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ABSTRACT
Recent results show that the Differential Evolution algo-
rithm has significant difficulty on functions that are not lin-
early separable. On such functions, the algorithm must rely
primarily on its differential mutation procedure which, un-
like its recombination strategy, is rotationally invariant. We
conjecture that this mutation strategy lacks sufficient selec-
tive pressure when appointing parent and donor vectors to
have satisfactory exploitative power on non-separable func-
tions. We find that imposing pressure in the form of rank-
based differential mutation results in a significant improve-
ment of exploitation on rotated benchmarks.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization—Global Optimization

General Terms
Performance

Keywords
Differential Evolution, Selective Pressure

1. INTRODUCTION
Differential Evolution (DE) is a parallel direct search that

evolves a fixed set of parameter vectors to optimize real val-
ued functions. In contrast to Evolution Strategies (ES), DE
does not maintain an explicit mutation distribution, but pro-
duces mutant vectors by sampling from scaled difference vec-
tors between individuals. This procedure, called differential
mutation, attempts to implicitly “shape” the mutation to
model the ideal distribution for the population [8].

DE achieves “recombination” by allowing an individual
to inherit a subset of parameter values from a mutant vec-
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tor. This describes a potential hyper-rectangle, with the
individual and its mutant vector in opposing corners, on
which the new individual will lie. Of course, the sides of
this hyper-rectangle are oriented with the coordinate axes,
making search steps generated by crossover orthogonal to
the function’s coordinate directions. This operation is con-
trolled by the crossover rate value CR which specifies the
expected number of parameters inherited from the mutant
vector. Essentially, CR determines the expected dimension
of the subspace in which the offspring will lie.

Recent results [10, 3] suggest that DE struggles with func-
tions that are not linearly separable. We conjecture that
DE’s bias toward separability arises from inefficient exploita-
tion during the differential mutation step. In this paper we
will explore the following two hypotheses.

1. When CR is low, DE can exploit the separability of
a function by relying on crossover to produce axis-
orthogonal steps. On non-separable functions, it must
depend more directly on differential mutation.

2. DE lacks adequate selective pressure in the differen-
tial mutation step to make efficient progress on non-
separable functions.

On functions with significant interaction between param-
eters, the dimension of the subspace in which the offspring
lies must be larger in order to produce rotationally invariant
steps. In this case, progress will depend more on the effi-
cacy of the differential mutation procedure. Bäck [1] points
out that methods depending mostly on recombination tend
to perform quite well with weak selective pressure, whereas
mutation-only methods such as ESs and Evolutionary Pro-
gramming (EP) typically employ a strong selective pressure.
DE, however, generates relatively weak selective pressure
resulting from its unbiased mechanism for selecting parent
vectors.

Our main focus is to identify factors that are causing DE’s
poor performance on non-separable functions. We will test
our hypotheses by 1) Controlling crossover and mutation
on rotated and non-rotated benchmarks and 2) Controlling
selection pressure on vectors involved in differential muta-
tion with a rank-based selection mechanism on rotated and
non-rotated benchmarks. In Section 2 we introduce the Dif-
ferential Evolution algorithm and discuss our method for im-
posing selective pressure on the differential mutation step.
In Section 3 we present our empirical results. In Section 4
we make observations and discuss the implications of our
results. We conclude the paper in Section 5.



2. DIFFERENTIAL EVOLUTION
For this research we use “classic DE”, or the rand/1/bin

strategy originally developed by Kenneth Price and Rainer
Storn [9, 12]. To optimize a function in Rn, classic DE
keeps a population of λ vectors of dimension n. During a
generation G, each vector x

i

, i = 1, . . . , λ has an opportunity
to undergo differential mutation and crossover. Differential
mutation is performed by selecting a donor vector x

r1 , and
two parent vectors x

r2 and x
r3 . It is important that these

vectors are disjoint, which we can enforce by having i �= r1 �=
r2 �= r3. The mutant vector v

i

for the i

th population vector
is then generated by adding the scaled differential vector
obtained from the two parent vectors to the donor vector.

v
i

= x
r1 + F · (x

r2 − x
r3)

Here, F is typically referred to as a mutation scale factor
and is a positive real number less than 1.

