
Parameterized Average-Case Complexity
of the Hypervolume Indicator

Karl Bringmann
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Tobias Friedrich
Friedrich-Schiller-Universität

Jena, Germany

ABSTRACT
The hypervolume indicator (HYP) is a popular measure for the
quality of a set of n solutions in Rd. We discuss its asymptotic
worst-case runtimes and several lower bounds depending on dif-
ferent complexity-theoretic assumptions. Assuming that P 6= NP,
there is no algorithm with runtime poly(n, d). Assuming the expo-
nential time hypothesis, there is no algorithm with runtime no(d).
In contrast to these worst-case lower bounds, we study the average-
case complexity of HYP for points distributed i.i.d. at random on
a d-dimensional simplex. We present a general framework which
translates any algorithm for HYP with worst-case runtime nf(d) to
an algorithm with worst-case runtime nf(d)+1 and fixed-parameter-
tractable (FPT) average-case runtime. This can be used to show that
HYP can be solved in expected time O(dd

2/2 n + dn2), which
implies that HYP is FPT on average while it is W[1]-hard in the
worst-case. For constant dimension d this gives an algorithm for
HYP with runtime O(n2) on average.

This is the first result proving that HYP is asymptotically easier
in the average case. It gives a theoretical explanation why most
HYP algorithms perform much better on average than their theo-
retical worst-case runtime predicts.

Categories and Subject Descriptors
F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity

Keywords
Multiobjective Optimization, Theory,
Performance Measures, Selection

1. INTRODUCTION
Many real-world optimization problems consider multi-objective

fitness functions, where several objectives are to be maximized (or
minimized) at the same time [17]. The aim is to find a set of
good trade-off solutions constituting the Pareto front. The qual-
ity of such a set of solutions is measured by an indicator function
that maps a set of solutions to a real value. The currently most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

popular indicator is the hypervolume (HYP), which measures the
volume of the union of the regions in the objective space that are
dominated by the set of solutions. All hypervolume-based algo-
rithms like the multi-objective covariance matrix adaptation evo-
lution strategy (MO-CMA-ES) [23], the SMS-EMOA [5], and the
hypervolume-based variant of the indicator-based evolutionary al-
gorithm (IBEA) [42] aim at maximizing the hypervolume. This aim
is known to help reaching a good approximation of the Pareto front.
More precisely, it is known that the worst-case approximation fac-
tor obtained by any hypervolume-maximal set of fixed size µ is
asymptotically equivalent to the best worst-case approximation fac-
tor achievable by any set of size µ [14]. Moreover, the hypervolume
is the only known indicator that, given two sets A and B, values A
higher than B if A dominates B [43].

It is known that the problem of computing the hypervolume
is #P-hard [11], which implies that the hypervolume cannot be
computed exactly in time polynomial in the number of objec-
tives d unless P = NP. Calculating an approximation is much
easier: A simple Monte-Carlo algorithm yields an FPRAS (fully
polynomial-time randomized approximation scheme) which gives
an ε-approximation of the hypervolume of n points in time
O(dn/ε2) [11]. There are also several approximation algorithms
for determining the least hypervolume contributor [1, 13, 25]. In
contrast to this, we want to study the complexity of exact hypervol-
ume computation in more detail.

Worst-case upper bounds. There are many algorithms for com-
puting HYP with proven upper bounds on their worst-case runtime.
The oldest ones stem from Klee’s Measure Problem (KMP). This
classical question of computational geometry asks for the mea-
sure of the union of n axis-parallel boxes in the d-dimensional
space Rd [26]. HYP is a special case of KMP where all boxes
share a common corner. Around 1980 it was shown that KMP can
be solved in time O(nd−1) [36], which was ten years later im-
proved by Overmars and Yap [33] toO(nd/2 logn). It was claimed
in [4] that the algorithm of Overmars and Yap can be improved to
O(n logn + nd/2) for HYP, but this was later withdrawn in [3].
The only asymptotic improvement of Overmars and Yap’s algo-
rithm is the algorithm of Chan [15], with runtime nd/2 2O(log∗ n),
where log∗ denotes the iterated logarithm. While determining a
solution with minimal hypervolume contribution seems to need
Θ(n) hypervolume computations, this is can be done in time
O(nd/2 logn) [12].

It was recently shown that any algorithm for KMP on (unit)
cubes yields an algorithm for HYP with the same asymptotic run-
time [10]. This implies that the algorithm of Bringmann [9] for
KMP on cubes also gives an algorithm with runtime O(n(d+2)/3)
for HYP. Another recent improvement for HYP is the algorithm of
Yıldız and Suri [40] with runtime O(n(d−1)/2 logn). There are

575



also several algorithms for specific dimensions. However, com-
pared to the two last mentioned algorithms of Bringmann [9] and
Yıldız and Suri [40], only the algorithm of Fonseca et al. [20] gives
an improvement for d = 3 with a runtime of O(n logn). Overall,
the currently best known asymptotic runtimes for HYP are summa-
rized in the following Table 1.

Dimension Runtime Reference
d = 1 Θ(n logn) [26]
d = 2 Θ(n logn) [2, 33]
d = 3 Θ(n logn) [20]
d = 4 O(n1.5 logn) [40]
d = 5 O(n2 logn) [40]
d = 6 O(n2.5 logn) [40]
d > 7 O(n(d+2)/3) [9]

Table 1: Best known asymptotic worst-case runtimes for calculating the
hypervolume indicator (HYP) depending on the number of points n and
the number of dimensions d.

