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ABSTRACT
Recent advances in drift analysis have given us better and
better tools for understanding random processes, including
the run time of randomized search heuristics. In the setting
of multiplicative drift we do not only have excellent bounds
on the expected run time, but also more general results show-
ing the concentration of the run time.

In this paper we investigate the setting of additive drift
under the assumption of strong concentration of the “step
size” of the process. Under sufficiently strong drift towards
the goal we show a strong concentration of the hitting time.
In contrast to this, we show that in the presence of small
drift a Gambler’s-Ruin-like behavior of the process overrides
the influence of the drift. Finally, in the presence of suffi-
ciently strong negative drift the hitting time is superpolyno-
mial with high probability; this corresponds to the so-called
negative drift theorem, for which we give new variants.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Additive Drift, Concentration, Theory, Run Time Analysis

1. INTRODUCTION
Suppose we make a random walk on the real line starting

with 0. Further suppose that, in each step of the walk, we
expect to increase in value by exactly ε > 0; this expected
increase is called a (positive) drift. The Additive Drift The-
orem ([HY04], see Theorem 5) tells us that the expected time
for the walk to reach some fixed value n (for the first time) is
exactly n/ε (for finite search spaces). The (random) time to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598364.

reach a given value for the first time is called the first hitting
time or just hitting time (in this paper we will also accept
overshooting). This drift theorem is based on a more gen-
eral result [Haj82] and gave a new and powerful tool for the
formal analysis of random processes, such as the progress of
randomized search heuristics (like evolutionary algorithms
and ant colony optimization).

In fact, after the publication of [HY04], the Additive Drift
Theorem became more and more popular as a method to an-
alyze the expected run time of randomized search heuristics.
In order to get better bounds from a drift theorem with lit-
tle effort, new drift theorems were proven, for example for
drift proportional to the distance from the target (instead
of uniform, as in the Additive Drift Theorem – this is called
multiplicative drift) [DJW12]. Another very powerful family
of drift theorems are the so-called Variable Drift Theorems
(independently in [Joh10, Theorem 4.6] and [MRC08, Sec-
tion 8], but see also [RS12] for a discussion and extension).

All these theorems have in common that they can be used
for showing upper bounds on the run time of randomized
algorithms. Aiming for a similarly strong tool for showing
lower bounds, [OW11, OW12] derived (again from [Haj82])
a theorem which applies in case that the drift goes away
from the target (see Theorem 6 for a precise statement and
[RS12] for a powerful variant). Just as the drift theorems
for upper bounds, the Negative Drift Theorem has proven
to be superbly useful for the analysis of randomized search
heuristics, providing an easy-to-apply tool for deriving lower
bounds.

In addition to bounds on the expected hitting time, con-
centration results are also of interest. These can, for ex-
ample, be directly used for statements about the concen-
tration of the run time of an algorithm. But sometimes
concentration results are necessary for deriving bounds on
the expected hitting times as well: imagine, for example, an
algorithm which can only be successful when n independent
sub-algorithms are successful; in the analysis, one would
usually need concentration results for the run time of the
sub-algorithms.

For the special case of multiplicative drift, strong con-
centration results were given in [DG13]. In very recent
work [LW13] even more general results are given, provid-
ing concentration bounds in a very general setting. In this
paper, we take an approach different from that in [LW13]
by focusing on the very special case of additive drift and
deriving as strong as possible concentration results in this
case. The advantage is that, for the theorems in this pa-
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Figure 1: Intuitive regimes of additive drift. Depicted are possible values of the additive drift ε; the important
change points are (up to constant factors) at 1/n and −1/n. Note that for large (superconstant) bounds on
the possible jump size c of the process, the results get worse.

per, checking whether they apply is easy, and so is using the
conclusion; the downside is the restricted scope.

