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ABSTRACT
Particle Swarm Optimization (PSO) is a population-based
optimization method in which search points employ a co-
operative strategy to move toward one another. In this
paper we show that PSO appears to work well on “single-
funnel” optimization functions. On more complex optimiza-
tion problems, PSO tends to converge too quickly and then
fail to make further progress. We contend that most bench-
marks for PSO have classically been demonstrated on single-
funnel functions. However, in practice, optimization tasks
are more complex and possess higher problem dimensional-
ity. We present empirical results that support our conjecture
that PSO performs well on single-funnel functions but tends
to stagnate on more complicated landscapes.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization—Global Optimization

General Terms
Performance

Keywords
Optimization, Swarm Intelligence, Evolution Strategies

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a population-based

optimization method where search points employ a coopera-
tive strategy to move toward one another. There have been
few theoretical studies of PSO, and the theory that does
exist suggests that PSO appears to be estimating a simple
gradient based on local sampling.

PSO has primarily been tested on functions that we can
describe as having a “single-funnel” topology. Intuitively,
a “funnel” is a global trend on a landscape that consists
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of a basin of clustered local optima. A single-funnel func-
tion may be multimodal, but has a distinct overall bowl-like
structure. A search method with a reasonable probability of
moving between adjacent local optima should be able to lo-
cate the global optimum of a single-funnel function. On the
other hand, a function that contains more than one funnel
can pose a problem to strategies that rely on local infor-
mation by deceptively leading the search into a suboptimal
basin.

PSO has shown promising results on single-funnel bench-
marks. In practice however, many real world optimization
tasks are more complex. Real problems often possess higher
dimensionality than is commonly used in benchmarks and
usually little is known of the search space structure or the
location of the global solution.

In this paper we present and test the following three hy-
potheses:

1. On multi-funnel functions, PSO will tend to
converge to the funnel that contains the ma-
jority of the swarm at initialization. PSO’s de-
pendency on cooperative search suggests an inherent
bias toward exploration within the span of the swarm.

2. PSO may exhibit more of a tendency to stag-
nate on multi-funnel functions than an algo-
rithm that uses more explorative informed mu-
tation, or even uninformed mutation. PSO moves
through the search space using a position update rule
that Shi and Eberhart have called “mutation with a
conscience” [19, 20]. That is, mutation uses informa-
tion about the locations of other population members
to adapt direction and step size. However, this posi-
tion update rule creates a tendency to move toward
points that have already been discovered.

3. PSO might struggle with real-world functions
that possess landscapes of greater complexity
than those of single-funnel benchmarks. This is
suggested by the previous two hypotheses.

We will test the first hypothesis by sectioning a known
multi-funnel function into funnel regions and examining re-
gion convergence controlling for region initialization. We
will test the second and third hypotheses by comparing
PSO’s performance with two algorithms. The first uses in-
formed mutation and the second uses uninformed mutation
but employs recombination. We test each algorithm on a
suite consisting of single-funnel, multi-funnel, and real world
problems.

75



Rastrigin (single−funnel) Schwefel (double−funnel)

Figure 1: One dimensional function graphs.

The remainder of this paper is organized as follows. We
present a more formal definition of funnels. We give a brief
background of the PSO algorithm and discuss some issues
with benchmarking and behavior. We introduce an algo-
rithm that, like PSO, updates its motion through the search
space intelligently. We then discuss a suite of test functions
and real world problems on which we test our hypotheses.
Finally we present empirical results.

2. FUNNELS
Often, real-world problems possess idiosyncratic features

that can present challenges to traditional optimization strate-
gies. For instance, Wales [21] suggests that many optimiza-
tion problems in computational biology are difficult because
there are multiple local optima that form distinct, spatially
separate clusters in the search space. Assuming a search al-
gorithm has the ability to move between local optima, the
number of local optima may not be important [17]. Instead,
the more difficult problems will be those with spatially dis-
tinct clusters of local optima. If the best local optima are
all clustered together, a function is said to have one funnel.
If there are spatially distinct clusters of local optima, the
function is said to have multiple funnels.