Computational hardness. The only known unconditional lower
bound for the computational complexity of HYP for any d is
Ω(n logn) [6]. It is also known that HYP is #P-hard [11], which
implies that it cannot be solved exactly in time O(poly(n, d)) un-
less P = NP. This does not rule out that there could be an algorithm
with runtime sayO(ddn). For studying the dependence between n
and d, we use parameterized complexity theory [19, 32], which
is a generalization of classical one-dimensional complexity theory.
This has been shown beneficial for the analysis of evolutionary al-
gorithms in [28, 35]. We use the dimension d as a parameter. Then
a problem is called fixed-parameter-tractable (FPT) if there is an al-
gorithm with runtimeO(f(d) poly(n)) for an arbitrary function f .
The parameterized analog of NP is the class W[1]. The textbook
example for a W[1]-complete problem is the clique problem, which
asks for the existence of a clique of size d in an n-vertex graph.

It is known that KMP is W[1]-hard [15] by a reduction from the
clique problem to KMP. As there is a parameterized reduction from
KMP to HYP [10], also HYP is W[1]-hard. This implies that there
is no algorithm for HYP with runtime f(d) poly(n) for any func-
tion f unless FPT = W[1]. In order to obtain better lower bounds,
we need stronger complexity assumptions. The exponential time
hypothesis (ETH) [24, 29] states that 3-SAT cannot be solved in
subexponential time in the worst case, which implies P 6= NP. ETH
is generally believed and commonly used to prove stronger lower
bounds. Assuming ETH, there is no f(d)no(d) time algorithm for
the clique problem [16]. Therefore, under the same assumption
there is no algorithm for HYP with runtime no(d).

For even more precise lower bounds, we have to look more
closely at the reductions of Chan [15] and Bringmann [10]. Chan
[15] showed that if KMP can be solved in time T (n, d), then we can
decide the clique problem in time O(T (O(n2), d)). Bringmann
[10] showed that if HYP can be solved in T (n, d), then KMP can
be solved in timeO(T (n, 2d)). The best time bound for the clique
problem is O(nωdd/3e+(dmod 3)) [31] using fast matrix multipli-
cation, where ω < 2.3727 [39]. For large d this gives a runtime
of O(n0.7909 d) for clique. Above reduction implies that an algo-
rithm with runtime O(n0.19 d) for HYP would also improve upon
the very classical clique problem. On the other hand, without al-
gebraic techniques like Strassen or Williams [39], the best time
bound for a purely combinatorial algorithm for the clique problem

is O(nd) (ignoring logarithmic factors). Hence, without algebraic
techniques, solving HYP in time o(nbd/2c/2) would also imply a
significant complexity-theoretic breakthrough and is therefore un-
likely. The following Table 2 gives a summary of the discussed
lower bounds.

Lower Bound Assumption
Ω(n logn) none

ω(poly(n, d)) P 6= NP
ω(f(d) poly(n)) ∀f FPT 6= W[1]

nΩ(d) exponential time hypothesis (ETH)
Ω(n0.19d) no improvement on clique problem

Ω(n0.24d)
no combinatorial improvement
on clique problem

Table 2: Lower bounds for the runtime of calculating the hypervolume
indicator (HYP) depending on the number of points n and the number
of dimensions d, ordered by the strength of the necessary complexity-
theoretic assumption.

Heuristics. Additionally to the aforementioned algorithms with
theoretically best known worst-case runtimes, there are various
heuristic improvements with and without worst-case guarantees.
A popular algorithm is Hypervolume by slicing objectives (HSO)
which was suggested independently by Zitzler [41] and Knowles
[27]. Its worst-case complexity is O(nd−1). Another experimen-
tally very competitive algorithm is the WFG algorithm of While
et al. [37] with worst-case complexity of O(2n). While the al-
gorithm of Overmars and Yap [33] has a much better worst-case
complexity, it performs slower in experiments than many heuris-
tics [37], especially on random inputs. We want to explain this
difference by studying the average-case complexity of HYP.

New Results: Average-case. Most experimental comparisons
of hypervolume algorithms use (at least as part of their dataset)
randomly-generated fronts (e.g. [7, 8, 13, 20, 37, 38]). As these
empirical observations do not always match with the theoretical
worst-case behavior, we want to study rigorously the average-case
complexity of the hypervolume indicator. As the average-case be-
havior depends on the probability distribution of the given point
set, we first have to model the random input.

ASSUMPTION 1. Our average-case model assumes that all
n points are chosen independently and uniformly (i.i.d.) at random
on a d-dimensional simplex ∆d.

This assumption is commonly used in experimental comparisons
of HYP algorithms (see references above). Moreover, it is also mo-
tivated by experimental comparisons of multi-objective evolution-
ary algorithms (MOEAs) based on the hypervolume like the multi-
objective covariance matrix adaptation evolution strategy (MO-
CMA-ES) [23], the SMS-EMOA [5], and variants of the indicator-
based evolutionary algorithm (IBEA) [42]. The reason why study-
ing the computational complexity of computing the hypervolume of
points on the d-dimensional simplex is interesting not only for HYP
as an indicator, but also for HYP-based MOEAs, is that the com-
monly used benchmark function DTLZ1 [18] constitutes of many
layers of d-dimensional simplices.

