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ABSTRACT
The recent theoretical analysis (Horoba, Sudholt (GECCO
2010)) of an ant colony optimizer for the stochastic shortest
path problem suggests that ant system experiences signifi-
cant difficulties when the input data is prone to noise. In
this work, we propose a slightly different ant optimizer to
deal with noise.

We prove that, under mild conditions, it finds the paths
with shortest expected length efficiently, despite the fact
that we do not have convergence in the classic sense. To
prove our results, we introduce a stronger drift theorem that
can also deal with the situation that the progress is faster
when one is closer to the goal.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, algorithms

Keywords
stochastic shortest path, running time analysis, theory

1. INTRODUCTION
Ant colony optimization (ACO) is a powerful bio-inspired

optimization meta-heuristic. It has been applied successfully
to a wide range of optimization problems, not restricted to
the natural application area of graph algorithms. A key fea-
ture of these algorithms is that they do not stick to a fixed
set (population) of solution candidates, but evolve a proba-
bility distribution whose mass ideally converges to favorable
parts of the search space. For this reason, it seems likely that
ACO approaches work robustly in computationally harder
settings, for example, those involving uncertainty. Unfor-
tunately, the seemingly first and still only rigorous run-
time analysis of ACO on a problem with uncertainty [22]
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shows that a natural adaption of the Min-Max Ant Sys-
tem (MMAS) to the stochastic single-source shortest path
problem experiences significant difficulties in finding (in ex-
pectation) optimal solutions.

In this work, we show how to overcome many of the diffi-
culties demonstrated there. The key difference in this work
is that we reevaluate the best-so-far solution whenever it is
compared to a newly found one. This avoids being mislead
by an exceptional, too optimistic evaluation. A consequence
of the reevaluation is that we do not have convergence in the
pheromone values anymore. From the view-point of applica-
tion, this is not a problem, as taking a solution with close to
maximum pheromone value safely identifies the optimum.

In the mathematical analysis performed in this paper,
however, the absence of convergence poses some challenges.
To overcome them, we use drift analysis [19, 20]. Since the
drift we encounter is not monotone with the distance to the
optimum, we prove the first drift theorem not needing this
assumption. We are optimistic that this will find more ap-
plications in the near future.

1.1 Ant Colony Optimization
The ant colony optimization (ACO) method was sug-

gested by Dorigo in his Ph.D. thesis [8] and has since found
numerous applications, see, e.g., [9]. The basic idea is to
mimic the foraging behavior of an ant colony, which builds
on ant leaving pheromone traces on paths leading to food
sources. Since paths to rich food sources are used more of-
ten, the pheromone trail becomes stronger here, attracting
other ants to follow this route. While this paradigm nat-
urally is suited for optimization problems involving short-
est paths, routes, etc., it can also be applied to problems
without a natural graph structure by adding a suitable con-
struction graph. What is generally seen as a strength of ACO
systems is that they do not keep a sample of the search space
(population) as do many evolutionary algorithms, but rather
evolve a probability space defined on the solution space.

The downside of this richer approach is that theoretical
analyses of ACO systems are seemingly very difficult. While
a well-developed theory of evolutionary algorithms exists for
many years, it was not before the year 2000 that conver-
gence results were proven [11, 12] and it took until 2007
for the first theoretical run-time analyses for ACO systems
to appear [15, 16, 7, 17]. These results clearly show that
analyzing even very simple ACO algorithms is much more
difficult than analyzing simple evolutionary algorithms, and
even more recent papers like [24] seemingly found no simple
analysis method.

In this work, we consider ACO in the presence of noisy

17



data (optimization in the presence of stochastic uncertain-
ties is sometimes called stochastic programming or stochas-
tic combinatorial optimization). While there is good empir-
ical evidence that using ACO in stochastic settings makes
sense (for this we refer to the survey [3] and the references
therein), a clear theoretical understanding of this aspect is
still missing.

Indeed, Gutjahr in [13, 14] proposed the S-ACO algorithm
for stochastic problems and proved convergence under mod-
erate conditions. A main ingredient of this algorithm is that
in the pheromone update, the observed quality of a new
solution is not simply compared with the (at that time ob-
served) quality of the best-so-far solution, but rather both
solution candidates are re-sampled an increasing number of
times to get more stable estimates.

On the other hand, the single rigorous run-time analy-
sis for stochastic problems [22] does not suggest that ACO
methods are particularly suitable in stochastic optimization.
Let us describe their approach in more detail. The work [22]
studies how shortest paths can be found using ACO when
the edge lengths are stochastic, that is, there is random noise
added to the evaluation of any edge length. Like previ-
ous works performing a run-time analysis on shortest path
problems [1, 21], an ACO system was used where one ant
starts in each node in parallel. Each of these ants only puts
pheromone on the first edge of its walk (which is an outgoing
edge from its starting node). Otherwise, the ACO system
builds on the Max-Min Ant System [27], in which the current
solution is compared to the best-so-far seen solution and the
pheromone update is made with respect to the better of the
two.

