
ELEA – Build your own Evolutionary Algorithm in your Browser
Markus Wagner1, Erik Kohlros2, Gerome Quantmeyer2, Timo Kötzing2

1 Monash University, Australia; 2 Hasso Plattner Institute/University of Potsdam, Germany
markus.wagner@monash.edu,erik.kohlros/gerome.quantmeyer@student.hpi.uni-potsdam.de,timo.koetzing@hpi.de

ABSTRACT
We provide an open source framework to experiment with evo-
lutionary algorithms which we call Experimenting and Learning
toolkit for Evolutionary Algorithms (ELEA). ELEA is browser-based
and allows to assemble evolutionary algorithms using drag-and-
drop, starting from a number of simple pre-designed examples,
making the startup costs for employing the toolkit minimal. The
designed examples can be executed and collected data can be dis-
played graphically. Further features include export of algorithm
designs and experimental results as well as multi-threading.

With the very intuitive user interface and the short time to get
initial experiments going, this tool is especially suitable for explo-
rative analyses of algorithms as well as for the use in classrooms.

KEYWORDS
Benchmarking; education; tool
ACM Reference Format:
Markus Wagner1, Erik Kohlros2, Gerome Quantmeyer2, Timo Kötzing2.
2023. ELEA – Build your own Evolutionary Algorithm in your Browser. In
Genetic and Evolutionary Computation Conference Companion (GECCO ’23
Companion), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3583133.3590723

1 INTRODUCTION
The Free Evolutionary Algorithm Kit (FrEAK) is a “toolkit to design
and analyse evolutionary algorithms, written in Java” [1], devel-
oped initially at the University of Dortmund. The last update to the
repository was 10 years ago, and technology has evolved signifi-
cantly since then. With this demonstration paper we introduce a
web-based alternative, using the Blockly framework developed by
Google [2, 5].

Our intention is not to transfer all and only the functionality of
FrEAK to the web, but rather have a completely fresh start, offering
functionalities directed at making this tool (1) a starting point for
scientific investigations, giving quick insights with little coding
overhead; as well as (2) a valuable helper for teaching evolutionary
algorithms in the classroom, focusing students’ activities on under-
standing evolutionary algorithms rather than coding them. These
two goals aim at making evolutionary algorithms more accessible
to a wide range of people, lowering the costs required to get first
results. We call our toolkit Experimenting and Learning toolkit for
Evolutionary Algorithms (ELEA).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3590723

Specifically, ELEA offers the following features:

• Visual Programming System based on Blockly [2, 5].
• Several standard algorithms and test functions implemented.
• Export of Code to JavaScript for offline modification and use.
• Data visualisation.
• Data download as csv or for IOHAnalyzer [4].
• Multi-threading support.
• Open source, can be forked.

The visual programming system based on Blockly allows new
users to build their own evolutionary algorithms with very little
training (see Section 2 for a discussion on such programming sys-
tems). The pre-implemented algorithms and test functions enable
first results with the toolkit within minutes. Also, for experienced
programmers, using ELEA results in smaller overhead times, be-
cause only the EA needs to be designed, and data handling is almost
completely taken care of by the system.

In order to allow for far-reaching analyses, the JavaScript sources
are available for download, which can then be modified at will for
analyses not covered by the functionalities of ELEA. As a core
feature, ELEA can graphically display data at run time, making the
data easily accessible.

We see two main use cases for ELEA, fundamental research and
teaching EAs, which we discuss in turn.

1. Use for fundamental research. In the spirit of fast prototyp-
ing, ideas or hunches can be fact-checked quickly for small problem
sizes using ELEA’s existing blocks, but also custom blocks can be
designed quickly. Rigorous investigations with multiple repetitions
are supported by multi-threading and data management. Further-
more, more complicated examples can be set up by downloading
the code and implementing the necessary changes by editing the
code directly. We believe that also the run time analysis community
can profitably use ELEA.

2. Use for teaching EAs. Teachers and students can explore
in-class the effects of algorithmic design decisions. The focus is
on designing evolutionary algorithms rather than spending time
with data management and program syntax. Colour-coded blocks
assist students to associate colours and shapes [7] which in turn can
help build understanding and retain knowledge. The browser-based
environment avoids cross compatibility issues and gives a uniform
standard for teachers and students for algorithm definition and
benchmarking. At its best, ELEA’s building blocks invite students
and teachers to “play” with algorithmic components, much like with
wooden building blocks or Legos, to explore algorithmic spaces in
playful and systematic ways.