Recall from Table 2 that HYP is W[1]-hard, which implies that
there is no algorithm with FPT runtime in the worst case (unless
FPT = W[1]). Even stronger, assuming the exponential time hy-
pothesis, there is no algorithm with runtime no(d) in the worst case.

576



In stark contrast to this, we show that HYP is FPT on average.
Given any algorithm with a (reasonable) worst-case runtime, we
can translate it to an algorithm with similar worst-case runtime and
FPT average-case runtime with the following theorem.

THEOREM 1. Let A be an algorithm which computes HYP in
worst-case time O(nf(d)) for an arbitrary function f . Then we
can construct an algorithm B which computes HYP in worst-case
time O(nf(d)+1) and average-case time O(g(d)n+ dn2)) with

g(d) := df(d)e2f(d)+1d(d−1)f(d)+1.

The rest of the papers presents the proof of this theorem. Using
Theorem 1, we can now choose any algorithm from Table 1 and
get an algorithm with FPT average-case runtime. Plugging in the
algorithm of Yıldız and Suri [40] with f(d) = (d−1)/2 yields the
following simple corollary that shows that on average HYP can be
computed exactly in FPT runtime.

THEOREM 2. HYP can be solved on average in time
O(dd

2/2 n+ dn2) for d > 3.

Note that for any constant dimension d, Theorem 2 gives an algo-
rithm with average-case runtime O(n2) for HYP. Theorem 2 also
shows that while HYP is W[1]-hard in the worst case, its compu-
tational complexity drops to FPT in the average case. This is the
first result proving that HYP is asymptotically easier in the average
case. It gives a theoretical explanation why many HYP algorithms
(especially WFG [37]) perform much better on average than their
theoretical worst-case runtime predicts.

We want to point out that the study of parameterized average-
case complexity has been initiated by Müller [30]. What comes
closest to our result is that the worst-case W[1]-hard problem
clique has proven to be FPT on average for Erdős-Rényi random
graphs [21] and inhomogeneous random graphs [22].

2. PRELIMINARIES
For a point x ∈ Rd we write xi for its i-th component. For

x, y ∈ Rd we say that x is dominated by y, or x � y, if xi 6 yi
for all dimensions i. We write x < y if xi < yi for all i.

For a finite point set P ⊂ Rd and a reference point r ∈ Rd the
hypervolume HYP(P ) is defined as

HYP(P ) = VOL({y ∈ Rd | ∃x ∈ P : r � y � x}),

where VOL is the usual Lebesgue measure. In this paper we set
r = (0, . . . , 0) for convenience (as translations do not change the
hypervolume) and assume that P ⊂ Rd>0. Moreover, we define the
contribution of a point x ∈ Rd>0 to a point set P ⊂ Rd>0 (with
x 6∈ P ) as

CONP (x) := HYP(P ∪ {x})− HYP(P ).

For x ∈ Rd>0 we define the spanned box Bx as

Bx := [0, x1]× . . .× [0, xd].

Note that x and Bx are equivalent objects, and many of the above
notions can easily be expressed in terms of Bx: We have x � y
iff Bx ⊆ By , and we have HYP(P ) = VOL(

⋃
x∈P Bx). Further-

more, for x, y ∈ Rd>0 we define x∩ y as the point in Rd>0 with i-th
coordinate

(x ∩ y)i = min{xi, yi}.

Then Bx∩y = Bx ∩By , which explains the notation “x ∩ y”.

In this paper we consider hypervolume computation in the av-
erage case, when the point set P consists of n uniformly random
points from the standard simplex

∆ = ∆d :=
{

(x1, . . . , xd) ∈ Rd>0

∣∣ ∑
i

xi = 1
}
.

3. THE ALGORITHM
In this section we describe algorithm B which is constructed

in Theorem 1. The general layout of algorithm B is as follows.
Given a point set P , for each point x ∈ P we compute its con-
tribution CONP\{x}(x) and then delete x from P . Summing
up all these contributions, we get the overall hypervolume of P .
More precisely, if P = {x(1), . . . , x(n)}, and letting Pi :=

{x(i+1), . . . , x(n)}, we sum up CONPi(x
(i)) for i = 1, . . . , n.

Pseudocode 1: Overview of Algorithm B

Input: P = {x(1), . . . , x(n)}

1 Let Pi := {x(i+1), . . . , x(n)}
2 H ← 0
3 for i← 1 to n do
4 H ←H + CONPi(x

(i)).

5 Return H

It remains to give an algorithm that, given a point set P and a
point x 6∈ P , computes the contribution CONP (x). For this part
of algorithm B a running example is depicted in Figure 1. Observe
that the domain contributed by x to P is contained in the boxBx =
[0, x1]× . . .× [0, xd]. Recall that x∩ y is defined as the point with
i-th coordinate min{xi, yi}. We do not change the contribution
CONP (x) by replacing any point y ∈ P by y ∩ x, since inside Bx
the points y and y ∩ x dominate the same set of points. In other
words, considering the point set

P ∩ x := {y ∩ x | y ∈ P},

we have

CONP (x) = CONP∩x(x),

see Figure 1b.
We note that the set P ∩ x can, in general, contain dominated

points, even if P does not. In fact, we will show that the expected
number of non-dominated points in P ∩ x is bounded by dO(d) for
random points on the simplex, which can be much smaller than n.

