
Approximating Covering Problems by Randomized Search
Heuristics Using Multi­Objective Models

Tobias Friedrich∗ Jun He† Nils Hebbinghaus∗ Frank Neumann∗ Carsten Witt‡

∗ Algorithms and Complexity Group
Max­Planck­Institut für Informatik

Saarbrücken, Germany

† School of Computer Science
University of Birmingham

Birmingham, United Kingkom

‡ LS2, Fachbereich Informatik
University of Dortmund
Dortmund, Germany

ABSTRACT

The main aim of randomized search heuristics is to produce
good approximations of optimal solutions within a small
amount of time. In contrast to numerous experimental re-
sults, there are only a few theoretical ones on this subject.
We consider the approximation ability of randomized search
heuristics for the class of covering problems and compare
single-objective and multi-objective models for such prob-
lems. For the VertexCover problem, we point out situa-
tions where the multi-objective model leads to a fast con-
struction of optimal solutions while in the single-objective
case even no good approximation can be achieved within
expected polynomial time. Examining the more general
SetCover problem we show that optimal solutions can be
approximated within a factor of log n, where n is the prob-
lem dimension, using the multi-objective approach while the
approximation quality obtainable by the single-objective ap-
proach in expected polynomial time may be arbitrarily bad.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: Combinatorial Optimization, Covering Prob-
lems, Multi-Objective Optimization, Runtime Analysis

1. INTRODUCTION

Randomized search heuristics have been shown to be very
successful when dealing with problems from combinatorial
optimization. The general aim of these heuristics is to pro-
duce within a small amount of time good approximations
of optimal solutions. In contrast to their success reported
in several applications, there are only a few rigorous results
on the approximation ability of randomized search heuris-
tics [15]. Our aim is to study the following question. Is it
possible that a multi-objective model of a single-objective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978­1­59593­697­4/07/0007 ...$5.00.

optimization problem leads to better approximations for
NP-hard combinatorial optimization problems?

This question is inspired by a recent work of Neumann and
Wegener [13], where they have shown that minimum span-
ning trees can be computed more easily in a multi-objective
model than in a single-objective one. We follow this in-
teresting new research direction by comparing single- and
multi-objective models for an important class of NP-hard
combinatorial optimization problems. Our investigations
concern covering problems which appear in many impor-
tant real world applications such as the design of Boolean
circuits or the construction of timetables.

Covering problems are from a natural point of view single-
objective optimization problems and there is always one sin-
gle optimal objective value that should be computed and
for which a corresponding solution should be produced. In
multi-objective optimization, there is usually a trade-off be-
tween optimizing different objectives. In this case, one is
looking for a set of trade-offs such that improving one ob-
jective leads to a disadvantage with respect to at least one
other objective. The set of these optimal objective vectors
is called the Pareto front. The number of different trade-
offs possible determines the maximal population size of the
multi-objective evolutionary algorithms (EAs). The popu-
lation size of a multi-objective model for a single-objective
problem is a crucial point when designing multi-objective
models since an exponential population size may prevent the
algorithm from being efficient. Multi-objective models for
single-objective problems should include the single-objective
problem itself as this is the task which has to be solved.
Then the population size may slow down the optimization
process compared with the single-objective one. In the case
that the population size is polynomially bounded, we assume
that in the worst case the process is slowed down by a poly-
nomial factor. In contrast to this, the multi-objective model
admits to direct the search in a better way as shown in [13].
In particular multi-objective models may make randomized
search heuristics behave greedily. Greedy algorithms play
an important role in the classical design of algorithms [1].
Adding this ability to randomized search heuristics may lead
to a significant improvement.

We compare simple randomized search heuristics for
single-objective optimization with their multi-objective
counterparts by rigorous runtime analyses. In the last years,
a lot of progress has been made in analyzing simple evolu-
tionary algorithms with respect their runtime behavior on
artificial pseudo-boolean functions [3, 8] as well as some well-
known combinatorial optimization problems [12, 13, 5, 15,

797

11]. Most of these results consider exact optimization while
the main aim of general search heuristics is to obtain good
approximations of optimal solutions in a small amount of
time. Analyzing these algorithms with respect to approx-
imability, we are interested in the worst-case approximation
ratio that can be achieved within an expected polynomial
number of steps.

As a special case of the more general SetCover problem
we examine the computation of a minimum vertex cover in a
given undirected graph. We present a multi-objective model
whose set of different trade-offs is always linear in the num-
ber of vertices. This seems to be a comfortable situation
for multi-objective EAs when dealing with single-objective
problems. We do not expect the multi-objective EA to out-
perform the single-objective one in any case as it has to cope
with a larger population size. First, we point out simple
situations where this leads to a disadvantage for the multi-
objective approach compared with the single-objective one.
After that, we present situations for the single-objective case
where there is a local optima with a large inferior neighbor-
hood. These local optima can have values that are far from
the global optimum. In particular, we present a class of in-
stances where the single-objective model does not lead to
an approximation factor better than n1−δ , for each δ with
0 < δ < 1, within an expected polynomial number of steps
while the corresponding multi-objective EAs are even able
to compute the Pareto front in a small amount of time. Af-
terwards we consider the more general SetCover problem
which is hard to approximate within a multiplicative factor
better than log n [14]. For the single-objective approach, we
show that the approximation ratio obtainable in expected
polynomial time is unbounded. In contrast to this non-
approximability result for the single-objective approach, we
point out that the multi-objective model leads to a factor
O(log n)-approximation for the SetCover problem which is
best we can hope for under certain assumptions from com-
plexity theory [14].