There is no single precise definition of a funnel. Doye et
al. suggest that a funnel “consists of a collection of local
minima such that all monotonically descending sequences
of successively adjacent local minima entering the funnel
terminate at the funnel bottom” [4]. In a later work, Doye
discusses funnels in the context of the atomic cluster with
the smallest potential energy for a given set of molecules; a
funnel is characterized by “a set of downhill pathways that
converge on a single low-energy structure or set of closely
related low-energy structures” [5].

Locatelli et al. offer a slightly different view of funnels
[14]. We construct a graph G where each vertex represents a
local optimum in the search space. Let V represent the set of
local optima and vi ∈ V denote a particular local optimum.
Let the function d(vi, vj) denote the distance between points
vi and vj in the space and the function f(vi) denote the
fitness of point vi. There is a directed edge e(vi, vj) in G
for all vi, vj ∈ V such that d(vi, vj) < r and f(vi) > f(vj),
where r is a radius of influence.

A funnel bottom point is a node with no outgoing directed
edge. An example of this graph for the one dimensional Ras-
trigin and Schwefel functions is given in Figure 1. Locatelli’s
method requires locating all the relevant local optima in the
search space and is dependent on choice of r.

3. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization was developed by Kennedy

and Eberhart [13] and was inspired by the social behavior

of artificial life programs. In PSO, a population of search
points called particles “fly” across the surface of the fitness
function. Information about promising regions of the func-
tion is shared over social channels, and particles update their
velocities in such a way to direct their motion toward other
particles in fitter regions and toward previously discovered
points.

On an n dimensional fitness function, each particle is de-
fined by two vectors in R

n: its position �x and velocity �v.
During each iteration of the algorithm, the following state
transition rule is applied:

�vt = χ (�vt−1 + r1φ1 (Pbst − �xt−1) + r2φ2 (Nbst − �xt−1))

�xt = �xt−1 + �vt

Here, χ is an inertial coefficient, and φ1 and φ2 are acceler-
ation constants. The variables r1 and r2 are drawn from a
random uniform distribution on [0, 1].

This state transition causes particles to update their ve-
locities to effect movement toward their “remembered best
position” (Pbst) and toward the fittest particle in their so-
ciometric neighborhood (Nbst). The acceleration constants
φ1 and φ2 are employed to control relative motion toward
other points.

In 1998 Angeline noted that generally PSO has fast early
convergence, but is slow to fine tune a solution [1]. The
PSO population tends to quickly cluster together on multi-
modal functions causing early stagnation. Shi and Eberhart
[20] attempt to correct this by using a self adaptive strategy
to adjust the inertia weights used by PSO. Attempting to
correct the same problem, Riget and Vesterstrøm [18] ap-
ply an attraction and repulsion mode that controls how the
particles interact depending on the diversity of the swarm.
Should the diversity fall below a predefined threshold, the
velocity transition rule is inverted and the particles begin
to repel each other. Later, if the diversity increases beyond
another threshold, the particles return to the original at-
tractive velocity rule.

Benchmarks and PSO
Historically, the performance of PSO has primarily been
demonstrated on a subset of fairly standard benchmark func-
tions. Most PSO literature [1, 20, 2, 8, 23, 12, 15] presents
empirical results on the sphere, Rastrigin, Rosenbrock, Schaf-
fer, and Griewank functions. Riget and Vesterstrøm [18]
also add Ackley’s function to the mix, but Ackley’s function
differs little from the other test functions. One can show
that the sphere, Rastrigin, Schaffer, Griewank, and Ack-
ley’s functions are all single-funnel functions with relatively
small distances between local optima.

