
Analysis of a Gray-Box Operator for Vertex
Cover

Samuel Baguley, Tobias Friedrich, Timo Kötzing, Xiaoyue Li,
Marcus Pappik, and Ziena Zeif

{firstname.lastname}@hpi.de

Hasso Plattner Institute
University of Potsdam

Potsdam, Germany

Combinatorial optimization problems are a prominent application area of
evolutionary algorithms, where the (1+1) EA is one of the most investigated.
We extend this algorithm by introducing some problem knowledge with a
specialized mutation operator which works under the assumption that the
number of 1s of a solution is critical, as frequently happens in combinatorial
optimization. This slight modification increases the chance to correct wrongly
placed bits while preserving the simplicity and problem independence of the
(1+1) EA.

As an application of our algorithm we examine the vertex cover problem on
certain instances, where we show that it leads to asymptotically better run-
times and even finds with higher probability optimal solutions in comparison
with the usual (1+1) EA. Precisely, we compare the performance of both al-
gorithms on paths and on complete bipartite graphs of size n. Regarding the
path we prove that, for a particular initial configuration, the (1+1) EA takes
in expectation Θ(n4) iterations while the modification reduces this to Θ(n3),
and present experimental evidence that such a configuration is reached. Con-
cerning the complete bipartite graph our modification finds the optimum in
polynomial time with probability 1−1/2Ω(nξ) for every positive constant ξ < 1,
which improves the known probability of 1− 1/poly(n) for the (1+1) EA.

1 Introduction

Evolutionary algorithms (EAs) are a diverse and highly versatile class of randomized
search heuristics, and their effectiveness at solving combinatorial optimization problems
has been recognized and widely studied since the nineties [19, Chap. 14]. Typically, EAs
are implemented with näıve mutation behavior, and adapt to a particular problem only
via an associated fitness function. This simplicity has lead to success in many applications,
but leaves room for improvement on specific problems.

ar
X

iv
:2

20
3.

08
79

0v
1

 [
m

at
h.

C
O

]
 1

6
M

ar
 2

02
2

The minimum vertex cover problem is an ideal target for evolutionary algorithms be-
cause it is NP-complete [10], and appears in a broad range of practical applications.
Already in 1994 Bäck and Khuri [1] defined the canonical fitness function for EAs on
vertex cover and provided experimental evidence that on some graph instances EAs can
produce better approximate solutions than bespoke solvers. In the years that followed
runtime analysis of EAs tended to be heuristic and experimental, but recently rigorous
theoretical analyses have gained prominence. The various approaches to this include prov-
ing runtime bounds for approximate solutions [9, 15], analyzing performance on best- or
worst-case graph instances [13, 14], and implementing genetic mechanisms like crossover
[6]. It is also common for new research to define variations of well-studied EAs, like
Olivieto et al.’s (1+1) EA with an additional ‘diversity maintenance mechanism’ [14], or
a fitness function with multiple objectives [5, 11].

In the application of evolutionary algorithms to real world problems, the full black-box
view of the fitness function (ignoring all additional information about its inner workings) is
at most the initial prototype; significant improvements can be made by applying problem
knowledge for designing tailored variation operators [17]. The resulting view is called gray-
box optimization, and research tries to understand what general structural properties can
be usefully employed in evolutionary computation [20]. We are interested in combinatorial
problems where a certain subset has to be selected; typically, the number of elements in
the chosen set is rather important. For example, a minimum spanning tree contains
exactly n − 1 edges, the vertex cover problem tries to minimize the number of vertices
picked, and the independent set problem maximizes the selected vertices. While [12]
argued that variation operators should be unbiased with respect to whether a 0 or a 1
encodes a specific property of a solution, the gray-box view of combinatorial problems
wants the 1 to mean ‘in’ and 0 to mean ‘out’, and then design operators that can make use
of this meaning. From the very general work of Rowe and Vose [18] we can see that only
for problems which have symmetrical meaning in 1 and 0 can the operators be assumed
unbiased.

In this paper we augment the (1+1) EA by allowing a second kind of mutation called
a ‘balanced flip’, in which a bit is chosen uniformly at random, and then swapped with
the bit of a neighboring vertex of opposite value, if one exists. At every iteration the
augmented algorithm chooses between a balanced flip and a regular step of the (1+1) EA
with equal probability. The ‘balanced flip’ behavior is already exhibited by the (1+1) EA
on nearly-optimal bit-strings, the difference being that it takes an order of magnitude
longer to perform each flip. Thus the evolutionary algorithm presented here refines the
(1+1) EA by incorporating its emergent behavior on inputs close to the optimum directly
into the mutation operator; this is somewhat in the spirit of Giel and Wegener’s ‘local
(1+1) EA’ [7]. The immediate benefit of our augmentation is a tighter upper runtime
bound for the Balanced (1+1) EA on paths.

In Section 3 we compare the runtime of the (1+1) EA solving vertex cover on paths
to that of the Balanced (1+1) EA. Our analysis of the (1+1) EA uses techniques similar
to those in [7] to obtain an expected runtime of O(n4), and we then apply those same
techniques to the Balanced (1+1) EA to prove an expected runtime of O(n3). We also
give a partial proof of Ω(n4) expected runtime for the (1+1) EA, assuming that the algo-
rithm at some point produces a bit-string with a long consecutive sequence of incorrectly
assigned bits. We provide experimental evidence to motivate this condition, and delay a
full proof to future work.

In Section 4 we consider the complete bipartite graph KL,R, which is a common instance
class of interest when it comes to evolutionary algorithms. Under the assumption that

1

the ratio R/L is at least 2, the (1+1) EA is known to have exponential runtime with at
least polynomial probability [5, Theorem 5]. In contrast, the Balanced (1+1) EA has far
better performance on this graph instance, with exponentially small probability of not
reaching the optimum in polynomial time.

2 Preliminaries

In this article we demonstrate that incorporating even small amounts of problem knowl-
edge can significantly improve reduce expected runtime of the (1+1) EA solving vertex
cover. We provide a new evolutionary algorithm that we call Balanced (1+1) EA (Algo-
rithm 2) that we compare with the classical (1+1) EA (Algorithm 1).

We introduce briefly the graph terminology used in this paper. A graph will be denoted
G = (V,E), and for any subgraph H of G, we write V (H) and E(H) for vertices and
edges of H respectively. We denote an edge e = {u, v} ∈ E by uv and the neighborhood
of a vertex v ∈ V in G by N(v) = {u ∈ V | uv ∈ E}. Lastly, we define the length of a
path P = (V,E) to be number of vertices |V |.

A vertex cover for a given graph G = (V,E) is a subset of vertices V ′ ⊆ V which
satisfies V ′ ∩ e 6= ∅ for all e ∈ E. A solution to the vertex cover problem is a vertex cover
V ′ which has minimal cardinality |V ′|, in the sense that no cover of smaller cardinality
exists.

Depending on the context, we shall use X to denote either the stochastic process
induced by one of the algorithms or an arbitrary state of that process X ∈ {0, 1}n.
We make sure that the meaning of X is always clarified. For t ∈ N, Xt denotes the
configuration after t iterations, and X0 corresponds to the initial configuration of the
process X. Both algorithms studied in this work have search space {0, 1}n of bit strings
of length n, where n = |V |. If V = (v1, . . . , vn) is some enumeration of the vertices
of G, then a bit string X = (x1, . . . , xn) ∈ {0, 1}n corresponds to a subset of VX ⊆ V
via the mapping vi ∈ Vx ⇔ xi = 1. We call a bit string X feasible if VX is a vertex
cover for G, and infeasible otherwise. If VX is a minimal vertex cover then X is called
optimal. Because the relationship between X and VX is one-to-one, we will abuse notation
and use X to represent the bit string or subset of vertices interchangeably. Letting
u(X) := |{e ∈ E | VX ∩ e = ∅}| be the number of uncovered edges in X, we have that X
is feasible if and only if u(X) = 0. Further, we define |X|1 := |VX | to be the number of
ones in X, |X|0 := n − |X|1 to be the number of zeroes, and OPT = |Xopt|1 to be the
number of ones in the minimal vertex cover.

The fitness of X is given by the integer f(X), where

f : {0, 1}n → N : X 7→ |X|1 + (n+ 1)u(X)

defines the fitness function. The multiplicative factor n + 1 ensures that the (1+1) EA
and Balanced (1+1) EA prioritise covering any uncovered edge over reducing the size of
X, and that once covered an edge will never become uncovered. This fitness function (and
slight variations of it) has been standard for evolutionary algorithms solving the vertex
cover problem since [1]. With this in hand, the (1+1) EA can be defined.

Because the (1+1) EA has positive probability of sampling any point of {0, 1}n in step
3, regardless of the current state X, it almost surely produces a solution to the vertex
cover problem in finite time. A fundamental property of interest, and the main focus of
this article, is the expected time to find this solution. If the optimum cover is unique then
a näıve estimate based on this behavior yields an extremely poor expected runtime of nn

2

Algorithm 1: (1+1) EA

1 Choose X ∈ {0, 1}n (if unspecified, uniformly at random)
2 while stopping criterion not met do
3 Y ← flip each bit of X independently with probability 1/n
4 if f(Y) ≤ f(X) then
5 X ← Y
6 end

7 end

for the (1+1) EA. Worst-case analysis, for example in [5, Theorem 5], suggests that no
better can be expected for general G.