Also, to make ant walks and paths to be found lead into
the same direction, not the classic single-source shortest
path problem is regarded, but instead the single-destination
version. This is no loss, since one variant can be turned
into the other by reverting all directions. For this problem
formulation, both [1] and [21] show good run-time results
for the ACO system analyzed. Hence, the non-stochastic
version seems to be well tractable with the ACO algorithm
proposed.

For the stochastic setting, [22] basically uses the same ant
system. Thus, when an ant produces a path, its stochas-
tic length is evaluated and compared with the best-so-far
seen length of a path from this starting point. The bet-
ter of the two is reinforced by the pheromone system and
stored as best-so-far solution and solution value. This sys-
tem seems to have difficulties optimizing stochastic shortest
paths. The authors present an example graph where, with
high probability, the ants get stuck on an inferior solution
(see Section 4 of this paper for a simple graph demonstrat-
ing the same effect). The authors also show that the ACO
system suggested can compute approximate solutions. How-
ever, the approximation ratio, that is, the factor by which
the solution computed is longer than the optimal one, is
exponential in the length (number of edges) of the longest
path. This makes no sense for most real-world graphs.

In this work, we overcome the difficulties seen in [22] via a
simple modification. Analyzing the proofs there, we find the
main difficulty is that an ant might be exceptionally lucky
and evaluate a path to have a relatively small length. If this
happens, the ant will prefer this path in the future, despite
the actual quality of this solution not being so good. The
simple way to overcome this is to reevaluate the best-so-

far solution whenever it is compared to an actual solution.
Clearly, this makes the comparison more fair, with both so-
lutions “just having a single try” to evaluate shorter. This
approach differs from the one of the S-ACO algorithm, where
a relatively large number of reevaluations is done to not only
get fairness, but also relatively stable evaluations. In a nut-
shell, the outcome of our work is that a single reevaluation
often is enough.

The results we obtain justify this positive opinion. The
ant system with reevaluation easily optimizes the example
graph for which the previous approach failed. More gener-
ally, we show that for suitable choices of the system’s pa-
rameters, the ACO system finds all shortest paths that, in
direct comparison, have a chance of slightly more than 1/2
of being evaluated shorter. For reasonable probability dis-
tributions for the noise, this implies that the ants find the
paths with the shortest expected length.

While from the view-point of application the new system
provides little difficulties, for the analysis this is different.
Since the new system does not “lock in” the best-so-far so-
lution (as often did the previous, whether actually better
or not), we do not have such a strong convergence of the
pheromone values. In fact, we do not have convergence at
all, because it may always happen that the path which is
better in expectation is evaluated to be longer than an al-
ternative one. Of course, we do have the property that the
aimed at solution often looks better than the alternatives,
and this is enough to show that its pheromone values stay
close to the maximum value. Hence, we may read off the op-
timal solution from those edges that carry close to maximum
pheromone.

The true difficulty is in the mathematical analysis of the
ACO process. Since we do not have convergence, we only
observe a weaker drift behavior towards high pheromone val-
ues on preferred edges. Drift analysis, as introduced to our
field by He and Yao [19, 20], is an advanced method to deal
with such situations. Unfortunately, in our case the drift dis-
plays an uncommon behavior, being strongest for medium
range pheromone values and weaker at the extremes. This
makes all of the additive drift method of He and Yao, best
for uniform drift, the multiplicative drift method by Doerr,
Johannsen and Winzen [6], best for drift proportional to the
distance from the optimum, and the variable drift method
of Johannsen [23] (cited, e.g., in [5]), applicable whenever
the drift is monotone with the distance from the optimum,
give only bad run-time bounds. For this reason, we prove
a generalization of the variable drift theorem (in a sense, of
all drift theorems so far) that does not need the assumption
that the drift is non-decreasing with the distance from the
goal. This drift theorem might be useful for future research,
in particular, in the ACO field.

Due to space constraints, some proofs are omitted.

2. PROBLEM DESCRIPTION AND ALGO-
RITHM

In this section, we give a formal definition of the stochas-
tic shortest path problem we regard and present the ACO
algorithm we propose and analyze. We also describe how
both relate to the well-known bandits learning problem.

