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ABSTRACT
This paper introduces a new component based model that
makes it relatively simple to prove that certain types of land-
scapes are elementary. We use the model to reconstruct
proofs for the Traveling Salesman Problem, Graph Coloring
and Min-Cut Graph Partitioning. The same model is then
used to efficiently compute the average values over particular
partial neighborhoods for these same problems. For Graph
Coloring and Min-Cut Graph Partitioning, this computation
can be used to focus search on those moves that are most
likely to yield an improving move, ignoring moves that can-
not yield an improving move. Let x be a candidate solution
with objective function value f(x). The mean value of the
objective function over the entire landscape is denoted f̄ .
Normally in an elementary landscape one can only be sure
that a neighborhood includes an improving move (assum-
ing minimization) if f(x) > f̄ . However, by computing the
expected value of an appropriate partial neighborhood it is
sometimes possible to know that an improving move exists
in the partial neighborhood even when f(x) < f̄ .

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
Fitness Landscapes, Elementary Landscapes

1. INTRODUCTION
The fitness landscape for a combinatorial problem instance

is defined by a triple (X, N, f). The objective function f
maps f : X 7→ R and without loss of generality we can
define f so as either to be minimized or maximized over X.
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We define a neighborhood operator as a function N that
maps candidate solutions in X to subsets of X (elements of
the power set) N : X 7→ P(x). Given a candidate solution
x ∈ X, N(x) is the set of points reachable from x in one
application of the neighborhood operator.

Thus the triple (X, N, f) defines a set of candidate solu-
tions X, the neighborhood operator N(x) which imposes a
connective structure on the candidate solution points, and
the objective function f assigns a value to each point. The
fitness landscape provides a natural framework for the anal-
ysis of local search.

Elementary landscapes are a special class of fitness land-
scapes. One way to define elementary landscapes are as
fitness landscapes where the neighborhood operator can be
characterized by a wave equation. For all elementary land-
scapes it is possible to compute f̄ , the average solution eval-
uation over the entire search space. The wave equation also
makes it possible to compute avg{f(y)}y∈N(x), the average
value of the fitness function f evaluated over all of the neigh-
bors of x:

avg{f(y)}
y∈N(x)

=
1

|N(x)|
X

y∈N(x)

f(y)

Other properties also follow. Assuming f(x) 6= f̄ then

f(x) < avg{f(y)}
y∈N(x)

< f̄ or f(x) > avg{f(y)}
y∈N(x)

> f̄.

This means that all maxima are greater than f̄ and all min-
ima are less than f̄ [2]. Finally, f(x) = f̄ ⇐⇒ f(x) =
avg{f(y)}y∈N(x).

Grover [5] originally made the observation that there ex-
ists neighborhoods for the Traveling Salesman Problem, Graph
Coloring, Min-Cut Graph Partitioning, Weight Partition, as
well as Not-all-equal-Sat (NAES) that can be modeled using
the wave equation.

This wave equation holds when the objective function f
is an eigenfunction of the Laplacian of the graph induced by
the neighborhood operator. Stadler [7] named this class of
problems “elementary landscapes.” Barnes et al. [1] have ex-
tended the notion of elementary landscapes to non-symmetric
and non-regular neighborhoods. It can also be shown that
a landscape with a symmetric neighborhood operator is el-
ementary if and only the time series generated by a random
walk on the landscape is an AR(1) process [8] [4].

For all of the elementary landscapes we have examined,
the “components” that make up a solution x can be decom-
posed. In the Traveling Salesman Problem and Min-Cut
Graph Partitioning and Graph Coloring, the components



are the weights of a lower triangular cost matrix. In Graph
Coloring the cost is usually 1 for each conflicted edge. In
each of these problems, a uniform sample over all compo-
nents in the cost matrix is used in the computation of f̄ .
This is because over all points in the search space, all com-
ponents in the cost matrix are uniformly sampled.

For any incumbent search point x, the cost matrix can
be separated into those components that contribute to f(x)
and those components that do not contribute to f(x). For
example, for a tour x in the Traveling Salesman Problem
the cost matrix can be broken down into those weights that
contribute to f(x) and those weights that do not contribute
to f(x). In Graph Coloring, the components are the set of
edges and these can be decomposed into all those edges in x
with cost 1 that contribute to f(x) and the edges with cost
0 that do not contribute to f(x). We can also characterize a
neighbor y ∈ N(x) in terms of the components that is shares
with x and the components in y that are not found in x.

Let C represent the set of components that make up the
cost function. If the components of C are uniformly sampled
when every point in the search space is sampled, then f̄ is
always computable.