We now introduce a version of the (1+1) EA which chooses with equal probability
between two sampling behaviors, one of which is the same as in the (1+1) EA, while the
other mimics behavior of the (1+1) EA on feasible bit strings. We call this second kind of
behavior a ‘balanced flip’, and the augmented algorithm is therefore called the Balanced
(1+1) EA.

Algorithm 2: Balanced (1+1) EA

1 Choose X ∈ {0, 1}n (if unspecified, uniformly at random)
2 while stopping criterion not met do
3 p← pick a number u.a.r. in the interval (0, 1)
4 if p ≤ 1/2 then
5 Y ← flip each bit of X independently with probability 1/n
6 end
7 else
8 v ← pick a vertex u.a.r from V (G)
9 Nv ← {v′ ∈ N(v) | xv 6= xu}

10 if Nv 6= ∅ then
11 u← pick a vertex u.a.r from Nv

12 Y ← flip xu and xv
13 end
14 else
15 go to line 2
16 end

17 end
18 if f(Y) ≤ f(X) then
19 X ← Y
20 end

21 end

2.1 Feasible bit strings

In order to analyze the expected runtimes of the (1+1) EA and Balanced (1+1) EA, we
use the following multiplicative drift theorem to bound the time it takes for X to become
feasible.

3

Theorem 1 (Doerr et. al [4]). Let (Xt, t ∈ N) be a stochastic process on S ∪ {0}, where
S R+ is a set positive numbers with minimum smin, and let T = inf{t ∈ N | Xt =
0}. Suppose there exists a real number δ > 0 such that for all s ∈ S and t < T ,
E [Xt −Xt+1 | Xt = s] ≥ δs. Then, for all s0 ∈ S,

E [T | X0 = s0] ≤ ln(s0)− ln(smin) + 1

δ
.

Lemma 2. Let G = (V,E) be a graph with n = |V | vertices, and let T be the first time
that the (1+1) EA samples a feasible string. Then E [T] ≤ en(ln(n) + 1/2) and for k > 0,
P [T > 2ekn(ln (n) + 1/2)] ≤ 2−k.

Further, if S is the first time that the Balanced (1+1) EA samples a feasible string,
then E [S] ≤ 2en(ln(n) + 1/2) and for k > 0, P [S > 4ekn(ln (n) + 1/2)] ≤ 2−k.

Proof. We start by analysing the (1+1) EA. Let Xt ∈ {0, 1}n denote the state of the
(1+1) EA after t iterations, where X0 is the initial random configuration. We shall apply
Theorem 1 to the process u(Xt), t ≥ 0. For all t ∈ N, let Ft ⊆ E be the set of edges
that are not covered by Xt and let Ut :=

⋃
e∈Ft e. Note that the algorithm attempts to

flip exactly one bit with probability (1− 1/n)n−1 ≥ 1/e. Whenever a single bit is flipped,
this bit is chosen uniformly at random. Consider the (not necessarily induced) subgraph
(Ut, Ft) of G. If the flipped bit corresponds to a vertex v ∈ Ut, then u(Xt) − u(Xt+1)
is equal to the degree of v in (Ut, Ft). Thus, given a uniformly random bit from Ut is
flipped, the expected difference u(Xt)−u(Xt+1) is the average degree of (Ut, Ft), which is
2 |Ft| / |Ut| = 2u(Xt)/ |Ut| by the hand shake lemma. Let us denote the event that exactly
one bit in Ut is flipped, and no other, by C. Since u(Xt) is non-increasing, u(Xt)−u(Xt+1)
is non-negative. Therefore, we have

E [u(Xt)− u(Xt+1) | u(Xt)] ≥ E [(u(Xt)− u(Xt+1))1C | u(Xt)]

≥ 2u(Xt)

|Ut|
P [C | u(Xt)]

≥ 2u(Xt)

|Ut|
|Ut|
en
≥ 2u(Xt)

en
.

So the drift condition of Theorem 1 is satisfied by u(X). Since u(X) ∈ {0, 1, . . . , n2}, we
conclude that E [T] ≤ en(ln(n) + 1/2).

To bound the expected time for the Balanced (1+1) EA to find a feasible solution,
note that with probability 1/2 it performs the same actions as the (1+1) EA. More-
over, the balanced flip operations cannot increase u(Xt) due to the fitness function
f . Thus we can essentially use the same proof as for the (1+1) EA but with drift
E [u(Xt)− u(Xt+1) | u(Xt)] ≥ u(Xt)/en, which yields an expected hitting time of at most
2en(ln(n) + 1/2).

In order to prove the second part of the statement, we start once again with the
(1+1) EA. We prove our claim via induction over k ∈ N. The base case k = 0 is trivial.
Now, consider some k > 0 and assume the claim holds for k − 1. Let A be the event
that no feasible solution was found within the first 2e(k − 1)n (ln(n) + 1/2) iterations
and let B be the event that no feasible solution is found within the last 2en (ln(n) + 1/2)
iterations. Then the desired probability can be written as P [A and B] = P [B | A]P [A].
By our induction hypothesis, we have P [A] ≤ 2−(k−1). Further, note that the bound on
the expected number of iterations for finding a feasible solution, proven above, holds for
arbitrary starting states. Thus, by Markov’s inequality, we have P [B | A] ≤ 1

2 , which

4

proves the upper bound. The proof for the Balanced (1+1) EA is obtained analogously,
using the respective expected hitting time.

We frequently make use of Lemma 2 throughout different parts of this paper. Note that
a desirable property of the update criteria of both Algorithms 1 and 2 and the fitness f
is that, once a feasible solution is found, the algorithms never leave the space of feasible
solutions again.

2.2 Lower Bound Probability for Symmetric Random Walks

The technical core of our proof for a lower bound on the running time for solving vertex
cover on paths is the following general lemma. It essentially lower bounds the hitting time
of a process that is dominated by a symmetric random walk. There are two main difference
between Lemma 3 and most bounds that can be found in the literature. Firstly, the
presented bound does not only hold in expectation but at least with constant probability
and, secondly, the description of the process allows for arbitrarily large jumps, as long as
their probability is bounded.

Lemma 3. Let d ∈ N with d ≥ 4 ln(10) and let Zt ∈ N be a stochastic process such that,
for some p ∈ (0, 1] and q ∈ [0, 1) with q + 2p ≤ 1, it holds that

(i) ∀s ∈ N ∩ [0, d− 1] : P [Zt+1 = s+ 1 | Zt = s] ≤ p,

(ii) ∀s ∈ N ∩ [1, d− 1] : P [Zt+1 = s+ 1 | Zt = s] ≤ P [Zt+1 = s− 1 | Zt = s] and

(iii) ∀s ∈ N ∩ [0, d] : P [|Zt+1 − Zt| > 1 | Zt = s] ≤ q.

Then, for Z0 = 0 and T = inf{t ∈ N | Zt ≥ d}, it holds that

P

[
T ≥ min

{
1

5q
,
d2(1− q)
4 ln(10)p

}]
≥ 16

25
.

To prove Lemma 3, we need two additional ingredients. The first one is an elementary
bound on the lower tail of a geometric random variable, which will allow us to lower
bound the time until a certain event appears.

Lemma 4. Let X be a geometric random variable with success probability p ∈ (0, 1). For

all c ∈ R≥0 it holds that P
[
X ≥ c

p

]
≥ 1− c.

Proof. If c
p ≤ 1 then P

[
X ≥ c

p

]
= 1 ≥ 1 − c holds trivially. Assume c

p > 1 and let

k =
⌈
c
p

⌉
≥ 2. By the definition of a geometric random variable and Bernoulli’s inequality,

we have

P

[
X ≥ c

p

]
= P [X ≥ k] = (1− p)k−1 ≥ 1− p · (k − 1).

Observing that
⌈
c
p

⌉
− 1 ≤ c

p concludes the proof.

The second ingredient is a concentration result on the sum of independent geometric
random variables, which is similar to the Chernoff bound. More specifically, we are
interested in obtaining a lower bound on such a sum.

5

Theorem 5. [Doerr [3], Theorem 1.10.32(b)] Let X1, . . . Xn be independent geometric
random variables with common success probability p > 0. Then, for X =

∑n
i=1Xi, µ = n

p
and all δ ∈ (0, 1) it holds that

P [X ≤ (1− δ)µ] ≤ e
− δ2

2− 4
3 δ
n
.

Given these two result, we are able to prove Lemma 3.