The outline of the paper is as follows. In Section 2 we
introduce the algorithms that are the subject of our in-
vestigations. Section 3 compares the different approaches
for the VertexCover problem. In Section 4 we show
that the multi-objective approach leads to a factor O(log n)-
approximation for the SetCover problem while the approx-
imation ratio achievable by the single-objective approach is
unbounded. Finally, we finish with some conclusions.

2. ALGORITHMS

We consider simple multi-objective evolutionary algorithms
and compare them with their single-objective counterparts.
The algorithm called SEMO (Simple Evolutionary Multi-
objective Optimizer) has already been discussed for the opti-
mization of pseudo-boolean functions [4, 9] and for different
kinds of spanning tree problems [11, 13]. It starts by choos-
ing a solution uniformly at random from the search space
{0, 1}n. This individual constitutes the initial population
P and in each step an individual x is chosen uniformly at
random from P to produce an offspring x′. This is done by
flipping one random bit of x. The offspring is included in
the population iff it is not dominated by any other search
point of P . In the case of minimizing a multi-objective func-
tion f : {0, 1}n → R

k, a solution y dominates a solution x
iff f(y) ≤ f(x) and f(y) 6= f(x). f(y) ≤ f(x) holds iff

fi(y) ≤ fi(x) for all i ∈ {1, . . . , k}. This definition can eas-
ily be adjusted to multi-objective problems, where the aim
is to maximize the value of some objectives.

Algorithm 1. SEMO

1. Choose x ∈ {0, 1}n uniformly at random.

2. Determine f(x).

3. P ← {x}.

4. Repeat

• Choose x ∈ P uniformly at random.

• Create x′ by flipping one randomly chosen bit of x.

• Determine f(x′).

• If x′ is not dominated by any other search point in
P , include x′ into P and delete all other solutions
z ∈ P with f(x′) ≤ f(z) from P .

Choosing a single-objective fitness function which should
be optimized for SEMO, the algorithm equals the well-known
single-objective randomized search heuristic called Random-
ized Local Search (RLS). As there is a total order on the
search points in the single-objective case, RLS works at each
time step with a single solution. We can describe RLS as
follows.

Algorithm 2. Randomized Local Search (RLS)

1. Choose x ∈ {0, 1}n uniformly at random.

2. Repeat

• Create x′ by flipping one randomly chosen bit of x.

• If f(x′) ≤ f(x), set x := x′.

In most cases evolutionary algorithms have the ability to
flip more than one bit in the mutation step. Often the fol-
lowing operator is used leading to more general algorithms.

Algorithm 3. General mutation operator

• Create x′ by flipping each bit of x with probabil-
ity 1/n.

The (1+1) EA and the Global SEMO are the generalized
counterparts of RLS and SEMO, respectively. They differ
from Algorithms 1 and 2 above by using the more general
mutation operator shown in Algorithm 3. There, each bit of
the considered search point is flipped with probability 1/n.
Flipping more than one bit in each step allows the algorithm
to leave local optima. Another property of this operator
is that the probability of sampling an optimal solution is
always positive. This implies that the algorithms (1+1) EA
and Global SEMO converge to optimal solutions.

Our aim is to analyze the introduced algorithms by a rig-
orous runtime analysis until they have produced good so-
lutions for covering problems. The measure of interest is
the number of constructed solutions until certain goals have
been achieved. In the case of single-objective optimization,
one is often interested in the expected number of constructed
solutions until an optimal one has been obtained for the
first time. In the context of multi-objective optimization,
the expected optimization time equals the expected num-
ber of constructed solutions until the population contains

798

for the first time a solution for each objective vector be-
longing to the Pareto front. Using multi-objective models
for single-objective optimization problems, sometimes one
might be only interested in one single solution. In this case
it is enough to bound the number of constructed solutions
until a single solution with a certain objective value has been
obtained.

Most of our investigations consider the approximation
ability of the proposed algorithms. The worst-case approx-
imation ratio of an algorithm A for a given minimization

problem R is defined as maxI∈R
A(I)

OPT(I)
where A(I) denotes

the value obtained by A when applied to an instance I of
R and OPT(I) denotes the value of an optimal solution for
the given instance. We are mainly interested in upper and
lower bounds for the number of constructed solutions un-
til a certain approximation ratio has been achieved by the
introduced algorithms.

3. THE VERTEXCOVER PROBLEM

The VertexCover problem is one of the well-known NP-
hard combinatorial optimization problems. Given an undi-
rected graph G = (V, E) where |V | = n and |E| = m the
aim is to find a subset V ′ ⊆ V of minimum cardinality such
that for each e ∈ E, e ∩ V ′ 6= ∅ holds. Many simple ap-
proximation algorithms achieve a worst-case approximation
ratio of 2 (cf. [1]). For example such an approximation can
be achieved in polynomial time by computing a maximum
matching in the given graph and choosing for each edge of
the matching the corresponding two vertices. Considering
bipartite graphs the VertexCover problem can be solved
in polynomial time using another correspondence between a
maximum matching and a minimum vertex cover given by
König’s theorem (cf. [2]). In this case the number of edges
in a maximum matching equals the number of vertices in a
minimum vertex cover.

Considering the algorithms of Section 2 for the Vertex-

Cover problem, each bit xi of a solution x corresponds to
a vertex vi ∈ V . The vertex vi is chosen in the current so-
lution x if xi = 1 and otherwise it is unchosen. We use the
fitness function considered by He, Yao, and Li [7]. Denote
by |x|1 and |x|0 the number of ones respectively of zeros in
a bitstring x. The fitness of a search point x is given by
f(x) = (u(x), |x|1), where u(x) denotes the number of un-
covered edges of the solution x. In the case of RLS and the
(1+1) EA, the function should be minimized with respect to
the lexicographic order. Hence, the first aim is to minimize
the number of uncovered edges such that a vertex cover is
obtained. Afterwards the aim is to produce a vertex cover
by minimizing the number of ones under the condition that
the solution is still a vertex cover. In the case of SEMO and
Global SEMO both objectives should be optimized at the
same time.