For the wave equation to hold, the components in x and
the components in N(x) must include all of the components
in C. By a slight abuse of notation, we will let (C−x) refer
to components in C that do not appear in solution x or oth-
erwise do not contribute to f(x). When transforming x to
some y ∈ N(x) we subtract a subset of components from x
and add new components from (C−x) to the remaining com-
ponents of x to create y. All components in x are uniformly
sampled for potential removal from x. All components in
(C−x) are uniformly sampled in the set of neighbors N(x).
We show that any local search operator that obeys these
principles induces an elementary landscape.

This breakdown of components into those that contribute
to f(x) and those that do not contribute to f(x) makes it
easy and intuitive to understand many of the fundamental
properties that characterize elementary landscapes.

This paper also introduces partial neighborhoods of ele-
mentary landscapes. Local search methods do not necessar-
ily evaluate all neighbors. For example, on the Traveling
Salesman Problem some edges are so costly that they can
never be part of the globally optimal solution. When one ex-
amines the neighborhood that induces an elementary land-
scape for the Graph Coloring problem or the Min-Cut Graph
Partitioning problem, some neighborhood includes moves
that can be predetermined to be non-improving moves: any
reasonable search would eliminate these moves.

Let N ′(x) be a partial neighborhood such that N ′(x) ⊂
N(x). The landscape that is induced is generally not elemen-
tary. However, it is possible to define N ′(x) dynamically in
such a way so that it is possible to compute avg{f(y)}y∈N′(x).

This information can be valuable because avg{f(y)}y∈N′(x)

can be computed much more efficiently than actually evalu-
ating all the points in N ′(x).

To summarize, this paper presents a component based
model that can be used to show that certain landscapes
are elementary landscapes. The paper then focuses on the
analysis of partial neighborhoods of elementary landscapes.
We construct examples of partial neighborhoods denoted
by N ′(x) that do not induce an elementary landscape, but
where it is still possible to compute avg{f(y)}y∈N′(x).

2. ELEMENTARY LANDSCAPES
Let X be a set of solutions, f : X → R be a fitness func-

tion, and N : X → P(x) be a neighborhood operator. We
can represent the neighborhood operator by its adjacency
matrix

Axy =

(
1 if y ∈ N(x)

0 otherwise

The degree matrix D is defined as the diagonal matrix

Dxy =

(
|N(x)| if x = y

0 otherwise

Since a discrete function over the set of candidate solutions
g : X → R can be characterized as a vector in R|X|, any
|X| × |X| matrix can be used as a linear operator on that
function. The Laplacian operator is defined as

∆ = A−DI

The Laplacian acts on the fitness function f as follows

∆f =

2
66664

P
y∈N(x1) (f(y)− f(x1))P
y∈N(x2) (f(y)− f(x2))

...P
y∈N(x|X|)

`
f(y)− f(x|X|)

´

3
77775

The element of this matrix-vector product corresponding to
point x can thus be written as

∆f(x) =
X

y∈N(x)

(f(y)− f(x)) (1)

In this paper, we will restrict our attention to regular neigh-
borhoods, where |N(x)| = d for a constant d for all x ∈ X.
When a neighborhood is regular, ∆ = A− dI.

Stadler defines the class of elementary landscapes where
the fitness function f is an eigenfunction of the Laplacian [8]
(up to an additive constant). In particular, Grover’s wave
equation can be written as

∆f + k(f − f̄) = 0

where f̄ is the mean fitness value in X and k is a positive
constant over the search space. It is easy to see that

∆f(x) = kf̄ − kf(x)

We can use this equation to express the average fitness across
the neighborhood of any given candidate solution x. We de-
note this average fitness as

avg{f(y)}
y∈N(x)

=
1

d

X

y∈N(x)

f(y)

=
1

d

0
@ X

y∈N(x)

f(y)− f(x)

1
A+ f(x)

=
1

d
∆f(x) + f(x) by Eq. (1)

= f(x) +
k

d
(f̄ − f(x))

Thus, on an elementary landscape, the average fitness over
the neighborhood of x can be completely characterized by
an expression involving only the fitness of x, the average
fitness f̄ , and a constant factor.



2.1 A Component Based Model
We will construct a component based model that can be

used to characterize a neighborhood structure. To be more
specific, given a point x, and its evaluation f(x) and the
mean fitness over all the points in a search space denoted by
f̄ , we will compute avg{f(y)}y∈N(x).

The model looks at these calculations as a decomposition
of the components of the evaluation function. Looking at
landscapes in this manner makes it simpler to explore new
questions about elementary landscapes. In this model, the
neighborhood size is regular and denoted by d.