Proof of Lemma 3. We start by constructing a modified stochastic process Z ′t ∈ D for
D = Z ∩ [−d, d+ 1] with the following transition probabilities

• ∀s ∈ D \ {−d, d} : P
[
Z ′t+1 = s− 1

∣∣ Z ′t = s
]

= P
[
Z ′t+1 = s+ 1

∣∣ Z ′t = s
]

= p,

• ∀s ∈ D \ {−d, d} : P
[
Z ′t+1 = d+ 1

∣∣ Z ′t = s
]

= q and

• ∀s ∈ {−d, d, d+ 1} : P
[
Z ′t+1 = s

∣∣ Z ′t = s
]

= 1

Set Z ′0 = 0 and T ′ = inf{t ∈ N | |Z ′t| ≥ d}. Note that due to Lemma 3(ii), |Z ′t| and
Zt can be coupled in such a way that |Z ′t| ≥ Zt for all t < T and |Z ′t| ≥ d for all
t ≥ T . In particular, T ≥ T ′ almost surely. Consequently we have for all t ∈ N that
P [T ≥ t] ≥ P [T ′ ≥ t].

We proceed by analyzing T ′. To this end, we start by treating cases in which Z ′t directly
jumps from s ∈ D with |s| ≤ d − 1 to d + 1 separately. We define a new stopping time
Tj = inf{t ∈ N≥1 |

∣∣Z ′t−1

∣∣ < d and Z ′t = d+ 1}. Note that, for all m ∈ N,

P
[
T ′ ≥ m

]
≥ P

[
T ′ ≥ m and Tj ≥ m

]
= P

[
T ′ ≥ m

∣∣ Tj ≥ m] · P [Tj ≥ m] .

We set m = min
{

1
5q ,

d2(1−q)
4 ln(10)p

}
and lower bound P [Tj ≥ m] and P [T ′ ≥ m | Tj ≥ m] sep-

arately.
To obtain a lower bound on P [Tj ≥ m], observe that, at any point in time t ∈ N, Z ′t has

a probability of at most q to do the desired jump. Thus, Tj dominates a geometrically
distributed random variable with success probability q. As m ≤ 1

5q , Lemma 4 yields

P [Tj ≥ m] ≥ 4
5 .

For lower bounding P [T ′ ≥ m | Tj ≥ m], let Yt ∈ D be a stochastic process with

• ∀s ∈ D \ {−d, d} :
P [Yt+1 = s− 1 | Yt = s] = P [Yt+1 = s+ 1 | Yt = s] = p

1−q ,

• ∀s ∈ {−d, d, d+ 1} : P [Yt+1 = s | Yt = s] = 1.

Set Y0 = 0 and TY = inf{t ∈ N | |Yt| ≥ d}. By defining Y in this way, and given that
Tj ≥ m, we can couple Yt and Z ′t in such a way that Yt = Z ′t for all t < m. Therefore,
we have P [T ′ ≥ m | Tj ≥ m] = P [TY ≥ m]. Further, note that Yt changes at most by
1 in each step and has a symmetric probability to increase or decrease. We proceed to
lower bound P [TY ≥ m] in two steps. Firstly, we show that, with positive probability, Yt
changes at least Ω

(
d2
)

times to hit |Yt| ≥ d. Secondly, we argue that this takes at least
m time steps.

Define the random set S = {t ∈ N≥1 | Yt 6= Yt−1} and let N = |S|. Note that N is
almost surely finite, as at any time t the probability that the process increases 2d − Yt
times in a row is bounded below by pd/(1 − q)d, after which Yt = d and the process
remains constant. Let τ1 < τ2 < · · · < τN denote the ordered elements of S and set

6

τ0 = 0. Note that, as long as |Yt| < d, there is a non-zero probability for Yt to change
in each step. Thus, we have YτN = d and TY = τN with probability 1. Now, we define
the process Y ′i = Yτi∧N where τi ∧ N is shorthand for the minimum of τi and N . Y ′i is
a martingale with respect to the natural filtration over Yt, as it increases or decreases
with probability 1

2 at each step if τi < N and remains constant otherwise. Using Azuma’s
inequality and the fact that the step size of Y ′i is upper bounded by 1, we obtain for

i ≤ d2

2 ln(10) that P [Y ′i ≥ d] ≤ e−
d2

2i ≤ 1/10. As almost surely |Y ′N | = |YτN | = d, this yields

P
[
N ≤ d2

2 ln(10)

]
≤ 1/10, meaning that Yt requires to change at least d2

2 ln(10) times with

probability at least 9
10 . It remains to bound the time that it takes Yt to change this often.

To this end, note that τN =
∑N

i=1(τi − τi−1). Recall that TY = τN almost surely. Setting

b = d2

2 ln(10) we obtain

P [TY ≥ m] = P

[
N∑
i=1

τi − τi−1 ≥ m

]

≥ P

[
N∑
i=1

τi − τi−1 ≥ m and N ≥ b

]

= P

[
N∑
i=1

τi − τi−1 ≥ m

∣∣∣∣∣ N ≥ b
]
· P [N ≥ b]

≥ P

[
b∑
i=1

τi − τi−1 ≥ m

]
· 9

10
.

Next, observe that each of the differences τi − τi−1 independently follows a geometric
distribution with success probability p

(1−q) . Using Theorem 5 with n = b = d2

2 ln(10) ,

µ = d2(1−q)
2 ln(10)p and δ = 1

2 we have

P

[
b∑
i=1

τi − τi−1 < m

]
≤ P

[
b∑
i=1

τi − τi−1 <
d2(q − 1)

4ln(10)p

]
≤ 1

10

for d ≥ 4 ln(10).
Therefore, we get P [T ′ ≥ m | Tj ≥ m] ≥ P [TY ≥ m] ≥ 9

10 ·
9
10 >

4
5 and P [T ′ ≥ m] ≥

4
5 ·

4
5 = 16

25 , which concludes the proof.

3 Vertex Cover on Paths

Although the worst-case expected runtime of the (1+1) EA is known to be exponential in
n, [5, Theorem 5], far better runtime bounds can be obtained on simple graph instances. In
this section we take G to be a path of length |V | = n, with the i-th bit of X corresponding
to the i-th vertex of G, numbering sequentially along the path. By considering path
instances, we can precisely analyse the runtime of the (1+1) EA, and then transfer that
analysis to the Balanced (1+1) EA, showing that in expectation it performs better by a
linear factor. It is reasonable to expect that the Balanced (1+1) EA also improves on
the runtime of the (1+1) EA on other graph instances, but rigorous analysis of those will
require more general tools than those we develop below.

To achieve the lower bound for either algorithm, we require two additional assumptions,
the first of which is defined in more detail in Section 3.2 and supported by experimental
evidence in Fig. 1.

7

(A) With probability ≥ 1/2, there exists a t ≥ 0 such that Xt is feasible and contains a
connected subpath of vertices which are not in their optimal state with size Θ (n).

(B) |V | = n is odd.

Equivalently to (A), we could assume that X has an initial distribution which is supported
by the subset of {0, 1}n containing only feasible bit strings. Assumption (A) simply
ensures that X hits this subset with probability 1/2, and since X is a strong Markov
process, restarting at this hitting time preserves the lower bound. Assumption (B) is
needed for particular arguments in Section 3.2, but seems unlikely to be necessary.

The two main theorems of this section are as follows.

Theorem 6. Let P = (V,E) be a path of length n = |V |. In expectation, the (1+1) EA
samples an optimal solution in O(n4) iterations, and in Ω(n4) iterations if assumptions
(A) and (B) hold true.

Theorem 7. Let P = (V,E) be a path of length n = |V |. In expectation, the Balanced
(1+1) EA samples an optimal solution in O(n3) iterations, and in Ω(n3) iterations if
assumptions (A) and (B) hold true.

3.1 Upper Bound Running Time

By Lemma 2, we know that the (1+1) EA finds a feasible solution in expectation in
O (n log(n)) iterations, given any starting distribution, including in particular the uniform
distribution. Once a feasible solution is found, all states in following iterations are feasible
as well. Hence our analysis can focus on the expected runtime given a feasible initial state.
If n is odd, there exists a unique optimal vertex cover of size OPT = (n − 1)/2, and if
n is even, there are multiple optimal covers of size OPT = n/2. We define the level of
X at time t to be |Xt|1 − OPT, to parametrize the deviation of X from the optimum.
Our strategy is to compute the expected number of iterations that X spends at any
level `, and then sum over all levels to obtain an upper bound for total runtime. For
this purpose, we define Y` to be the total number of iterations spent at level ` ≥ 0,

i.e. Y` =
∑Y

t=0 1{|Xt|1 = ` + OPT}, and let Y =
∑dn/2e

i=1 Yi be the first hitting time of
level ` = 0.

The main work of this section is in proving the following bounds on the expected
time spent at level ` - which may be zero - by the (1+1) EA and Balanced (1+1) EA
respectively.

Lemma 8. The expected number of iterations that the (1+1) EA spends at level ` is of
order O(n4/`2).

Lemma 9. The expected number of iterations that the Balanced (1+1) EA spends at level
` is of order O(n3/`2).

With these results in hand, we prove the following upper bound on the number of
expected iterations before the (1+1) EA samples an optimal solution for the first time.

Theorem 10. Let P = (V,E) be a path of length n = |V |. Then the expected number of
iterations that the (1+1) EA needs to sample an optimal solution is of order O(n4), and
the expected number of iterations that the Balanced (1+1) EA needs to sample an optimal
solution is of order O(n3).