Next, the mutant vector v
i

and the original population
vector x

i

are recombined by selecting subsets of their com-
ponents to include in a trial vector u

i

.

u
ij

=

(
v

ij

if U(0, 1) ≤ CR or j = j

�

x
ij

otherwise

for j = 1, . . . , n and j

� ∈ {1, . . . , n}. Here CR is the crossover
constant and j

� is a random integer that ensures the trial
vector differs by at least one parameter. U(0, 1) denotes
a variate drawn from a uniform distribution on the range
[0, 1).

Finally, each trial vector u
i

is compared with the original
target population vector for replacement. Let x�

i

denote
the i

th population vector in generation G + 1. Let f be the
fitness function (assuming minimization). Replacement is
calculated as follows.

x�
i

=

(
u

i

if f(u
i

) ≤ f(x
i

)

x
i

otherwise

Using this technique, DE essentially performs a parallel local
search, and expands neighbors based on information sam-
pled from the entire population. Each vector x

i

must only
compete with its own offspring u

i

. In fact, the generational
selective pressure exists only between a given vector and its
offspring produced, and not across the entire population.

The crossover strategy allows each population member to
change a random subset of parameters individually. The
CR parameter controls how many parameters, in expecta-
tion, are changed. For low values of CR, a small number
of parameters are changed in each generation, and stepwise
movement tends to be orthogonal to the coordinate axes. On
the other hand, high values of CR cause most of the direc-
tions of the mutant vector to be inherited. Setting CR = 1,
for instance, results in a mutation-only strategy. Figure 1
illustrates this effect by showing, for four values of CR, an
empirical distribution of candidate trial vectors from a par-
ticular population.

A low CR value (e.g. 0 or 0.1) results in a search that
changes each direction (or a small subset of directions) sep-
arately. In other words, the dimension of the subspace in
which the offspring is produced will be low. This is an ef-
fective strategy for functions that are separable or decom-
posable, i.e. f(x) =

P
n

i

f

i

(x
i

). However, this approach will
fail on non-separable or epistatic functions in which two or
more parameters interact since parameters must be changed

CR=0.9 CR=1.0

CR=0.0 CR=0.5

Figure 1: Empirical distributions of candidate trial
vectors for CR = 0, CR = 0.5, CR = 0.9, and CR =
1. We ran DE on a single starting population of
10 members for 200 generations with replacement
disabled to illustrate how trial vectors for this initial
population were likely to lie.

simultaneously to make progress [11]. Hansen and Kern
[3] present empirical evidence that DE struggles with non-
separability.

Geometrically, changing more than one parameter at once
results in a rotationally invariant search step. A few poten-
tial solutions for applying DE to non-separable functions
have been given by employing either the current-to-rand [8,
4] or the rand/2/dir strategies [6]. However, we found that
these strategies were not competitive with classic DE with
a high CR on our selected benchmarks. This is likely be-
cause both variants are strict mutation-only strategies and
crossover is still leveraging some artifact of the function.
We found empirical support for this conjecture when we ob-
tained similar results for a mutation-only rand/1/bin DE.
Interestingly, this suggests that DE still must rely on re-
combination to some degree on the benchmarks we selected.
Indeed, as Rönkkönen et al. [10], point out, occasional re-
combination can promote the algorithm’s diversity and pre-
vent stagnation.

2.1 Imposing Selective Pressure: Rank-based
mutation

We can precisely define selective pressure as the ratio of
probabilities between selecting the fittest individual and se-
lecting the individual with median fitness. In classic DE’s
differential mutation, all vectors are equally likely to be se-
lected as parents and donors. In this case, we say the se-
lective pressure on being a parent or donor for differential
mutation is 1.0: i.e. no selective pressure at all.