In order to have a component based model of an elemen-
tary landscape we need to define the set of components,
denoted by C, that are used to construct the cost function.
Intuitively, C is a collection of real or integer numbers; sub-
sets of C are used to compute the value of f(x) for a given
point x. There are also 3 ratios p1, p2 and p3 that are used
in the following equations.

f̄ = p3

X
c∈C

c and therefore
X
c∈C

c = 1/p3f̄

avg{f(y)}
y∈N(x)

= f(x)− p1f(x) + p2((
X
c∈C

c)− f(x))

= f(x)− p1f(x) + p2((1/p3f̄)− f(x))

where 0 < p1 < 1 is the proportion of components that
contribute to the evaluation of f(x) and that change when
a move is made; 0 < p2 < 1 is the proportion of components
in (C−x) that change when a move is made. Both p1 and p2

can be expressed relative to d, the size of the neighborhood.
Finally, 0 < p3 < 1 is the proportion of the total components
in C that contribute to the cost function for any randomly
chosen solution; p3 is independent of the neighborhood size.

Theorem 1. If p1, p2 and p3 can be defined for any reg-
ular landscape such that the evaluation function can be de-
composed into components where p1 = α/d and p2 = β/d
and

f̄ = p3

X
c∈C

c =
β

α + β

X
c∈C

c

then the landscape is elementary.

Proof.

avg{f(y)}
y∈N(x)

= f(x)− p1f(x) + p2((
X
c∈C

c)− f(x))

= f(x)− p1f(x) + p2((1/p3f̄)− f(x))

= f(x)− (p1 + p2)f(x) + (p2/p3)f̄

= f(x)− α + β

d
f(x) +

β/d

β/(α + β)
f̄

= f(x) +
α + β

d
(f̄ − f(x))

= f(x) +
k

d
(f̄ − f(x))

Note that p1, p2 and p3 must be constants and

p1 + p2 = p2/p3 = k/d

where d is the size of the neighborhood and k is a constant.
Thus when any two proportions are known, the third is au-
tomatically determined.

Because it is convenient to reason about all of the com-
ponents that make up the cost function, as well as those
components that play a role in the evaluation of f(x) and it
neighbors, it is useful to note that

d · avg{f(y)}
y∈N(x)

= d · f(x) + k(f̄ − f(x))

= (d− k)f(x) + kp3(
X
c∈C

c)

= (d− k)f(x) + β(
X
c∈C

c)

= (d− k + β)f(x) + β(
X
c∈C

c− f(x))

This computation also can be expressed as a 2-dimensional
matrix M with d rows and |C| columns. Each row represents
a neighbor. Each column represents a component. The mi,j

element of M stores the cost of the jth component if that
component appears in neighbor i; otherwise mi,j = 0.

This view takes into account what happens to all compo-
nents that contribute to the evaluation function as opposed
to what happens on average or in expectation. We can also
select particular rows of this matrix to create a partial neigh-
borhood.

2.2 The Traveling Salesman Problem
We start with the Traveling Salesman Problem (TSP) as

an example. The neighborhood is generated using 2-opt.
Grover’s original paper proved that an “exchange operator”
induces an elementary landscape. Under the exchange op-
erator city i exchanges positions with city j over all pairs
of cities. Stadler showed that an “inversion operator” which
is a superset of the 2-opt operator induces an elementary
landscape.

Let E denote the set of all edges between cities (vertices)
in the graph. Let wi,j be the weight (or distance) associ-
ated with edge ei,j . This set of weights make up the set of
components C, where |C| = |E| = n(n − 1)/2. Note that
this counts the number of weights in a lower triangular cost
matrix for the TSP.

We first compute f̄ and p3. Since there are n edges in a
given solution, it follows that

p3 =
n

|C| =
n

n(n− 1)/2
=

2

n− 1

f̄ = p3

X
c∈C

=
2

n− 1

X
ei,j∈E

wi,j

where
P

ei,j∈E wi,j counts each edge only once.