Without loss of generality we can assume that x is not dominated
by any point in P ; this is certainly true for points on the simplex
and otherwise we can first delete all dominated points. Consider
the points that are larger than x in all but one dimension,

Qi = Qi(x, P ) := {y ∈ P | yj > xj for all j 6= i},

and define

zi = zi(x, P ) := max{yi | y ∈ Qi},

or zi = 0, if this set is empty. This defines a bounding box
B(z, x) = [z1, x1]× . . .× [zd, xd], which contains the domain that
is contributed by x to P (since every point in the spaceBx\B(z, x)
is dominated by one of the points defining z). In particular, any
point y ∈ P with yi < zi for some i is dominated in P ∩ x, as
y ∩ x is contained in Bx \ B(z, x). This allows to simplify the
problem as follows. First, we can translate every point by −z, so
that z is translated to (0, . . . , 0), while the contribution of x (trans-
lated to x − z) is still contained in Rd>0. After that, we can delete

577



(a) Algorithm B computes the contribution of a point x (shaded box) to
the remaining point set P (white boxes).

(b) This figure shows x (shaded box) and P ∩ x (white boxes). Note
that the contribution of x to P ∩ x is the same as its contribution
to P . Also note that P ∩ x has dominated points, while P did not.

(c) This shows the constructed subproblem Ix,P (white boxes) and
point x (shaded box). Only two boxes remain that influence the con-
tribution of x.

Figure 1: For computing a contribution CONP (x), algorithm B first sim-
plifies the instance in two steps as shown in this figure.

every point that now has a negative or zero coordinate, as such a
point does not influence the hypervolume in Rd>0. This yields the
instance

I = Ix,P := {(y ∩ x)− z | y ∈ P, y > z(x, P )},

where “>” means greater in all coordinates, see Figure 1c. By the
above arguments, we have CONI(x− z) = CONP (x). Note that
x− z dominates any point in I , so that we have

CONI(x− z) = HYP(I ∪ {x− z})− HYP(I)

= HYP({x− z})− HYP(I).

Since HYP({x − z}) =
∏d
i=1(xi − zi) is trivial, we only have

to solve the subinstance HYP(Ix,P ), which we do using any algo-
rithm A with worst-case runtime O(nf(d)). The overall algorithm
for computing a contribution is shown in Pseudocode 2.

Pseudocode 2: Computing a contribution CONP (x)

Input: x ∈ Rd>0, P ⊂ Rd>0

1 Compute the lower coordinates of the bounding box:
2 zi = max{yi | y ∈ P, yj > xj for all j 6= i} (or 0, if this set

is empty).
3 Compute the subinstance
Ix,P = {(y ∩ x)− z | y ∈ P, y > z}

4 Compute HYP(Ix,P ) using algorithm A
5 HYP({x− z}) =

∏d
i=1(xi − zi)

6 Return HYP({x− z})− HYP(Ix,P ).

We remark that there are two differences between algorithm B
and the WFG algorithm: First, the latter directly computes the non-
dominated points in P ∩x, while algorithm B computes an approx-
imation of this using the bounding box B(z, x). Second, WFG
solves each subproblem recursively, while algorithm B resorts to a
worst-case algorithm A for the subproblems.

4. RUNTIME ANALYSIS
First note that the worst-case runtime of algorithm B is at most
O(nf(d)+1), since it uses n calls to algorithm A that has worst-case
runtime O(nf(d)).

For the average-case runtime, observe that one can check in time
Θ(d) whether a point y ∈ P belongs to any of the sets Qi, and
even to which one. Thus, the point z can be computed by a linear
scan over all points in P , and the set Ix,P can be computed by
a second linear scan. Over all i = 1, . . . , n, this sums up to a
runtime of Θ(dn2), explaining the second term of Theorem 1. The
remaining runtime stems from algorithm A computing the n sub-
instances Ii := Ix(i),Pi

. Recall that the runtime of algorithm A is
O(nf(d)). Then clearly the runtime of the overall algorithm is

O(dn2 +

n∑
i=1

|Ii|f(d)). (1)

Hence, we can bound the expected runtime of algorithm B by in-
vestigating Ex[|Ix,P |f(d)] for random points on a simplex, which
we do in the following lemma.

LEMMA 3. Let k ∈ R>0, let x, x(1), . . . , x(n) be uniformly
i.i.d. points on the simplex ∆d, and set P := {x(1), . . . , x(n)}.
Then we have

Ex[|Ix,P |k] 6 2dke2k+1dk(d−1)+1.

578



Plugging this into equation (1) immediately yields Theorem 1.
Note that for f(d) = O(d) the bound in the above lemma can be
simplified to dO(d2). In the next section we prove Lemma 3.

5. PROOF OF LEMMA 3
In this section, let x, x(1), . . . , x(n) be uniformly i.i.d. points on

the simplex ∆ = ∆d and set P = {x(1), . . . , x(n)}.
We split the proof of Lemma 3 as follows. First, we reduce the

case of real numbers k to the case of integral k. After that, in
Section 5.2 we prove Lemma 3 for k being an integer.