2.1 Stochastic Shortest Path Problems
As most previous works, we regard a variant of the single-
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destination shortest path (SDSP) problem. Here, we are
looking for shortest paths from any other vertex to a par-
ticular vertex called sink. Of course, by reverting the di-
rections of all edges we can transform any problem instance
(including the optimal solution) of the SDSP to the classic
single-source shortest path problem and vice versa. So both
problems are equivalent.

Definition 1 (Stochastic SDSP Problem). Let
(V,E) be a directed acyclic graph (DAG). Assume that there
is a unique sink (a vertex without edges going out), and
that there is a path from every other vertex to the sink. For
each edge e ∈ E, let Xe be a random variable describing the
stochastic length of e. Denote by X = (Xe)e∈E the family
of all these. Then the triple G = (V,E,X) is called graph
with stochastic edge weights or stochastic-weight graph.

For any (directed) path p consisting of the edges Ep ⊆ E,
we let Xp =

∑
e∈Ep

Xe be the (random) length of the path
p.

The aim of this investigation is analyzing to what extent
ACO systems are capable of finding a shortest path from
any vertex in G to the sink. As pointed out in the introduc-
tion, in contrast with the deterministic setting, it is not so
clear what “shortest path” means in the context of stochas-
tic path lengths. One possible goal could be to find paths
with minimal expected length. The performance measure
could be the first hitting time. As we will see later, our
ACO system only achieves the similar aim of finding paths
with good probability of appearing shorter than other al-
ternatives. While pathological examples show that there is
little correlation between the two goals, for many natural
distributions the difference is small.

We would like to stress that our focus is on understand-
ing how natural ACO systems behave in situations of uncer-
tainty. It is absolutely clear that custom-tailored methods
are better suited to overcome the particular uncertainties in
our setting. For example, by sufficiently often sampling the
lengths of all edges separately, one can derive an arbitrarily
close approximation of the underlying length distribution.
This would allow, e.g., replacing the stochastic edge lengths
with the approximate expected edge lengths and then run-
ning a classic shortest path algorithm to compute expected
shortest paths.

2.2 Our ACO Algorithm
The common theme of all ACO algorithms is that artificial

ants do a random walk over a given graph. The random de-
cisions are heavily influenced by pheromone values attached
to the edges. The outcome of each walk (in fact, it will
be always a path) is interpreted as a solution of the under-
lying problem. Depending on the fitness of this solution,
the pheromone values are updated in a way that (hopefully)
makes this solution and similar ones more likely to be found
in future ant walks.

In this subsection, we first make precise the construction
of paths via ant walks, describe the way pheromones are
updated, and finally give the ACO algorithm resulting from
these and further design choices. The path construction and
the pheromone update rule follow the usual standards. The
ACO algorithm considered is the so-called Max-Min Ant
System (MMAS) as first introduced in [27]. As in [22], we
adopt it to the SDSP problem by having one ant start in
each vertex in parallel. This is justified by the fact that

we are looking for shortest paths from each vertex to the
sink. What constitutes the crucial difference to [22] is that
we reevaluate the best-so-far solution for each ant walk (see
line 8 in Algorithm 2).

Path construction: As previously mentioned, we start (in
parallel) one ant av from every non-sink vertex v and let
it construct a path from v to the sink. When situated at
a non-sink vertex, the ant randomly chooses one outgoing
edge with a probability proportional to the pheromone on
that edge, and then traverses this edge. The ants repeat
this step until the sink is reached (since the graph is acyclic
and has a unique sink, this always happens, without multiple
visits to a vertex). This path construction procedure is made
precise in Algorithm 1.

Algorithm 1: Path Construction from u to the sink

1 Input: DAG G, start vertex u, pheromones τ ;
2 i← 0, p0 ← u;
3 V1 ← {p ∈ V | (p0, p) ∈ E};
4 while Vi+1 6= ∅ do
5 i← i+ 1;
6 choose pi ∈ Vi with probability

τ(pi−1, pi)/
∑
p∈Vi

τ(pi−1, pi);

7 Vi+1 ← {p ∈ V | (pi, p) ∈ p};
8 return (p0, . . . , pi);

Pheromone updates: Assume that the ant av has found
a path p from v to the sink which we consider good. In
this case, to increase the probability that this path is found
again, we update the pheromone values on the edge out-
going from v, that lies on path p. We use the following
rule for the pheromone update. Let τ : E → [0, 1] de-
scribe our current pheromone values on the edges. Then
the pheromone values τ ′ := τ ′(τ, p) after this update satisfy

τ ′(e) =

{
min((1− ρ)τ(e) + ρ, τmax), if e is used in p;

max((1− ρ)τ(e), τmin), otherwise

for all edges out-going from v. For all other edges e, we have
τ ′(e) = τ(e). Note that τmin and τmax are parameters to the
algorithm.