We compare RLS with SEMO and the (1+1) EA with
Global SEMO by runtime analyses. He, Yao, and Li [7]
have already examined a single objective EA on the fitness
function proposed for the (1+1) EA. Their algorithm works
with a larger population size and in addition with a crossover
operator. They have shown that their algorithm finds a
vertex cover in a number of O(n2) generations. We show
that the expected time until RLS and the (1+1) EA have
produced a vertex cover is O(n log n). A similar proof can be
found in [6]. In addition, we show that this bound is tight

by presenting a worst case example. As there is always a
constant probability, in the EA analyzed by He, Yao, and
Li [7], to use only mutation the upper bound of O(n log n)
also holds in their scenario.

Theorem 1. The expected time until RLS and the
(1+1) EA have produced a (not necessarily minimum) vertex
cover is O(n log n)

Proof. We prove the theorem for the (1+1) EA using
the method of the expected multiplicative weight decrease
developed in [12]. As the proof only works with 1-bit flips
and all 1-bit flips are equally likely, the result also holds
for RLS. Choosing all vertices is certainly a vertex cover
and each vertex which has not been chosen before and that
is incident to an uncovered edge leads to an improvement
with respect to the fitness function. Let k be the number
of vertices that are incident to at least one uncovered edge.
The number of uncovered edges is reduced from u(x) to 0 by
these k accepted 1-bit flips. As the prior aim is to minimize
the number of uncovered edges, there are no accepted steps
increasing the number of uncovered edges. Non-accepted
1-bit flips contribute a value of 0 to the reduction of the
number of uncovered edges. We consider the expected de-
crease of an arbitrary 1-bit flip. Note that the probability
of such steps is at least 1/e. Choosing a 1-bit flip uniformly
at random among all 1-bit flips, the expected number of un-
covered edges after this step is at most (1− 1/n) · u(x) and
after t steps this expected value is at most (1− 1/n)t · u(x).
Choosing t∗ = cn log n, c an appropriate constant, this value
is strictly less than 1/2. As the number of uncovered edges is
an integer, the probability of having obtained a vertex cover
after t∗ 1-bit flips is at least 1/2 using Markov’s inequal-
ity. This implies that the expected number of 1-bit flips to
obtain a vertex cover is at most 2t∗ = O(n log n) (geomet-
ric series). The result follows as the probability of flipping
a single bit in the next mutation step is at least 1/e and
the expected waiting time for this event is therefore upper
bounded by e.

In the following we show that the given upper bound is
best possible. In the case that RLS and the (1+1) EA have
to flip Θ(n) bits to obtain an optimal solution from an ini-
tial one, a lower bound of Ω(n log n) follows easily using the
results of the Coupon Collectors theorem [10]. For the ver-
tex cover problem we make this precise by considering the
complete graph C = (V, E) on n vertices. Each subset of V
containing exactly n− 1 vertices is a minimum vertex cover
of C.

Theorem 2. The expected time until RLS and the
(1+1) EA have produced a (minimum) vertex cover of C
is Θ(n log n).

Proof. Due to Theorem 1, a vertex is produced after an
expected number of O(n log n) steps. This solution is either
a minimum vertex cover (contains exactly n− 1 vertices) or
a non optimal one (containing n vertices). In the second
case, exactly one arbitrary bit has to flip. The expected
waiting time for this event is at most e which shows the
upper bound. For the lower bound, we use the following
observation. In the initial solution at most 2

3
·n vertices are

chosen with high probability using Chernoff bounds [10].
As at least n− 1 vertices are contained in each vertex cover

799

at least n/3 − 1 bits have to flip. The probability of non
flipping one of these n/3− 1 bits during c n log n steps, c an
appropriate constant, is bounded from below by a positive
constant using the ideas of the coupon collector’s theorem
[3, 10], which completes the proof.

Global SEMO has to cope with a larger population size
than the (1+1) EA. In particular situations, this can lead
to a larger expected optimization time. For the graph C,
the number of vertices for each vertex cover is at least n− 1
and the (1+1) EA can easily produce such a cover by adding
sequentially vertices to the currently best solution. In the
case of Global SEMO, the set of possible trade-offs might be
linear in the number of vertices and this can slow down the
time to produce a vertex cover. We show that the expected
time for Global SEMO to produce a vertex cover of C is
significantly larger than the one shown for the (1+1) EA.

Theorem 3. The expected time until Global SEMO has
produced a (minimum) vertex cover of C is Θ(n2 log n).

Proof. The population size is O(n) as there are n+1 dif-
ferent values for the number of ones in a search point x. The
upper bound follows by considering in each step the solution
with the smallest number of uncovered edges in the popula-
tion and using the ideas also used in the proof of Theorem 1.
It remains to show the lower bound. The initial search point
consists of at most 2

3
· n vertices with high probability using

Chernoff bounds [10]. Let amax denote the maximal number
of vertices of one element in the current population. We
consider the time where amax ∈ [2

3
n, 3

4
n] and show that af-

ter this phase the population size is Θ(n) with probability
at least 1/2. The graph C has the following property for our
multi-objective model. Each search point x with |x|1 = k,
0 ≤ k ≤ n − 1 is Pareto optimal and its objective vector
is f(x) = (k, (n − k)(n − k − 1)/2) as the set of uncovered
edges consists of all edges between the unchosen vertices.
Let us consider only steps that increase amax. We show that
the expected increase of amax in all such steps in the phase
amax ∈ [2

3
n, 3

4
n] is bounded by 2. To obtain from a step that

increases amax by i a step that increases amax by i+1 one of
the remaining (at most 1

3
· n) zeros has to be flipped. The

probability for this extra flip is at most n
3
/n = 1

3
. Thus,

the expected increase of amax in such steps is at most 2 (ge-
ometric series). Therefore, the average increase of amax in
the phase amax ∈ [2

3
n, 3

4
n] is larger than 4 with probability

less than 1/2. It follows that with probability at least 1/2
the population size is Θ(n) when having obtained for the
first time a solution with at least 3

4
· n vertices. With high

probability amax is less than or equal to n − 2n1/4 at this
time. In other words, we can assume that there are at least
2n1/4 zeros left in every element of the current population
of size Θ(n).