8

Proof. In either case, by Lemma 2 X becomes feasible for the vertex cover after an
expected O(n log(n)) iterations.

At this point the algorithm has an expected remaining runtime of

E [Y] = E
[dn2 e∑
`=1

Y`

]
=

dn2 e∑
`=1

E [Y`]

which according to Lemma 8 is of order O(n4) for the (1+1) EA, and by Lemma 9 is

O(n3) for the Balanced (1+1) EA, since in either case
∑dn2 e

`=1 1/`2 is bounded above by a
constant independent of n.

A Random Walk Coupling: The proofs of Lemmas 8 and 9 make use of a coupling
argument, given below, between X and an independent random walk on a path of length
Θ(n). To take advantage of that coupling we prove the following Lemma; an alternative
proof of this result using drift theory can be found in Göbel et al. [8, Theorem 13].

Lemma 11. Let q ∈ (0, 1/2], and let Z be the symmetric Markov chain on {0, 1, . . . , d}
with transitions P (r, s) = P [Zt+1 = r|Zt = s] defined by

P (s, s− 1) =

q if 1 ≤ s ≤ d− 1,

2q if s = d,

0 if s = 0,

P (s, s+ 1) =

{
q if 1 ≤ s ≤ d− 1,

0 if s ∈ {0, d},

and P (s, s) = 1 − P (s, s − 1) − P (s, s + 1). This is the symmetric random walk with
reflecting barrier at d and absorbing barrier at 0, with an additional probability to stay
put at any vertex. Suppose Z0 = d and T = min{t ≥ 0 : Zt = 0} be the first time that Z
hits 0. Then E [T] ≤ d2/2q.

Proof. Let Y be the symmetric random walk on {0, 1, . . . , 2d} started at Y0 = d, with
absorbing barriers 0 and 2d. It is well known - see for example Cox and Miller [2, Exercise
2.12] - that the expected hitting time of {0, 2d} by Y is E [min{t ≥ 0 : Yt ∈ {0, 2d}] = d2.

If instead Y moves left or right with probability q and stays put with probability 1−2q
then Y sits for an independent geometrically distributed time S at each vertex before
moving, so Wald’s equation gives E [min{t ≥ 0 : Yt ∈ {0, 2d}] = d2E [S] = d2/2q. Since Z
has the same law as d− |Y |, it has expected runtime E [T] = d2/2q.

The unique optimal solution on the odd-length path - which will be the terminal value
of X - has alternate vertices selected, starting with the second and ending with the (n−1)-
th. Similarly, both optima of the even-length path are similarly alternating, apart from
a possible pair of adjacent ones. Let us suppose that X is at level ` and is feasible. We
shall begin by supposing that X is irreducible, and bound the time it takes to become
reducible. Since X is feasible, no two neighboring vertices are unselected, and since X is
irreducible, there is no subpath of consecutive ones of length more than 2. An example
for n = 11 is given below.

0

1

1

2

1

3

0

4

1

5

0

6

1

7

0

8

1

9

1

10

0

11

9

Here X is at level ` = 1, although in this example most nodes (from 3 to 9 inclusive)
are not in their optimal state. Now we can define a dual process X̃ on the path of length
2 + (n− 1)/2, which is coupled to X, in the following way: for i ∈ {1, . . . , (n− 1)/2},

X̃(i) = X(2i) · 1{at least one of X(2i− 1) and X(2i+ 1) is a 1}
= X(2i)(X(2i− 1) +X(2i+ 1)−X(2i− 1)X(2i+ 1)),

and X̃(0) = X(1), X̃(n+ 1/2) = X(n). Then the dual state to the one above is

0

0

1

1

0

2

0

3

0

4

1

5

0

6

If X is the (1+1) EA, then conditional on X flipping at most two bits at a time,1 the
‘particles’ at positions 1 and 5 move independently like symmetric random walks (with
reflective boundaries) until the time that they are adjacent, at which point X is reducible.
If X is the Balanced (1+1) EA, then the same random walk behavior is observed, but
with differing transition probabilities. In this example there are only two such particles,
since X is at level ` = 1, but in general there will be 2`. As long as X is not optimal,
we define the minimum distance (measured by number of zero nodes) between any two
particles in X̃ to be the longest subpath of consecutive zeroes (corresponding to subpaths
of alternating bits in X). This is itself a stochastic process on {0, . . . , d}, where d ≤ 2`.
For ease of notation we denote this process by H.

The (1+1) EA - Proof of Lemma 8: Take X to be the (1+1) EA, and for the moment,
let us condition on the event that the algorithm only flips 2 bits at every iteration. Under
this conditioning, the process H can only make steps of size one in either direction. It need
not be symmetric, but decreases (that is, Ht+1 = Ht−1) with probability ≥ 2p2(1−p)n−2,
and increases with probability ≤ 2p2(1− p)n−2. Thus the expected number of iterations
taken for H to hit zero is less than the expected hitting time T of zero by the independent
process Z on {0, 1, . . . , d} satisfying the conditions of Lemma 11 with q = 2p2(1− p)n−2.
Recalling that p = 1/n and d ≤ n/2`, the following corollary is immediate.

Corollary 12. E [T] ≤ d2/4p2(1− p)n−2 ≤ n4/`2.

Thus we have an upper bound on the expected time for X to become reducible, con-
ditional on the (1+1) EA flipping no more than 2 bits at every step. Now we want to
remove that conditioning. To do so, we modify the transitions of Z so that it returns to
position d with probability 4p4 at every step; this is an upper bound for the probability
that (Ht+1 − Ht) ≥ 2, that is, that H increases by 2 or more in a single step. Let us
denote this modified version of Z by Z̃. The transitions of Z̃ are

Z̃t+1 =

Z̃t + 1 with probability 2p2(1− p)n−2,

Z̃t − 1 with probability 2p2(1− p)n−2,

d with probability 4p4,

Z̃t otherwise,

when Z̃t ∈ {1, . . . , d − 1}, and similar in the obvious way for Z̃t = d. In essence, Z̃ is
‘restarted’ every time H increases by 2 or more, and so the expectation of the hitting

1Since X is feasible and irreducible, it cannot flip only one bit in a step.

10

time T̃ = min{t ≥ 0 : Z̃t = 0} is greater than the expected time it takes for H to hit zero
- that is, for X to become reducible.

The question to answer now is how many times Z̃ will have to restart; we shall show
that it is constant in expectation. Each ‘run’ of Z̃, starting at position d and ending when
it hits zero or is restarted, is independent from the others. They are also all indentically
distributed, with the same law as T from Corollary 12. The number of restarts is therefore
a geometric random variable, say R, and to calculate its mean we need only calculate the
probability of success, that is, of Z̃ hitting zero before it is sent back to d.

The ‘restart time’ of Z̃ is itself a geometric random variable S, independent of the
position of Z̃, with success probability 4p4. Therefore, for any r ∈ N+,

P [T < S] ≥ P [T ≤ r < S] = P [T ≤ r] (1− 4p4)r.

We saw in Corollary 12 that E [T] ≤ n4/`2, and it follows from Markov’s inequality that
P [T ≤ 2E [T]] ≥ 1/2. Therefore, taking r = 2n4/`2, we have that

P [T < S] ≥ (1− 4n−4)2n4/`2

2
→ c ∈ (0, 1) as n→∞.

Then Wald’s equation yields that

E
[
T̃
]
≤ E [T]E [R] =

n4

`2P [T ≥ S]
=

n4

(1− c)`2
.

This gives an upper bound for the expected number of iterations it takes for H to hit zero
- that is, X to become reducible - given that X started in level `.

It remains to note that when X is in a reducible state, it has a positive probability of
taking a step to an irreducible state but remaining at level `. However, the probability of
this occurring before X is reduced is bounded above by a constant,2 and so an argument
similar to above using Wald’s equation and restarting gives that E [Y`] ≤ kn4/`2 for some
constant k > 1; this proves Lemma 8.

The Balanced (1+1) EA - Proof of Lemma 9: The same arguments as for the (1+1) EA
hold for the Balanced (1+1) EA, with the difference that H decreases with larger prob-
ability. More precisely, with probability 1/2 the algorithm chooses a bit uniformly at
random, and attempts to swap it with a neighbor of a different value. There are 4 bal-
anced flips out of at most 2n which cause H to decrease; conditioning the algorithm on
flipping no more than 2 bits in a single step, this leads to a decrease probability of

q ≥ 1

2

(4

2n
+ 4p2(1− p)(n−2)

)
,

which again via Lemma 11 leads to a runtime bound of d2/2q ≤ n3/`2. The same
restarting arguments as above then yield the result of Lemma 9.

3.2 Lower Bound Running Time

In this section, we prove the lower bound parts of Theorems 6 and 7. That is, given
a suitably chosen starting configuration, the (1+1) EA and Balanced (1+1) EA require
at least Ω

(
n4
)

iterations to find the minimum vertex cover on a path of odd length n.

2This requires two simultaneous bit flips, and roughly has probability `/n2, compared to 1/n for simply
reducing. Markov’s inequality gives the constant.

11

Again we note that such instances G only have one minimal vertex cover, namely the set
of vertices at even positions, which simplifies our analysis.

