3-CNF Formulas Based on Fitness-Distance Correlation

Benjamin Doerr
École Polytechnique

Université Paris-Saclay
Palaiseau, France

Frank Neumann
School of Computer Science

University of Adelaide
Adelaide, Australia

Andrew M. Sutton
Hasso-Plattner-Institut
Universität Potsdam
Potsdam, Germany

ABSTRACT
With this paper, we contribute to the theoretical under-
standing of randomized search heuristics by investigating
their behavior on random 3-SAT instances. We improve the
results for the (1+1) EA obtained by Sutton and Neumann
[PPSN 2014, 942–951] in three ways. First, we reduce the
upper bound by a linear factor and prove that the (1+1) EA
obtains optimal solutions in time O(n logn) with high prob-
ability on asymptotically almost all high-density satisfiable
3-CNF formulas. Second, we extend the range of densities
for which this bound holds to satisfiable formulas of at least
logarithmic density. Finally, we complement these mathe-
matical results with numerical experiments that summarize
the behavior of the (1+1) EA on formulas along the density
spectrum, and suggest that the implicit constants hidden in
our bounds are low.

Our proofs are based on analyzing the run of the algorithm
by establishing a fitness-distance correlation. This approach
might be of independent interest and we are optimistic that
it is useful for the analysis of randomized search heuristics
in various other settings. To our knowledge, this is the first
time that fitness-distance correlation is explicitly used to rig-
orously prove a performance statement for an evolutionary
algorithm.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Runtime analysis; satisfiability; fitness-distance correlation

1. INTRODUCTION
The analysis of randomized search heuristics has made

tremendous progress over the past fifteen years. A wide
range of randomized search heuristics such as randomized
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local search, evolutionary algorithms, and ant colony opti-
mization has been analyzed for specific fitness functions as
well as problems from combinatorial optimization. We refer
the reader to the timely books [19, 5, 12] for a comprehensive
presentation.

Tail bounds on the runtime of the (1+1) EA on randomly
generated high-density satisfiable 3-CNF formulas were de-
rived in [23] where a bound of O(n2 logn) was shown to hold
with probability 1 − o(1). The main results of our paper is
to improve this bound to O(n logn) and establish results for
lower density formulas. We obtain this result by determin-
ing a fitness-distance correlation that allows a partitioning
of the set of search points into different layers that correlate
with the Hamming distance to an optimal solution.

The notion of fitness distance correlation (FDC) [13] has
been widely used in the area of evolutionary computation to
explain the difficulty of solving certain problems. All ran-
domized search heuristics are guided by their fitness function
and FDC is frequently used to determine the hardness of a
problem by considering how the distance of search points to
the optimum relates to their fitness values. The intuition
is that problems are easy to solve if the fitness improves
with decreasing distance to the optimum and hard to solve
if the fitness is pointing in the opposite direction. While the
intuition sounds sensible, it does not always translate di-
rectly into an accurate prediction of algorithm performance.
Usually, the FDC is established by sampling search points
on relatively small instances and calculating the empirical
correlation between fitness and the distance to a known op-
timum. Different counterexamples have been presented in
the literature that show FDC is not always a good predictor
of algorithm performance (see e.g. [4, 11, 20]).

A strong FDC is only a reliable predictor if a randomized
search heuristic does not encounter any deviations from the
assumed usual behavior. In the case that a deviation from
the predicted behavior becomes very unlikely, a strong FDC
can potentially be used to accurately predict the runtime
of randomized search heuristics. This property is explored
in this paper, and we show that there is a strong FDC for
highly dense 3-CNF formulas. Usually, FDC is determined
empirically on a finite sample of points in the search space.
In order to make it useful for upper bounds on the run-
time of randomized search heuristics, we must be able to
make rigorous statements about the properties of the rela-
tionship between fitness and distance and show that those
properties hold with high probability. Furthermore, we re-
quire such statements to explicitly depend on the input size,
where usual experimental investigations deal with problems
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of relatively small fixed size. We prove rigorous bounds on
the FDC for high-density 3-CNF formulas in dependence
of the input size n and use it to derive tail bounds on the
runtime of the (1+1) EA for this class of problems. We
show that the probability that the optimization time ex-
ceeds O(n logn) vanishes with increasing problem size for
this problem class. This matches the lower bound on the
expected runtime for asymptotically almost all high-density
satisfiable 3-CNF formulas as described in [23].