To compute p1 note there are n edges in any solution, and
2-opt changes exactly 2 edges. Therefore

p1 = 2/n and p1 =
2(n− 3)/2

n(n− 3)/2
=

α

d

To compute p2 note there are |C| − n edges in C with
the edges in f(x) removed, and 2 new edges are picked from
these edges. Therefore



p2 =
2

n(n− 1)/2− n
=

2

n(n− 3)/2
=

β

d

Adding the terms to the component model yields:

avg{f(y)}
y∈N(x)

= f(x)− p1f(x) + p2(1/p3f̄ − f(x))

= f(x)− 2

n
f(x) +

2

n(n− 3)/2
[(

n− 1

2
f̄)− f(x)]

= f(x) +
n− 1

n(n− 3)/2
(f̄ − f(x))

where k = n−1 and the neighborhood size is d = n(n−3)/2.
It should be noted that most of the work on elementary

landscapes has focused on the Traveling Salesman Problem
(TSP). This includes a proof that the symmetric Travel-
ing Salesman Problem is elementary under 2-exchange [5],
and 2-opt and 3-exchange, [2]. The antisymmetric Travel-
ing Salesman Problem under 2-opt and 2-exchange [8] is also
elementary, as is the weakly-symmetric Traveling Salesman
Problem [6], and variants of the multiple Traveling Salesman
Problem [3].

2.3 Min-Cut Graph Partitioning
Let G denote a graph with weighted edges and n vertices

(where n is even). The Min-Cut Graph Partitioning problem
is to find a partition of the vertices in G into a left hand
side (LHS) and a right hand side (RHS) such that |LHS| =
|RHS| = n/2 and the weighted sum of the edges connecting
vertices in the LHS and RHS partitions is minimized.

The neighborhood operator will exchange every vertex in
the LHS with every vertex in the RHS. There are n/2 ver-
tices in the LHS and n/2 in the right hand side. Thus there
are (n/2)2 = n2/4 neighbors.

Let E denote the set of all edges in graph G. Let wi,j

be the weight (or distance) associated with edge ei,j ∈ E.
This set of weights make up the set of components C, where
|C| = |E| = n(n− 1)/2.

Consider an arbitrary edge ei,j . Grover notes that if ver-
tex i is one side, then the fraction of total configurations

where j is on the other side is n/2
n−1

. To state this more
clearly, each vertex v is connected to n − 1 other vertices;
if v ∈ LHS then there are (n/2) edges from v to edges in
RHS. We impose an order on the vertices and weights and
only count them once, so that we obtain:

p3 =
n/2

n− 1
=

n2/4

|C|

f̄ = p3

X
c∈C

c =
n

2(n− 1)

X
ei,j∈E

wi,j

To compute p1 let edge el,r denote an edge with vertices
l ∈ LHS and r ∈ RHS which contributes to f(x). We can
move l to the RHS and keep r in the RHS and move any
of the other (n/2 − 1) vertices in the RHS to the LHS. By
symmetry we can move r to the LHS and keep l in the
LHS in (n/2 − 1) ways. Combining these moves, there are
2(n/2 − 1) ways to remove the contribution of weight wl,r

from the current solution f(x). Since there are n2/4 total
neighbors:

p1 =
2(n/2− 1)

n2/4
=

n− 2

n2/4
=

α

d

Let ea,b be an edge from C that does not contribute to
f(x). This means vertices a and b must be on the same side
of the partition. The weight associated with this edge adds
to the cost function if vertex a changes sides or if vertex b
changes sides. There are n/2 vertices on the opposite side
with which each can exchange positions. Thus there are
n/2 + n/2 = n ways that an arbitrary edge that does not
contribute to f(x) can contribute its weight to the cost of a
neighbor of x. Since there are n2/4 total neighbors:

p2 =
n

n2/4
=

β

d

Adding these terms to the component model yields:

avg{f(y)}
y∈N(x)

= f(x)− p1f(x) + p2(1/p3(f̄ − f(x)))

= f(x)− n− 2

n2/4
f(x) +

n

n2/4

»
2(n− 1)

n
f̄ − f(x)

–

= f(x) +
2(n− 1)

n2/4
(f̄ − f(x))

where k = 2(n− 1) and the neighborhood size is d = n2/4.
Grover simplifies this to obtain:

avg{f(y)}
y∈N(x)

= f(x) +
8(n− 1)

n2
(f̄ − f(x))

This construction is significantly simpler than Grover’s
original proof (which also contains a notation error in equa-
tion 1.1.3).

2.4 Graph Coloring
Let G be a graph, V the set of vertices, and E the set of

edges. The graph coloring problem involves assigning one of
r number of colors to the vertices of a graph. Given r colors,
the goal is to find a coloring that minimizes the number of
conflicts. A conflict exists if two adjacent vertices have the
same color. The evaluation function f(x) simply counts how
many adjacent vertices have the same color. This means that
every edge either 1) contributes 1 to the cost function if the
vertices connected by that edge have the same color, or 2)
contributes 0 to the cost function if the vertices connected by
the edge have a different color. Here the set of components
C corresponds directly to the set of edges; this time, each
component has a “weight” contribution of exactly 1.