We start by introducing some additional notation and terminology that will come in
handy for stating and proving the main result of the section. Let P be a path of odd length
n with vertices v1, . . . , vn and let X ∈ {0, 1}n be a bit string x1, . . . , xn, representing a
solution candidate for the vertex cover problem.

Similarly to Section 3.1, a major role is played in these proofs by connected subpaths of
X in which all vertices are not in their optimal state, but they appear in a different form,
and so we introduce some new notation. Let B(X) ⊆ [n]2 denote the set of all tuples
(i, j) with i ≤ j that corresponds to endpoints of subpath {vi, . . . , vj} ⊆ V such that all
vertices vk for i ≤ k ≤ j are not in their optimal state. That is, every xk for i ≤ k ≤ j
has value 0 if and only if k is even. We shall call such subpaths ‘bad paths’. Then X
represents a minimum vertex cover if and only if X is feasible and B(X) = ∅. Assumption
(A) is equivalent to assuming that for initial configuration X0, B(X0) contains exactly
on tuple (i, j) with j − i ∈ Θ (n).

The main results of this section are the following two statements.

Theorem 13. Let P = (V,E) be a path of odd length n = |V |. Assume a feasible initial
configuration X0 with B(X0) = {(i, j)} such that j − i ∈ Θ (n). With constant positive
probability the (1+1) EA requires at least Ω

(
n4
)

iterations to find the optimal solution.
Consequently, the expected number of iterations is in Ω(n4).

Theorem 14. Let P = (V,E) be a path of odd length n = |V |. Assume a feasible initial
configuration X0 with B(X0) = {(i, j)} such that j − i ∈ Θ (n). With constant positive
probability the Balanced (1+1) EA requires at least Ω

(
n3
)

iterations to find the optimal
solution. Consequently, the expected number of iterations is in Ω(n3).

The (1+1) EA - Proof of Theorem 13: As long as B(Xt) 6= ∅, let l(Xt) and r(Xt)
denote the left and right endpoint of the bad path in P with respect to Xt (i.e., B(Xt) =
{(l(Xt), r(Xt))}). Let m = l(X0) + (r(X0)− l(X0))/2 and set l(Xt) = r(Xt) = m for all
t ∈ N with B(Xt) = ∅. Define b(Xt) = r(Xt) − l(Xt) and observe that T = inf{t ∈ N |
b(Xt) ≤ 0} is a lower bound on the required number of iterations to reach the optimum.

We proceed by showing that T ∈ Ω(n4) with positive probability. To this end, define two
new stopping times Tl = inf{t ∈ N | l(Xt) ≥ m−4} and Tr = inf{t ∈ N | r(Xt) ≤ m+4}.
Observe that T ≥ min{Tl, Tr}. Thus, lower bounding Tl and Tr with positive probability
suffices to obtain the desired result for T .

The following lemma characterizes the transition probabilities of l(Xt) and r(Xt). Ap-
plying it in combination with Lemma 3, we are able to prove Theorem 13.

Lemma 15. For all t < min{Tl, Tr} it holds that

• P [|l(Xt+1)− l(Xt)| > 2 | Xt] ≤ 2/n4,

• P [l(Xt+1) = l(Xt) + 2 | Xt] ≤ 1/n2 and

• P [l(Xt+1) = l(Xt) + 2 | Xt] = P [l(Xt+1) = l(Xt)− 2 | Xt] whenever l(Xt) ≥ 3

and analogously

• P [|r(Xt+1)− r(Xt)| > 2 | Xt] ≤ 2/n4,

• P [r(Xt+1) = r(Xt)− 2 | Xt] ≤ 1/n2 and

12

• P [r(Xt+1) = r(Xt) + 2 | Xt] = P [r(Xt+1) = r(Xt)− 2 | Xt] whenever r(Xt) ≤ n −
2.

Proof. First note that we assume X0 to be feasible. Thus, Xt is also feasible for all t ∈ N.
Moreover, in the initial configuration X0 we have exactly one bad path from position
l(X0) to r(X0). This means, for every k ∈ [n] ∩ [l(X0), r(X0)], the bit at position k is 1
in X0 if and only if k is odd. On the other hand, for all k ∈ [n] \ [l(X0), r(X0)], the bit at
position k is 1 in X0 if and only if k is even. Thus, the only bit flips that the (1+1) EA
can do is

• flip an even length bit sequence either starting at l(X0) or ending at l(X0)− 1,

• flip an even length bit sequence either ending at r(X0) or starting at r(X0) + 1

• or do both of the above at the same time.

As long as this leads to a state X1 with B(X1) 6= ∅, these properties remain in place.
Thus, inductively, the same holds for all t < min{Tl, Tr}.

Given this, we prove the claimed transition probabilities for l(Xt). The transitions of
r(Xt) are analyzed analogously. Note that for t < min{Tl, Tr} we have r(Xt)− l(Xt) ≥ 8.
Thus, changing l(Xt) by more than 2 requires at least flipping either the bits l(Xt)− 4 to
l(Xt) − 1 or l(Xt) to l(Xt) + 3, each of which happens with probability at most 1

n4 . By
union bound we get P [|l(Xt+1)− l(Xt)| > 2|Xt] ≤ 2/n4. Similarly, in order to increase
l(Xt) by exactly 2, the bits l(Xt) and l(Xt) + 1 need to be flipped at once. Thus, it
holds that P [l(Xt+1) = l(Xt) + 2|Xt] ≤ 1/n2. Finally, consider Xt such that l(Xt) ≥ 3
and assume a set of bits S ⊆ [n] is flipped, such that l(Xt) changes by exactly 2. If
this succeeds, either {l(Xt) − 2, l(Xt) − 1} ⊆ S or {l(Xt), l(Xt) + 1} ⊆ S but not both.
Assume {l(Xt)− 2, l(Xt)− 1} ⊆ S, meaning that l(Xt) decreases by 2, and construct the
set S′ = (S \{l(Xt)−2, l(Xt)−1})∪{l(Xt), l(Xt)+1}. Note that, if flipping the bit set S
succeeds, flipping S′ would also succeed as both result in the same fitness value. Moreover,
we have |S| = |S′|, which means that both operations have the same probability. Finally,
observe that the construction of S′ from S is reversible. Thus, the overall probability of
decreasing l(Xt) by 2 is the same as increasing it by 2.

Using the characterization of the transition probabilities given in Lemma 15 we use
Lemma 3 to prove Theorem 13.

Proof of Theorem 13. Let l(Xt), r(Xt), b(Xt), m, T , Tl and Tr be defined as above. As
discussed earlier, T is a lower bound on the number of iterations that the (1+1) EA
requires to get to the optimum. Furthermore, it holds that T ≥ min{Tl, Tr}. Thus, for
every t ∈ N, it holds that

P [T ≥ t] ≥ 1− P [Tl < t or Tr < t] ≥ 1− P [Tl < t]− P [Tr < t] .

We proceed by using Lemma 3 to prove that, if r(X0) − l(X0) ∈ Θ (n), then there is
some τ ∈ Θ

(
n4
)

such that P [Tl ≥ τ] ≥ 16
25 and P [Tr ≥ τ] ≥ 16

25 .

To this end, we consider the process Zt = l(Xt)−l(X0)
2 · 1{l(Xt)≥l(X0)} and set d =⌊

r(X0)−l(X0)
4

⌋
− 2. Note that d ∈ Θ (n), which implies d ≥ 4 ln(10) for n sufficiently large.

By Lemma 15, we know that Zt satisfies the requirements of Lemma 3 for p = 1
n2 and

q = 2
n4 . Thus, for τ = min

{
2
5n

4, d2n2

8 ln(10)

(
1− 2

n4

)}
∈ Θ

(
n4
)

and Td = inf{t ∈ N | Zt ≥ d},

13

Lemma 3 yields P [Td ≥ τ] ≥ 16
25 . Now, note that for our choice of Zt and d, l(Xt) ≥ m−4

implies Zt ≥ d. Therefore, we have P [Tl ≥ τ] ≥ 16
25 .

For r(Xt), we can argue analogously that P [Tr ≥ τ] ≥ 16
25 for the same d ∈ Θ (n) and

τ ∈ Θ
(
n4
)

as above and using the process Zt = r(X0)−r(Xt)
2 · 1{r(Xt)≤r(X0)}. Thus, we

obtain P [T ≥ τ] ≥ 7
25 , which proves the first part of the statement. For the second

part, note that by T ≥ 0 and the law of total expectation E [T] ≥ τ · 7
25 ∈ Θ

(
n4
)
. By

monotonicity of the expectation, this carries over to the expected number of iterations.

The Balanced (1+1) EA - Proof of Theorem 14: The proof of Theorem 14 works
analogously to that of Theorem 13. The only substantial difference is in the transition
probabilities in Lemma 15. In particular, the Balanced (1+1) EA satisfies

P [l(Xt+1) = l(Xt) + 2|Xt] = 1/2(1/n2 + 1/n), and

P [r(Xt+1) = r(Xt)− 2|Xt] = 1/2(1/n2 + 1/n).

Clearly 1/2(1/n2 + 1/n) ≤ 1/n, which gives a lower bound of Ω
(
n3
)

for the (1+1) EA.