We specifically study the planted model of random 3-CNF
distributions and extend our results to the filtered model us-
ing a correspondence due to Ben-Sasson et al. [6]. Planted
distributions for the maximum clique problem in graphs
have also been studied by Storch [22] in the context of ran-
domized search heuristics. In propositional satisfiability, the
planted distribution of 3-CNF formulas is known to be easy
to solve for classical algorithms [15], and our objective is to
advance the theoretical analysis of evolutionary algorithms
on random satisfiability models.

The outline of the paper is a follows. We introduce the
model and algorithm under investigation in Section 2. We
start our analysis by investigating formulas of high (linear)
density in Section 3 and prove the O(n logn) bound. We
then extend this analysis to formulas of logarithmic density.
Finally, we give a short proof in Section 4 that the runtime
of the (1+1) EA is faster than exponential for very low con-
stant densities. Our theoretical results are complemented by
experimental investigations in Section 5. We conclude the
paper in Section 6.

2. PRELIMINARIES
A k-CNF formula F is constructed from a set of n Boolean

variables {x1, x2, . . . , xn} by forming a logical conjunction of
exactly m clauses F = C1∧C2∧ . . .∧Cm. Each clause is the
logical disjunction of exactly k literals, Ci = `i1 ∨ · · · ∨ `ik
and each literal `ij is either an occurrence of a variable x
or its negation ¬x. A k-CNF formula F is satisfiable if and
only if there is an assignment of variables to truth values so
that every clause contains at least one true literal.

The set of all assignments to a set of n Boolean variables
is isomorphic to {0, 1}n by interpreting the bit at each po-
sition i of the string as the state of exactly one Boolean
variable xi. For a length-m formula F on n variables, we
define the fitness function f = fF : {0, 1}n → {0, . . . ,m} :=
x 7→ |{C ∈ F : C is satisfied by x}|. If F is satisfiable, the
task of finding a satisfying assignment reduces to the task
of maximizing f .

The standard (1+1) EA, illustrated in Algorithm 1, is
a basic evolutionary algorithm that maintains a size-one
population and produces a single offspring in each step.
It can be characterized as a stochastic hill-climbing search
that uses the standard bit-wise uniform mutation opera-
tor. Given a length-m formula F on n variables we seek an
asymptotic bound on the runtime of the (1+1) EA search-
ing for a satisfying assignment to F by optimizing the cor-
responding pseudo-Boolean function f = fF . We study
the infinite stochastic process {x(t) : t ∈ N0} on {0, 1}n

where x(t) is the assignment generated in iteration t of Al-
gorithm 1. The runtime of the (1+1) EA is the random

variable T = inf{t ∈ N0 : f(x(t)) = m}.
In order to bound the runtime of the (1+1) EA, we will

consider the sequence (x(0), x(1), . . .) of assignments gener-

Algorithm 1: The (1+1) EA.

choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x;
flip each bit of y independently with prob. 1/n;
if f(y) ≥ f(x) then x← y;

ated by the (1+1) EA and study the drift of correspond-
ing stochastic processes that measure fitness values and dis-
tance values along this sequence. To make precise state-
ments about the runtime, we rely heavily on the following
drift theorem.

Theorem 1 (Multiplicative Drift [8, 9]). Let {Xt : t ∈
N0} be a sequence of random variables over R≥0. Let T be
the random variable that denotes the earliest point in time
t ≥ 0 such that Xt < 1. If there exists δ > 0 such that, for
all a,

E(Xt −Xt+1 | T > t,Xt = a) ≥ δ a,
then, for all a,

E(T | X0 = a) ≤ 1 + ln(a)

δ
,

and

Pr

(
T >

λ+ ln(a)

δ

∣∣∣∣ X0 = a

)
≤ e−λ for all λ > 0.

2.1 Random 3-CNF distributions
We consider distributions of 3-CNF formulas consisting of

m clauses of length k = 3 over n variables. We also impose
the assumption that each clause consists of distinct vari-
ables. This assumption is quite natural for 3-CNF formulas
since any length-3 clause that contains repeating variables
can be immediately reduced to an equivalent length-2 clause
(if there are repeating variables with the same polarity) or
a tautology (if there are repeating variables with opposite
polarity). However, we do allow repeated clauses in F .

Definition 1. Let Ωn,m be the finite set of all 3-CNF for-
mulas over n variables and m clauses.

We associate random 3-CNF distributions with categori-
cal distributions over the sample space Ωn,m. In particular,
the well-known uniform distribution Un,m is defined by

Pr(F | F ∼ Un,m) = |Ωn,m|−1.

The filtered distribution is the uniform distribution condi-
tioned on satisfiability.