Let x be the solution in the population with the largest
number of ones. Steps leading to a solution z with |z|1 > |x|1
are essential to obtain a vertex cover as in each vertex cover
of C the number of ones is at least n− 1. Let r = |x|0 and

consider the time to reduce r from n1/4 to 1. The prob-
ability to produce from a solution y with |y|0 > r + n1/4

an improving z is upper bounded by e−n1/4

and therefore
such an event does not happen within a polynomial number
of steps with probability exponentially close to 1. We call
a step a k-step iff it creates a solution z with |z|1 > |x|1

Figure 1. The considered complete bipartite graph B = (V, E) for

n = 9 and ε = 1
3
.

by flipping k 0-bits. The probability to flip k 0-bits in a
single mutation step of a solution y with |y|0 ≤ r + n1/4 is

upper bounded by
(

r+n1/4

n

)k

= O(n−3k/4) and the proba-

bility that a solution y with r ≤ |y|0 ≤ r + n1/4 is chosen

for mutation and a k-step is performed is O(n−3(k+1)/4) as
the population size is Θ(n). Hence, for k ≥ 2 this does not
happen within Θ(n2 log n) steps with probability 1−o(1) us-
ing Markov’s inequality. This implies that with probability
1− o(1) a solution z with |z|1 > |x|1 can only be produced
by mutating x. The expected time to reduce the value r of
zeros to r−1 zeros by 1-steps under the condition that x has
been chosen for mutation is at least n

r
. Thus, the expected

time to reduce the value r from n1/4 to 1 is of order

Θ

(

n
n1/4

∑

r=2

(r

n

)−1
)

= Θ(n2 log n).

This proves an expected time of Ω(n2 log n) to find a vertex
cover of C.

We have shown that there are cases where the population
size of Global SEMO slows down the optimization process.
This seems to be a typical situation for dense graphs that
have δn2, δ > 1/4, edges. In this case, the initial solution of
both algorithms does not represent a vertex cover and Θ(n)
vertices have to be chosen to obtain such a solution.

In the following, we want to point out a situation where
the multi-objective approach is superior. Consider a com-
plete bipartite graph B = (V, E), where V = V1∪V2 consists
of two sets of non equal size and the edge set E = { {vi, vj} |
vi ∈ V1 ∧ vj ∈ V2} consists of all edges that connect these
two sets. W. l. o. g. we assume |V1| < |V2|. A minimum ver-
tex cover is the set V1 but both algorithms have a chance to
determine the set V2 as vertex cover. We consider the case
|V1| = εn and |V2| = (1 − ε)n, ε < 1/2 and not necessar-
ily constant. The usual aim of randomized search heuristics
is to produce near optimal solutions. In the following we
point out that the single-objective approach does not admit
a good approximation of an optimal solution for the graph
B while the multi-objective one leads to a polynomial ex-
pected optimization time. If RLS has chosen all vertices of
V2 but some vertices of V1 are missing, the algorithm can

not produce an approximation better than a factor (1−ε)
ε

.

On the graph B the expected optimization time of RLS
is infinite as the next theorem shows.

Theorem 4. With probability ε, RLS cannot obtain an
approximation better than a factor (1− ε)/ε for B within a

800

finite number of steps. In particular, the expected time to
produce an approximation better than a factor (1− ε)/ε on
B is infinite.

For the proof of Theorem 4 we will use the following
lemma which may be of independent interest.

Lemma 1. A bin contains k red and l blue balls. We take
out the balls at random from the bin without replacement un-
til there is either no red or no blue ball left. With probability

k
l+k

there is no blue ball left, and with probability l
l+k

there
is no red ball left.

Proof. Let us modify the model a little bit. Instead of
taking out the balls until there is either no red or no blue ball
left, we take out the balls at random from the bin without
replacement until there is no ball left in the bin. The color
of the last ball taken out of the bin clearly determines the
ball color firstly removed from the bin. Since every of the
(

l+k
k

)

orders of taking out all balls is equally likely and there

are
(

l+k−1
k

)

orders in which the last ball taken out is blue,
the probability that the last ball is blue is

(

l+k−1
k

)

/
(

l+k
k

)

= (l+k−1)!l!k!
k!(l−1)!(l+k)!

= l
l+k

.

This proves the lemma.

Using this lemma we are now able to prove Theorem 4.

Proof of Theorem 4. In the phase until the larger or
the smaller vertex set are chosen completely by RLS, only
steps that increase the number of vertices are accepted. This
is because a reduction of the number of vertices in this phase
reduces also the number of covered edges and thus the fitness
value. Moreover, if the larger vertex set is the vertex set that
is first determined completely by RLS, there is no chance for
RLS to determine the optimal solution, since only steps that
reduce the number of vertices in the larger vertex set are
accepted. In this situation the optimization time is infinite.
Therefore, we have to prove that this happens with positive
probability.