Experimental Evidence for Long Bad Paths: So far we have argued that given a feasible
initial configuration with exactly one bad path of length in Θ (n), the (1+1) EA requires
with constant probability Ω

(
n4
)

iterations to reach the optimum. Analogously, we have
shown that the Balanced (1+1) EA requires Ω

(
n3
)

steps.
We are now going to present experimental evidence that, starting from a uniformly

chosen configuration, the (1+1) EA and the Balanced (1+1) EA both reach a state X ∈
{0, 1}n with f(X) = OPT + 1 with high probability. Once such a state is reached, our
experiments suggest that the bad path of X has linear length with at least constant
probability.

We did experiments on paths of odd length n ∈ {51 + 10 · k | k ∈ N ∩ [0, 15]} with
100 runs for each n and each algorithm. In every iteration, the algorithm starts with a
uniformly random initial configuration. Once a state X with f(X) = OPT+1 is reached,
we record the length of the bad path in X, divided by n. Since X has only one vertex
more than the optimal cover, there will be only one bad path, and all other vertices will
have their optimal value.

In the case that the algorithm never reaches such a state (i.e. it jumps directly from
fitness level ` > 1 to the optimum), the length of the bad path is set to zero, which is
a worst-case. Interestingly, this behaviour wasn’t observed in even a single simulation,
which suggests that such a jump is difficult for either algorithm to perform.

The results are given in Fig. 1. Each box indicates span from the first to the third
quartile (i.e. the inner 50% of the data) and the whiskers indicate minimum and maximum
values that were observed. The result for both algorithms look very alike. Apart from
minor deviations, most of the iterations resulted in similar relative lengths of the bad
paths, independent of n. The medians seem to fluctuate around a value of 1/3 and never
drop below 1/5, which behavior is consistent throughout all tested values of n.

Our experiments suggest that, with constant probability, both algorithms enter the last
fitness level with a bad path of linear length. Therefore, when starting from a uniformly
random initial configuration, with constant probability a state is reached to which The-
orems 13 and 14 apply. This suggests that, even when starting from a uniform random
initialization, the expected number of iterations to find the optimum are in Ω

(
n4
)

for the
(1+1) EA and in Ω

(
n3
)

for the Balanced (1+1) EA, due to the appearance of such linear
bad paths.

14

51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

n

0.0

0.2

0.4

0.6

0.8

1.0
re

la
tiv

e
le

ng
th

 o
f b

ad
 p

at
h

(a) (1+1) EA

51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

n

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

le
ng

th
 o

f b
ad

 p
at

h

(b) Balanced (1+1) EA

Figure 1: Relative length of the bad path at last fitness level for (1+1) EA and Balanced
(1+1) EA

4 Vertex Cover on Complete Bipartite Graphs

A common instance class of interest when it comes to evolutionary algorithms for the
vertex cover problem are complete bipartite graphs. In this section, we investigate basic
properties of the Balanced (1+1) EA in this setting. Specifically, for L,R ∈ N \ {0},
let KL,R = (V,E) be a graph, such that V can be partitioned into sets VL and VR with
|VL| = L and |VR| = R, and E = {{v, u} | v ∈ VL and u ∈ VR}. We call VL the left
partition and VR the right partition. A bit string X ∈ {0, 1}L+R represents a feasible
solution for the vertex cover problem on KL,R if and only if VL ⊆ X or VR ⊆ X.

Now assume R/L = c for some c > 1, and note that in this case X = VL is the unique
optimum of the vertex cover problem on KL,R. On the other hand, the state X = VR
represents a local optimum with respect to the fitness function f . Once this local optimum
is reached, X must flip at least 2L bits in one step to escape. This causes the (1+1) EA to
need an exponential number of iterations in expectation, and local search heuristics like
Random Local Search (RLS) to fail completely. The probability of reaching the optimal
solution in polynomial time is usually closely related to the probability of never getting
too close to that local optimum, which makes complete bipartite graphs to an interesting
instance class to study.

In this section, we specifically consider the following setting. We assume the ratio
c := R/L > 0 to be fixed and investigate the probability for finding the optimum in
polynomial time asymptotically in L. Our main result is that the probability of not
finding the optimum in polynomial time decays exponentially in L as long as c > 2. As
Table 1 shows, this is quite different from the RLS, where the probability is constant for
any fixed c, and the normal (1+1) EA, where it only decays polynomialy in L. Note
all asymptotic behavior here is stated in terms of L. This can be easily translated to
asymptotics in terms of the absolute number of vertices n = L + R = (c + 1)L. In
particular, as long as the ratio c is considered a fixed constant, this only changes linear
factors, leading to the results that are presented in the abstract.

The main technical result that we use to prove this bound on the number of iterations
can informally be stated as follows. As long as VR is more than twice as big as VL, the
probability of selecting at least R − L vertices in VR before selecting all vertices in VL
decays exponentially in the size of L.

3In fact it is part of the proof of Theorem 5 in [5], but not part of the main statement.

15

RLS (1+1) EA Balanced (1+1) EA

≤ c
c+1

[5, Theorem 4]

≤ 1− 1
poly(L)

[5, Theorem 5] 3
≥ 1− 2−Ω(Lξ) for all 0 ≤ ξ < 1 if c > 2

see Theorem 17

Table 1: Probability of finding the minimum vertex cover on KL,R with c := R/L > 1
in time poly (L).

Lemma 16. Let KL,R be a complete bipartite graph with vertex partitions VL of size L
and VR of size R, and set c := R/L. Let Xt ∈ {0, 1}L+R be the sequence of states of the
Balanced (1+1) EA with fitness function f on KL,R and let X0 be chosen uniformly at
random. Define TL = inf{t ∈ N | |VL ∩Xt| = L} and let T ′R = inf{t ∈ N | |VR ∩Xt| ≥
R − L}. If c > 2, then, for all positive constants ξ < 1 and L sufficiently large, it holds

that P [TL ≥ T ′R] ≤ 2−Ω(Lξ).

The following probabilistic bound on the number of iterations for finding the minimum
vertex cover on KL,R can be derived from Lemma 16.

Theorem 17. Let KL,R be a complete bipartite graph with vertex partitions VL of size L
and VR of size R, and set c := R/L. If c > 2 then, for all positive constants ξ < 1, it holds
that the Balanced (1+1) EA with fitness function f , starting from a uniformly random
initial configuration, requires at most O

(
(c+ 1)L2 log((c+ 1)L)

)
iterations to find the

minimum vertex cover of KL,R with probability at least 1− 2−Ω(Lξ).

Proof. We prove this statement in two steps. At first, we argue that, with sufficiently
high probability, we reach a state where all vertices in VL are selected and more than L
vertices from VR are not selected in at most O

(
(c+ 1)L2 log((c+ 1)L)

)
iterations. In the

second step, we argue that, once such a state is reached, we go to the optimum in at most
O
(
(c+ 1)L2 log((c+ 1)L)

)
iterations with high probability.

For the first part, let Xt denote the states of the Balanced (1+1) EA and let TL and T ′R
be defined as in Lemma 16. Formally, we want to lower bound P [TL ≤ τ and TL < T ′R] for
some suitably chosen τ ∈ O

(
(c+ 1)L2 log((c+ 1)L)

)
. Let T = inf{t ∈ N | Xt is feasible}

and observe that, if TL < T ′R, then T = TL. Thus, we have

P
[
TL ≤ τ and TL < T ′R

]
= P

[
T ≤ τ and TL < T ′R

]
.

Using De Morgan’s laws and union bound, we get

P
[
T ≤ τ and TL < T ′R

]
= 1− P

[
T > τ or TL ≥ T ′R

]
≥ 1− P [T > τ]− P

[
TL ≥ T ′R

]
.

By Lemma 16, we have P [TL ≥ T ′R] ≤ 2−Ω(Lξ). Setting τ = 4eL(L+R) (ln(L+R) + 1/2),
Lemma 2 yields P [T ≥ τ] ≤ 2−L. Thus, we get that the Balanced (1+1) EA reaches a
state with all vertices in VL selected and more than L vertices in VR are not selected in
at most τ ∈ O

(
(c+ 1)L2 log((c+ 1)L)

)
iterations.

Now, assume we start in a state X0 with VL ⊆ X0 and |X0 ∩ VR| < R − L. Note that
adding vertices from VR requires removing at least as many vertices from VL. However, to
remain feasible, removing any vertex from VL, requires adding all vertices from VR that
are not selected yet. As there are at lest L + 1 such vertices and at most L vertices in
VL that could be removed, the Balanced (1+1) EA can never add a vertex from VR or

16

remove a vertex from VL in such a state. Thus, all we need to bound is the required time
to remove all vertices in X0 ∩VR to also bound the time for reaching the optimum. First,
observe that for each fixed vertex in X0 ∩ VR, the probability of not being removed after

τ ′ ∈ N steps is at most
(
1 − 1

L+R

)τ ′ ≤ e−
τ ′
L+R = e

− τ ′
(c+1)L . Thus, using union bound, the

probability for not reaching the optimum after τ ′ steps is at most

|X0 ∩ VR| e
− τ ′

(c+1)L < (R− L)e
− τ ′

(c+1)L = (c− 2)Le
− τ ′

(c+1)L .