Pr(F | F ∼ USAT
n,m ) = |{F ∈ Ωn,m : F is satisfiable}|−1.

The planted distribution Pn,m is the uniform distribution
conditioned on satisfiability by a planted assignment x?.

Pr(F | F ∼ Pn,m) = |{F ∈ Ωn,m : F is satisfied by x?}|−1.

When considering a formula F constructed from Pn,m,
without loss of generality we will hereafter assume that the
planted solution x? = (1, 1, . . . , 1) since the behavior of the
(1+1) EA is invariant to negation operations on literals of
F . We define the function d : {0, 1}n → {0, . . . , n} := x 7→
|{i : xi = 0}| that measures the Hamming distance to the
planted solution.
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Definition 2. Fix a constant ε > 0. We define H = Hε ⊆
{0, 1}n × {0, 1}n such that (x, y) ∈ H if and only if

1. |{i : xi 6= yi}| = 1,

2. d(y) = d(x)− 1, and

3. d(x) ≤ (1/2 + ε)n

The following lemma introduces a two-sided bound on the
expected difference in fitness between pairs in H, provided
that F is drawn from the Pn,m distribution.

Lemma 1. Let (x, y) ∈ H, then

3m

7n
(1− γ(n)) ≤ E(f(y)− f(x) | F ∼ Pn,m) ≤ 3m

7n

where γ(n) = (1 + o(1))(3/4 + ε− ε2).

Proof. Let A be the set of all 3-CNF clauses on n vari-
ables with at least one positive literal that are not satisfied
by x but are satisfied by y. Similarly, let B be the set of
all 3-CNF clauses on n variables with at least one positive
literal that are satisfied by x but not satisfied by y. Let
C ⊃ A ∪ B be the set of all 3-CNF clauses on n variables
with at least one positive literal.

Suppose F ∼ Pn,m. Let ZA be the random variable that
counts the occurrences of clauses from A in F and ZB be the
random variable that counts the occurrences of clauses from
B in F . Since F contains exactly m clauses chosen from C
independently with replacement, E(ZA) = m|A|/|C|, and
E(ZB) = m|B|/|C|. Hence,

E(f(y)− f(x)) = E(ZA − ZB) = m

(
|A| − |B|
|C|

)
,

and the bounds follow from the fact that |C| = 7
(
n
3

)
and

Lemma 1 of [23], which states |A| =
(
n−1

2

)
and 0 ≤ |B| ≤

γ(n)
(
n−1

2

)
, where γ(n) is as claimed.

Taking the random variable Z := ZA−ZB as the sum of m
independent random variables, the following lemma follows
from 1 by Chernoff bounds on Z.

Lemma 2. For n sufficiently large, let (x, y) ∈ H be chosen
arbitrarily. Then

Pr
(c1m

n
< f(y)− f(x) <

c2m

n

∣∣∣ F ∼ Pn,m) = 1−e−Ω(m/n)

for specific constants c1 < 1− γ(n) < c2.

2.2 Constraint density
The constraint density of a formula is the ratio of clauses

to variables m/n. The constraint density quantifies the av-
erage number of constraints that are imposed on a variable.
Boolean formulas with low constraint density are expected
to be easy to satisfy, since each variable has, on average,
few constraints. On the other hand, formulas with high
constraint density are, on average, easy to refute because
backtracking search algorithms can quickly derive a contra-
diction. The study of a threshold phenomenon in the uni-
form random 3-CNF distribution Un,m has been the focus
of intense study in the last two decades. The satisfiability
threshold conjecture [2] asserts that for all k ≥ 3 if is a for-
mula drawn uniformly at random from the set of all k-CNF

formulas with n variables and m clauses, there exists a real
number rk such that

lim
n→∞

Pr{F is satisfiable} =

{
1 m/n < rk;

0 m/n > rk.

Experimental studies on 3-CNF formulas suggest a threshold
around r3 ≈ 4.26. There are currently no exact results for
the location of this threshold (if it exists), and only upper
and lower bounds are known. For a more detailed treatment
of random satisfiability along with an exposition of recent
developments, see the chapter by Achlioptas [1].

3. HIGH-DENSITY REGIME
We now study the runtime of the (1+1) EA on high-

density planted formulas. We begin with linear densities in
Section 3.1, namely, length-m formulas on n variables where
m/n ≥ cn for a specific constant c. In this regime we prove
that for asymptotically almost all formulas, the (1+1) EA
finds a satisfying assignment in O(n logn) time with high
probability. This improves by a linear factor the previous
known tail bounds for the (1+1) EA at these densities [23].