In all of the single-funnel landscapes on which we have
seen PSO tested the global optimum is known and centered
at or near the origin. The cooperative behavior in PSO pro-
duces a tendency to fly toward other population members.
This is a result of the velocity update rule being a linear com-
bination of other positions in the cluster (including best-seen
points). Methods that use this kind of averaging to incor-
porate information from population members also exhibit a
tendency to perform best when the optimum lies near the
center of the initialization region, which is often the origin
[16]. If PSO is already roughly centered at initialization it
only needs to swarm in to find the global optimum. How-
ever, if the location of the optimum is not known (as is the
case in real-world applications), there is no guarantee that
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the initialization region will contain the optimum [1]. Mon-
son and Seppi [16] have demonstrated that several variants
of PSO perform poorly when the optimum is moved away
from the initialization center.

We base our first hypothesis on these results. On multi-
funnel functions, this vulnerability would also be exposed
if the initialization region did not contain or only partially
contained the funnel with the optimal solution.

4. COVARIANCE MATRIX ADAPTATION
We are interested in comparing PSO with an algorithm

that uses informed mutation based on local structural in-
formation, but does not directly bias its search motion to-
ward other individuals of the population. Covariance Matrix
Adaptation Evolution Strategy, or CMA-ES, is an evolution
strategy that adjusts mutation direction and step size based
on how the population is moving through the search space.

Typically evolution strategies maintain a population of μ
parents which produce λ offspring based on random muta-
tion distributions that center around the parents. In a (μ, λ)
strategy, each generation is chosen by selecting the μ best of
only the λ offspring. This differs from a (μ + λ) strategy in
which each generation is chosen from both parents and off-
spring. In both cases, the best μ members of the population
are selected.

In traditional evolution strategies, mutation distributions
are determined using a set of strategy parameters that are
encoded along with the object parameters on the chromo-
some that is being evolved.

CMA-ES calculates both step size as well as a rotation of
the search space which are used to guide the search. Step
size is determined in part heuristically. Information is col-
lected about the path (i.e., the sequence of sampled points)
that the search is generating. If the path is longer than ex-
pected (e.g., much longer than the distance that has been
traversed), the search steps are probably parallel and the
mutation strength should increase. If the path is shorter
than expected, the steps are likely anti-parallel and muta-
tion strength should decrease. The expected length under
random selection is simply the expected length of a random
normal vector (E||N(0, I)||). Hansen et al. [9] use the fol-
lowing approximation.

E||N(0, I)|| = χn =
√

n

„
1 − 1

4n
+ 1 − 1

21n2

«

Given this estimation, the strategy parameter defining the
global step size is updated as follows:

σg+1 = σg · exp
c

d

„ ||�pg+1|| − 1

χn

«

Here, d is the damping factor, whose default is 1.
CMA-ES also uses a covariance matrix to explicitly ro-

tate and scale the mutation distribution [10]. Hansen and
Ostermeier define the reproduction phase from generation g
to generation g + 1 as:

x
(g+1)
k = 〈x〉(g)

µ + σ(g)B(g)D(g)z
(g+1)
k

where z
(g+1)
k are randomly generated from an N(0, I) dis-

tribution. This creates a set of base points that are rotated
and scaled by the eigenvectors (B(g)) and the square root

of the eigenvalues (D(g)) of the covariance matrix C. The

single global step size σ(g) is calculated and is used to scale

the distribution. Finally, the points are translated to cen-

ter around 〈x〉(g)
µ , the mean of the μ best parents of the

population.
To compute covariance, CMA-ES uses a time dependent

portion of the path. The path updates after each generation

using a weighted sum of the current path, p
(g)
c , and a vector

that points from the mean of the μ best points in generation
g to the mean of the μ best points in generation g + 1. A
principle components analysis on the evolution path is used
to update the covariance matrix.