Choosing τ ′ = (c+ 1)L (ln((c− 2)L) + L) ∈ o
(
(c+ 1)L2 ln((c+ 1)L)

)
, this probability is

upper bounded by e−L.
Observe that, if the first phase needs τ iterations and the second phase needs τ ′

iterations, then the total number of iterations for finding the optimum is τ + τ ′ ∈
O
(
(c+ 1)L2 ln((c+ 1)L)

)
. The probability that at least one of both phases fails is at

most 2−Ω(Lξ) + e−L ≤ 2−Ω(Lξ), which concludes the proof.

We proceed by proving Lemma 16. To simplify notation, we define the processes Lt =
VL∩Xt and Rt = VR∩Xt. A central step in our proof of Lemma 16 is to argue that T ′R is
super polynomial with high probability. Once this is done, it remains to show that, with
sufficiently high probability, all vertices in VL are selected beforehand.

To prove the first part, we apply the following negative drift theorem.

Theorem 18 (Oliveto et. al [16]). Let (Yt)t∈N be random variables over an interval I
adapted to a filtration (Ft)t∈N, and let b ∈ I such that Y0 ≥ b. Suppose that there exists
an interval [a, b] ⊆ I, two constants δ, ε > 0, and, possibly depending on d := b − a, a
function r(d) satisfying 1 ≤ r(d) ∈ o(d/ log(d) such that, for all t ∈ N , it holds that

(a) E
[
(Yt+1 − Yt) · 1{a<Yt<b}

∣∣ Ft] ≥ ε · 1{a<Yt<b}, and

(b) for all j ∈ N, it holds that

P
[
|Yt+1 − Yt| · 1{Yt>a} ≥ j · 1{Yt>a} | Ft

]
≤ r(d)

(1 + δ)j
.

Then there is a constant z > 0 and a function m(d) ∈ Ω(d/r(d)) such that, for the
hitting time T := inf{t ∈ N | Yt ≤ a}, it holds that

P
[
T ≤ 2

zd
r(d)

]
= 2−m(d).

An obvious choice would be apply the above theorem directly to |Rt|. However, this
would lead to rather complicated transition probabilities. Instead, we define the following
slightly modified process St ∈ {0, 1}R based on Xt:

• Initially, S0 = R0.

• Whenever Xt attempts to flip bits for some set of vertices A ⊆ V , St flips all bits
in (VR ∩A) \ St (in set notation, this is St+1 = St ∪ (VR ∩A)).

• Whenever Xt attempts a balanced flip with initial vertex v ∈ St, the corresponding
bit in St is set to 0 (i.e., St+1 = St \ {v}).

The following relationship between Rt and St will come in handy throughout our anal-
ysis.

17

Lemma 19. Let TL, T ′R and St be defined as above. Then Rt ⊆ St for all t ≤ min{TL, T ′R}.

Proof. We prove the statement via induction over t. For the base case t = 0, note that
S0 = R0 by definition. Consider some 0 < t ≤ min{TL, T ′R} and assume Rt−1 ⊆ St−1. If
the Balanced (1+1) EA attempts to flip the bits that correspond to a the set of vertices
A ⊆ V in iteration t, then Rt ⊆ Rt−1 ∪ (A ∩ VR) ⊆ St−1 ∪ (A ∩ VR) = St.

Now, assume the Balanced (1+1) EA attempts to do a balanced flip in iteration t and
selects some v ∈ V as starting vertex. Note that t ≤ T ′R implies that t − 1 < T ′R and
therefore |Rt−1| < R − L, which means that a balanced flip can never add a vertex in
the right partition. If v ∈ VL, then either a vertex in the right partition is removed or
Rt = Rt−1. In any case, Rt ⊆ Rt−1 ⊆ St−1 = St. For v ∈ VR, we distinguish between
three different cases. If v ∈ VR \ St−1, then also v ∈ VR \ Rt−1 and nothing happens.
On the other hand, if v ∈ Rt−1, then t ≤ TL implies t − 1 < TL and L \ Lt 6= ∅. Thus,
the bit corresponding to v gets flipped to 0 and a vertex from the left partition is added
to the solution. It holds that Rt = Rt−1 \ {v} ⊆ St−1 \ {v} = St. Finally, assume that
v ∈ St−1 \ Rt−1. Note that the existence of such a vertex v implies Rt−1 ⊆ St−1 \ {v}.
In this case, the Balanced (1+1) EA does nothing and v is removed from St−1. Thus, we
have Rt = Rt−1 ⊆ St−1 \ {v} = St. In all cases, Rt ⊆ St, which concludes the proof.

We are aiming to use the stopping time TS = inf{t ∈ N | |St| ≥ R − L} as a lower
bound for T ′R. The following lemma justifies this.

Lemma 20. For T ′R and TS as above it holds that T ′R ≥ TS.

Proof. We distinguish between two cases. If TL ≥ T ′R, then Lemma 19 implies that Rt ⊆
St for all t ≤ T ′R. Thus, |Rt| ≤ |St| for all such t and especially R − L ≤

∣∣∣RT ′R∣∣∣ ≤ ∣∣∣ST ′R∣∣∣,
which implies T ′R ≥ TS . Now, assume TL < T ′R. Note that this implies that XTL is feasible
and has a fitness value of f (XTL) < R. Observe that increasing the number of selected
vertices in the right partition would require removing vertices from the left partition.
However, to remain feasible, all vertices from the right partition must be added, resulting
in a fitness value of at least R. Thus, we have for all t > TL that |Rt| ≤ |RTL | < R − L.
Therefore, T ′R =∞ and TS ≤ T ′R holds trivially.

Based on Lemma 20, the following statement is essentially derived by applying a neg-
ative drift argument to |St|.

Lemma 21. Let T ′R be defined as above. If c > 2, then, for every positive constant

ξ < 1 and all L ≥ (max {2, 4/(c− 2)})
1

1−ξ , there is a constant α > 0 and a function
g(L) ∈ Ω(Lξ) such that

P
[
T ′R ≤ 2αL

ξ
]
≤ 2−g(L),

given the initial configuration X0 is chosen uniformly at random.

Proof. We start by assuming that the initial configuration is chosen such that |R0| ≤
R − L − Lξ. By Lemma 20 it is sufficient to prove the statement for TS instead. To
simplify notation, set st = |St|. Observe that st has the following transition probabilities:

• P [st+1 = st − 1 | st] = 1
2 ·

st
L+R

• for all j ∈ N ∩ [1, R− rt]:
P [st+1 = st + j | st] = 1

2 ·
(
R−rt
j

)
·
(

1
L+R

)j
·
(

1− 1
L+R

)R−rt−j

18

• with the remaining probability mass, st+1 = st

Note that the second case (i.e., st increases) can be described more intuitively as follows.
With a probability of 1

2 , we draw a binomial random variable Q with R − rt trials and
success probability 1

L+R , and st+1 = st +Q.
To bound TS , we apply Theorem 18 to the transformed stochastic process Yt = R−L−st

with its natural filtration Ft and stopping time TY = inf{t ∈ N | Yt ≤ 0} = TS . Note
that, for st ≤ R − L − Lξ, we have Yt ≥ Lξ. To this end, we argue that, for any fixed

constant c > 2 and all L ≥ (4
c−2)

1
1−ξ , the requirements (a) and (b) of Theorem 18 are

satisfied for a = 0, b = Lξ, r(d) = e1/3 ≥ 1, δ = e1/3 − 1 > 0 and ε = c−2
4(c+1) > 0.

Theorem 18 condition (a): Note that this condition is trivially satisfied for Yt ≤ a = 0
and Yt ≥ b = Lξ due to the indicator functions. To simplify notation, we assume from
now on that Yt ∈ (0, Lξ) and omit those indicator functions. By the definition of Yt, it
holds that

E [Yt+1 − Yt | Ft] = −E [st+1 − st | Ft]

= −1

2
·
(
R− st
R+ L

− st
R+ L

)
=

2st −R
2(R+ L)

.

Substituting st = R− L− Yt and R = cL, and upper bounding Yt by Lξ yields

E [Yt+1 − Yt | Ft] =
R− 2L− 2Yt

2(R+ L)
≥ (c− 2)

2(c+ 1)
− Lξ−1

c+ 1
.

Thus, for L ≥
(

4
c−2

) 1
1−ξ

we have E [Yt+1 − Yt | Ft] ≥ c−2
2(c+1) = ε.

Theorem 18 condition (b): Again, we omit the indicator functions and assume Yt >
a = 0. We do a case distinction based on j ∈ N. First, observe that for j ∈ {0, 1} it
trivially holds that

P [|Yt+1 − Yt| = j ≤ 1] ≤ e1/3

ej/3
=

r(d)

(1 + δ)j

Thus, the condition is satisfied. For j ≥ 2, note that such jumps can only appear when
Yt decreases. Therefore, we focus on the distribution Yt − Yt+1 = st+1 − st. As discussed
earlier, given st, st+1−st is dominated by a binomial random variable Q with R−st trials
and success probability 1

L+R . Q in turn is dominated by a binomial random variable Q′

with the same success probability but L + R trials. By Chernoff’s bound (see Theorem
1.10.1 in [3]) and the fact that E [Q′] = 1 we obtain

P [|Yt+1 − Yt| = j | Yt] ≤ P
[
Q′ ≥ j

]
≤ e−

(j−1)
3 =

r(d)

(1 + δ)j
.