In Section 3.2, we consider sparser formulas where m/n ≥
c logn for a particular c. We treat these densities separately
because the randomness of both the algorithm and the for-
mula sampling process must be handled more carefully.

3.1 Linear density
Definition 3. We say a formula F has strong FDC if the
following two properties hold.

Property A. ∀ (x, y) ∈ H, c1m/n < f(y)− f(x) < c2m/n,

Property B. ∀x, y ∈ {0, 1}n with n/2 + εn ≥ d(x) ≥ n/2 +
3εn/4 and y ≤ n/2 + εn/2, f(x) < f(y).

Here c1 < c2 are the constants introduced in Lemma 2.

Lemma 3. Let F ∼ Pn,m where m/n ≥ cn for a sufficiently
large positive constant c. The probability (taken on Ωn,m)

that F has strong FDC is at least 1− e−Ω(n).

Proof. By Lemma 2 together with a union bound over
the elements of H, Property A of Definition 3 holds with
probability 1 − e−Ω(n). For Property B, let z, z′ ∈ {0, 1}n
such that d(z) = d(z′) = i. Note that Ei = E(f(z)) =
E(f(z′)) is independent of z, where we take the expectation
over Pn,m. Let u, v ∈ {0, 1}n where n/2 + εn ≥ d(u) ≥
n/2 + 3εn/4 and d(v) ≤ n/2 + εn/2. Denote a := d(u) and
b := d(v). Note that u can be transformed to v by changing
a− b ≥ εn/4 zeros to ones. We argue that Eb ≥ Ea + Θ(m).
By the above stated independence, E(f(v)−f(u)) = Eb−Ea.
Furthermore, by a repeated application of Lemma 1, we have
Eb ≥ Ea + (3/7)(1− γ(n))(m/n)(εn/4) = Ea + Θ(m).

Let q := (Ea + Eb)/2 and let y be any search point with
d(y) = b. Note that f(y) is a random variable that can
be written as sum of m independent 0/1 random variables.
Consequently, the additive Chernoff bound shows that

Pr(f(y) ≤ q) = Pr(f(y) ≤ Eb − (Eb − Ea)/2) ≤ e−Θ(m).

The same argument shows that any x with d(x) = a has a

fitness greater than q with probability e−Θ(m) only. Apply-
ing a union bound over the applicable pairs x, y ∈ {0, 1}n,
we conclude that Property B of Definition 3 holds with prob-
ability at least 1 − e−Ω(n). A final union bound over both
properties concludes the proof.
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Theorem 2. Let m/n ≥ cn for a sufficiently large positive
constant c. The runtime of the (1+1) EA is bounded by
O(n logn) with probability 1−o(1) on every planted formula
with n variables and m clauses except for a set of measure
tending to zero exponentially fast with n.

Proof. By Lemma 3, every planted formula at density
at least cn has strong FDC except for an e−Ω(n)-fraction, so
we will assume for the remainder of the proof that we are
working with a formula that has the strong FDC property.

If F has strong FDC, then for states that are not too far
away from the planted assignment, the fitness and distance
are tightly correlated in the following sense. ∀ (x, y) ∈ H,

f(x) + c2d(x)m/n ≥ m, and f(x) + c1d(x)m/n ≤ m (1)

since each step on a path of length d(x) to 1n increases the
fitness by at least (respectively at most) a constant number
multiplied by m/n and f(1n) = m.

We consider the drift of the stochastic process {Xt : t ∈
N0} where Xt = m − f(x(t)). Assume at iteration t that

0 < d(x(t)) ≤ (1/2 + ε)n (we will later show this holds
with high probability over the run). There must be a set

S ⊆ {0, 1}n consisting of d(x(t)) elements such that for

each y ∈ S, (x(t), y) ∈ H. For each such y, since f(y) >

f(x(t))+c1m/n > f(x(t)), a mutation from x(t) to y is clearly
accepted by selection. Furthermore, selection does not ac-
cept mutation to lower fitness values so Xt −Xt+1 ≥ 0. Let
E denote the event that mutation produces some y ∈ S from
x(t). By the law of total expectation,

E(Xt −Xt+1 | Xt) ≥ E(Xt −Xt+1 | Xt, E) Pr(E)

≥ E(Xt −Xt+1 | Xt, E)
d(x(t))

en
.