You can find a running instance of ELEA as well as its source
code at the following URLs:

https://elea-toolkit.netlify.app/
https://github.com/HPI-ELEA/elea

https://doi.org/10.1145/3583133.3590723
https://doi.org/10.1145/3583133.3590723
https://elea-toolkit.netlify.app/
https://github.com/HPI-ELEA/elea

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Markus Wagner1 , Erik Kohlros2 , GeromeQuantmeyer2 , Timo Kötzing2

Another code base that allows to benchmark evolutionary al-
gorithms is the recently developed Iterative Optimization Heuris-
tics Profiler (IOHprofiler) [4]. This modular software offers not just
evolutionary algorithms, but also EDAs and other optimisation
heuristics, as well as a modular approach to the profiling pipeline,
including aspects such as automated algorithm configuration. In
contrast to the IOHprofiler, ELEA is a lightweight tool based on an
easy-to-access graphical user interface. This significantly lowers
the initial cost to start using ELEA. In particular, IOHprofiler does
not allow for defining algorithms, but a collection of pre-defined
algorithms is provided. One of the core parts of IOHprofiler is the
IOHanalyzer, which offers a wide functionality for investigating
the data produced by running algorithms on test functions. This
nicely complements ELEA, which can produce compatible data.

There are also programming packages available to run evolu-
tionary algorithms, for example LEAP [3], written in Python. LEAP
“ is a general purpose Evolutionary Computation package that com-
bines readable and easy-to-use syntax for search and optimization
algorithms with powerful distribution and visualization features.”
While LEAP might be better suited for large scale benchmarking,
we believe that the graphical display of the algorithm in ELEA helps
understand the underlying principles better than a library call.

The remainder of this paper starts with background on visual
programming (in Section 2) , proceeds to give an example of using
ELEA (in Section 3), before discussing some details of the system
design (in Section 4), including multi-threading (see Section 5).

2 BACKGROUND ON VISUAL PROGRAMMING
A visual programming system (VPS) [8] allows users to create
programs by manipulating program elements graphically rather
than specifying them textually. In a VPS, a user creates a program
by arranging “boxes and arrows”, where boxes represent entities
and arrows represent relations. A VPS can assist programmers to
overcome three cognitive challenges [6]:

• Syntactic: arranging programming language components into
well-formed programs.

• Semantic: assisting users with the comprehension of themean-
ing of programs.

• Pragmatic: bringing a program into a specific situation and
understanding its behaviour.

Blockly [2, 5] is an example of such a VPS. It is an open-source,
client-side library for the programming language JavaScript, provid-
ing an editor representing coding concepts as interlocking blocks.
Blockly typically runs in a web browser, but it can also generate
correct stand-alone code in JavaScript, Python, PHP, Lua, Dart, etc.

Figure 1 shows an example of Blockly running in a browser. The
default graphical user interface of the Blockly editor consists of
(1) a toolbox, which holds available blocks, and where a user can
select blocks; and (2) a workspace, where a user can drag, drop and
rearrange blocks. The workspace also includes, by default, zoom
icons, and a trash can to delete blocks. Assembly of code consists in
drag and drop of functional blocks, giving a final visual impression
much like pseudo-code.

For ELEA, we leverage that Blockly is open-source and that cus-
tom blocks can be created. Each block consists of a definition, which
defines the visual appearance, and a generator, which describes

Figure 1: Blockly running in a browser (taken from [5]).

the block’s translation to executable code. Blocks can be written in
JavaScript, but they can also be defined using blocks.

3 WHAT’S IN ELEA?
ELEA provides a number of new blocks pertaining to defining
evolutionary algorithms, such as blocks for mutation, crossover,
selection and so on. To demonstrate that it is easy (1) to define
an algorithm using ELEA’s building blocks and (2) to run it and
to plot the results, we show a complete example of a population-
based evolutionary algorithm in Figure 2. Details of the particular
scenario can be found in the figure’s caption.

In the following, we will focus our attention on the coloured
building blocks that are used to construct the scenario. At present,
ELEA provides 11 groups of building blocks, and we outline each
group’s content next. Information on all blocks can be found in
ELEA’s online documentation.