To save space, we write λ for R−L−Lξ. Applying Theorem 18, we obtain that there is a

constant z > 0 and a function m(d) ∈ Ω (d) such that P

[
TY ≤ 2

zd

e1/3

∣∣∣∣ R0 ≤ λ
]
≤ 2−m(d).

Noting that d = Lξ and setting α = z
e1/3

proves that, for g′(L) = m(Lξ) we obtain

P
[
T ′R ≤ 2αL

ξ
∣∣∣ |R0| ≤ λ

]
≤ P

[
TS ≤ 2αL

ξ
∣∣∣ |R0| ≤ λ

]
≤ 2−g

′(L).

19

Next, assume we start with an initial configurationX0 that is chosen uniform at random.
Observe that |R0| follows a binomial distribution with success probability 1

2 and R trials.

Next, observe that for L ≥ 2
1

1−ξ and c > 2 it holds that(
1 +

1

2

)
≥
(

2− 1

c

)
≥
(

2− 2− 2Lξ−1

c

)
=
cL− L− Lξ

c
2L

.

As E [|R0|] = 1
2R = c

2L, we have
(
1 + 1

2

)
E [|R0|] ≥ cL−L−Lξ and by Chernoff’s bound

(see Theorem 1.10.1 in [3])

P [|R0| > λ] ≤ P
[
|R0| >

(
1 +

1

2

)
E [|R0|]

]
≤ e−

c
24
L.

By using the law of total probability we obtain

P
[
T ′R ≤ 2αL

ξ
]

= P
[
T ′R ≤ 2αL

ξ
and |R0| ≤ λ

]
+ P

[
T ′R ≤ 2αL

ξ
and |R0| > λ

]
≤ P

[
T ′R ≤ 2αL

ξ
∣∣∣ |R0| ≤ λ

]
+ P [|R0| > λ]

≤ 2−g
′(L) + e−

c
24
L

≤ 2−g(L)

for some function g(L) ∈ Ω
(
Lξ
)
, which proves the claim.

Having Lemma 21 at hand, we are ready to prove Lemma 16 and hence our main
theorem of this section (Theorem 17).

Proof of Lemma 16. By Lemma 21 we know that for L sufficiently large and c > 2 there

is a constant α > 0 and a function g(L) ∈ Ω(Lξ) such that P
[
T ′R ≤ 2αL

ξ
]
≤ 2−g(L).

We know that P [TL < T ′R] ≥ P [TL ≤ τ and T ′R > τ] holds for every τ ∈ N. Let T =
inf{t ∈ N | Xt is feasible } and observe that, if T ′R > τ , then TL ≤ τ if and only if T ≤ τ .
Consequently, we have P [TL ≤ τ and T ′R > τ] = P [T ≤ τ and T ′R > τ]. Moreover, using
union bound, we get

P
[
T ≤ τ and T ′R > τ

]
= 1− P

[
T > τ or T ′R ≤ τ

]
≥ 1− P [T > τ]− P

[
T ′R ≤ τ

]
.

By choosing τ = 4e(c + 1)L2 (ln((c+ 1)L) + 1/2), Lemma 2 yields P [T > τ] ≤ 2−L.

Moreover, for L sufficiently large, we have τ ≤ 2αL
ξ
. Thus, P [T ′R ≤ τ] ≤ 2−g(L) for a

function g(L) ∈ Ω(Lξ). Consequently, P [TL < T ′R] ≥ 1 − 2−Ω(Lξ) and P [TL ≥ T ′R] ≤
2−Ω(Lξ), which concludes the proof.

Besides Theorem 17, a variety of other properties that might be of independent interest
can be derived from Lemma 16. For example, the following corollary shows that the prob-
ability of X filling the larger side before all vertices in the smaller partition are selected,
and the probability to ever select the entire larger side at all, both decay exponentially
in L as well.

Corollary 22. Consider the setting of Lemma 16 and let TR = inf{t ∈ N | VR ⊆ Xt}. If
c > 2, then, for all positive constants ξ < 1 and L sufficiently large, it holds that

20

(1) P [TL ≥ TR] ≤ 2−Ω(Lξ)

(2) P [TR <∞] ≤ 2−Ω(Lξ) .

Proof. Part (1) follows trivially from TR ≥ T ′R. For part (2), note that, as soon as all
vertices in VL are selected, adding vertices to the right partition requires removing at least
as many vertices on the left. To remain feasible, however, all free vertices in the right
partition must be added at once. If there are more than L vertices in the right partition
not selected, this is not possible as there are at most L vertices in the left partition in
total that could be removed. Thus, from this point on, no more vertex from the right
partition can be added and TL < T ′R implies TR =∞.

References

[1] Thomas Bäck and Sami Khuri. An evolutionary heuristic for the maximum inde-
pendent set problem. Proceedings of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational Intelligence, pages 531–535
vol.2, 1994.

[2] D.R. Cox and H.D. Miller. The Theory of Stochastic Processes. Routledge, 1965.

[3] Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization
heuristics. Theory of Evolutionary Computation, page 1–87, Nov 2019.

[4] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis.
Algorithmica, 64(4):673–697, 2012.

[5] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Ap-
proximating covering problems by randomized search heuristics using multi-objective
models. Evolutionary Computation, 18(4):617–633, 2010.

[6] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank
Neumann, and Martin Schirneck. Fast building block assembly by majority vote
crossover. In Proceedings of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, page 661–668. Association for Computing Machinery, 2016.

[7] Oliver Giel and Ingo Wegener. Evolutionary algorithms and the maximum matching
problem. In STACS 2003, pages 415–426. Springer Berlin Heidelberg, 2003.

[8] Andreas Göbel, Timo Kötzing, and Martin S Krejca. Intuitive analyses via drift
theory. arXiv preprint arXiv:1806.01919, 2018.

[9] Thomas Jansen, Pietro S Oliveto, and Christine Zarges. Approximating vertex cover
using edge-based representations. In Proceedings of the twelfth workshop on Founda-
tions of genetic algorithms XII, pages 87–96, 2013.

[10] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Com-
puter Computations, pages 85–103, 1972.

[11] Stefan Kratsch and Frank Neumann. Fixed-parameter evolutionary algorithms and
the vertex cover problem. Algorithmica, 65(4):754–771, 2013.

[12] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Al-
gorithmica, 64(4):623–642, 2012.

21

[13] Pietro S Oliveto, Jun He, and Xin Yao. Evolutionary algorithms and the vertex cover
problem. In 2007 IEEE Congress on Evolutionary Computation, pages 1870–1877.
IEEE, 2007.

[14] Pietro S Oliveto, Jun He, and Xin Yao. Analysis of population-based evolutionary
algorithms for the vertex cover problem. In 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), pages 1563–
1570. IEEE, 2008.

[15] Pietro S Oliveto, Jun He, and Xin Yao. Analysis of the (1 + 1)-ea for finding ap-
proximate solutions to vertex cover problems. IEEE Transactions on Evolutionary
Computation, 13(5):1006–1029, 2009.

[16] Pietro S Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds
in evolutionary computation. Algorithmica, 59(3):369–386, 2011.

[17] Jannik Peters, Daniel Stephan, Isabel Amon, Hans Gawendowicz, Julius Lischeid,
Lennart Salabarria, Jonas Umland, Felix Werner, Martin S. Krejca, Ralf Rothen-
berger, Timo Kötzing, and Tobias Friedrich. Mixed integer programming versus
evolutionary computation for optimizing a hard real-world staff assignment prob-
lem. In J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth
Srivastava, editors, Proceedings of the Twenty-Ninth International Conference on
Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15,
2019, pages 541–554. AAAI Press, 2019.

[18] Jonathan E. Rowe and Michael D. Vose. Unbiased black box search algorithms. In
Natalio Krasnogor and Pier Luca Lanzi, editors, 13th Annual Genetic and Evolu-
tionary Computation Conference, GECCO 2011, Proceedings, Dublin, Ireland, July
12-16, 2011, pages 2035–2042. ACM, 2011.

[19] Ruhul Sarker, Masoud Mohammadian, and Xin Yao. Evolutionary Optimization.
Kluwer Academic Publishers, 2002.

[20] L. Darrell Whitley, Francisco Chicano, and Brian W. Goldman. Gray box optimiza-
tion for mk landscapes (NK landscapes and max-ksat). Evol. Comput., 24(3):491–519,
2016.

22

	1 Introduction
	2 Preliminaries
	2.1 Feasible bit strings
	2.2 Lower Bound Probability for Symmetric Random Walks

	3 Vertex Cover on Paths
	3.1 Upper Bound Running Time
	3.2 Lower Bound Running Time

	4 Vertex Cover on Complete Bipartite Graphs