The differential mutation procedure allows DE to simu-
late a zero-mean anisotropic mutation distribution around
the population. Price [8] argues that the distribution of mu-
tant vectors created by sampling difference vectors models
the ideal mutation distribution so long as the population can



Figure 2: Differential vectors (top) and their mu-
tation distribution (bottom) for elite points on a
spherical (left) and elliptical (right) surface.

accurately sample the local topology of a function. Figure 2
illustrates this argument as a plot of vectors below a partic-
ular threshold and their centered difference vectors on two
functions. The sub-threshold points on the spherical surface
form a relatively spherical distribution and therefore pro-
duce fairly isotropic differential vectors. The sub-threshold
vectors on the elliptical surface have a longer distribution in
the direction of the semi-major axis, producing longer differ-
ential vectors along this direction, and thus larger mutation
steps.

Mutation-only strategies have benefited from incorporat-
ing information about only the best individuals. For exam-
ple, the rank-µ update in CMA-ES calculates the covariance
of the µ best individuals and has been found to increase the
efficiency of CMA-ES, especially for larger populations [7].
This update allows CMA-ES to learn distribution informa-
tion from elite individuals in the population and can thus
sample the local topology of the function better. In DE, the
distribution information is “learned” by sampling random
differential vectors from the population. Our conjecture is
that restricting the set of these vectors to elite points in the
population will have a similar effect on differential mutation,
thus improving its efficiency.

In order to focus on elite differential vectors, we use a
rank-based parent selection scheme to impose a bias on the
selection step. This allows us to induce and control a se-
lective pressure on the parent and donor vectors during dif-
ferential mutation. Rank-based parent selection is obtained
by sorting the population by fitness, and then drawing the
parent and donor indexes (r1, r2, and r3) from the linear
distribution function given by Whitley [14]:

r

x

:=

—
λ

2 (β − 1)
·

“
β −

p
β

2 − 4(β − 1)U (0, 1)
”⌫

where β is a bias term and U(0, 1) again denotes a random
uniform distribution on [0, 1). The bias term controls the
selective pressure. For example, if β = 1.5, then the index
belonging to the top ranked individual is 1.5 times more

Figure 3: Differential vectors of a particular popula-
tion that are selected uniformly (left) vs. differential
vectors that were selected under a linear fitness-rank
bias of β = 3.0 (right).

likely to be selected than the individual with median rank.
Note that we still impose the constraint r1 �= r2 �= r3 �= i.

Figure 3 illustrates the effect by showing the differential
vectors that are likely to be selected with and without se-
lective pressure (left figure). The biased differential vectors
(right figure) describe the function topology better and with
fewer members. Similarly, the donor vector is more likely to
be in a fitter region of the space.

3. EXPERIMENTS
In this Section we report results from a number of ex-

periments designed to evaluate the hypotheses proposed in
Section 1.

3.1 Reliance on crossover
Our first hypothesis was that, though DE relies heavily

on crossover to produce axis-orthogonal steps on separable
functions, it must rely more directly on differential muta-
tion to solve non-separable functions. In order to test this
hypothesis, we selected two functions and ran classic DE
with two crossover parameters CR = 0.1 and CR = 0.9.
Recall that CR = 0.1 results largely in axis orthogonal mo-
tion where CR = 0.9 is almost a mutation-only strategy (see
Figure 1).