By the inequality in (1),

m− f(x(t))

c2m/n
=

Xt
c2m/n

≤ d(x(t))

so we can bound the drift as

E(Xt −Xt+1 | Xt) ≥ E(Xt −Xt+1 | Xt, E)
Xt

en(c2m/n)

= (f(y)− f(x(t)))
Xt

en(c2m/n)
,

and, since F has strong FDC and (x(t), y) ∈ H,

≥ Xt
c1m/n

en(c2m/n)
= Xt

c1/c2
en

. (2)

We only need to show that with high probability, the
process never leaves H. Using the multiplicative Chernoff
bound, the initial search point generated uniformly at ran-
dom has d(x(0)) ≤ n/2 + εn/2 with high probability. In this
case, by Property B of Definition 3, the EA can never reach
a search point with distance b or worse in H. Since H by
definition contains points at distance at most (1/2 + ε)n, in
order for the process to leave H, it must jump over the gap
between n/2 + 3εn/4 and n/2 + εn. This can only occur
after mutating at least εn/4 bits: an event that occurs with

probability at most e−Ω(n logn) under uniform mutation.
We thus assume that the process does not leave H, and so

the inequality of (2) is valid for all times t. Finally, we apply
Theorem 1 using inequality (2) by setting δ = c1/(c2en) and
λ = log n to obtain the tail bound.

Let F ∗ be any formula on n variables and m clauses with
exactly one satisfying assignment. Ben-Sasson et al. [6]
proved that for densities above m/n > c lnn for a partic-
ular constant c, the probability of generating F ∗ from Pn,m
is asymptotically equal to the probability of generating F ∗

from the filtered distribution USAT
n,m . They also prove that

with high probability in this regime, a formula from either
distribution has a unique satisfying assignment. Thus we
can extend our result to the uniform distribution conditioned
on satisfiability to obtain the following corollary that covers
all satisfiable formulas in the high-density regime.

Corollary 1. Let m/n > cn for a sufficiently large positive
constant c. The runtime of the (1+1) EA is bounded by
O(n logn) with probability 1− o(1) on all satisfiable 3-CNF
formulas on n variables and m clauses except for a set of
measure tending to zero exponentially fast with n.

We conclude the typical runtime of the (1+1) EA very
rarely deviates above O(n logn) for asymptotically almost
all satisfiable formulas of sufficiently high linear density.
This complements the Ω(n logn) lower bound on the ex-
pected runtime derived for the same class of formulas in [23,
Theorem 6]. A corresponding upper bound on the expected
runtime is trickier since there is still a very low probability
that the (1+1) EA can escape H and become trapped for
a long time at a local optimum. Our results yield a simple
solution to such a heavy-tailed runtime: perform sufficiently
frequent restarts and apply Theorem 2 or Corollary 1 to
obtain a matching upper bound on the expectation.

3.2 Logarithmic density
For smaller densities we can also obtain a similar tail

bound on the runtime, but we have to take a slightly differ-
ent approach. At high densities, Theorem 2 makes a state-
ment about the runtime over all but a vanishing fraction of
formulas. At densities asymptotically lower, we can make a
statement about the likelihood of a runtime of O(n logn),
but the probability is taken over both the dynamics of the
(1+1) EA process and the sampling of the random formula.

For any x ∈ {0, 1}n with d(x) = k we define P (x) := (x =
x1, x2, . . . , xk = 1n) to be the unique path where xi+1 is
constructed from xi by flipping the leftmost zero bit of x.

Lemma 4. Let c be a sufficiently large positive constant and
let F ∼ Pn,m with m/n > c lnn. If d(x) ≤ (1/2 + ε)n,
then for every xi, xi+1 ∈ P (x), c1m/n ≤ f(xi+1)− f(xi) ≤
c2m/n with probability at least 1− n−3.

Proof. Define the indicator random variable χ : {0, 1}n×
{0, 1}n ×Ωn,m → {0, 1} where

χ(x, y;F ) =

{
1 if c1m

n
< f(y)− f(x) < c2m

n
,

0 otherwise.

For all xi, xi+1 ∈ P (x), by the union bound

Pr

 ⋃
xi,xi+1∈P (x(t))

χ(xi, xi+1;F ) = 0

∣∣∣∣∣∣ F ∼ Pn,m


≤
∑

xi,xi+1∈P (x(t))

Pr (χ(xi, xi+1;F ) = 0 | F ∼ Pn,m)

≤ ne−Ω(m/n) ≤ n−3,

where we have applied Lemma 2 and used the fact that
m > cn lnn, c sufficiently large.
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Lemma 4 bounds the probability that the fitness and dis-
tance are sufficiently correlated along a path to the planted
solution on a random formula of density at least c lnn for
a specific constant c. We now apply this result to derive a
bound on the runtime of the (1+1) EA over such a formula.