5.1 Real Exponents
Let k ∈ R>0 and K := dke. Assume that we know that

Lemma 3 holds for K, i.e.,

Ex[|Ix,P |K ] 6 2K2K+1dK(d−1)+1. (2)

By Jensen’s inequality we know that for a positive random variable
X and 0 6 α 6 1 we have

Ex[Xα] 6 Ex[X]α.

Using this with X = |Ix,P |K and α = k/K yields

Ex[|Ix,P |k] 6 Ex[|Ix,P |K ]k/K

(2)

6 (2K2K+1dK(d−1)+1)k/K

6 2K2k+1dk(d−1)+1,

which proves Lemma 3 for k, as K = dke. Hence, we reduced the
proof of Lemma 3 to the case of k ∈ N.

5.2 Integral Exponents
In the remainder of this section we can assume that k ∈ N.

Algorithm B first computes the lower end point z = z(x, P ) of
the bounding box containing x’s contribution. Note that instead
of sampling x, x(1), . . . , x(n) in this order, we can generate (x, P )
by first sampling x uniformly from the simplex, then sampling z
with the right distribution conditioned on x, and then sample the
remaining points x(1), . . . , x(n) conditioned on x and z. In order
to analyze |Ix,P | in this way, we first have to understand the dis-
tribution of z conditioned on x, and then the distribution of |Ix,P |
conditioned on x and z. Together, this yields an expression for
|Ix,P | that we can further analyze.

We first proof three lemmas that lay the foundations for the above
approach.

LEMMA 4. Let x′ ∈ ∆. Conditioned on x = x′, we have for
any z′ ∈ Bx

Pr[z � z′ | x = x′] =
(

1−
d∑
i=1

(x′i − z′i)d−1
)n
.

Proof. Consider for 1 6 i 6 d the set

Si := {y ∈ ∆ | yi > z′i and yj > x′j for all j 6= i},

depicted as the dark shaded regions in Figure 2. Recall the defini-
tion of zi as max{yi | y ∈ P, yj > xj for all j 6= i} or, if this set
is empty, zi = 0. The event z � z′ means that for each dimension
i we have zi 6 z′i, i.e., that there is no point y ∈ P in Si. Note
in Figure 2 that these regions are smaller simplices inside ∆. In-
deed, consider for y ∈ ∆ the point ŷ defined by ŷi := yi − z′i and

Figure 2: This figure shows the simplex ∆3, a point x (the center point)
and a point set P (all other points). Our algorithm to compute CONP (x)
first constructs the point z. The points defining z are the ones incident
to the dark shaded regions. Note that the dark shaded regions are free
of points (by definition of z). The points that end up in the subproblem
Ix,P are the points contained in the light shaded regions.

ŷj := yj − x′j for j 6= i. Then y is contained in Si iff ŷ lies in the
set{

(a1 . . . , ad) ∈ Rd>0

∣∣∣ ∑
j

aj = 1− z′i −
∑
j 6=i

x′j , ai 6= 0
}
.

Note that for a uniformly random point in ∆ the probability of
falling in the above set is the same as the probability of falling
in the following simplex, as yi = z′i (or ai = 0) happens with
probability 0:

(1− z′i −
∑
j 6=i

x′j)∆ = (x′i − z′i)∆,

i.e., the simplex with sidelength x′i − z′i. Note that the relative
volume of (x′i − z′i)∆ in ∆ is (x′i − z′i)d−1 (since ∆ is a (d− 1)-
dimensional object). Thus, the probability of a uniformly random
point on the simplex to fall into one of the sets Si is

d∑
i=1

(x′i − z′i)d−1,

and the probability of n points not to fall into one of the Si is

(
1−

d∑
i=1

(x′i − z′i)d−1
)n
.

Since this is equal to the probability of the event z � z′ (condi-
tioned on x = x′), this finishes the proof.

Now that we know the distribution of z, let x and z be fixed.
Then we can show that |Ix,P | is stochastically dominated by a bi-
nomial random variable Bin(n, p) for some probability p, |Ix,P | �
Bin(n, p), as shown by the following lemma.

LEMMA 5. Let x′ ∈ ∆, z′ ∈ Bx′ . Conditioned on x = x′ and
z = z′, we have

|Ix,P | � Bin(n, p),

579



where

p =
( d∑
i=1

x′i − z′i
)d−1

.

In particular, for k ∈ N we have

Ex[|Ix,P |k | x = x′, z = z′] 6 Ex[Bin(n, p)k].

Proof. Conditioned on x = x′ and z = z′ we want to estimate
the distribution of |Ix,P |, the number of points in P that strictly
dominate z. Note that by specifying z we have already fixed up to
d points, namely the ones that define the zi. There are less than n
points left that may be counted in |Ix,P |. By definition of z, none
of these points may be contained in one of the sets

Si := {y ∈ ∆ | yi > z′i and yj > x′j for all j 6= i},

1 6 i 6 d, depicted as the dark shaded regions in Figure 2. Thus,
they are uniformly i.i.d. over the set ∆ \

⋃d
i=1 Si. Such a point

belongs to Ix,P only if it is contained in the set

T := {y ∈ ∆ | yi > zi for all 1 6 i 6 d}.

Note that T is a simplex of sidelength 1−
∑
j zj inside ∆. Indeed,

a point y is in T iff y − z is in the simplex{
(a1, . . . , ad) ∈ Rd>0

∣∣∣ ∑
j

aj = 1−
∑
j

zj
}
.