To control for modality we used a unimodal elliptic func-
tion and the multimodal Rastrigin function. The elliptic
and Rastrigin are computed as follows

f

elliptic

(x) =
P

n

i=1 1000
i−1
n−1

x

2
i

f

rast

(x) = 10n +
P

n

i=1

`
x

2
i

− 10 cos(2πx

i

)
´

where n is the function dimension. For this experiment we
used n = 30. To control for separability, we ran the ex-
periments using both non-rotated and rotated versions. To
produce the rotated versions, we rotated each pair of pa-
rameters in a two dimensional subspace by a constant 5
degrees. For DE, we used λ = 20 and F = 0.9. We ran
the algorithm for 100 trials on each variant and generated
run length distributions. Each run length distribution is an
empirical cumulative distribution function of the number of
function evaluations the algorithm needs to find a solution
within an �-neighborhood of the global optimum. For our
experiments we set � = 10−5.

The run length distributions for these experiments are
shown in Figure 4. In this figure we see an interesting ef-
fect between the two CR parameter settings. On the one
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Figure 4: Empirical cumulative distribution of DE
utilizing two different crossover parameters on non-
rotated 5 dimensional functions (top) and rotated 5
dimensional functions (bottom). The x-axis reports
the number of evaluations necessary to solve the
function. CR = 0.1 (heavy line) produces a crossover
motion with a rotationally dependent bias. CR = 0.9
(light line) is nearly a mutation-only strategy.

hand, when CR = 0.1 (heavy line), a low number of param-
eters are changed in each step resulting in axis-orthogonal
motion. This motion is highly efficient on the separable
functions. However, when the functions are rotated, there
is a dramatic effect on the number of evaluations needed to
solve the problem. On the other hand, the mostly-mutation
setting CR = 0.9 (light line) appears largely impervious to
the rotation.

Therefore, we have strong evidence that, when the func-
tion is non-separable, DE becomes more reliant on differen-
tial mutation, and less reliant on orthogonal steps produced
by crossover. This leads us to our next hypothesis.

3.2 Effect of selective pressure
Our second hypothesis is that when DE must rely on dif-

ferential mutation, selective pressure is inadequate to make
efficient progress. To test this, we extend the work of Rön-
kkönen et al. [10] and their results with DE on the CEC 2005
special session on real parameter optimization. Specifically,
we notice that DE has particular trouble with non-separable
functions, an effect that is magnified as dimensionality in-
creases. In their work, the authors note that higher pop-
ulation sizes will improve the convergence probability, but
incur superfluous function evaluations. When performance
becomes an issue (as it was in the contest) smaller popula-
tion sizes are required, potentially at the expense of solution
quality.

We therefore performed experiments to compare these
previous results on a subset of benchmarks from CEC 2005
[13] with the rank-based variant of DE that imposes selective

pressure. We first reproduced the results from Rönkkönen
et al., and then applied selective pressure with three differ-
ent biases, holding all other experiment parameters equal.
We selected four benchmarks from the contest, controlling
for separability and modality :

separable non-separable
unimodal F1 (sphere) F3 (rotated high

condition elliptic)
multimodal F9 (Rastrigin) F10 (rotated Ras-

trigin)

Note that all functions are shifted. The rotated versions
were obtained using the orthogonal rotation matrices from
the contest. Results are available from a set of 10 dimen-
sional functions and a set of 30 dimensional functions. We
chose to focus strictly on the 30 dimensional functions since
DE seemed to struggle most with these.

We used the same parameters as Rönkkönen et al.: F =
0.9, CR = 0.9, λ = 30. We used three values for selective
pressure, β = 1.5, β = 2.0, and β = 3.0. Following CEC
2005, we ran each algorithm variant on each function for
25 trials for 105 evaluations and found the median error
convergence values. The results from our comparison are
shown in Figure 5. The ranges for the CEC 2005 results are
statistically identical to those reported by Rönkkönen et al.
[10], except in the case of F3 which was difficult to compare
due to the high variance over only 25 trials.

We find a striking feature in Figure 5 comparing the con-
vergences on F9 and F10. In particular, the latter is simply
a non-separable version of the former. Classic DE seems
to suffer significantly on the rotated version whereas there
seems to be little effect on the rank-based variant with β =
3.0. The comparable median and minimum errors compar-
ing the classic and rank-based variant in question are re-
ported in Table 1. The rank-based variant makes slower
progress than classic DE on the separable problem, but
is not affected by the rotation. This supports our conjec-
ture that selective pressure can provide a benefit on non-
separable functions.