Theorem 3. Let F ∼ Pn,m, m/n > c lnn for a sufficiently
large positive constant c. The runtime of the (1+1) EA is
bounded by O(n logn) with probability polynomially close to
one, where the probability is taken over both the random sam-
pling of the formula and the random optimization time.

Proof. Let r be a sufficiently large constant. We con-
sider the first rn lnn steps of the (1+1) EA on a formula
F drawn from Pn,m uniformly at random and show that,
with probability polynomially close to one, the (1+1) EA
has found a satisfying assignment.

We say a bitstring x ∈ {0, 1}n has an FDC path if the
following two properties hold at x.

Property A′. ∀xi, xi+1 ∈ P (x), c1m/n ≤ f(xi+1) − f(xi) ≤
c2m/n.

Property B′. d(x) ≤ n/2 + 3εn/4,

We say the process has failed at time t if there is any 0 ≤
s ≤ t such that x(s) does not have an FDC path. We argue
by induction that the probability that the process fails at
time t conditioned on the event that it has not failed at
time t − 1 is sufficiently high. Specifically, in each step we
show that if process has not yet failed, Property B′ holds
with probability 1− e−Ω(n), and the probability of Property
A′ conditioned on B′ is polynomially close to one.

For the initial point, we assume a slightly stronger condi-
tion than Property B′: that d(x(0)) ≤ n/2 + εn/2, which by
Chernoff bounds holds with probability exponentially close
to one. Let h = f(x(0)). If t > 0 and the process has not yet
failed at time t− 1, then Property B′ can be violated only if
the (1+1) EA accepts a point sufficiently further away from
the planted solution. Let y be the offspring generated in
iteration t of the (1+1) EA. We make a case distinction on
three disjoint events occurring in the mutation step.

Case d(y) > n/2 + εn. This event occurs only with proba-

bility e−Ω(n logn) since Property B′ holds at x(t−1), and so
εn/4 bits must change during mutation to produce y.

Case n/2 + εn ≥ d(y) > n/2 + 3εn/4. By an argument sim-
ilar to the one in the proof of Lemma 3 that Property B of
Definition 3 holds at high densities, we have f(y) ≥ h only

with e−Θ(m) probability. Since the fitness of points can only
monotonically increase during a run of the (1+1) EA, under

this event f(y) < h ≤ f(x(t−1)) and so x(t) = x(t−1) since y
would not be accepted.

Case d(y) ≤ n/2 + 3εn/4. In this case, Property B′ will also

not be violated by x(t) because, x(t) = y or x(t) = x(t−1),
both of which satisfy Property B′.

Since the first two events occur with exponentially small
probability (and the events partition the probability space),
we can conclude that, as long as the process has not failed
by iteration t−1, then with probability 1−e−Ω(n), Property
B′ holds at x(t).

Assuming Property B′ holds at x(t), we can apply Lemma 4
and conclude the conditional probability that Property A′

also holds at x(t) is at least 1 − n−3. The joint probability
that both properties hold is therefore at least 1−O(n−3).

Now by induction on t, the process does not fail for rn lnn
steps with probability at least 1−O(n−1). Conditioning on
the event that the process has not failed for a phase of rn lnn
steps, the bound on the drift during this phase is the same
as with inequality (2). We can again apply Theorem 1 with
λ = log n to obtain the tail bound.

4. LOW-DENSITY REGIME
On the uniform distribution, 3-CNF formulas that seem

to be difficult for complete search algorithms lie near the
proposed critical threshold r3 ≈ 4.26. However, at very low
densities, random formulas become easy to solve again, even
by very simple backtracking-free heuristics. The pure literal
heuristic operates by iteratively finding a pure literal in the
formula (i.e., one whose negation does not appear), setting it
to true, and then removing all clauses that contains it. This
approach succeeds with high probability for uniform random
formulas at constraint densities m/n < 1.637 [17, 18]. A
similar backtracking-free heuristic called the generalized unit
clause heuristic succeeds with asymptotically positive prob-
ability on uniform random formulas with m/n < 3.003 [10].
Alekhnovich and Ben-Sasson [3] discovered a deep connec-
tion between constraint-directed random walk (iteratively
flipping a random variable in a random unsatisfied clause)
and the pure literal heuristic. They proved that the random
walk finds a satisfying assignment with high probability in
linear time for constraint densities at most 1.637.