Outside of the evolutionary computation community, a
number of results also regarding positive drift are known.
In particular, most of the work of this paper is based on
the technique of bounded differences (basically all proofs
are applications of the Azuma-Hoeffding Inequality), which
is wide spread, and the applications given here are straight-
forward instances of these methods (see [DP09] for an intro-
duction). A notable example where similar results regarding
positive drift are shown is [Wor99] (a version of Theorem 1
can be found in its Section 4). The main purpose of the
present paper is to introduce these methods to the evolu-
tionary computation community in an easily accessible way
(the Azuma-Hoeffding Inequality itself was already used in
the community to derive concentration, see, for example,
[DK13]).

1.1 Discussion of Results
Recall that, if we start with 0 and drift an expected

amount of at most ε towards n, we have an expected time of
at least n/ε to reach n. However, it is possible that n is al-
ready reached after one round with constant probability: the
process might, in the first iteration, jump to the goal (= n)
with probability 1/2 and with the remaining 1/2 probability
it jumps to −n, giving an expected progress of 0 ≤ ε.1 Sim-
ilarly, one can give examples where the drift is high, but the
probability to reach the goal within the expected number of
steps is low.

We would like to give sufficient conditions (which hold
in many cases for analyses of randomized search heuristics)
under which the hitting time is concentrated around the
expectation. To that end we will assume that no large jumps
occur: we require that the largest possible jump is c, for
some value c > 0. Under this condition we can derive strong
results; Figure 1 gives an overview. Note the three regimes of
additive drift: if it is strong, we get high concentration; if it
is between about −1/n and 1/n, we get a behavior similarly
to the Gambler’s Ruin problem, with a constant probability
of reaching n regardless of the strength of the drift due to
a (sufficiently unbiased) random walk on the real line; note
that this result requires a constant variance. This constant

1Note that iterating this idea leads to an example where,
under arbitrary additive drift, the expected number of iter-
ations until n is reached is 2, seemingly contradicting the
Additive Drift Theorem; however, this iterated example re-
quires an unbounded search space, which is ruled out by the
requirements of the Additive Drift Theorem.

probability can be significantly boosted by allowing more
time, in case of non-negative drift. Finally, for low values of
drift, we get an exponential hitting time, (this is the regime
of negative drift theorems). In the following we discuss these
statements in more detail.

Our first theorem informs about an exponentially small
probability of arriving at n significantly before the expected
n/ε iterations. Note that a version of this bound was shown
in [Wor99, Corollary 4.1].

Theorem 1. Let (Xt)t≥0 be random variables over R,
each with finite expectation and let n > 0. With T =
min{t ≥ 0 : Xt ≥ n | X0 ≤ 0} we denote the random
variable describing the earliest point that the random pro-
cess exceeds n, given a starting value of at most 0. Suppose
there are ε, c > 0 such that, for all t,

1. E(Xt+1 | X0, . . . Xt, T > t) ≤ Xt + ε, and

2. |Xt −Xt+1| < c.

Then, for all s ≤ n/(2ε),

P (T < s) ≤ exp

(
− n2

16c2s

)
.

Note that the first condition in the previous theorem for-
malizes an additive drift of at most ε, the second condition
formalizes the bounded step width.

We see that, for example for constant c and ε = Ω(1/n),
we have a superpolynomially small probability of hitting n in
less than n2/ω(logn) iterations. Note that the bound is no
longer useful (i.e. greater than 1) when s ≥ n2. This means
that after more than n2 steps we cannot exclude having
exceeded n (at least not with this theorem). If ε ≥ 1/n, we
expected to hit n after n2 steps anyway (due to the drift),
and the bound of s ≤ n/(2ε) makes the bound inapplicable
for values of s ≥ n2. As soon as we have drift of ε < 1/n,
the drift process is intuitively more and more drowned by
the random walk due to the variance (which we will consider
later).

But what is now the probability of arriving significantly
after the expected time? For that we need a lower bound
on the expected progress (drift).