For larger populations, CMA-ES uses a rank-μ-update
that calculates the covariance of the μ best individuals

Z(g+1) =
1

μ

X
B(g)D(g)z

(g+1)
i (B(g)D(g)z

(g+1)
i )T

Assuming Z(g+1) is the covariance of the μ individuals, and
P(g+1) is the covariance of the path, the new covariance
matrix is

C(g+1) = (1 − ccv)C(g) + ccv

“
αcvP

(g+1) + (1 − αcv)Z(g+1)
”

where ccv and αcv are constants that weight the importance
of each input. This covariance matrix estimation allows
CMA-ES to evolve elliptical mutation distributions which
makes CMA-ES very efficient on poorly scaled unimodal
surfaces.

5. TEST FUNCTIONS
Hooker [11] has argued that the best forms of testing are

hypothesis driven. We have selected test problems that ad-
dress our hypotheses. The first set of functions are synthetic
with two single-funnel and two multi-funnel topologies. The
second set are two real-world problems with complicated
structures. The first real-world problem is a known multi-
funnel function and the second is a high dimensional “black-
box” optimization problem.

Synthetics
The two single-funnel functions are Griewank and Rastri-
gin. Both are popular benchmarks in the PSO literature.
Griewank is a bowl-shaped quadratic with cosine perturba-
tions:

f1(�x) =
1

4000

nX
i=1

x2
i −

nY
i=1

cos

„
xi√

i

«
+ 1

Similarly, Rastrigin is a cosine-modulated sphere function:

f2(�x) =
nX

i=1

(x2
i − 10 cos(2πxi) + 10)

The two multi-funnel functions are Schwefel and Rana.
Rana is defined as follows:

f3(�x) =

n−1X
i=1

frana(xi, xi+1)

where frana(x, y) = x sin α cos β+(y+1) cos α sin β with α =p| − x + y + 1| and β =
p|x + y + 1|. Schwefel is defined

as:

f4(�x) =
nX

i=1

“
−xi sin

“p
|xi|
””

In order to eliminate axis-parallel symmetry, we rotated
all test functions 20 degrees.
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Figure 2: The two lowest energy atomic Lennard-
Jones clusters with 38 atoms.

Lennard-Jones clusters
We selected Lennard-Jones cluster optimization to test per-
formance on a real-world problem with a multi-funnel topol-
ogy. The optimization of Lennard-Jones clusters involves
finding the atomic cluster with the smallest potential en-
ergy, based on the distance between all the molecules of the
cluster. The Lennard-Jones potential is

E =

NX
i<j

 „
1

rij

«12

−
„

1

rij

«6
!

where rij is the Euclidean distance between the centers of
atoms i and j, and N is the number of atoms in the clus-
ter. This equation defines the simple interactions between
the atoms which results in molecular clusters with compact
geometries [5].

The energy surface of the Lennard-Jones potential is highly
multimodal and the number of local optima grows with
problem size. The 38 atoms test problem is particularly
interesting because it has been shown to be more difficult
than larger clusters of size N = 60 [5]. The 38 atom test
problem has two very competitive solutions that have a dis-
tinctly different atomic structure [6] resulting in two distinct
clusters of local optima. Figure 2 shows the two most effec-
tive clusters of size N = 38.

Spacetrack scheduling
We selected a “black-box” parameter optimization variant of
the spacetrack scheduling problem to examine performance
on a second real application. The spacetrack scheduling
problem concerns the allocation of phased-array radar power
to tracking tasks in time. Radar operators are given predic-
tive data based on past observations that include positional
information (direction in which to steer the radar beam),
object range, and a set of time intervals during which the
target object is in transit through the visibility cone of the
radar.

Phased-array radars are able to steer their beam electron-
ically, and may track several objects simultaneously by in-
terleaving pulses within a given period of time. However, se-
lection of tracking times must be performed judiciously such
that system duty cycle constraints are not violated. Pulse
energy is correlated with pulse width in time, so objects that
are more distant may require longer pulses. This means that
the range of objects being simultaneously tracked affects the
number of interleaved tracking operations that can feasibly
occur.