The MMAS ACO algorithm with reevaluation of stochastic
lengths: The basic concept of the MMAS ACO algorithm is
that after each run of an ant, a pheromone update is made.
If the just-constructed path p is at least as good as the best-
so-far seen path p∗, then the update is done with respect to
p, otherwise with respect to p∗.

Since we have one ant av for each non-sink vertex v, we
store a best-so-far solution p∗v for each vertex and compare
this with the solution constructed by av.

There is one difficulty to deal with for stochastic set-
tings: there is no absolute quality of solutions. Due to the
stochasticity, the same path may be evaluated with differ-
ent lengths. Horoba and Sudholt [22] decided that they store
the best-ever seen length with the best-so-far solution. How-
ever, as can be seen from analyzing their proofs, this leads
to strange behavior. If a path was ever evaluated at an un-
expectedly short length (as may rarely happen), then this
path looks too good for the remainder of the ACO run.

To overcome this problem, we suggest to reevaluate the
best-so-far solution whenever it is compared to another so-
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lution. By this we hope to better capture the typical quality
of a solution.

Algorithm 2 gives the complete Max-Min Ant System with
reevaluation of the best-so-far solution.

Algorithm 2: Max-Min Ant System

1 Parameter: ρ;
2 Input: DAG G = (V,E);
3 initialize pheromones τ and best-so-far paths p∗1, . . . , p

∗
n;

4 while termination criterion not met do
5 for u = 1 to n in parallel do
6 construct a simple path pu from u to the sink

w.r.t. τ ;
7 w ← evaluate(pu);
8 w∗ ← evaluate(p∗u);
9 if w ≤ w∗ then p∗u ← pu;

10 update pheromones τ on all edges outgoing from
u w.r.t. p∗u;

11 return (p0, . . . , pi);

We will use the following lemma about pheromones in the
MMAS taken from [21].

Lemma 2 ([21, Lemma 1]). Let v be a vertex and τ be
a the vector of pheromones in some iteration during some
run of MMAS. Then the total pheromones τtotal on the edges
going out from v is bounded from above by 1 + nτmin.

In particular, any edge with pheromone τ is chosen with a
probability at least τ/(1 + nτmin).

2.3 Bandit Setting
We consider the following definition for a stochastic on-

line learning setting (see, for example, [4]). Given a finite
set of possible actions and associated real-valued random
variables (Xa)a∈A a learner is asked to repeatedly choose
an action from A. With every choice a ∈ A, the learner
incurs a loss drawn according to Xa (the draws of differ-
ent iterations are assumed to be independent). The goal
is to minimize the loss; the difference between the actual
loss (after n iterations) and the loss of the optimal strategy
of always choosing the action corresponding to the random
variable with smallest expected value, is known as the regret.

Trivially, if the learner knows the distribution of the losses
(Xa)a∈A at the start, then he can achieve an expected re-
gret of 0. Instead, one looks at settings where only the set
of possible actions and not the associated loss functions are
given. There are several different settings for how a learner
gathers information about the loss functions; the most in-
teresting setting for our purposes is the multi-armed bandit
setting [26], where, after each iteration, the learner gets to
know the loss it incurred in the given iteration, but noth-
ing about the alternatives. This poses a question regarding
the exploration vs. exploitation trade off: should the learner
choose an action known to have a small loss in order to keep
the regret low, or try to find actions with even lower loss?

The case of finding the shortest link among m parallel
links corresponds to choosing between one of m different
actions. Since our ACO algorithm reevaluates its best-so-far
solution, it requires choosing two actions for each iteration
of the ACO.

The setting where several bandit problems are supposed
to be solved in parallel, and feedback from one task might

benefit the learner in other tasks (as in the stochastic single-
destination shortest path problem), is called a multitask ban-
dit problem.

For the multi-armed bandit setting, efficient algorithms
are known which achieve a sublinear regret [25]. Further-
more, many variations of the settings of online learning have
been studied, including with adversarial rather than stochas-
tic loss [2], also in a setting of finding a shortest path [18].
One of the main interests of this work lies in finding efficient
problem specific algorithms with low regret.

We consider MMAS optimizing m parallel links and com-
pute the expected regret. Suppose one edge has determin-
istic weight 0 and all others deterministic weight 1. After
an initial phase of finding the good edge and converging in
pheromones to that edge, MMAS will sample a non-optimal
edge with probability about (1−nτmin) in every iteration. In
each iteration where a non-optimal edge is chosen, MMAS
incurs a regret of 1. Thus, the expected regret in t rounds
is Θ(t(1 − τmax)), linear in the number of iterations. This
shows that MMAS is inferior in the bandit setting to tailored
algorithms.