Theorem 2. Let (Xt)t≥0 be random variables over R,
each with finite expectation and let n > 0. With T =
min{t ≥ 0 : Xt ≥ n | X0 ≥ 0} we denote the random
variable describing the earliest point that the random pro-
cess exceeds n, given a starting value of at least 0. Suppose
there are ε, c > 0 such that, for all t,
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1. E(Xt+1 | X0, . . . Xt, T > t) ≥ Xt + ε, and

2. |Xt −Xt+1| < c.

Then, for all s ≥ 2n/ε,

P (T ≥ s) ≤ exp

(
− sε2

16c2

)
.

Thus, unless the drift is small, n will be exceeded with
high probability after twice the expected number of steps.
For small drift (O(1/n)), the bound is only meaningful for
larger numbers of iterations, so that Markov’s Inequality will
give better bounds in this case for s close to n/ε.

If the drift is significantly negative, then we cannot hope
to reach the goal in polynomial time with reasonable prob-
ability; this is the statement of the Negative Drift Theorem
([OW11, OW12], see Theorem 6). However, this theorem re-
quires constant negative drift, a restriction which we replace
to negative drift of essentially ω(1/n) with the following the-
orem. Note that a further version of such drift theorems is
available in [OW13].

Theorem 3. Let (Xt)t≥0 be random variables over R,
each with finite expectation and let n > 0. With T =
min{t ≥ 0 : Xt ≥ n | X0 ≤ 0} we denote the random
variable describing the earliest point that the random pro-
cess exceeds n, given a starting value of at most 0. Suppose
there are c, 0 < c < n and ε < 0 such that, for all t,

1. E(Xt+1 | X0, . . . Xt, T > t) ≤ Xt + ε, and

2. |Xt −Xt+1| < c.

Then, for all s ≥ 0,

P (T ≤ s) ≤ s exp

(
− n|ε|

16c2

)
.

For example, for c constant and ε = −ω(log(n)/n), this
gives a superpolynomially small hitting probability for any
polynomial number of steps.

Finally, we consider the case where there is only small
drift ε ∈ [0, 1/n].

Theorem 4. Let (Xt)t≥0 be random variables over R,
each with finite expectation and let n > 0. With T =
min{t ≥ 0 : Xt ≥ n | X0 ≥ 0} we denote the random
variable describing the earliest point that the random pro-
cess exceeds n, given a starting value of at least 0. Suppose
there are ε, c ≥ 0 with c < n such that, for all t,

1. E(Xt+1 | X0, . . . Xt, T > t) ≥ Xt + ε,

2. V ar(Xt+1 −Xt | X0, . . . Xt, T > t) ≥ 1, and

3. |Xt −Xt+1| < c.

Then there is a constant ` (independent of n, c and ε) such
that, for all δ > 0,

P (T ≤ n2/δ` log(c)) ≥ 1− δ.

For example, if we have c constant and want any constant
hitting probability δ, then a quadratic number of steps suf-
fices (just as in the Gambler’s Ruin problem).

1.2 Application and Open Problems
Note that all results are applicable not only for going

from 0 to some n, but for drifting from any start a to any b,
regardless of whether a < b or b < a – a simple transforma-
tion of the (Xt)t≥0 shows this. Also, whenever there is no
sufficiently small bound c to be used, one can condition the
process on never jumping larger than some c and compute
the failure probability of jumping more than this c; for ex-
ample, many mutation operators can jump arbitrarily large
distances (so-called global operators), but usually stay within
some small (logarithmic) neighborhood with large probabil-
ity.

The reason that we require such a bound c is that we base
our results on the Azuma-Hoeffding Inequality (see Theo-
rem 7) which requires just that. This entails also that our
bounds are best when the steps of the process have a high
variance (while many randomized search heuristics have step
sizes of rather small variance, as compared with the range
that they cover with reasonable probability). Thus, it is an
open problem to improve the above bounds, for example by
replacing the frequently occurring term c2 by a bound on
the variance of the steps of the process, or something sim-
ilar. This would require finding a suitable replacement for
the Azuma-Hoeffding Inequality.