F9 F10

median min median min
classic DE 42.201 18.102 229.095 149.336

rank-based β = 3 60.692 35.818 65.667 36.813

Table 1: Relative median and minimum error of
classic and rank-based DE variants on 30 dimen-
sional F9 and F10. The rank-based variant, while
slightly worse on the separable problem, seems to
be impervious to rotation.

A similar effect seems to occur on F3, but the reader is
cautioned against misinterpreting the scale on the y-axis.
The top performing algorithm (rank-based variant with β =
3.0), though significantly better than classic DE, still fails to
find the solution (the best error value found is 3.22E+05).
However, we believe this is an effect of the high condition
(106) of the elliptic rather than its rotation. For this work,
we are especially interested in the rotation transformation
that provides non-separability.

To control for the condition effect, we ran the algorithms
again on the same rotated elliptic with the condition tuned
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Figure 5: Median convergence error (y-axis) for DE on 30-dimensional benchmarks after 1E+05 evaluations
(x-axis) with and without selective pressure (low population size). Results for unimodal functions are in the
top row, results for multimodal functions are in the bottom row. Results for separable functions are in the
left column, results for non-separable functions are in the right column.

down to 102. To control for separability, we used a non-
rotated (F lo,nr

3 ) and a rotated (F lo,r

3 ) version. The results
for the low-condition elliptics are displayed in Figure 6. All
variants of DE were able to solve the separable low-condition
elliptic. On the rotated low-condition elliptic, only the rank-
based variant with β = 3.0 solved the function in all 25 trials
where classic DE with no selective pressure did not solve it
at all during the allotted time. This lends further support
to our conjecture that selective pressure focuses differential
mutation, and is therefore beneficial on non-separable prob-
lems.

3.2.1 Exploitative power
We have evidence that imposing selective pressure is pro-

viding an advantage over the classic DE variant, especially
on the non-separable functions. A natural follow-up ques-
tion is thus: by what mechanism does selective pressure
gain this advantage? We conjecture that it helps to focus
the search; that is, it puts a needed emphasis on exploita-
tion. This may be beneficial when the algorithm is depend-
ing more on differential mutation, as we would expect on
non-separable functions.

To test the “focusing power” of the search variants, we ob-
serve change in population diversity over time. To measure
this, the population dispersion δ is computed as

δ =
1`
λ

2

´
λ−1X

i=1

λX

j=(i+1)

q
(x

i

− x
j

)T (x
i

− x
j

)

that is, the average pair-wise Euclidean distance between all

population members. To measure the relative population
dispersions on the functions, we ran the λ = 30 variants
once again for 25 trials and measured the mean population
dispersion. The results from this experiment are plotted (on
a log scale) in Figure 7.

To see when the difference in dispersion becomes statisti-
cally significant, we performed a Wilcoxon signed rank test
on the difference between each rank-based variant and the
classic DE variant. We present the p-values over (log) time
in Figure 8. From these results we can see that the differ-
ence in dispersion between the classic variant and each of
the rank-based variants becomes statistically significant on
all functions by at most 500 evaluations.

Unsurprisingly, it is clear that the rank-based variants are
creating a lower population dispersion which benefits differ-
ential mutation by focusing the search. This raises some
important questions regarding stagnation, however, which
will be addressed in Section 4.