Intuitively, MMAS focuses more strongly on exploration
than problem specific algorithms. Note that MMAS will
not converge to the right link at all if, for example, the link
with highest expected value has a chance of less than 1/2 of
coming out higher when compared with any other link (see
the example given in Proposition 8).

For the remainder of this paper we will not consider the
bandit setting, but focus on the questions of whether and
how fast MMAS converges to paths that are good in expec-
tation.

3. PARALLEL LINKS
In this section, we analyze the most simple case of two

nodes connected by several parallel edges. This will be the
cornerstone of the results in the following sections.

Roughly speaking, we will show that, if there is an edge
that looks shorter than any other edge with probability
strictly greater than 1/2, then this edge will attract the vast
majority of the pheromone.

While seemingly a natural result, its proof is surprisingly
hard. The main difference, e.g., compared to the previ-
ous work [22], is that now the preferred edge only gains
pheromone at a higher rate than the other edges. In previ-
ous works, typically the MMAS once it found a good edge,
it sticked to it and reinforced it until τmax was reached.

For this reason, we shall need arguments from drift analy-
sis to bound the time needed until this process has brought
the maximum pheromone to the preferred edge. Unfortu-
nately, the progress of growth of pheromone on the preferred
edge follows an uncommon pattern. It is strongest for mid-
range pheromone values, but slow for both high and low
pheromone values. To analyze such types of drift, we need
to prove a variation of Johannsen’s variable drift theorem
that can deal with the situation that the drift is not mono-
tonic with the distance to the optimum.

3.1 Result
In the remainder of this section, let G = (V,E,X) be a

stochastic-weight graph such that

• V = {v, s},

• E consists of m parallel edges from v to the sink s,
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• there is an e ∈ E and a δ > 0 such that for all f ∈
E \ {e}, Pr(Xe < Xf ) ≥ 0.5 + δ. We call e a preferred
edge, since e looks shorter than each of the other edges
with probability more than 0.5.

Note that the condition of being a preferred edge is more
than just saying that Xe has the minimum expectation.
Furthermore, it may also happen that none of the edges is
preferred. Examples of this type can easily be constructed
from the famous non-transitive dice example from elemen-
tary probability theory, see, e.g., Gardner [10].

Of course, we would hope that MMAS recognizes a pre-
ferred edge, if it exists, and ideally raises its pheromone value
to the upper boundary τmax. This is indeed true, though
hard to prove.

Theorem 3. Suppose τmax + τmin = 1 and 2ρ ≤ τmin.

Then, after an expected number of O( log(1/τmin)
δρ

) iterations,
the pheromone value on the preferred edge e is τmax.

In Section 3.2 we give an important tool for our proof of
Theorem 3, a new drift theorem allowing for drift which is
not increasing with the distance to the optimum. Section 3.3
constitutes the proof of Theorem 3.

We will give a version of Theorem 3 applicable to arbitrary
graphs in Section 5, namely Theorem 11; note, however, that
Theorem 11 requires an additional restriction on δ which is
not present in Theorem 3.

3.2 Proof via Improved Drift Analysis
The difficulty in proving Theorem 3 lies in the fact that,

while e is preferred over other edges, this preference may be
only slight. So, unlike with many proofs on the performance
of MMAS, it does not happen that once e is found, MMAS
does not reinforce the other alternatives anymore. Rather,
with constant rate, it will happen that an alternative looks
better, and that this is reinforced instead of e.

The current best method to deal with such situations is
drift analysis, which was first introduced to the theory of
evolutionary computation by He and Yao [19, 20]. In a nut-
shell, this method tries to suitably characterize the expected
progress of a random process in one iteration. From this, via
so-called drift theorems, one can deduce information about
the expected time the process needs to reach a certain area
in the state space.

While the (now so-called) additive drift of He and Yao
is most suitable for situations in which the progress is uni-
form, the recently introduced multiplicative drift analysis [6]
captures best the situation that the progress is proportional
to the current distance from the goal. A generalization of
this, applicable to the general situation that the progress
is faster if the distance to the goal is larger, was proven
in Johannsen’s PhD thesis [23, Theorem 4.6] and is called
variable drift.

Unfortunately, even this very general tool is not enough
for our purposes. The problem is that the expected increase
of the pheromone level of e is small both when e carries much
pheromone (this stems from the pheromone update rule) and
when e has little pheromone (because then the probability
of sampling e is small). Hence, Johannsen’s monotonicity
assumption seems hard to fulfill.

We overcome this difficulty by proving a variable drift
theorem that does not need the monotonicity assumption.
We are optimistic that this new drift theorem will be useful

both in other ACO problems and, more generally, for the
analysis of other bio-inspired search heuristics.