Edges that have a cost of 1 contribute to f(x). The cost
function f(x) counts the number of edges in solution x that
have cost 1. Thus, for solution x there are |E| − f(x) edges
that have a cost of 0; these are the edges that are in C and
do not contribute to f(x). Note that

P
c∈C c = |E|.

The neighborhood operator is to recolor a vertex in the
graph. Since there are |V | vertices, and each vertex can
be recolored in r − 1 ways, the size of the neighborhood is
|V |(r − 1). The average cost over all solutions will be

f̄ = 1/r
X
c∈C

c = |E|/r

This is because for every edge, once one vertex is colored,
the probability the second vertex associated with an edge is
colored so as to yield conflict is 1/r = p3.

Consider two vertices v1 and v2 that are the same color
and connected by an edge. There are r − 1 colors that can



be assigned to either v1 or v2 that will remove the conflict.
Thus, there are 2(r− 1) assignments removing each conflict
and it follows that:

p1 = 2(r − 1)/ (|V |(r − 1)) =
α

d

When a conflict does not exist, there are exactly two ways
for the conflict to be generated. Given a vertex v1 and v2

that are different colors and connected by an edge, either v1

is colored the same as v2, or v2 is colored the same as v1.
There are only 2 ways this can happen and it follows that:

p2 = 2/ (|V |(r − 1)) =
β

d

Adding the terms to the component model yields:

avg{f(y)}
y∈N(x)

= f(x)− p1f(x) + p2(1/p3f̄ − f(x))

= f(x)− 2(r−1)
|V |(r−1)

f(x) + 2
|V |(r−1)

(rf̄ − f(x))

= f(x) +
2r

|V |(r − 1)
(f̄ − f(x))

This final form satisfies Grover’s wave equation where k =
2r and neighborhood size d = |V |(r − 1).

3. PARTIAL NEIGHBORHOODS WITHIN
ELEMENTARY LANDSCAPES

Can an elementary landscape exist within a larger elemen-
tary landscape? In particular, can a partial neighborhood of
an elementary landscape also be an elementary landscape?
The answer seems to be yes, but not usually. We have found
fascinating examples for small fixed size problems where an
elementary landscape could be broken into subspaces, each
of which is elementary. However, we have not found this to
be true for arbitrary size problems.

But we can also ask another question. Given a partial
neighborhood N ′(x) specific to point x, can we calculate
avg{f(y)}y∈N′(x)? When we restrict moves (and therefore

neighbors), the components that make up the neighbors of
x changes. One advantage to our component based model
is that it can be applied locally even when the landscape is
not elementary.

3.1 A Partial Neighborhood
for the TSP

As an illustration of partial neighborhoods, we define the
“Diagonal-2-opt” neighborhood for the Traveling Salesman
Problem. This neighborhood requires that the number of
cities be even. It should be noted that this neighborhood
is (perhaps) the most artificial of the partial neighborhoods
that are presented in this paper. But it has some special
properties that are informative.

Let D(x) be the set of diagonal edges relative to x. As-
suming n (the number of cities) is even, |D(x)| = n/2. For
a given solution x these edges are defined as follows:

evi,(vi+(n/2))
∈ D(x) ∀i = 1...n/2

We also compute the sum D(x) over the corresponding set
of weights.

Figure 1: A graph on six vertices with tour edges
(solid) and interior diagonal edges (dashed).

D(x) =

n/2X
i=1

wvi,(vi+(n/2))

A graph with six vertices along with the tour edges and
diagonal edges is illustrated in figure 1. We will define a
partial neighborhood around x such that only diagonal-2-
opt moves are allowed that cut adjacent edges and cause
diagonal edges to become adjacent edges in the neighboring
solutions: thus, all of the solutions are made up of edges in
solution x unioned with D(x).

The sum of all the edges that make up the diagonal neigh-
borhood with respect to x is given by f(x) + D(x). This
defines a local version of C′ particular to x. We can also po-
tentially define a local average, denoted by f̄x that depends
on x and the corresponding partial diagonal-2-opt neighbor-
hood. In some partial neighborhoods, f̄x and p3 are not well
defined. However, in this case we can show that f̄x and p3

are well defined for a specific TSP instance. Therefore:

f̄x =
n

n + (n/2)
(f(x) + D(x)) =

f(x) + D(x)