3.2.2 Increasing the population size
The results from the foregoing experiments suggest that

selective pressure adds an advantage to DE’s progress by
focusing the search. Rönkkönen et al. point out that one
of the issues with DE’s non-convergence was that λ should
be between 200 and 600 to optimize difficult functions [10].
However, one issue with large population sizes is speed.
We conjecture that selective pressure might offer a distinct
speed-up with high population sizes since it appears to fo-
cus the mutation process better. To test this, we ran the
variants on the same (30 dimensional) functions with pop-
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Figure 6: Controlling for condition: median convergence error (y-axis) for DE after 1E+05 evaluations (x-
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ulation size λ = 500 for 107 evaluations. Our goal was to
observe the relative convergence speeds.

The results from the high population size experiments are
shown in Figure 9. It is clear that the population size in-
crease is causing a dramatic reduction in convergence speed.
Evidence that selective pressure gives an advantage when
the population size is high comes in the form of faster (and
further) median progress on the rank-based variants. It is
important, however, to note that except in the case of F1,
none of the high population variants succeed in solving the
function, even after ten million evaluations.

4. DISCUSSION
We hypothesized that 1) DE relies more on differential

mutation than rotation dependent crossover on non-separable
functions and 2) DE’s weak selective pressure may result in
inefficient exploitation when relying on differential muta-
tion. Our results support both these hypotheses. We found
that the high mutation strategy, though slightly less effi-
cient on separable problems, is invariant to rotation. This
can be contrasted with the axis orthogonal motion incurred
by changing a few parameters at a time, as with low CR

values.
Our results also indicate that increasing selective pressure

on the vectors selected as parents and donors for differen-
tial mutation increases the exploitative power of the search
by focusing the diversity of differential mutation. This ef-
fect is seen dramatically on non-separable functions when
differential mutation becomes important.

However, the algorithm still performs uncompetitively on
non-separable, multimodal functions. In fact, none of the
variants were able to solve either F9 or F10 in any of our

experiments. One surprising result was that increasing the
population size still did not cause convergence as predicted
by Rönkkönen et al. [10] even after ten million function
evaluations.

Of course, we cannot rule out the possibility of poor pa-
rameter selection. We wanted to remain as faithful as pos-
sible to the results reported for the CEC 2005 competition
[10]. This restricted our parameter settings. However, pi-
lot experiments with different settings did not improve the
results by a great deal. We hypothesize that, as function
dimension increases, the differential vectors in a population
do not provide enough information to accurately estimate
the ideal distribution.

One inherent danger with high selective pressure is the
rapid loss of diversity within the population. The increase of
exploitative power comes at a cost to potential exploration.
On some trials we see the characteristic stagnation effect
from the lack of diversity. This highlights the importance
of a good balance of exploration and exploitation in search.
Perhaps on more difficult functions, DE would benefit from
a time-variable selective pressure. Diversity might also be
injected by using a soft restart mechanism [5].

The rank-based variant, unlike the classic DE algorithm,
calls for the population to be sorted in each generation. This
requirement can be removed by using tournament selection
which produces equivalent behavior to linear rank-based se-
lection in expectation [2] for β ≤ 2.0. When β > 2.0, the
selective pressure engendered by the tournament method be-
comes mildly non-linear.

5. CONCLUSION
Differential Evolution is a popular parameter optimization

algorithm in the Evolutionary Computation community. We
have shown that its failure to produce competitive results on
non-separable functions may be attributable in part to in-
adequate selective pressure when choosing parent and donor
vectors for differential mutation. On non-separable func-
tions, when the algorithm must rely heavily on this mu-
tation, this lack of exploitative power causes significantly
slower progress.

Furthermore, selective pressure can also offer an advan-
tage when the population size is high, presumably by pre-
ferring a smaller number of elite individuals for direction
and step size information. We see faster convergence with
the rank-based variants, even on separable problems.

One direction of future work is to introduce an annealing
schedule to the β term that allows early exploration, but
promotes intensification later in the search. This could help
mitigate potential stagnation problems.

A lack of competition arises from DE’s parallel selection
strategy. The generational selective pressure between par-
ents and offspring might also be increased by using a differ-
ent selection strategy. Another avenue of future work is to
experiment with such selection techniques.
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