In the interest of a more complete picture, we would also
like to understand the behavior of the (1+1) EA at very
sparse densities. Such formulas are likely easy to solve be-
cause most assignments to a random formula are already
satisfying, and we conjecture that the (1+1) EA also runs
in polynomial time at these densities. This conjecture is
strongly supported by empirical evidence in Section 5, how-
ever proving the conjecture is likely to require different tech-
niques than the ones that are useful for high density formu-
las. In this section, we show that if the density is low enough,
the structure of constraints is so sparse that the formula
breaks up into small components that the (1+1) EA can

solve separately. From this we easily derive a 2o(n) subexpo-
nential time bound and at least conclude that the runtime
for the (1+1) EA is faster than any exponential function at
low densities.

Lemma 5. Let H = Hd(n,m) denote a random d-uniform
hypergraph with n vertices and exactly m hyperedges selected
uniformly at random with replacement from the family of

(
n
d

)
possible d-sets.

Let α = dm/n denote the average degree of H. If α <
(d− 1)−1, then with high probability, the number of vertices
in the largest connected component of H is O(logn).

Proof. We consider m rounds of selecting edges uni-
formly at random with replacement. Let X1, X2, . . . , Xm
denote the sequence of random variables where Xi corre-
sponds to the size of the largest connected component in

round i. Moreover, let X̂1, X̂2, . . . , X̂m be the same sequence
corresponding to the process of selecting edges uniformly at
random without replacement. Note that for all 1 ≤ i < m,

Pr(Xi+1 > Xi | Xi) ≤ Pr(X̂i+1 > X̂i | X̂i) since if we use
replacement sampling, there are only more chances to add
a pre-existing edge, which has no effect on the size of any
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component. Therefore Xm is stochastically dominated by

X̂m and so for every k ∈ N, Pr(Xm < k) ≥ Pr(X̂m < k).

Finally the result that Pr(X̂m = O(logn)) = 1− o(1) is due
to Schmidt-Pruzan and Shamir [21].

The constraint hypergraph of a formula is a hypergraph
H = (X,E) where X corresponds to the set of variables in
F and E is a sequence of m nonempty subsets of X con-
structed as follows. Each clause C of F corresponds to
a unique S ∈ E that contains exactly the variables that
appear as literals in C. Thus every 3-CNF formula on n
variables with m clauses has a unique 3-regular constraint
hypergraph with m hyperedges (parallel hyperedges are al-
lowed). It is easy to see that at very low constant densities,
the constraint structure of Boolean formulas breaks up into
small components that the (1+1) EA can solve separately.
This is captured by the following theorem.

Theorem 4. Let F be a 3-CNF formula drawn from Un,m
with density m/n < 1/6. Then with high probability the
(1+1) EA finds a satisfying assignment for F in subexpo-
nential time.

Proof. We consider the average degree α of the con-
straint hypergraph H of F . Since F is sampled uniformly at
random from Ωn,m, its constraint hypergraph is a random
3-uniform hypergraph with n vertices and m edges sampled
uniformly at random with replacement since each of the 23

distinct clauses associated with each unique 3-set is also se-
lected uniformly at random. Since α = 3m/n < 1/2, by
Lemma 5, with high probability the largest connected com-
ponent in H contains O(logn) vertices.

In this case, let q be the number of connected components
in H. We partition the clause set {S1, S2, . . . , Sq} where Si
is the set of clauses that contain only variables from the i-
th connected component of H. The fitness function f can
be expressed as f(x) =

∑q
i=1 fi(x) where fi(x) counts the

number of clauses in Si that are satisfied by x. Since each
fi depends on at most O(logn) bits of x, f is decomposable
into linearly separable subfunctions of bounded size.

The proof is then completed by a simple fitness levels ar-
gument [24]. In particular, let (A0, . . . , Am) be a partition
of {0, 1}n such that for all x ∈ Aj , f(x) = j. Let t be an
arbitrary iteration in the execution of the (1+1) EA and

set k := f(x(t)). As long as there is an unsolved subfunc-

tion fi with respect to the assignment corresponding to x(t),
the (1+1) EA can generate a strictly improving offspring by
solving fi and flipping no other bit outside of Si. The result-
ing offspring must lie in some A` with ` > k. The probability
of this event is at least (1− 1/n)n−|Si|(1/n)|Si| ≥ n−|Si|/e,
and the waiting time to increase the fitness level by at least
one is bounded by en|Si|. Since there are at most m = O(n)
suboptimal fitness levels, the expected time until F is solved
is bounded by nO(logn) = 2o(n).