1.5

where p3 = n
|C′| = n

n+(n/2)
= 2/3. This implies that D(x) =

1.5f̄x−f(x). Let avg{f(y)}y∈N′(x) denote the average value

of the diagonal neighbors of x. In this case, p1 = 2/n does
not change, but p2 now selects 2 edges from D which has
n/2 elements. Thus p2 = 2

n/2
= 4/n. Adding the terms to

the component model yields:

avg{f(y)}
y∈N′(x)

= f(x)− p1f(x) + p2(1/p3f̄x − f(x))

= f(x)− 2

n
f(x) +

2

n/2
(1.5f̄x − f(x))

= f(x) +
3

n/2
(f̄x − f(x))

The final expression is similar in form to Grover’s wave
equation with k = 3 and neighborhood size d’ = n/2. How-
ever, does this define an elementary landscape?

It turns out that a TSP with 6 cites is a special case.
Each diagonal neighborhood is closed under diagonal-2-opt
and defines a subspace of 6 tours. The entire search space
contains 5!/2 = 60 tours. The entire search space is an
elementary landscape under 2-opt, but it also breaks into 10
distinct subspaces each of which is an elementary landscape
under diagonal-2-opt. Each subspace contains 6 tours, where



RR B G
V1

V2 V3 V4

Figure 2: A Graph Coloring problem with vertices
V = {v1, v2, v3, v4}.

these 6 tours define a group closed under the diagonal-2-opt
neighbors. Since the search space contains only 60 tours,
these observations can be proven by enumeration.

When n > 6, the above equation still holds for computing
the average of the partial neighborhood, but f̄x now is a
local average that depends on x. Therefore, the resulting
subspace and landscape is not elementary. Nevertheless, we
can still locally compute avg{f(y)}y∈N′(x) for the partial
neighborhood defined by the diagonal-2-opt neighborhood.

We have also examined the diagonal-2-opt neighborhood
for instances where n > 6. In general, there appears to
be a group closure over a subset of permutations that are
reachable by diagonal-2-opt moves. But in general, these
are not elementary landscapes.

It should also be pointed out that a local average can be
computed over other partial neighborhoods of the Traveling
Salesman Problem. These neighborhoods must be selected
so that p2 can be meaningfully defined with respect to C′,
but the other information needed to construct the local av-
erage are trivial to derive.

3.2 Partial Neighborhoods for
Graph Coloring

For Graph Coloring we explore a slightly different question
with regard to partial neighborhoods.

When searching the Graph Coloring neighborhood, cer-
tain moves do not appear to be reasonable if we are inter-
ested in removing conflicts. (As we will show, the same is
true for Min-Cut Graph Partitioning.)

A Graph Coloring problem is given in figure 2 where

V = {v1, v2, v3, v4} and E = {e1,2, e2,3, e3,4, e1,3, e2,4}.
In figure 2 vertices v1 and v2 are the same color R, v3 is
color B, and v4 is color G. The only edge in conflict is e1,2.
Changing the color of v1 and v2 can remove the conflict,
so recoloring v1 and v2 are reasonable neighborhood moves.
But changing the color of v3 and v4 is useless: recoloring
these vertices cannot remove existing conflicts, but will gen-
erate new conflicts.

Let Degree(v) be a vector that stores the degree of every
vertex v ∈ |V |. Let Qx be the set of vertices such that if
edge ei,j contributes cost to f(x) then vertices i and j are
members of set Qx.

Theorem 2. For the partial neighborhood denoted by N ′(x)
such that only vertices in Qx are recolored, the partial neigh-
bor for the Graph Coloring problem is given by:

avg{f(y)}
y∈N′(x)

= f(x) +
[(
P

v∈Qx
Degree(v))− (2r)f(x)]

|Qx|(r − 1)

Proof. We first consider the full component based model
for Graph Coloring.

avg{f(y)}
y∈N(x)

= f(x)− 2(r − 1)

|V |(r − 1)
f(x) +

2

|V |(r − 1)
(|E| − f(x))

Only vertices in Qx will be recolored, thus, |V | changes to
|Qx| in the equations. The number of ways a vertex can
remove conflicts (α) does not change, therefore:

p1 =
2(r − 1)

|Qx|(r − 1)

We are interested in the subset of the edges in E that
change in the partial neighborhood. That is, we can re-
express

rf̄ = |E| = |Ex + Ez|
where Ex are the edges we wish to keep in our partial neigh-
borhood and Ez are the edges we wish to delete.