The likelihood of a tracking task failure corresponds di-
rectly to its signal to noise ratio (SNR) which is a function
of its target object’s position with respect to the radar ar-

ray and changes as the target object moves through space.
Therefore, choosing tracking times to occur during inter-
vals of high SNR is desired to maximize the probability of
tracking success. However, duty cycle constraints make it
impossible to schedule all tasks during their peak SNR time
and track times must also be selected to produce feasible
resource usage.

Since the problem is oversubscribed, we apply a constraint
relaxation by allowing resource infeasibility. We pose the
problem as an instance of parameter optimization in which
we must find a set of tracking times that minimizes the
number of resource violations while maximizing total signal
to noise ratio.

For an n-task scheduling problem, a set of tracking times
is encoded as a vector �v in R

n. To prevent time-infeasible
schedules, we define a mapping F that maps vectors in R

n

to a set �s of feasible tracking times in the schedule.
That is, �si = F (�vi) for i = 1 . . . n. Where F is a feasibility

transformation defined as follows. Let

Wi = {(ai,1, bi,1), (ai,2, bi,2), . . . , (ai,|Wi|, bi,|Wi|)}
be the ordered set of visibility windows for the object corre-
sponding to track i. That is, an ordered pair (ai,j , bi,j) ∈ Wi

denotes the earliest tracking opportunity and the last track-
ing opportunity in window j for track i. Let V (i, j) be the
total number of possible start times (with a resolution of one
second) for track i before or during the jth visibility window.

In particular, V (i, j) =
Pj

k=1 ((bi,k − di) − ai,k)+1. The ith

component of the real vector �v is translated into a feasible
start time of the ith track in the following way. Let mi be the
minimum number such that V (i, mi) ≥ �vi mod V (i, |Wi|).
Then �si = F (�vi) = ami +(�vi mod V (i, |Wi|))−V (i, mi−1).
Note that we define V (i, 0) = 0.

Let SNRtotal denote the sum of the SNR quantities asso-
ciated with each track’s object at the assigned time in �s. Let
PENthres represent the number of times the SNR drops be-
low threshold for each task. Then the fitness f of a solution
is defined to be a quotient of penalty by total SNR.

f(�s) =
PEN(�s)

SNRtotal(�s)

where :

PEN(�s) =wfeas · PENfeas(�s) + wthres · PENthres(�s)

Here wfeas and wthres terms are weighting coefficients.
The idea is that better (lower) fitness solutions correspond

to more promising sets of start times: those with lower vio-
lations but higher likelihood of tracking success. The opti-
mization problem is to find a vector �v ∈ R

n that minimizes
f(F (�v)).

6. EMPIRICAL RESULTS

Does PSO tend to converge to the funnel that
contains the majority of the swarm at initializa-
tion?
We ran PSO on a two-dimensional non-rotated instance of
Schwefel: one of the multi-funnel problems. We designated
two regions for initialization. Region 1 consisted of a disk of
radius 400 around the funnel bottom at coordinates (421,-
303). Region 2 lies within a disk of radius 400 around an-
other funnel bottom at coordinates (421,421), which is the
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global optimum. We ran 1000 trials of the classical PSO al-
gorithm. In 500 of the trials we initialized 80% of the swarm
in region 1 and 20% in region 2. In the remaining 500 tri-
als we initialized 80% of the swarm in region 2 and 20% in
region 1. We performed this test three times controlling for
swarm size 10, 20, and 50. To measure the statistical signif-
icance of the results, we performed a chi-square test on the
trial counts.

The results (and p-values) of the trials are in Table 1. The
table shows statistically significant evidence that the region
that contains the majority of the swarm at initialization
influences into which region the particles converge.