2. KNOWN BOUNDS
The literature knows a large number of drift theorems; we

give the two most important with respect to our setting of
additive drift.

The simplest drift theorem concerns the expected hitting
time under additive drift.

Theorem 5 (Additive Drift [HY04]). Let (Xt)t≥0

be random variables describing a Markov process over a fi-
nite state space S ⊆ R. Let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt ≥ n. If
there exist ε > 0 such that

E(Xt+1 −Xt | T > t) ≤ ε,

then

E(T | X0) ≥ X0

ε
.

If there exist ε > 0 such that

E(Xt+1 −Xt | T > t) ≥ ε,

then

E(T | X0) ≤ X0

ε
.

Second, the Negative Drift Theorem concerns adverse drift
and shows a high hitting time, which can be used to derive
lower bounds on the run time of algorithms.

Theorem 6 (Negative Drift [OW11, OW12]).
Let (Xt)t≥0 be real-valued random variables describing a
stochastic process over some state space. Suppose there
is an interval [a, b] ⊆ R, two constants δ, ε > 0 and,
possibly depending on ` = b − a, a function r(`) satisfying
1 ≤ r(`) = o(`/ log `) such that, for all t ≥ 0, the following
conditions hold.

1. E(Xt+1 −Xt | a < Xt < b) ≥ ε;

2. For all j ≥ 0, P (|Xt+1 −Xt| ≥ j | a < Xt) ≤ r(`)

(1+δ)j
.
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Then there is a constant c such that, for T = min{t ≥ 0 :
Xt ≤ a | X0 ≥ b}, we have

P (T ≤ 2c`/r(`)) = 2−Ω(`/r(`)).

A crucial requirement of the theorem is a restriction on
the jump size of the random process: the larger the step, the
less likely it must be. A further important requirement is
that of constant drift away from the target. See Corollary 15
for a comparison with the results of this paper.

For our results, we make use of the Azuma-Hoeffding In-
equality for supermartingales, see [Azu67]. We give a version
from [FGL12, Corollary 2.1], with scaling incorporated. For
this we mention that (Xt)t≥0 is a supermartingale if each
random variable has finite expectation and, for all t ≥ 0,

E(Xt+1 | X0, . . . Xt, T > t) ≤ Xt.

Theorem 7 (Azuma-Hoeffding Inequality). Let
(Xt)t≥0 be a supermartingale such that there is c such that,
for all t, |Xt −Xt+1| < c. Then, for all t and all x,

P

(
max

0≤j≤t
(Xj −X0) ≥ x

)
≤ exp

(
− x2

4c2t

)
.

3. DETAILED PROOFS
In this section we give the proofs of the theorems from Sec-

tion 1. The proofs for Theorems 1-3 are straightforward ap-
plications of the Azuma-Hoeffding Inequality (Theorem 7);
we will discuss these in Section 3.1 on large drift (they mostly
apply when the drift is Ω(1/n) in either direction). After
that we will consider small drift in Section 3.2.

For this section, let (Xt)t≥0 be random variables over R,
each with finite expectation. Furthermore, we let n ∈ N
and let T≤ = min{t ≥ 0 : Xt ≥ n | X0 ≤ 0} be the
random variable that denotes hitting time of n (similarly,
T≥ = min{t ≥ 0 : Xt ≥ n | X0 ≥ 0}). For a given ε, we say
that (Xt)t≥0 has drift of at most ε iff

E(Xt+1 | X0, . . . Xt, T > t) ≤ Xt + ε. (1)

Symmetrically, we say, for a given ε, that (Xt)t≥0 has drift
of at least ε iff

E(Xt+1 | X0, . . . Xt, T > t) ≥ Xt + ε. (2)

We will assume that there is c such that, for all t ≥ 0,

|Xt+1 −Xt| < c. (3)

We call a process where Equation (3) holds c-bounded or of
step width at most c.