Since such a simplex is a (d − 1)-dimensional object, the relative
volume of T in ∆ is (1−

∑
j zj)

d−1. Similarly, one can show that
the relative volume of Si in ∆ is (xi−zi)d−1. Thus, the probability
of a uniform point in ∆ \

⋃d
i=1 Si to lie in T \

⋃d
i=1 Si is

(1−
∑
i zi)

d−1 −
∑
i(xi − zi)

d−1

1−
∑
i(xi − zi)d−1

.

Using b−a
c−a 6 b

c
for a 6 b 6 c, we can bound this probability by

6
(

1−
∑
i

zi
)d−1

=
(∑

i

xi − zi
)d−1

= p.

Since the points are i.i.d., we get that |Ix,P | is stochastically domi-
nated by Bin(n, p).

Since both random variables are positive, the second claim fol-
lows directly from the stochastic dominance.

Furthermore, we have to bound the moments of binomial random
variables.

LEMMA 6. For any n, k ∈ N and p ∈ [0, 1] we have

Ex[Bin(n, p)k] 6 kk+1(1 + (np)k).

Proof. We can write Bin(n, p) as a sum of n i.i.d. Bernoulli ran-
dom variables Xi with Pr[Xi = 1] = p,

Bin(n, p) =

n∑
i=1

Xi.

This yields

Ex[Bin(n, p)k] = Ex
[( n∑

i=1

Xi
)k]

=
∑

j1,...,jk∈[n]

Ex[Xj1 · · ·Xjk ].

For a particular summand Ex[Xj1 · · ·Xjk ], let i1 < . . . < i`
be the different values taken by j1, . . . , jk, i.e., {i1, . . . , i`} =

{j1, . . . , jk}. Since the Xi are indicator random variables, and
since they are i.i.d., we have

Ex[Xj1 · · ·Xjk ] = Ex[Xi1 · · ·Xi` ] = Ex[X1 · · ·X`] = p`.

Now, how many summands Ex[Xj1 · · ·Xjk ] reduce to p` as above?
There are

(
n
l

)
6 n` ways to choose i1, . . . , i`. We roughly bound

the number of ways to distribute i1, . . . , i` over j1, . . . , jk by `k 6
kk. This yields

Ex[Bin(n, p)k] 6
k∑
`=1

kk(np)`

6 kk+1 max{1, (np)k} 6 kk+1(1 + (np)k).

Recall that we want to analyze Ex[|Ix,P |k] by first choosing x
uniformly at random in the simplex, then sampling z according to
the right distribution conditioned on x, and analyze |Ix,P | condi-
tioned on x and z. In other words, we want to compute

Ex[|Ix,P |k] =

∫
∆

Pr[x = x′]

∫
Bx′

Pr[z = z′ | x = x′]

· Ex[|Ix,P |k | x = x′, z = z′]dz′dx′.

Lemma 5 allows to bound

Ex[|Ix,P |k | x = x′, z = z′] 6 Ex[Bin(n, p)k | x = x′, z = z′],

where

p :=
(∑

i

x′i − z′i
)d−1

. (3)

Applying Lemma 6, this can be simplified to

Ex[|Ix,P |k | x = x′, z = z′] 6 kk+1(1 + (np)k).

Note that the summand kk · 1 on the above right hand side simply
contributes kk+1 to the overall integral. The remainder is

kk+1nk
∫

∆

Pr[x = x′]

∫
Bx′

Pr[z = z′ | x = x′] · pkdz′dx′,

where p is dependent on x and z as given by equation (3). We
bound

pk 6 dk(d−1) max
i
{(x′i − z′i)d−1}k

6 dk(d−1)
∑
i

(x′i − z′i)k(d−1),

and get, conditioned on x = x′,∫
Bx′

Pr[z = z′ | x = x′]pkdz′

6 dk(d−1)
d∑
i=1

∫
Bx′

Pr[z = z′ | x = x′](x′i − z′i)k(d−1)dz′.

Since the inner part of this integral is independent of zj , j 6= i, this
simplifies to

dk(d−1)
d∑
i=1

∫ x′i

0

Pr[zi = z′i | x = x′](x′i − z′i)k(d−1)dz′i.

We can calculate this term, since we know the distribution of z
(and, thus, zi) by Lemma 4.

580



LEMMA 7. Let x′ ∈ ∆. Conditioned on x = x′, we have∫ x′i

0

Pr[zi = z′i | x = x′](x′i − z′i)k(d−1)dz′i 6
kk

nk
.

This allows to simplify∫
Bx′

Pr[z = z′ | x = x′]pkdz′ 6 dk(d−1) · d k
k

nk
.

In total, this yields the bound

Ex[|Ix,P |k] 6 kk+1

(
1 + nk

∫
∆

Pr[x = x′]dk(d−1)d
kk

nk
dx′
)

6 2k2k+1dk(d−1)+1 = dO(d2),

finishing the proof of Lemma 3.

Proof of Lemma 7. Partial integration yields∫ x′i

0

Pr[zi = z′i | x = x′](x′i − z′i)k(d−1)dz′i

=
[

Pr[zi 6 z′i | x = x′](x′i − z′i)k(d−1)
]x′i

0

+ k(d− 1)

∫ x′i

0

Pr[zi 6 z′i | x = x′](x′i − z′i)k(d−1)−1dz′i.