A plot of the particle trajectories over a contour of the
function surface from one trial is illustrated in Figure 3.
In this figure, note that a few particles move very near to
the global optimum but do not explore further due to the at-
tractive force of the majority of the swarm in the suboptimal
funnel.

suboptimal

optimal

Region 2

Region 1

Figure 3: Particle trajectories and regions on 2 di-
mensional Schwefel function.

How does PSO compare to an algorithm that
uses more explorative informed mutation? How
does PSO compare to an algorithm that uses
uninformed mutation?
We compared PSO’s performance to CMA-ES and GENI-
TOR, a steady state genetic algorithm that uses rank-based
selection [22]. Our use of CMA-ES is motivated by the
fact that it uses an “informed” mutation strategy to move
through the space by addressing how the population as a
whole is moving. We chose GENITOR to examine an algo-
rithm that uses uninformed mutation, but employs a recom-
bination strategy.

We ran each algorithm for 200,000 evaluations and 30
trials. We employed three variants of PSO: classical PSO,
Riget and Vesterstrøm’s attractive-repulsive PSO (ARPSO),
and a PSO that used random restarts to diversify after de-
tecting stagnation (PSOR).

We selected a population size of 100 for PSO, ARPSO,

PSOR, and GENITOR. For CMA-ES, we set μ = 125 and
λ = 250. For PSO, we selected acceleration constants of
φ1 = 2.8, φ2 = 1.3 as recommended for an “off the shelf”
PSO in [2]. We used Clerc’s constriction factor [3] to set the
inertial coefficient:

χ =
2

|2 − φ −pφ2 − 4φ| = 0.7298

where φ = φ1 + φ2. For GENITOR we used a real-value
chromosome representation with HUX crossover, Gaussian
mutation with a rate of 0.5, and a linear selection bias of 2.

We tested the algorithms on 30 dimensional Griewank,
Rastrigin, Rana, and Schwefel functions. To explore behav-
ior in higher dimensions we tested the algorithms on 500
dimensional Rana and Rastrigin functions.

We expected PSOR to perform better than ARPSO be-
cause it re-diversifies more quickly. ARPSO will potentially
waste several evaluations in the repulsion phase trying to
attain diversity. PSOR is able to gain large amounts of
diversity instantaneously by performing a random restart.
Our results tend to reflect this. One argument for ARPSO
is that actual progress is made during the repulsive phase.
In this case, we would expect ARPSO to perform well when
exploration is relatively local. However, when more global
exploration is needed, PSOR may be able to attain it more
quickly.

The convergence plots for the synthetic test functions are
shown in Figures 4 and 5. To test the significance of the dif-
ference between the top performing PSO method and both
GENITOR and CMA-ES, we perform one-sided t-tests and
report the p-values in the convergence plots. PSO consis-
tently converges quickly and performs fairly well on the
single-funnel functions. On the multi-funnel landscapes,
PSO clearly converges into sub-optimal basins. The perfor-
mance of ARPSO is comparable while PSOR appears to be
making slow progress. CMA-ES, on the other hand, makes
dramatic progress on the multi-funnel benchmarks. GENI-
TOR performs fairly well on the multi-funnel functions, but
seems to struggle on the single-funnel set.

On the more complicated landscapes, PSO may also be
having trouble with the scale of the functions due to our
use of a static inertial coefficient. On functions where scale
changes dramatically, the update rule may be too inelas-
tic to compensate for changes in local features. Angeline
[1] points out that the inflexibility of this parameter may
serve to impede optimization beyond a particular granular-
ity. This could be mitigated by applying a temperature
schedule to the coefficient to change its intensity during the
course of the search (see [7] and [20]).

How does PSO compare with other algorithms
on real-world problems?
We tested on two real world problems: a 31 dimensional
Lennard-Jones cluster and a 1000 task variant of the space-
track problem. We used the same population parameters
mentioned above. On the Lennard-Jones problem, we ran
each algorithm for 200,000 evaluations and 30 trials. On
the spacetrack problem we ran each algorithm for 200,000
evaluations and 10 trials and initialized the population in
a random uniform distribution of radius 10000 about the
origin.