For this purpose, we like to apply Lemma 1. But this
is not possible in a direct way because of the initialization
phase in RLS. To overcome this obstacle, we model the ini-
tialization phase in the following way. Instead of choos-
ing every vertex with probability 1/2, we choose a k ∈
{0, 1, . . . , n} following the binomial distribution B(n, 1/2).
In other words, we choose k with probability

(

n
k

)

(1
2
)n. Af-

terwards, we choose successively k of the n vertices without
repetition. To justify this model, we have to show that the
number of chosen vertices in this model has the same prob-
ability distribution as in the real model of the initialization
phase and that each vertex is chosen with probability 1/2
in this model. The probability that we choose exactly k
balls in the new model is given as

(

n
k

)

(1
2
)n as in the normal

initialisation phase. And the probability for every vertex
to be chosen as one of the k balls is clearly k

n
. Thus, the

probability for each ball to be chosen in the new model is

n
∑

k=0

k
n

(

n
k

)

(1
2
)n =

n
∑

k=1

k
n

(

n
k

)

(1
2
)n =

n
∑

k=1

(

n−1
k−1

)

(1
2
)n = 1

2

Hence, we have justified this model, and we can assume that,
starting with the empty subgraph, all vertices are chosen
successively with equal probability. We can apply Lemma 1.

(Instead of taking out a ball, we choose a vertex that was
not chosen so far.) Therefore, the probability that the larger
set of vertices is the first set that is completely chosen by
RLS is ε. This proves the theorem.

Theorem 4 shows that the approximability of RLS for the
vertex cover problem can be arbitrarily bad. Choosing, e. g.,
ε = 1/n, leads to a graph where V1 consists of one single
vertex. In this case RLS does not obtain an approximation
better than a factor of n−1 with probability 1/n. Note that
an approximation of almost that quality can be obtained for
an arbitrary graph by choosing all vertices of the given input.

Now we consider the behavior of the (1+1) EA on the
graph B. After having obtained the vertex set V2 and dis-
carding the set V1, the (1+1) EA can not obtain a better
approximation ratio than (1− ε)/ε without flipping at least
εn bits. If ε is not too small, the (1+1) EA can only leave
this local optimum in the next mutation step with a prob-
ability that is exponentially small. Therefore, the expected
optimization time under the condition that such a solution
has been produced before having obtained the optimal solu-
tion is exponential. The following theorem shows that this
can lead to almost arbitrarily bad approximation ratios of
roughly n1−δ , δ > 0 a constant.

Theorem 5. Let δ > 0 be a constant and nδ−1 ≤ ε <
1/2. The expected optimization time of the (1+1) EA on B
(with |V1| = εn and |V2| = (1 − ε)n) is exponential. More-
over, the expected time to produce an approximation better
than a factor (1− ε)/ε is exponential.

Proof. We investigate a run of two phases. In the first
phase we examine the probability that a vertex cover in-
cluding all vertices of V2 with at least one vertex missing
in V1 is constructed. In the second phase we give a lower
bound for the probability that a local optimum is obtained
by removing all vertices of V1. This local optimum can only
be left by including all vertices of V1 and removing at least
εn vertices of V2.

The first phase consists of 12en lnn mutation steps. First
we prove that the (1+1) EA obtains a vertex cover within
this phase with probability at least 1/4. We restrict our-
selves to the effect of 1–bit flips of vertices in V2. The prob-

ability for a 1–bit flip of a vertex in V2 is (1−ε)n
n

(1− 1
n
)n−1 ≥

(1−ε)
e

. Thus, the average waiting time for such a mutation
step is at most e

(1−ε)
and with probability at least 1/2 there

are in k steps of the (1+1) EA at least k(1−ε)
2e

1–bit flips in V2

by Markov’s inequality. Moreover, there are (1−ε)n of such
1–bit flips concerning V2 (one for each vertex). We apply
the method of expected multiplicative weight decrease in a
more precise way than in Theorem 1. Let N be the current
number of uncovered edges. All 1–bit flips adding a vertex
of V2 are accepted and the total weight decrease of these
steps is N . 1–bit flips removing vertices of V2 contribute a
weight decrease of 0. Thus, flipping a single 0-bit of V2 de-
creases the number of uncovered edges edges by an expected
factor of 1− 1

(1−ε)n
≤ (1− 1

n
). Taking into account that the

number of uncovered edges is at most εn(1− ε)n ≤ n2, the
expected number of uncovered edges after k 1–bit flips in V2

is at most (1− 1
n
)k ·n2. Considering a phase of 12en ln n steps

the expected number of uncovered edges after this phase is
strictly less than 1/2. Hence, by Markov’s inequality, a cover
is produced with probability at least 1

2
1
2

= 1
4

in this phase.

801

Now we prove a lower bound on the probability that after
12en ln n steps of the (1+1) EA at least one vertex of V1

has not been chosen. Since all our considerations up to now
concerned only vertices in V2 and all our considerations from
now on are concerned only with vertices in V1, these two
events are independent, and we can later on easily estimate
the probability that both events occur simultaneously. This
is exactly the case if the (1+1) EA completely discovers
V2 before completely discovering V1. By Chernoff bounds,

there are with probability 1−2−Ω(εn) = 1−2−Ω(nδ) at least
|V1|/3 = εn/3 ≥ nδ/3 unchosen vertices in V1 in the initial
solution. The probability that after 12en ln n mutation steps
of the (1+1) EA a single vertex is chosen at least once is
1 − (1− 1

n
)12en ln n. Thus, the probability that at least one

of the initially not chosen vertices of V1 is not chosen after
12en ln n mutation steps of the (1+1) EA is

1−
(

1−
(

1− 1
n

)12en ln n
) nδ

3

≥ nδ−13e

6
.