Population (magenta red) is the largest group of blocks. It provides
blocks to initialise a population, such as randomised or explicitly
specified. It also provides ways to “query” a population, i.e. to ac-
quire information like the size of a population, to get information
on the best individual in a population, or to select an individual
from a population via methods like uniformly random selection or
fitness-proportionate selection. This group also provides blocks to
add individuals to a population, to merge or to sort them. Individu-
als (green) is the second largest group of blocks. They support the
initialisation of individuals (randomised or explicitly specified), as
well as the crossover (one-point, two-point, uniform) and mutation
(mutating each bit with a given probability or mutation a given
number of bits). Fitness measure (cyan) provides a number of blocks
that calculate fitness functions like OneMax, LeadingOnes, Jump,
and some diversity-based metrics. Primitive datatypes (teal-blue) al-
low us to create and set variables, to define and concatenate strings,
and to create random numbers within a provided range. Logic (teal-
blue) allows us to perform conditional executions (akin to an “if”
in many programming languages) and to assemble Boolean expres-
sions involving Boolean operators including equivalence checks.
Loops (teal-blue) enable the simple definition of evolutionary loops,
the (number-limited) repetition of selection (e.g. for selecting or
creating solutions). It also includes a special block that aggregates
data for the later export to IOHAnalyzer. Functions (lavender) com-
prises special, all-embracing blocks that are needed, for example,
to run studies, like the multiple repetition of an algorithm. Logging
(grey) provides blocks to print data to the output area of ELEA, to

ELEA – Build your own Evolutionary Algorithm in your Browser GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

1○

2○

3○

4○

5○

Figure 2: ELEA example “Simple Plotting”. We perform 15 independent repetitions 1○ of a (10 + 10)-EA that uses one-point
crossover and uniform, bit-wise mutation. Individuals are bit strings of length 20. The solved problem is the OneMax problem
(3○ : “sum of list individual”). The best individual at the end of each independent run is shown in the top right corner 4○, and
the quality of the best population member is plotted in the bottom right corner 5○ (x-axis: generations, y-axis: quality). Note:
while only a part of the legend is shown, all 15 runs are plotted.

plot data in a scatter/line/bar graph, and to simply add a comment
to an algorithm (akin to in-line code comments). Multi-Threading
(blue cyan) enables the parallel execution of blocks. As we see this
as an important feature, we provide in-depth details in Section 5.
Time management (copper) contains blocks for pausing the execu-
tion for a number of seconds and for measuring wall-clock time.
Experimental (black) covers blocks that do not fit elsewhere.

All ELEA blocks can be dragged and dropped into place, which
lets you quickly assemble an algorithm or modify an existing one.
Also, blocks can only be connected in particular ways, resulting
in code that is always syntactically correct; for example, it is im-
possible to insert a logging command into a “parent spot” of the
one-point crossover. Lastly, to further increase usability, blocks that
are not connected to anything are greyed out, thus making it clear
what is executed and what is not.

4 SYSTEM DESIGN
ELEA runs on Node.js and its user interface is built with Bootstrap.
The whole tool is based around the Blockly framework, which
is developed by Google. Blockly creates an encapsulated module
representing the workspace used in our tool and lets us easily
build a website around it. In general, it is possible to customise
our own blocks using either JavaScript or XML and provide these
blocks to the Blockly module. There, we specify how our block
should look, meaning for example what parameters can be put
in or how the block connects to other blocks, and also provide a

snippet of JavaScript code, which is executed in place of the actual
block, when the user runs their code inside the tool. This code
makes up the algorithm that can be downloaded from the tool. We
can also configure how the toolbox looks by adding categories and
arranging the blocks in a fitting way. Everything else, i.e the moving
and combining of blocks, is handled internally by Blockly. For more
details see the Google Developers Documentation on Blockly [5].

Inside Blockly, the algorithm in block-form is represented using
XML. This XML can be downloaded and later again uploaded into
the workspace. Because every XML element used in this format
references a snippet of code, our tool can easily transform this XML
data to working JavaScript code.

Since we are using Node.js, you can download your algorithm
as JavaScript including a suitable run time environment, and play
around without the blocks locally.

5 MULTI-THREADING
To further improve the user experience, ELEA provides multi-
threading blocks. Among other, these can be used to efficiently
run multiple independent runs of an algorithm, which is a common
task undertaken in research on randomised algorithms.

As an implementation detail, it is important to note that threads
in JavaScript have their own scope, which means that they cannot
directly use global variables. While this means that worker threads
are “naturally” separated and thus run independently of each other,
it also implies a need to implement (1) information import (e.g.

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Markus Wagner1 , Erik Kohlros2 , GeromeQuantmeyer2 , Timo Kötzing2

Figure 3: Multi-threading: complete example with a dummy
task. The teal-coloured, C-shaped block “Run in i threads”
are responsible for starting threads and for returning data
back to the main thread.

to set a mutation rate outside of the actual algorithm, instead of
hard-coding it inside), and (2) information sharing back to the main
thread (e.g. for data logging purposes).