For all edges ei,j that contributes cost to f(x) the vertices i
and j are members of set Qx. Ex therefore includes all edges
that are incident on the vertices in Qx. We can determine
which elements are in Ex as a by-product of evaluating f(x).
Recall Degree(v) is a vector that stores the degree of every
vertex v in graph G. It follows that:

|Ex| =
X

v∈Qx

Degree(v)− f(x)

The −f(x) term is due to the fact that by counting the
degree of each vertex the sum includes the edges that con-
tribute to f(x) twice. The remainder of the edges that touch
a vertex involved in a conflict are members of Ex that are
counted only once.

By construction, (|Ex|−f(x)) counts the number of edges
such that ei,j where i ∈ Qx and j /∈ Qx or j ∈ Qx and
i /∈ Qx. Note this counts edges in the partial neighborhood
that do not contribute to f(x). In the full neighborhood,
these edges have 2 vertices that are recolored, and β = 2.
In this partial neighborhood, these edges have only 1 vertex
that is recolored; thus there is only 1 way to generate a
conflict, and β = 1.

p2 =
1

|Qx|(r − 1)

We now apply the component model to the partial neigh-
borhood.

avg{f(y)}
y∈N′(x)

= f(x)− 2(r−1)
|Qx|(r−1)

f(x) + 1
|Qx|(r−1)

(|Ex| − f(x))

= f(x) + |Ex|−f(x)−2(r−1)f(x)
|Qx|(r−1)

= f(x) +
(
P

v∈Qx
Degree(v))−2f(x)−2(r−1)f(x)

|Qx|(r−1)

= f(x) +
[(
P

v∈Qx
Degree(v))−(2r)f(x)]

|Qx|(r−1)

This partial neighborhood is not elementary because it
is locally defined with respect to x. Nevertheless the av-
erage value of all of the neighbors in the dynamically de-
fined neighborhood can be cheaply computed exploiting a
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Figure 3: A Min-Cut Graph Partitioning problem
with LHS = {v1, v2, v3, v4} and RHS = {v5, v6, v7, v8}.

decomposition of the full Graph Coloring elementary land-
scape neighborhood. Since this partial neighbor removes all
conflicts, but does not consider moves that cannot remove
conflicts:

avg{f(y)}
y∈N′(x)

≤ avg{f(y)}
y∈N(x)

Also note that
X

v∈Qx

Degree(v) < r + 2f(x) ⇐⇒ avg{f(y)}
y∈N′(x)

< f(x)

and thus under these conditions an improving move is guar-
anteed to exist.

Empirically, we have observed cases where

avg{f(y)}
y∈N′(x)

< f(x) < avg{f(y)}
y∈N(x)

< f̄

We have also observed cases where avg{f(y)}y∈N′(x) < f(x)
when the global optimum is contained in the partial neigh-
borhood N ′(x). Thus, calculations about partial neighbor-
hoods can point to improving moves even when f(x) is al-
ready near optimal (but not locally optimal) solution.

Also note that as f(x) gets smaller, there are fewer con-
flicts and the it becomes cheaper to compute

X
v∈Qx

Degree(v).

3.3 Partial Neighborhoods
for Min-Cut Graph Partitioning

Figure 3 shows a Min-Cut Graph Partitioning problem
with 8 vertices and a partition where LHS = {v1, v2, v3, v4}
and RHS = {v5, v6, v7, v8}.

There are moves that are included in the neighborhood
for the Min-Cut Graph Partitioning problem that also are
ineffective. Without loss of generality, assume vertex v1 is
the LHS partition and has no edges that connect to the RHS
partition; furthermore, assume vertex v2 is in the RHS and
has no edges that connect to the LHS partition. Then when
swapping vertices in the LHS and RHS, it is unreasonable
to swap the pair v1 and v2 because this cannot reduce the
cost function relative to the current solution x, but instead
must always increase the cost function.

Thus, the calculation of a partial neighborhood for Min-
Cut Graph Partition can be constructed where

avg{f(y)}
y∈N′(x)

≤ avg{f(y)}
y∈N(x)

Let nL count the number of vertices in the LHS which
have no edges that connect to the right hand size. Let nR

count the number of vertices in the RHS which have no edges
that connect to the right hand size.

We again first start with the full neighbor component
model for Min-Cut Graph Partitioning.

avg{f(y)}
y∈N(x)

= f(x)− p1f(x) + p2(1/p3f̄ − f(x))

Note:
1

p3
f̄ =

X
ei,j∈E

wi,j

avg{f(y)}
y∈N(x)

= f(x)− n− 2

n2/4
f(x) +

n

n2/4
[(
X

ei,j∈E

wi,j)− f(x)]

The partial neighborhood removes swaps that cannot yield
an improving move. Let d′ denote the size of the new neigh-
bor, and let W ′ represent the sum of all the weights that are
eliminated when these moves are excluded.