Note that (1) is almost exactly the definition of a super-
martingale (similarly, (2) corresponds to submartingales),
except for the additional ε. In fact, we can derive a super-
martingale in case that (Xt)t≥0 has drift of at most ε by
letting, for all t ≥ 0,

Yt = Xt − tε.

Since (Yt)t≥0 is now a supermartingale, we can now apply
the Azuma-Hoeffding Inequality (see Theorem 7). Similarly,
if (Xt)t≥0 has drift of at most ε, then (−Yt)t≥0 is a super-
martingale.

Note that if (Xt)t≥0 is c-bounded, then (Yt)t≥0 is 2c-
bounded, thanks to |ε| ≤ c.

3.1 Large Drift
We will now use our observations to get proofs for Theo-

rems 1-3.

Theorem 8 (Equivalent to Theorem 1). Suppose
that (Xt)t≥0 has drift of at most ε > 0. Then, for all
s ≤ n/(2ε),

P (T≤ < s) ≤ exp

(
− n2

16c2s

)
.

Proof. Let s ≤ n/(2ε). We apply the Azuma-Hoeffding
Inequality (Theorem 7) on the supermartingale (Yt)t≥0

(which is 2c-bounded) to see that the probability of any of
the Yt − Y0 for t ≤ s exceeding n/2 is bounded from above
by

exp

(
− n2

64c2s

)
.

Intuitively, we bound the probability of going half the way
by random variance; as, for s ≤ n/(2ε), we have made at
most (the other) half in expectation, this translates to the
desired bound as follows. We observe that, for all t ≤ s,
Yt < n/2 implies Xt < n (as s ≤ n/(2ε)).

Similarly, we get the bound that the hitting time is
reached with high probability after sufficient iterations.

Theorem 9 (Equivalent to Theorem 2). Suppose
that (Xt)t≥0 has drift of at least ε > 0. Then, for all
s ≥ 2n/ε,

P (T≥ ≥ s) ≤ exp

(
− sε2

64c2

)
.

Proof. Let s ≥ 2n/ε. We apply the Azuma-Hoeffding
Inequality (Theorem 7) on the supermartingale (−Yt)t≥0

to see that the probability of −Ys + Y0 exceeding sε/2 is
bounded from above by

exp

(
− (sε)2

64c2s

)
= exp

(
− sε2

64c2

)
.

Intuitively, we bound the probability of making only half
the steps that we should have made; this is meaningful once
we should have overshot by a factor of 2, i.e. for s ≥ 2n/ε
as desired. The proof is completed by the observation that
−Ys < sε/2 implies Xs > n (as s ≥ 2n/ε).

We now use this approach to prove the theorem concerning
negative drift.

Theorem 10 (Equivalent to Theorem 3).
Suppose that (Xt)t≥0 has drift of at most ε < 0 and
assume c ≤ n/2. Then, for all s ≥ 0,

P (T≤ ≤ s) ≤ s exp

(
− n|ε|

64c2

)
.

Proof. We make an analysis with phases. A phase be-
gins when, for some t, Xt ≥ 0 and ends when either Xt′ ≥ n
or Xt′ < 0; in the first case we call the phase successful,
in the second case unsuccessful. We will show that a phase

is successful with probability at most exp
(
− n|ε|

64c2

)
, as then

a union bound (or an application of Bernoulli’s Inequality)
will give the desired result, lower bounding the length of
each phase with the trivial bound of 1. In order to bound
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the probability of a phase being successful, we use the fol-
lowing reasoning. Any phase starts ≤ c. If the process does
not overshoot its expectation by n − c ever within n/|ε| it-
erations, it not only did not reach n (starting from ≤ c) but
also drops below 0 (as, after n/|ε| iterations, the expectation
is ≤ −n). For this we apply again the Azuma-Hoeffding In-
equality (Theorem 7) and see that the probability of a phase
being successful is at most

exp

(
− (n− c)2|ε|

16c2n

)
≤ exp

(
− n|ε|

64c2

)
,

where the inequality comes from c ≤ n/2.