Note that the first summand of this is at most 0, since plugging
in x′i for z′i it evaluates to 0 and plugging in 0 it evaluates to a
non-negative value. On the other hand, by Lemma 4 the second
summand equals

k(d− 1)

∫ x′i

0

(1− (x′i − z′i)d−1)n(x′i − z′i)k(d−1)−1dz′i.

Substituting u := (x′i−z′i)d−1 with du
dz′i

= −(d−1)(x′i−z′i)d−2,
this is equal to

k

∫ x′d−1
i

0

(1− u)nuk−1du

6 k

∫ 1

0

(1− u)nuk−1du.

The right hand side is known, as the integrand is a Bernstein poly-
nomial, and evaluates to

k
n!(k − 1)!

(n+ k)!
6
kk

nk
,

finishing the proof.

6. CONCLUSION
We have shown that HYP can be solved on average in time
O(dd

2/2 n+ dn2) while nΩ(d) is necessary in the worst-case (as-
suming the exponential time hypothesis). This proves an exponen-
tial gap between the average and worst-case complexity of HYP. As
the algorithmic framework presented in Section 3 is very similar to
the WFG algorithm [37] (cf. the discussion at the end of Section 3),
this gives a theoretical explanation why its empirical runtime on
random instances is much better than its worst-case bound.

Traditionally the best asymptotic runtime was obtained by the
algorithm of Overmars and Yap [33]. However, this algorithm de-
viates significantly from the two step structure of an Algorithm B
as described in Theorem 1 and Pseudocode 1. In fact, the algorithm
of Overmars and Yap might not only have runtime Ω(nd/2 log(n))

in the worst-case, but also on average. This explains why vari-
ous hypervolume heuristics were able to outperform the algorithm
of Overmars and Yap on random instances. Though Theorem 2
presents an algorithm with average-case runtimeO(n2) for all con-
stant d, the involved constants can get very large. We do not expect
to get much tighter bounds for Algorithm B (cf. Pseudocode 1) to
improve Theorem 1. However, other algorithmic approaches might
yield smaller constants like 2O(d) or logO(d) n, or possibly even a
polynomial time average-case algorithm. Russo and Francisco [34]
recently published a draft where they announce an algorithm with
average-case runtime O(dn1.1 logd(n)). Unfortunately, neither a
description of the algorithm nor a proof is currently available. It
would be interesting whether there are algorithms which avoid the
expensive test for domination and reach an average case runtime of
O(n) for any fixed d. We hope that such an algorithm can be found
that is fast, both practically and theoretically in the average case.

References
[1] J. Bader, K. Deb, and E. Zitzler. Faster hypervolume-based

search using Monte Carlo sampling. In Multiple Criteria
Decision Making for Sustainable Energy and Transportation
Systems (MCDM ’10), Vol. 636 of Lecture Notes in
Economics and Mathematical Systems, pp. 313–326.
Springer-Verlag, 2010.

[2] J. L. Bentley. Algorithms for Klee’s rectangle problems,
1977. Department of Computer Science, Carnegie Mellon
University, Unpublished notes.

[3] N. Beume. S-Metric calculation by considering dominated
hypervolume as Klee’s measure problem. Evolutionary
Computation, 17:477–492, 2009.

[4] N. Beume and G. Rudolph. Faster S-metric calculation by
considering dominated hypervolume as Klee’s measure
problem. In Proc. Second International Conference on
Computational Intelligence (IASTED ’06), pp. 233–238,
2006.

[5] N. Beume, B. Naujoks, and M. T. M. Emmerich.
SMS-EMOA: Multiobjective selection based on dominated
hypervolume. European Journal of Operational Research,
181:1653–1669, 2007.

[6] N. Beume, C. M. Fonseca, M. López-Ibáñez, L. Paquete, and
J. Vahrenhold. On the complexity of computing the
hypervolume indicator. IEEE Trans. Evolutionary
Computation, 13:1075–1082, 2009.

[7] L. Bradstreet, R. L. While, and L. Barone. A fast
incremental hypervolume algorithm. IEEE Trans.
Evolutionary Computation, 12:714–723, 2008.

[8] L. Bradstreet, L. While, and L. Barone. A fast
many-objective hypervolume algorithm using iterated
incremental calculations. In Proc. Congress on Evolutionary
Computation (CEC ’10), pp. 1–8, 2010.

[9] K. Bringmann. An improved algorithm for Klee’s measure
problem on fat boxes. Computational Geometry: Theory and
Applications, 45:225–233, 2012.

[10] K. Bringmann. Bringing order to special cases of Klee’s
measure problem, 2013. Draft available at arXiv:1301.7154.

581

http://arxiv.org/abs/1301.7154


[11] K. Bringmann and T. Friedrich. Approximating the volume
of unions and intersections of high-dimensional geometric
objects. Computational Geometry: Theory and Applications,
43:601–610, 2010.

[12] K. Bringmann and T. Friedrich. An efficient algorithm for
computing hypervolume contributions. Evolutionary
Computation, 18:383–402, 2010.

[13] K. Bringmann and T. Friedrich. Approximating the least
hypervolume contributor: NP-hard in general, but fast in
practice. Theoretical Computer Science, 425:104–116, 2012.

[14] K. Bringmann and T. Friedrich. Approximation quality of
the hypervolume indicator. Artificial Intelligence, 195:
265–290, 2013.