Theorem 4. Let (Xt)t≥0 be random variables describing
a Markov process over a finite state space 0 ∈ S ⊆ R+

0 and
let xmin := min{x ∈ S | x > 0}. Furthermore, let T be the
random variable that denotes the first point in time t ∈ N
for which Xt = 0. Suppose that there exist c ≥ 1, d > 0 and
a continuous function h : R+

0 → R+ such that

• for all t < T , E(Xt −Xt+1 | Xt) ≥ h(Xt);

• for all t < T , P (Xt −Xt+1 ≤ d) = 1; and

• for all x < y with y − x ≤ d, we have h(x) ≤ c h(y).

Then

E(T | X0) ≤ c
(

xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx

)
.

Note that the case of c = 1 above just means that h is
monotonic. For our purposes, we will need the statement
for c > 1.

3.3 Analysis: Parallel Edges
Using the above new drift theorem, we can now analyze

how the pheromone is accrued on the preferred edge e. As
always in drift analysis, we have to define a suitable progress
measure (potential function).

Recall that the state of the MMAS for our graph is fully
described by the pheromone values of all edges and the best-
so-far solution, which is one of the edges from E. For the
purpose of our analysis, only the pheromone on e is impor-
tant and whether e is the current best-so-far solution or not.
We denote such a reduced state by a pair (τ, x), where τ is
the present pheromone on e and x is set to 1 if e is the
current best-so-far solution and 0 otherwise.

For such a state (τ, x), we define its potential by

g(τ, x) = τ + ρx.

Hence, g basically measures the pheromone on e, giving a
“bonus” of ρ when e is the current best-so-far solution. For
this potential, we can show the following statement on its
expected increase.

Lemma 5. Let r = 1 + ε be an upper bound on the total
pheromone on the edges of the graph. Let δ ≥ ε. Let MMAS
be in a state with reduced state (τ, x). Let (τ ′, x′) be (random
variables denoting) the (reduced) state after one iteration,
where the update of the pheromone values was made ignoring
the pheromone boundaries τmin and τmax. Then

E[g(τ ′, x′)− g(τ, x)] ≥ min(τ, 1− τ)ρδ/2.

Proof. To prove the lemma, we first make the underlying
Markov chain precise, that is, given a state (τ, x), we find
the transition probabilities of going to other states.

When x = 1, we sample e again with probability at least
τ/r, which automatically implies x = 1 for the next state.
If we sample some edge other than e (with probability at
most 1 − τ/r), we can still have x = 1 in the next state
with probability p ≥ 0.5 + δ, thanks to e having the better
value in the direct comparison (see Definition 9). Thus, the
probability of next going to a state with x = 1, given in the
present state x = 1, is at least τ/r + (1 − τ/r)p. In this
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τ, 1

τ(1− ρ) + ρ, 1

τ(1− ρ), 0

≥ τ/r + (1− τ/r)p

≤ (1− τ/r)(1− p)

(a) Best-So-Far=1

τ, 0

τ(1− ρ) + ρ, 1

τ(1− ρ), 0

≥ τp/r

≤ 1− τp/r

(b) Best-So-Far=0

Figure 1: Markov Chain

state, we have a positive reinforcement of the pheromone τ
to τ(1− ρ) + ρ.

With similar arguments, we find the probability of going
to a state with x = 0, given the present has x = 1, is at
most (1− τ/r)(1−p) and the pheromone value in that state
is τ(1− ρ). In this case there is no positive reinforcement in
the pheromone on e.

Similarly, if in the present state we have x = 0, then the
probability of going to a new state with x = 1 is at least
τp/r. With remaining probability of at most 1 − τp/r we
go to a state with x = 0. The pheromone values of the
next states are the same as in the cases of x = 1. Fig. 1
depicts the different states and corresponding transitions of
the Markov chain. The associated transition probabilities of
going from one state to the other are also shown.

Given this chain, we can now prove the statement of the
lemma. Assume first that x = 1. Then

E[g(τ ′, x′)− g(τ, x)]

= P (x′ = 1) g(τ(1− ρ) + ρ, 1) +

P (x′ = 0) g(τ(1− ρ), 0)−
g(τ, 1)

≥ (τ/r + (1− τ/r)p)(τ(1− ρ) + 2ρ) +

(1− τ/r)(1− p)τ(1− ρ)− (τ + ρ)

= τ2(1− ρ)/r + 2τρ/r + τ(1− τ/r)p(1− ρ) +

2(1− τ/r)pρ+ τ(1− τ/r)(1− p)(1− ρ)

−(τ + ρ)

= τ2(1− ρ)/r + 2τρ/r + τ(1− τ/r)(1− ρ)

+2(1− τ/r)pρ− (τ + ρ)

= 2τρ/r + τ(1− ρ) + 2(1− τ/r)pρ− (τ + ρ)

= (2p− 1 + τ(2/r − 1− 2p/r))ρ.