3.2 Small Drift
We start with a lemma which is interesting in its own

right, showing the theorem concerning negative drift (The-
orem 3) to be reasonably tight. The proof of the lemma
makes use of one of the result concerning the concentration
of the hitting time under positive drift (Theorems 1).

Lemma 11. Let b = 3072. Then, for all n and c, the
following holds. Let k = bc2n. Suppose that (Xt)t≥0 has a
drift of at least ε ≥ −1/(4k), a variance in each step of at
least 1 and 1 ≤ c < n/2. Let s = 24bc2n2. Then we have
that, within s steps, the process does not drop below −k with
probability ≥ 1/2 and

P (T≥ ≤ s) ≥
1

2
.

Proof. We give the proof for ε ≤ 0; the case of ε > 0
is analogous, but easier. We let A be the event that the
process does not drop below −k within s steps. We first
show P (A) ≥ 3/4, after that we show that, conditional on
A, the process reaches n with probability 3/4, which will
imply the claim.

For all t, we let

Yt = (Xt)
2

and

∆t = Xt+1 −Xt.

In all of the following computations of expectation and vari-
ance the conditioning on all relevant (previous) random vari-
ables is implicitly understood but not made explicit for clar-
ity (and brevity) of the exposition. We note that, for all t,
V ar(∆t) ≤ 4c2. It suffices to show that Yt does not reach
k2 within s steps with probability ≥ 3/4. We want to apply
Theorem 1 to (Yt)t≥0, so we compute the expected drift.

E(Yt+1) = E((∆t +Xt)
2)

= E((∆t)
2 + 2∆tXt +X2

t )

= E((∆t)
2) + 2E(∆t)Xt +X2

t

= V ar(∆t) + E(∆t)
2 + 2E(∆t)Xt + Yt

≤ 4c2 + 1 + Yt

≤ 5c2 + Yt.

The last inequality follows from our bound on the variance,
together with our bounds on the expected drift and the value
of Xt.

In order to estimate the number of steps until (Xt)t≥0

reaches −k, we wait until the process drops below 0, and
bound the time that the process (Yt)t≥0 takes to get from

0 to k2, which, using the Additive drift theorem, has an
expectation of

≥ k2/(5c2) ≥ 2s

steps (using b ≥ 240). It is easy to see that the process
(Yt)t≥0 is 2kc-bounded. Thus, Theorem 1 gives that (Yt)t≥0

does exceed k2 within s steps starting from 0 with probabil-
ity

≤ exp

(
− k4

16 · 4k2c2s

)
= exp

(
− b

64 · 24

)
≤ 1/4

as desired.
Now we want to bound the probability for reaching n. To

this end we let, for all t ≥ 0,

Zt = (Xt + k)2 − k2

and we condition on A. In a computation analogous to that
for (Yt)t≥0 we see that

E(Zt+1) ≥ 1/2 + Zt.

From the Additive Drift Theorem (Theorem 5) we now know
that (Zt)t≥0 reaches (n+ k)2 − k2 in an expected number of

2((n+ k)2 − k2) = 2(2nk + n2) ≤ 6nk

steps. Thus, using Markov’s Inequality, we get that (Zt)t≥0

reaches (n+ k)2 − k2 within s steps with probability ≥ 3/4
as desired, as s = 4(6nk).

Now we come to the last theorem of this paper.

Theorem 12 (Equivalent to Theorem 4). Let b =
3072 just as in the preceding lemma. Suppose that (Xt)t≥0

has drift of at least ε ≥ 0, a variance in each step of at least
1 and 1 ≤ c < n/2. Then there is a constant ` (independent
of n, c and ε) such that, for all δ > 0,

P (T≥ ≤ n2/δ` log(c)) ≥ 1− δ.