Figure 3 shows a complete example of multi-threading via our
multi-threading blocks; in ELEA, you can find this as the example
“Multi-Threading Performance Test”. While this example repeatedly
calculates the 42nd Fibonacci number as a dummy task (1 ≤ 𝑖 ≤ 30
repetitions form one task), the online edition of ELEA contains
an example using an evolutionary algorithm. In particular, this
performance test compares three approaches: (1) the sequential
execution of 𝑖 repetitions using one thread, (2) the completely par-
allel execution (where 𝑖 threads are started in parallel), and (3) the
limited setup, where 𝑥 parallel threads are used (here: the block
“Hardware Concurrency” sets 𝑥 to the number of CPU cores). The
last approach can also be limited to, e.g. two worker threads (even
when a machine has more cores) to allows the user to retain a
responsive computer.

On our computer (a 2022 Macbook Air M2 with 8 CPU cores),
the output in ELEA’s output window looks like this:

threads,num_iterations,num_threads,time
one thread,1,1,2136
all threads,1,1,2045.800000011921
limited threads,1,8,2140.5
--

Figure 4: Multi-threading: performance results of a simple
example. Each data point shows the total wall-clock time
of an independent experiment involving the independent
calculation of 𝑖 ∈ {1..30} tasks.

one thread,2,1,4122.900000035763
all threads,2,2,2139
limited threads,2,8,2089.7999999523163
--
one thread,3,1,6250.899999976158
all threads,3,3,2173.899999976158
limited threads,3,8,2196.100000023842
[...]

Figure 4 shows the results, in particular how the total required
time per task changes as the number of 𝑖 repetitions increases. As
expected, the wall-clock time for the sequential approach (using
only one thread) increases approximately linearly. For the approach
where 𝑖 threads (i.e. up to 30 here) perform the calculations in par-
allel, run time also increases approximately linearly, although run
times are about 70% faster for large 𝑖 , resulting in a 3.4-fold speedup.
For the limited approach, we can see “steps” in run time increase
for the limited approach when multiples of eight are exceeded.

Acknowledgements. We thank Antony Kamp, Bjarne Sievers, and
Oscar Manglaras for their contributions to early versions of ELEA.
We thank Xiaoyue Li for her feedback on an earlier version. We
thank the reviewers for their many suggestions for future directions.

REFERENCES
[1] Andrea, Dimo Brockhoff, Christian Gunia, Matthias Englert, Oliver Heering,

Michael Leifhelm, Heiko Röglin, Patrick Briest, Dirk Sudholt, Stefan Tannenbaum,
and Thomas Jansen. 2013. Free Evolutionary Algorithm Kit (FrEAK). Retrieved
January 31, 2023 from https://sourceforge.net/projects/freak427/

[2] Lucy Black. 2012. Google Blockly – A Graphical Language with a Differ-
ence. Retrieved January 31, 2023 from https://www.i-programmer.info/news/98-
languages/4357-google-blockly-a-graphical-language-with-a-difference.html

[3] Mark A. Coletti, Eric O. Scott, and Jeffrey K. Bassett. 2020. Library for Evolutionary
Algorithms in Python (LEAP). In Proc. of GECCO’20. ACM, 1571–1579. https:
//doi.org/10.1145/3377929.3398147

[4] Carola Doerr, HaoWang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2018. IOH-
profiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics.
CoRR abs/1810.05281 (2018). http://arxiv.org/abs/1810.05281

[5] Google. 2023. Blockly landing page. Retrieved January 31, 2023 from https:
//developers.google.com/blockly/

[6] Alexander Repenning. 2017. Moving Beyond Syntax: Lessons from 20 Years of
Blocks Programing in AgentSheets. Journal of Visual Lang. and Computing 3 (2017),
68–91. http://ksiresearch.org/vlss/journal/VLSS2017/vlss-2017-repenning.pdf

[7] David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-Based Programming. In Proc. of IDC’15.
ACM, New York, NY, USA, 199–208. https://doi.org/10.1145/2771839.2771860

[8] Annie SWu, Kenneth ADe Jong, Donald S Burke, John J Grefenstette, and C Loggia
Ramsey. 1999. Visual analysis of evolutionary algorithms. In IEEE Congress on
Evolutionary Computation. IEEE, 1419–1425.

https://sourceforge.net/projects/freak427/
https://www.i-programmer.info/news/98-languages/4357-google-blockly-a-graphical-language-with-a-difference.html
https://www.i-programmer.info/news/98-languages/4357-google-blockly-a-graphical-language-with-a-difference.html
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1145/3377929.3398147
http://arxiv.org/abs/1810.05281
https://developers.google.com/blockly/
https://developers.google.com/blockly/
http://ksiresearch.org/vlss/journal/VLSS2017/vlss-2017-repenning.pdf
https://doi.org/10.1145/2771839.2771860

	Abstract
	1 Introduction
	2 Background on Visual Programming
	3 What's in ELEA?
	4 System Design
	5 Multi-threading
	References