The last term is at least (1 − τ)ρδ/2 if the following two
equations hold.

2p− 1 ≥ δ/2;

2p/r + 1− 2/r ≥ δ/2.

The first of these equations follows from 2p − 1 = δ; the
second is implied by δ ≥ ε.

For x = 0, we have

E[g(τ ′, x′)− g(τ, x)]

= P (x′ = 1) g(τ(1− ρ) + ρ, 1) +

P (x′ = 0) g(τ(1− ρ), 0)−
g(τ, 0)

= (τp/r(τ(1− ρ) + 2ρ) + (1− τp/r)τ(1− ρ)− τ
= τ2p(1− ρ)/r + 2τpρ/r + τ(1− ρ)− τ2p(1− ρ)/r − τ
= 2τpρ/r − τρ
= τρ(2p/r − 1).

The last term is at least τρδ/2 if 2p/r − 1 ≥ δ/2, which is
implied by δ ≥ ε.

Thus, the drift is lower bounded by min(τ, 1−τ)ρδ/2.

For all t, let τ t and xt be the random variables denoting
the pheromone in iteration t and the value of the best-so-far
solution in iteration t, respectively. We define the random
variables Xt by

Xt =

{
1− g(τ t, xt) if τ t < τmax

0 else

for all t.
We want to use Theorem 4 with the drift computed in

Lemma 5. To that end we let h be such that, for all z,

h(z) = min(z, 1− z)ρδ/4.

Note that the drift computed in Lemma 5 does not directly
apply to the Markov chain (Xt)t, as the potential values of
a state of the algorithm might be up to ρ different from its
pheromone value τ . However, straightforward calculations
with the result of Lemma 5 show that, for all z, h(z) gives
a lower bound for the drift of (Xt)t.

The minimal x that we will use this on is 1− τmax − ρ =
τmin − ρ, since τmax + ρ is the largest potential value of g.
Furthermore we have, for all t,

g(τ t, xt)− 2ρ ≤ g(τ t+1, xt+1) ≤ g(τ t, xt) + 2ρ.

This holds because, in one iteration, the pheromone value
can change by at most ρ, and the value of x can change by at
most 1, which changes the value of g(τ t+1, xt+1) by at most
2ρ from the value of g(τ t, xt). A special case occurs when
τ t+1 = τmax, the boundary case of the Markov chain (Xt)t;
the additional distance is 1 − τmax − ρ = ρ. However, it is
easy to see that in this case we have xt = 1, which means
that the potential cannot be decreased by changing x from
0 to 1, so the maximum change in potential is 2ρ also in this
case.

Thus, for the preconditions of Theorem 4, we need to show
that there is a c′ such that, for all x, y with 0 ≤ x < y ≤
1 − τmin = τmax and y − x ≤ 2ρ, h(x) ≤ c′h(y). We let
c′ = 2. Let x, y with 1 − τmax − ρ ≤ x < y ≤ 1 − τmin be
such that y − x ≤ 2ρ. The claim is trivial if y ≤ 1/2, so
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suppose y > 1/2. We have 2y − x ≤ y + 2ρ ≤ 1; hence,
1− x ≤ 2(1− y). Therefore,

h(x) ≤ (1− x)ρδ/4 ≤ 2(1− y)ρδ/4 = 2h(y).

This fulfills the preconditions of Theorem 4 as desired.
By Theorem 4, the expected time until the pheromone

value on the preferred edge e is at τmax, is at most

2

(
1

ρδ
+

∫ τmax

τmin−ρ

4

min(x, (1− x))ρδ
dx

)

=
2

ρδ
+

8

ρδ

(∫ 1
2

τmin−ρ

1

x
dx+

∫ τmax

1
2

1

1− xdx

)

≤ 2

ρδ
+

16

ρδ

∫ 1
2

τmin−ρ

1

x
dx

= O

(
log(1/τmin)

ρδ

)
.

4. EXAMPLES
Next we give some illustrative examples of stochastic-

weight graphs, where MMAS converges as desired (using the
result of the previous section). The first example concerns
normally distributed random variables as edge lengths. To-
gether with the previous section, Proposition 6 shows that,
for parallel links with normally distributed lengths, MMAS
will converge in pheromone to the edge with shortest ex-
pected value (given δ large enough).