Theorem 3. A partial neighborhood N ′(x) exists for the
Min-Cut Graph Partitioning problems such that

avg{f(y)}
y∈N′(x)

= f(x)− 2n− 2

d′
f(x) +

n(
P

ei,j∈E wi,j)−W ′

d′

where d′ = n2/4− |nL||nr|

and W ′ = |nL|
X

i∈V,x∈nR

w(i, x) + |nR|
X

i∈V,x∈nL

w(i, x)

Proof. We start with the equations for the full neigh-
borhood.

avg{f(y)}
y∈N(x)

= f(x)− n− 2

n2/4
f(x) +

n

n2/4

2
4(
X

ei,j∈E

wi,j)− f(x)

3
5

= f(x)− 2n− 2

n2/4
f(x) +

n

n2/4

X
ei,j∈E

wi,j

The edges that are accounted for and removed by the term

((n− 2)/d′)f(x)

are all edges that cross from the LHS to the RHS and con-
tribute to the cost function, and thus the α = (n− 2) is not
affected by vertices in nL or nR.

Each move involving edges that currently do not con-
tribute to the cost function causes (n/2) + (n/2) = n = β
new edges to contribute to the cost function. This does not
change under the partial neighborhood: if a move does not
occur the associated weights simply do not contribute to the
cost function.

We next view this as the aggregate over all the neighbors.



d · avg{f(y)}
y∈N(x)

= (d− k)f(x) + β(
X
c∈C

c)

= (d− (2n− 2))f(x) + n
X

ei,j∈E

wi,j

We next explicitly remove those edge weights that are re-
moved from the neighborhood when the vertices in nL and
nR do not swap positions. We also change the number of
neighbors to d′. The equation still reduces to the wave equa-
tion for the full neighborhood for Min-Cut Graph Partition-
ing when d′ = d and W ′ = 0.

d′ · avg{f(y)}
y∈N′(x)

= (d′ − (2n− 2))f(x) + n

0
@ X

ei,j∈E

wi,j

1
A−W ′

Note this is equivalent to:

avg{f(y)}
y∈N′(x)

= f(x)− 2n− 2

d′
f(x) +

n(
P

ei,j∈E wi,j)−W ′

d′

To complete the proof, we define d′ and W ′. Consider
l ∈ nL and r ∈ nR. A move that swaps the vertices (l, r)
can never reduce the cost function, it can only increase the
cost function. Thus all such moves can be removed from
the neighborhood. There are |nL||nR| moves that an be
eliminated. Therefore:

d′ = (n/2)2 − |nL||nR|
W ′ is the sum of all the weights that are no longer con-

tribute to the partial neighborhood. Every move that swaps
vertices (l, r) with l ∈ nL and r ∈ nR is eliminated.

For each vertex in nR this removes |nL| moves. For each
vertex in nL this removes |nR| moves. Thus the weights
associated with edges incident on these vertices must be re-
move |nL| or |nR| times. Therefore

W ′ = |nL|
X

i∈V,x∈nR

w(i, x) + |nR|
X

i∈V,x∈nL

w(i, x)

Both d′ and W ′ are conveniently calculated as a side ef-
fect of the evaluation of f(x). A vector Weights(x) can be
precomputed that stores the sum of the weights associated
with edges incident on vertex x.

The information needed to compute W ′ is found in the
vector Weights(i) since

If x ∈ nL then
X
i∈V

w(i, x) = Weights(x)

If x ∈ nR then
X
i∈V

w(i, x) = Weights(x)

Therefore

W ′ = |nL|
X

x∈nR

Weights(x) + |nR|
X

x∈nL

Weights(x)

Thus, using this method, the partial neighborhood aver-
age avg{f(y)}y∈N′(x) is inexpensive to compute relative to

the cost of exhaustively evaluating the entire partial neigh-
borhood to calculate the average fitness. The partial neigh-
borhood average also costs less to compute when there are
fewer vertices involved in conflicts.

4. CONCLUSIONS
This paper has employed a component based model to

reconstruct elementary landscape proofs for a number of
combinatorial optimization problems. Furthermore, this pa-
per has examined ways in which partial neighborhoods can
be evaluated by exploiting knowledge about the elementary
landscape structures of the Traveling Salesman Problem,
Graph Coloring Problem, and Min-Cut Graph Partitioning
Problem. These results are important because neighbor-
hoods which restrict search to the most promising moves are
more likely to be used by modern local search algorithms.
Future work includes extending the component-based model
to other landscapes.
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