Altogether, the probability that the (1+1) EA chooses all
vertices of V2 before choosing all vertices of V1 is bounded

from below by nδ−13e

24
. Hence, the probability is as wanted

at least bounded by an inverse polynomial from below.

We consider a second phase of n3/2 mutation steps and
show that all vertices of V1 are removed with probability at
least 1/15. Let us assume that we start this phase with all
vertices of V2 and all but one vertex of V1 in the current
solution. This is the worst case for our analysis. In this
phase (all vertices of V2 and some vertices of V1 chosen) the
only mutation steps accepted by the (1+1) EA are the fol-
lowing. Either all missing vertices of V1 are chosen and at
least as many vertices of V2 are removed, or all vertices of
V2 are kept and the number of vertices in V1 is decreased
(or stays the same by adding and removing some vertices).
The former mutation step has a probability of at most n−k,
where k denotes the current number of missing vertices in V1.
For the latter kind of mutation steps we restrict ourselves
to 1–bit flips reducing the number of vertices in V1. The
probability for such a mutation step is at least εn−k

en
≥ 1

en
.

For our calculations we take only those two kind of muta-
tion steps into account, the “good event” with probability
at least εn−k

en
and the “bad event” with probability at most

n−k, since all other accepted mutation steps reduce or pre-
serve the number of vertices in V1. The probability that
the “good event” occurs before the “bad event” is at least
1

en
/(1

en
+ n−k) = 1 − e

nk−1+e
. Thus, the probability that

the vertices of V1 were all removed by the (1+1) EA before
the “bad event” occurs is at least

εn−1
∏

k=1

(1− e
nk−1+e

) ≥ 1
1+e

(1− e
n
)

n−1

2 ≥ e−e/2

1+e
> 1

15
.

The expected waiting time for removing all vertices of V1

by the (1+1) EA is O(n log n) and therefore all vertices of

V1 are removed within n3/2 steps with probability 1− o(1)
using Markov’s inequality (always assuming that the “bad
event” does not occur during this phase). Hence, the prob-
ability that the (1+1) EA determines the local minimum V2

as vertex cover is at least nδ−13e

360
. But if the current solu-

tion is V2, every accepted mutation step has to add all the
vertices of V1 (and remove at least |V1| vertices of V2). This

occurs with probability at most n−εn = n−Ω(nδ). Thus, the

expected time until an approximation better than a factor
(1− ε)/ε is determined is at least

nδ−13e

360
nΩ(nδ) = nΩ(nδ).

This proves the theorem.

In contrast to RLS and the (1+1) EA, SEMO and Global
SEMO have the ability to overcome this obstacle. The main
reason for this is that the multi-objective model makes the
algorithm behave in a greedy way. Note that each vertex of
V1 is incident to (1 − ε)n edges while each vertex of V2 is
incident to εn edges. A greedy algorithm that starts with
the empty vertex set and adds in each step a vertex which
covers a largest number of up to now uncovered edges ends
up with V1 and produces therefore an optimal solution. It
is well-known that many covering problems have worst case
approximation ratio log n using algorithms of that kind.

Theorem 6. The expected optimization time of SEMO
and Global SEMO on B is O(n2 log n).

Proof. We prove the theorem for Global SEMO. All sub-
sets of V1 are Pareto optimal. The objective vector of a
subset V ′ ⊆ V1 with |V ′| = k is (m − k (1 − ε)n, k). The
Pareto front contains the |V1|+1 = εn+1 objective vectors
(m, 0), (m − (1 − ε)n, 1), (m − 2 (1 − ε)n, 2), . . . , (0, εn),
where m = ε (1− ε) n2. The population size is bounded by
O(n) as a population can never contain two individuals with
equal number of vertices.

First, we determine the time until the Pareto optimal
search point (m, 0) is found. Since it is the only one with
|x|1 = 0, it is never removed from the population again.
One possibility for Global SEMO to get “closer” to (m, 0) is
to select the individual with the smallest |x|1-value from the
current population and mutate it such that the |x|1-value de-
creases. By the Coupon Collector’s theorem [10] this shows
that (m, 0) is included in the population after O(n2 log n)
steps with high probability since the population size is
bounded by O(n).

We now bound the time to discover the whole Pareto set
after (m, 0) is found. Since the probability of flipping a
single bit in one step is at least 1/e, the probability to get
from one Pareto optimal solution (m− k (1− ε)n, k) to the
“next” Pareto optimal solution (m−(k+1) (1−ε)n, k+1) is
(εn−k)/(en). Using again the linear size of the population,
the expected number of steps to gain the whole Pareto front
is at most

∑

(e n2)/(εn− k) = O(n2 log n), which completes
the proof. As only 1-bit flips are used in the proof, the result
also holds for SEMO.

4. THE SETCOVER PROBLEM

As a generalization of the VertexCover problem we con-
sider the well-known SetCover problem and examine the
approximation ability of the multi-objective and the single-
objective approach. Given a ground set S = {S1, . . . , Sm}
and a collection C1, . . . , Cn of subsets of S with correspond-
ing positive costs c1, . . . , cn. We denote by cmax = maxi ci

the maximum cost of a subset for a given instance. The goal
is to find a minimum-cost selection Ci1 , . . . , Cik , 1 ≤ ij ≤ n
and 1 ≤ j ≤ k, of subsets such that all elements of S are
covered. The SetCover problem can not be approximated
better than by a factor log n unless certain assumptions from

802

complexity theory do not hold. It is well known that simple
greedy algorithms achieve a worst-case approximation ratio
of O(log n). In the following, we want to strengthen our
claim that a multi-objective model might be superior to a
corresponding single-objective approach as it has the ability
to simulate a greedy approach.