To test whether origin-centric initialization affects PSO’s
performance on the spacetrack problem we also tried initial-
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Population size 10
80% initialized in
reg. 1 reg. 2

Converged to
reg. 1 376 43
reg. 2 36 388
other 88 69

χ2 test p-value < 0.001

Population size 20
80% initialized in
reg. 1 reg. 2

Converged to
reg. 1 352 56
reg. 2 74 395
other 74 49

χ2 test p-value < 0.001

Population size 50
80% initialized in
reg. 1 reg. 2

Converged to
reg. 1 329 59
reg. 2 135 415
other 36 26

χ2 test p-value < 0.001

Table 1: Region initialization trials on 2 dimensional Schwefel test function.

izing populations in promising regions of the problem space.
We used a greedy activity selection method to create a vec-
tor of known good start times for a spacetrack schedule and
initialized the population in a uniform random distribution
centered on this vector. Similarly, we extracted the fittest
point of 1,000,000 random samples and initialized the pop-
ulation in a uniform random distribution around the point.

Since the spacetrack problem possesses a highly irregular
structure, we tried different inertial coefficients for PSO and
discovered that it performed significantly better with a low
inertial coefficient when initialized near a seed. This is not
surprising since the magnitude of the inertial coefficient af-
fects the granularity of the search [19]. We found that an
inertial coefficient of χ = 0.8 on the randomly initialized
trials and χ = 0.1 on the near-seed trials performed best.

The plots for the Lennard-Jones problem and the space-
track problem are shown in Figure 6. The statistical sig-
nificance of the difference between the top performing PSO
method and both GENITOR and CMA-ES are reported as
one-sided t-test p-values in the convergence plots. CMA-ES
significantly outperforms the rest of the algorithms on the
Lennard-Jones problem. GENITOR seems to do very well
on the scheduling problem. This may be because GENI-
TOR’s recombination strategy is able to exploit information
about good partial schedules.

We also have evidence that initialization region on the
spacetrack problem affects the performance of PSO signifi-
cantly. Using a vector of promising start times as the center
of the initialization region caused the particle methods to
perform better. This is likely due to the fact that the ma-
jority of the swarm lies in a better part of the space.

7. CONCLUSIONS
In this paper we have presented evidence that PSO tends

to stagnate early into suboptimal solutions on multi-funnel
landscapes. Our first hypothesis was that the percentage
of initial swarm in a funnel region will influence to which
region the swarm eventually converges. We demonstrated,
with basic PSO, that the choice of funnel region in which
the majority of the swarm is initialized does have an impact
on which region the swarm converges. This may be a result
of the algorithm’s “cooperative” behavior. A small number
of population members in a good funnel may be virtually
ignored by a swarm whose majority is cooperating in another
(potentially suboptimal) funnel.

Our second hypothesis was that the position update rule
in PSO may inhibit exploration on multi-funnel functions.
We conjectured that algorithms that use more explorative
informed mutation, or uninformed mutation may perform
better on multi-funnel instances. We showed that PSO
performs exceptionally well on single-funnel functions, but
struggles in comparison to CMA-ES in lower dimensional
multi-funnel cases. CMA-ES also performs well on higher

dimensional multi-funnel problems, exhibiting marked im-
provement after the PSO methods appear to stagnate.

Our third hypothesis was that PSO might have trouble
with more complicated real world problems. We demon-
strated that CMA-ES does tend to outperform the PSO
methods on two real world problems. GENITOR performs
well on the scheduling problem, and may be using recombi-
nation to exploit partial solutions.

Our results indicate that multi-funnel landscapes may pose
a problem to the traditional PSO strategy. This work raises
two important research questions, 1) Is PSO better suited to
single-funnel optimization problems? 2) If not, what strate-
gies can be employed that mitigate the apparent bias toward
exploration within the span of the swarm?
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