5. EXPERIMENTS
In this section we report numerical experiments that inves-

tigate the constants in the asymptotic bounds proved in this
paper, and to explore the runtime character of the (1+1) EA
at lower densities. In Figure 1(a) we investigate the runtime
divided by n lnn as a function of n = 10, 20, . . . , 1000 for
the Pn,m model with m/n = n. For each value if n we gen-
erate 100 random 3-CNF formulas, and conduct 100 runs of
the (1+1) EA, measuring the first iteration in which it finds

a satisfying assignment. We then calculate the quartiles of
the number of iterations to solve the formula at each value
of n as a robust statistic for the runtime as a function of
n. The plot is converging to a constant near e, providing
empirical evidence that the runtime bound proved in this
paper is tight, and suggests that the true runtime is concen-
trated around en lnn±O(n). We repeat this experiment for
asymptotically lower densities and plot the results in Fig-
ure 1(b). In this case, we set m/n = c lnn for each random
formula corresponding to the statement of Theorem 3. We
determined c = 4 to be a sufficiently high constant, mean-
ing that the (1+1) EA would not always converge to a solu-
tion on densities for c < 4. On the other hand, convergence
was always observed for densities above 4 lnn. The behavior
in 1(b) is very similar to the linear density case, and the true
runtime appears to be concentrated around en lnn ± O(n)
for formulas of logarithmic densities.

5.1 Phase transition behavior
As discussed in Section 4, we conjecture that the (1+1) EA

can also easily solve 3-CNF formulas at very low densities.
To more precisely understand the behavior of the (1+1) EA
on random planted 3-CNF formulas across the density spec-
trum, we performed numerical experiments and measured
the time until a satisfying assignment was found at different
densities for some distinct values of n.

On the Pn,m model, for three distinct values of n, i.e., n ∈
{100, 300, 1000}, we generate formulas using 100 equidistant
values of m such that the constraint density ranges from 1
to 10. For each distinct density value, we generate 100 for-
mulas from the random Pn,m model and run the (1+1) EA
100 times on each formula. Runs that do not complete in at
most 107 iterations are halted and removed from consider-
ation. Of the runs that do not fail, the median runtime as
a function of constraint density for these trials is plotted in
Figure 2(a). We also plot the percentage of runs that failed
as a function of constraint density in Figure 2(b).

In these results, we also observe the classical easy-hard-
easy pattern similar to the one that occurs for complete
DPLL solvers on the uniform random model [16, 7]. This
corresponds to the so-called phase transition phenomenon
in random satisfiability where formulas near the sat/unsat
transition have high decision complexity [14].

Remarkably, our experiments suggest that there is also a
critical density in the planted model Pn,m for the (1+1) EA
at which formulas are on average more difficult to optimize.
We also observe that the hardness peak for the (1+1) EA
occurs close to density values of m/n ≈ 4.26, which is the
critical density for DPLL solvers on the uniform model Un,m.
This corresponds to the conjectured satisfiability threshold
r3 for random unfiltered, unplanted formulas.

Below the hardness peak, the (1+1) EA finds a satisfy-
ing assignment quickly, and we conjecture that there ex-
ists a constant c < 4.26 such that the (1+1) EA runs in
polynomial time with high probability on random satisfi-
able formulas with density at most c. As density increases
beyond the critical point, the empirical running time in Fig-
ure 2(a) appears to converge again toward en lnn for each
n value. Theorem 3 establishes an asymptotic bound on the
density at which most formulas become easy again. An in-
teresting open problem is the location of the critical density
below which formulas become difficult on average for the
(1+1) EA.
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(a) m = n2 (constraint density is Θ(n)).
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(b) m = 4n lnn (constraint density is Θ(logn)).

Figure 1: Median runtime of the (1+1) EA divided by n lnn as a function of n for the Pn,m. The shaded region denotes the
interquartile range. The statistics are taken from 100 runs each on 100 random formulas generated for each value of n.
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(a) Runtime statistics. The marked lines denote the median
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Figure 2: Results for the (1+1) EA on the Pn,m model controlling m for constraint density. The statistics are taken from 100
runs each on 100 random formulas generated for each value of m/n.
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6. CONCLUSIONS
We have presented an improved runtime analysis of the

(1+1) EA for randomly constructed 3-CNF formulas. In-
vestigating the fitness distance correlation for high density
formulas, we have shown an improved bound ofO(n logn) on
the (1+1) EA. In extension to the investigations in [23] , the
O(n logn) bound holds for formulas of logarithmic density
with probability 1−o(1). Our complementary experimental
investigations imply the leading constants in our asymptotic
bounds are low, and extend the investigations to other den-
sity ratios.
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