Considering the algorithms introduced in Section 2 a
search point x ∈ {0, 1}n encodes a selection of subsets.
p(x) =

∑n
i=1 cixi measures the total cost of the selection and

u(x) denotes the number of elements of S that are uncov-
ered. Considering RLS and the (1+1) EA for the SetCover

problem, the fitness of a search point x is given by the vector
f(x) = (u(x), p(x)) which should be minimized with respect
to the lexicographic order. In our multi-objective setting,
we would like to minimize u(x) and p(x) at the same time.

We start by showing the RLS and the (1+1) EA are not
able to compute solutions that achieve more than a trivial
approximation ratio. This is done by generalizing our neg-
ative results for the single-objective approach of the previ-
ous section to the SetCover problem. The VertexCover

problem for a given graph G = (V, E) is a special SetCover

problem where S = E and Ci denotes the set of edges inci-
dent to vertex vi and ci = 1 for i ∈ {1, . . . , n}.

We consider a generalization of the graph B given in the
previous section to the SetCover problem and show that
the approximation ratio achievable by the single-objective
algorithms can be unbounded. The idea is to consider sub-
sets Ci, 1 ≤ i ≤ n, that correspond to the set of edges
incident to the different vertices of B and assign large costs
to subsets corresponding to vertices in V2 and small costs
corresponding to vertices in V1. We make this precise and
denote our class of instances by C∗. Let

S = {{v1, vεn+1}, . . . , {v1, vn},

{v2, vεn+1}, . . . , {v2, vn},

. . .

{vεn, vεn+1}, . . . , {vεn, vn}}

be the ground set,

Ci = {{vi, vεn+1}, . . . , {vi, vn}}

with ci = 1, 1 ≤ i ≤ εn, and

Ck = {{vk, v1}, . . . , {vk, vεn}}

with ck = cmax, εn + 1 ≤ k ≤ n, be the subsets with associ-
ated costs, where cmax is a large value (e. g., cmax = 2n).

Theorem 4 can be generalized to the C∗ in the following
way using the same proof ideas.

Theorem 7. With probability ε, RLS cannot obtain an
approximation better than a factor ((1− ε)cmax)/ε for C∗

within a finite number of steps. Moreover, the expected
time to produce an approximation better than a factor
((1− ε)cmax)/ε on C∗ is infinite.

In a similar way, we can adapt Theorem 5 to the instance
C∗ of the SetCover problem.

Theorem 8. Let δ > 0 be a constant and nδ−1 ≤ ε <
1/2. The expected optimization time of the (1+1) EA on C∗

(with |V1| = εn and |V2| = (1 − ε)n) is exponential. In
particular, the expected time to produce an approximation
better than a factor ((1− ε)cmax)/ε is exponential.

Theorem 7 and 8 show that the approximation quality
achievable in expected polynomial time can be made arbi-
trarily bad as long as cmax grows. We therefore say that RLS
and the (1+1) EA have a worst case approximation ratio
obtainable in expected polynomial time for the SetCover

problem that is unbounded. In contrast to this we show that
the expected optimization time of SEMO and Global SEMO
on C∗ is polynomial. The following properties hold for the
multi-objective model of the SetCover problem. The all-
zeros string is Pareto-optimal since it covers no elements at
zero cost. Moreover, any population of the multi-objective
algorithms, which is a set of mutually non-dominating search
points, can have at most m elements.

Theorem 9. The expected optimization time of SEMO
and Global SEMO on C∗ is O(mn(log cmax + log n)).

Proof. To prove the theorem we generalize some ideas
already used in the proof of Theorem 6. The Pareto front
consists of the objective vectors (m, 0), (m−(1−ε)n,1), (m−
2(1− ε)n, 2), (0, εn) and a solution corresponding to the ob-
jective vector (m− i(1− ε)n, i), 1 ≤ i ≤ εn, chooses exactly
i subsets from the set {C1, . . . , Cεn} of subsets with costs
1. We first consider the time until the search point 0n with
Pareto optimal objective vector (m, 0) has been included
into the population.

To estimate this time, we consider the expected multi-
plicative decrease of the minimum p-value for the current
population. The probability of choosing an individual with
minimum p-value among all individuals in the population is
Ω(1/m) as the population size is bounded above by m + 1.
Since flipping a single bit decreases the p-value by an ex-
pected factor of 1 − 1/(en) or better, the expected time
until the all-zeros string is reached is bounded above by
O(mn(log cmax + log n)).

After having obtained a Pareto optimal solution x with
objective vector (m − k(1 − ε)n, k), 0 ≤ k < εn there are
εn − k subsets of costs 1 that can be chosen to obtain a
Pareto-optimal solution whose objective vector is (m− (k +
1)(1 − ε)n, k + 1). Taking into account the upper bound
on the population size as well as flipping one of the desired
bits in x, the probability that such a step happens in the
next iteration is at least εn−k

enm
. Hence, the expected time

to obtain for the “next” Pareto optimal objective vector a
corresponding solution is upper bounded by O((mn)/(εn−
k)). Summing up over the different values of k a solution
for each Pareto optimal objective vector has been produced
after an expected number of O(mn log n) steps under the
condition that the search point 0n has been obtained before,
which completes the proof.

Up to now, we have pointed out classes of problems where
the multi-objective approach achieves better approximations
than the single-objective one. We have also shown, that the
single-objective algorithms can only achieve a trivial ap-
proximation ratio within an expected polynomial number
of steps. In contrast to this we point out in the following
that the multi-objective model leads to good approximations
within an expected polynomial number of steps. Here, we
are in particular interested in the expected number of steps
until a solution x with u(x) = 0 has been produced that is
a good approximation of an optimal one.

We will show that SEMO and Global SEMO are able to
efficiently find approximate solutions to arbitrary instances

803

of the NP-hard SetCover problem. The approximation
quality is, up to a constant factor, the best we can hope for
in polynomial time for arbitrary instances.