Proof. We let k0 = 0 and, for all i,

ki+1 = bc2(ki + n) + n+ ki

and

si = 24bc2(ki + n)2.

We analyze the process in an infinite series of phases, start-
ing with phase 0. For each i, Phase i + 1 starts as soon as
Phase i ends (Phase 0 starts at time t = 0). Phase i ends
when either the goal is reached (the process is ≥ n), the
process is ≤ −ki+1, or si steps passed in Phase i, whichever
happens first. We call a phase successful if it ends with
reaching the goal.

Trivially, just before the beginning of Phase i, the process
is ≥ −ki. We want to apply Lemma 11, where the n of
the Lemma corresponds to ki +n (for the application of the
Lemma, we shift the process by ki). Thus, we see that each
phase is successful with probability ≥ 1/2.

Let δ > 0 and let a > 0 be such that 2a−1 ≥ 1/δ ≥ 2a.
Thus, after a phases, we have a success probability of at
least 1− δ as desired. As, for all i, Phase i takes at most si
steps, we get the desired result.
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4. COROLLARIES
In this section we will derive some useful corollaries to

our theorems. We will use the terminology of the preceding
section.

The first corollary is derived from Theorems 1 and 2 and
gives an interval in which the hitting time is with high prob-
ability.

Corollary 13 (Concentration).
Suppose that (Xt)t≥0 has drift of ε = Ω(1/n) and each step
is bounded by c. Also suppose X0 = 0 and let T be the hitting
time of n. Then, for each k, there is a k′ (independent of ε)
such that

P
(
(n/ε)/(k′c2 logn) ≤ T ≤ k′(n/ε)c2 logn

)
≥ 1− n−k.

Furthermore, for all r = ω(c2 logn),

P ((n/ε)/r ≤ T ≤ (n/ε)r) ≥ 1− n−ω(1).

The next corollary is derived from Theorem 3. It shows
that sufficiently negative drift gives strong (lower) bounds
on the hitting time.

Corollary 14 (Negative Drift).
Suppose that (Xt)t≥0 has drift of at most ε = −ω(c2 logn/n)
and assume c ≤ n/2. Then, for all polynomials p and all n
large enough,

P (T≤ ≤ p(n)) ≤ 1

p(n)
.

As another corollary, we can get a statement similar to the
Negative Drift Theorem ([OW11, OW12], see Theorem 6).
This is not directly a corollary to Theorem 3, but a corollary
to its proof (where it is easy to see that negative drift is only
required in some bounded interval). Note that, in order to
follow the notation of Theorem 6, the process attempts to
go down (from b to a), so what is called a “negative drift”
is a positive value (away from the goal). The constraint of
boundedness is lifted by conditioning on the (very likely)
event of never making a large jump.

Corollary 15 (Negative Drift II).
Suppose there is an interval [a, b] ⊆ R, two constants δ, ε >
0 and, possibly depending on ` = b − a, a function r(`)

satisfying 1 ≤ r(`) = exp(o( 4
√
`)) such that, for all t ≥ 0,

the following conditions hold.

1. E(Xt+1 −Xt | a < Xt < b) ≥ ε;

2. For all j ≥ 0, P (|Xt+1 −Xt| ≥ j | a < Xt) ≤ r(`)

(1+δ)j
.

Then there is a constant c such that, for T = min{t ≥ 0 :
Xt ≤ a | X0 ≥ b}, we have

P (T ≤ 2c
√
`) = 2−Ω(

4√
`).

In comparison with the Negative Drift Theorem (Theorem 6)
we see that we get only lower bounds on the hitting time

(2
√
` instead of 2`), for the case of small r(`), also with

higher probability. However, r(`) can increase much higher
without these bounds degrading. It is not surprising that
Corollary 15 works for high values of r(`), as these high
values only increase the variance logarithmically.
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