[15] T. M. Chan. A (slightly) faster algorithm for Klee’s measure
problem. Computational Geometry: Theory and
Applications, 43:243 – 250, 2010.

[16] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong
computational lower bounds via parameterized complexity.
Journal of Computer and System Sciences, 72:1346 – 1367,
2006.

[17] R. Chiong, T. Weise, and Z. Michalewicz, editors. Variants
of Evolutionary Algorithms for Real-World Applications.
Springer, 2012.

[18] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable
multi-objective optimization test problems. In Proc.
Congress on Evolutionary Computation (CEC ’02), pp.
825–830. IEEE Press, 2002.

[19] R. Downey and M. Fellows. Parameterized Complexity.
Springer-Verlag, 1999.

[20] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An
improved dimension-sweep algorithm for the hypervolume
indicator. In Proc. IEEE Congress on Evolutionary
Computation (CEC ’06), pp. 1157–1163, 2006.

[21] N. Fountoulakis, T. Friedrich, and D. Hermelin. On the
average-case complexity of parameterized clique.
Unpublished manuscript.

[22] T. Friedrich and A. Krohmer. Parameterized clique on
scale-free networks. In Proc. 23rd International Symposium
on Algorithms and Computation (ISAAC ’12), Vol. 7676 of
LNCS, pp. 659–668. Springer, 2012.

[23] C. Igel, N. Hansen, and S. Roth. Covariance matrix
adaptation for multi-objective optimization. Evolutionary
Computation, 15:1–28, 2007.

[24] R. Impagliazzo and R. Paturi. The complexity of k-SAT. In
Proc. 14th IEEE Conference on Computational Complexity
(CCC), pp. 237–240, 1999.

[25] H. Ishibuchi, N. Tsukamoto, Y. Sakane, and Y. Nojima.
Indicator-based evolutionary algorithm with hypervolume
approximation by achievement scalarizing functions. In
Proc. 12th Annual Conference on Genetic and Evolutionary
Computation Conference (GECCO ’10), pp. 527–534. ACM
Press, 2010.

[26] V. Klee. Can the measure of
⋃

[ai, bi] be computed in less
than O(n logn) steps? American Mathematical Monthly,
84:284–285, 1977.

[27] J. D. Knowles. Local-Search and Hybrid Evolutionary
Algorithms for Pareto Optimization. PhD thesis, Department
of Computer Science, University of Reading, UK, 2002.

[28] S. Kratsch and F. Neumann. Fixed-parameter evolutionary
algorithms and the vertex cover problem. In Proc. 11th
Annual Conference on Genetic and Evolutionary
Computation (GECCO ’09), pp. 293–300. ACM Press, 2009.

[29] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds
based on the exponential time hypothesis. Bulletin of the
EATCS, 105:41–72, 2011.

[30] M. Müller. Parameterized Randomization. PhD thesis,
Albert-Ludwigs-Universität Freiburg im Breisgau, 2008.

[31] J. Nešetřil and S. Poljak. On the complexity of the subgraph
problem. Commen. Math. Univ. Carol., 26:415–419, 1985.

[32] R. Niedermeier. Invitation to Fixed-Parameter Algorithms.
Oxford University Press, 2006.

[33] M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s
measure problem. SIAM J. Comput., 20:1034–1045, 1991.

[34] L. M. S. Russo and A. P. Francisco. Quick hypervolume,
2012. Draft available at arXiv:1207.4598.

[35] A. M. Sutton and F. Neumann. A parameterized runtime
analysis of evolutionary algorithms for the euclidean
traveling salesperson problem. In Proc. 26th AAAI
Conference on Artificial Intelligence (AAAI), 2012.

[36] J. van Leeuwen and D. Wood. The measure problem for
rectangular ranges in d-space. J. Algorithms, 2:282–300,
1981.

[37] L. While, L. Bradstreet, and L. Barone. A fast way of
calculating exact hypervolumes. IEEE Trans. Evolutionary
Computation, 16:86 –95, 2012.

[38] R. L. While, P. Hingston, L. Barone, and S. Huband. A faster
algorithm for calculating hypervolume. IEEE Trans.
Evolutionary Computation, 10:29–38, 2006.

[39] V. V. Williams. Multiplying matrices faster than
Coppersmith-Winograd. In Proc. 44th Symposium on Theory
of Computing (STOC ’12), pp. 887–898. ACM Press, 2012.

[40] H. Yıldız and S. Suri. On Klee’s measure problem for
grounded boxes. In Proc. ACM Symposium on
Computational Geometry (SoCG ’12), pp. 111–120, 2012.

[41] E. Zitzler. Hypervolume metric calculation, 2001. Computer
Engineering and Networks Laboratory (TIK), ETH Zürich,
Switzerland, see
ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c.

[42] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In Proc. 8th International Conference
on Parallel Problem Solving from Nature (PPSN VIII), Vol.
3242 of LNCS, pp. 832–842. Springer, 2004.

[43] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. Grunert da Fonseca. Performance assessment of
multiobjective optimizers: An analysis and review. IEEE
Trans. Evolutionary Computation, 7:117–132, 2003.

582

http://arxiv.org/abs/1207.4598

	Introduction
	Preliminaries
	The Algorithm
	Runtime Analysis
	Proof of Lemma 3
	Real Exponents
	Integral Exponents

	Conclusion