Theorem 10. For any instance of the SetCover prob-
lem and any initial search point, SEMO and Global SEMO
find an O(log m)-approximate solution in an expected num-
ber of O(m2n + mn(log n + log cmax)) steps.

Proof. The proof idea is to show that SEMO is able
to proceed along the lines of the greedy algorithm for Set-

Cover [14]. Let Hm :=
∑m

i=1 1/i be the m-th Harmonic
number and Rk := Hm − Hm−k, 0 ≤ k ≤ m, the sum
of the last k terms of Hm. While the greedy algorithm
is able to find Hm-approximate solutions, SEMO creates
Rk-approximate solutions that cover k elements for increas-
ing values of k, i. e., it arrives at intermediate solutions that
are at least as good as in the greedy algorithm. The ex-
pected time until the all-zeros string is reached is bounded
above by O(mn(log cmax +log n)) using the same ideas as in
the proof of Theorem 9.

Let OPT be the cost of an optimal solution. Let c(x) =
m−u(x) be the number of elements of S covered in a solution
x. The remainder of the proof studies the so-called potential
of the current population, which is the largest k such that
there is an individual x in the population where c(x) = k
and p(x) ≤ Rk · OPT. The potential is well defined since
now the all-zeros string is always in the population.

It is easy to see that the potential cannot decrease. We
examine the expected time until the potential increases at
least by 1. To this end, we apply the analysis of the greedy
algorithm by [14] and use the notion of cost-effectiveness of
a set, defined as the cost of the set divided by the number of
newly covered elements. If there are n− k elements left to
cover and we add the most cost-effective set to cover some of
these, all newly covered elements are covered at relative cost
of at most OPT /(n− k). Hence, if the cost of the selection
was bounded above by Rk ·OPT before and k′ ≥ k + 1 ele-
ments are covered after the step, the cost is at most Rk′ ·OPT
afterwards. The probability of choosing an individual that
defines the current potential is bounded below by 1/m. The
probability of adding a most cost-effective set is bounded
below by 1/(en) as it suffices to flip a certain bit. Since the
potential can increase at most m times, the expected time is
O(m2n) until an Rm-optimal, i. e., Hm-optimal, individual
covering all elements is created.

5. CONCLUSIONS

The general purpose of randomized search heuristics is to
compute good approximations within a small amount of
time. In contrast to many experimental results, only a few
theoretical investigations have been carried out up to now.
We have investigated the approximation ability of random-
ized search heuristics for the important class of covering
problems. Comparing single-objective and multi-objective
models our results show that the multi-objective model can
lead to a better approximation ability of randomized search
heuristics. The main reason for this is that the multi-
objective approach has the ability to act in a greedy way. In
the case of the VertexCover problem we have pointed out
situations where this can make a difference between obtain-
ing optimal solutions and the inapproximability within an
expected polynomial number of steps. For the SetCover

problem we have shown that randomized search heuristics
using a multi-objective model are able to compute a factor
O(log n)-approximation which is best possible while the use
of a single-objective one has a worst case approximation ra-
tio within an expected polynomial number of steps that is
unbounded.

Acknowledgements

C. Witt and J. He gratefully acknowledge financial support
by the Deutsche Forschungsgemeinschaft (DFG, SFB 531)
and by the UK Engineering and Physical Research Council
under Grant No. EP/C520696/1, respectively.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2. edi-
tion, 2001.

[2] R. Diestel. Graph Theory. Springer, 3rd edition, 2005.
[3] S. Droste, T. Jansen, and I. Wegener. On the analysis

of the (1+1) evolutionary algorithm. Theor. Comput.
Sci., 276:51–81, 2002.

[4] O. Giel. Expected runtimes of a simple multi-objective
evolutionary algorithm. In Proc. of CEC 2003, IEEE
Press, pages 1918–1925, 2003.

[5] O. Giel and I. Wegener. Evolutionary algorithms
and the maximum matching problem. In Proc. of
STACS 2003, volume 2607 of LNCS, pages 415–426,
2003.

[6] O. Glaser. Evolutionary algorithms and the vertex
cover problem (in German). Department of Computer
Science, University of Kiel, 2005.

[7] J. He, X. Yao, and J. Li. A comparative study of
three evolutionary algorithms incorporating different
amounts of domain knowledge for node covering prob-
lem. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C, 35(2):266–271, 2005.

[8] T. Jansen and I. Wegener. Evolutionary algorithms -
how to cope with plateaus of constant fitness and when
to reject strings of the same fitness. IEEE Trans. Evo-
lutionary Computation, 5(6):589–599, 2001.

[9] M. Laumanns, L. Thiele, and E. Zitzler. Running time
analysis of multiobjective evolutionary algorithms on
pseudo-boolean functions. IEEE Trans. Evolutionary
Computation, 8(2):170–182, 2004.

[10] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[11] F. Neumann. Expected runtimes of a simple evolution-
ary algorithm for the multi-objective minimum span-
ning tree problem. In Proc. of PPSN 2004, volume 3242
of LNCS, pages 80–89, 2004.

[12] F. Neumann and I. Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning
tree problem. In Proc. of GECCO 2004, volume 3102
of LNCS, pages 713–724, 2004.

[13] F. Neumann and I. Wegener. Minimum Spanning Trees
Made Easier Via Multi-Objective Optimization. Natu-
ral Computing, 5(3):305–319, 2006.

[14] V. Vazirani. Appromixation Algorithms. Springer, 2001.
[15] C. Witt. Worst-case and average-case approximations

by simple randomized search heuristics. In Proc. of
STACS 2005, volume 3404 of LNCS, pages 44–56, 2005.

804