Proposition 6. Consider two normal distributed ran-
dom variables X ∼ N(µ, σ2

1) and Y ∼ N(µ(1+ε), σ2
2), where

µ, ε, σ1 and σ2 ∈ R+. Then, P (X ≤ Y ) = 0.5 + δ, where

δ = Ω

(
µε√

σ2
1 + σ2

2

)
.

We denote the gamma distribution with shape parameter
k > 0 and scale parameter θ > 0 as Γ(k, θ).

The paper [22] gives a family of instances for stochastic-
weight graphs where MMAS without reevaluation of the
best-so-far path requires a superpolynomial number of iter-
ations for finding the paths that are shortest in expectation.
The random weights in these instances are based on the
gamma distribution. The core difficulty for these instances
lies in differentiating correctly whether to use a single long
edge to the goal, or many short edges, which are just a bit
shorter than the long edge in total; see Figure 2 for an il-
lustration of two cases with n ∈ {1, 4} short edges. The
edge weights w are subject to a gamma distributed noise,
such that the stochastic length is w(1 + Γ(k, θ)), where the
parameters k and θ are the same over all edges of the graph.

In [22] it was shown that MMAS without reevaluation
will be deceived by the variance of the single long edge,
and converge to it in pheromone values. In Proposition 7
we show, for many relevant parameters, that the sum of
the short edges (corresponding to the random variable X in
the proposition) is likely to come out better than the long
edge (corresponding to the random variable Y ). Together
with the result from Section 3, this implies that many of the
instances given in [22] which MMAS cannot solve without
reevaluation, can be solved using reevaluation. In particular,
we have that MMAS with reevaluation on instances exem-
plified in Figure 2 will converge (as desired) to the lower
edges (following the lower chain depicted in Figure 2).

v0 v1 v2 v3 v4
1 1 1 1

4 · (1 + ε)

(a) Example graph with n=4

v0 v1
1

(1 + ε)

(b) Example graph with n=1

Figure 2: Example graphs

Proposition 7. Let m be a natural number and k, θ, ε >
0. Suppose kε2 ≥ 16. For i ≤ m, let Xi ∼ 1 + Γ(k, θ) be
i.i.d. and let X ∼

∑m
i=1Xi. Furthermore, let Y ∼ m(1 +

ε)(1 + Γ(k, θ)) be independent of all Xi. Then

P (X ≤ Y ) ≥ 9/16.

In general, when comparing two random variables, a
smaller expected value does not imply that it is more likely
to come out smaller. Instead, there are two random vari-
ables where the first one has an expected value arbitrarily
higher than the second, and still comes out better with an
arbitrarily good probability. This is formalized in the fol-
lowing proposition.

Proposition 8. For all c > 1 and q with 0 < q < 1, there
are X,Y such that E(X) = cE(Y ) and P (X < Y ) = q.

5. GENERAL GRAPHS
In this section we formally analyze the behavior of MMAS

on well-behaved stochastic-weight graphs.

Definition 9. Let G = (V,E,X) be a stochastic-weight
graph and let δ > 0. For all i ≤ n, we inductively define
sets of edges Aiδ such that A0

δ = ∅ and an edge e from v
to w is an element of Ai+1

δ if and only if there is a path p
from v to the sink using only edges from Aiδ ∪ {e} such that
p contains e and, for any path p′ from v to the sink where p′

does not use e, P (Xp < Xp′) ≥ 0.5 + δ. We call edges from
Anδ δ-preferred edges.

In Theorem 11 below we will show that the name “pre-
ferred edge” has its justification in the fact that MMAS will
prefer to take these edges (after an initial phase to find these
edges). But first we will give an example of preferred edges
in a stochastic-weight graph where all edge weights are nor-
mally distributed; Proposition 10 shows that, in this case,
the set of preferred edges corresponds to the tree of paths of
shortest expected length.
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Proposition 10. Let G = (V,E,X) be a stochastic-
weight graph such that, for all edges e ∈ E, Xe is normally
distributed. Furthermore, suppose that the graph derived
from G by replacing all random weights by their expected
value has a unique shortest path tree S. Then, for δ small
enough, the set of δ-preferred edges Anδ is the tree S.

We now get to the main theorem of the paper, concerning
the behavior of MMAS on general graphs.

Theorem 11. Let G = (V,E,X) be a stochastic-weight
graph with n vertices and suppose τmin = O(1/n3) and ρ =
τmin/2. Then there is a constant c such that, for δ such
that the set of δ-preferred edges Anδ ⊆ E is a tree and δ ≥
cn2τmin, after

O

(
n log(1/τmin)

δρ

)
iterations, MMAS on G has a pheromone of 1 − O(nτmin)
on all edges of Anδ and O(nτmin) on all others.
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