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ABSTRACT
We consider stochastic versions of OneMax and Leading-
Ones and analyze the performance of evolutionary algo-
rithms with and without populations on these problems. It
is known that the (1+1) EA on OneMax performs well in
the presence of very small noise, but poorly for higher noise
levels. We extend these results to LeadingOnes and to
many different noise models, showing how the application of
drift theory can significantly simplify and generalize previ-
ous analyses.

Most surprisingly, even small populations (of size
Θ(logn)) can make evolutionary algorithms perform well for
high noise levels, well outside the abilities of the (1+1) EA!
Larger population sizes are even more beneficial; we con-
sider both parent and offspring populations. In this sense,
populations are robust in these stochastic settings.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Run Time Analysis, Stochastic Fitness Function, Evolution-
ary Algorithm, Populations, Robustness

1. INTRODUCTION
Evolutionary algorithms (EAs) are general-purpose prob-

lem solvers which can be successfully applied to a wide va-
riety of problems with small effort. In particular, EAs are
popular where no tailored solutions exist, for example be-
cause the structure of the problem is inaccessible (given as a
black box) or where the structure of the problem is very com-
plicated. In particular, EAs are popular in settings includ-
ing uncertainties, such as noisy fitness (quality) evaluations;
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see [BDGG09] for a survey on examples in combinatorial
optimization, but also [JB05] for an excellent survey also
discussing different sources of uncertainty.

We are interested in formally analyzing the performance
of EAs in settings where the fitness function is probabilis-
tic, i.e., a given search point can have different fitness values
for different fitness evaluations. One way to deal with such
uncertainty is to replace fitness evaluations with an average
of a (large) sample of fitness evaluations and then proceed
as if there was no noise. In this paper we are interested in
a different approach where we accept the noise and try to
analyze how much noise can be overcome by EAs without
further modifications (note that this research can also be
used to decide how much resampling is necessary for suc-
cessful optimization). This was first done in [Dro04], where
a noisy variant of the well-known OneMax test function was
analyzed for the simplest EA, the (1+1) EA. In essence, it
was shown that the (1+1) EA can deal with small noise
levels, but not medium noise levels. Recently, there was
a sequence of paper discussing ant colony optimization for
path finding problems in the presence of uncertainty [ST12,
DHK12, FK13], see also [GP96, Gut03] for early work in
this area.

For this paper we are exclusively concerned with optimiza-
tion problems defined on bit strings of fixed length n. In this
domain we have the two well-known (static) test functions
OneMax and LeadingOnes as follows. For each bit string
x ∈ {0, 1}n we let OneMax(x) be the number of 1s in x and
LeadingOnes(x) is the number of consecutive 1s counting
from the left until the first occurrence of a 0. The perfor-
mance of various randomized search heuristics on these two
static problems is known in detail.

We modify these test functions by adding noise. We dis-
tinguish between two general noise models: prior noise and
posterior noise. In the first model we assume that the noise
comes from not evaluating the search point in questions, but
a noisy variant; this corresponds to the noise model used
in [Dro04], where, with probability p, a bit of the search
point was flipped before evaluation. In the second model
the fitness value of a search point obtains noise after evalu-
ation. For example, one can add a value drawn from a cen-
tered normal distribution (or add a value drawn from any
other chosen distribution; we call such noise additive poste-
rior noise). Posterior noise is essentially the model used in
[GP96, ST12, DHK12, FK13].

In each case we consider the noise to be independent for
different elements of the search space and for reevaluations
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(note that we assume that all algorithms reevaluate each
search point under consideration in every iteration).

In this paper we expand on the work done in [Dro04] in
three ways. First, we make the results applicable to many
different noise models; second, we analyze the Leading-
Ones function in noisy settings; third, we show how the use
of populations can make the EA much more robust towards
noise.

Regarding the generalization, we reprove the results
from [Dro04] as a corollary to more general theorems which
can be applied in many different settings. The proofs of
these more general theorems rely heavily on drift theory, a
modern tool which facilitates the formal analysis of random-
ized search heuristics significantly. Note that this tool was
not available for [Dro04]. Another tool suitable for the anal-
ysis of populations was recently introduced in [Leh11] in the
context of non-elitism, i.e. just as in the setting with noise,
good solutions can get lost.

Regarding the LeadingOnes test function, we give the
first formal analysis of this test function in a noisy setting.

Regarding the use of populations, the paper [PB10] gives
a nice overview of several different aspects where popula-
tions (and the use of crossover operators) are beneficial for
optimization of static fitness functions. In contrast to this,
we show that populations can also be highly beneficial for
the optimization of stochastic fitness functions, as they allow
a much higher noise.

1.1 Detailed Contribution
The only algorithm we consider is the (µ + λ) EA, for

different values of µ and λ (see Section 2 for a detailed de-
scription). We consider the (1+1) EA as an EA “without
population”; this was the algorithm considered in [Dro04].
Even when we discuss EAs with populations, we only con-
sider cases with µ = 1 or λ = 1, for simplicity.

We consider optimization successful in the stochastic set-
ting as soon as the algorithm has evaluated the best static
solution (in both our cases the all-1s bit string); note that
the best static solution is, in all of our models, also the solu-
tion with best expected fitness. Whenever we consider the
“run time” of an algorithm, this is understood as the ex-
pected number of iterations (or generations) of the EA. In
particular, population-based EAs have a higher number of
fitness evaluations than iterations (also due to reevaluation
of old search points).

In Section 3 we consider OneMax. In particular, we give a
general theorem for deriving upper bounds in different noise
settings (Theorem 4) and a general Theorem for deriving
lower bounds (Theorem 5). As a result we completely re-
prove the theorems from [Dro04] (Corollary 6). These results
concern prior noise where, with probability p, a (uniformly
chosen) bit is flipped: The (1+1) EA is successful in this set-
ting for values of p up to O(logn/n) away from 0 or 1 (i.e.,
optimizes in polynomial time), otherwise it is unsuccessful.
Note that [Dro04] did not cover values of p close to 1.

As a further corollary, we show that the (1+1) EA can op-
timize in the presence of additive posterior noise with vari-
ance of O(logn/n) efficiently, but not, for example, in the
presence of additive noise from an exponential distribution
with parameter 1 (Corollary 7). This list of corollaries can
easily be extended, for example to cover the case of prior
noise based on mutation or similar models.

In Section 3.2 we show that populations can be much more

robust towards noise. For example, a linear population is
large enough to allow arbitrary values of p in the setting of
prior bit-flip noise. Furthermore, in the case of constant p
in the setting of prior bit-flip noise (a setting far outside the
abilities of the (1+1) EA for efficient optimization), already
a logarithmic population size suffices for efficient optimiza-
tion. Similarly, we get robustness of small populations for
posterior noise models, for example for exponentially dis-
tributed noise with constant parameter.

In Section 4, we give our results for LeadingOnes. We
show that the (1+1) EA optimizes successfully in the pres-
ence of small noise, but we also give an example of higher
noise levels where optimization is unsuccessful. Here again
populations are helpful, even of logarithmic size.

We conclude the paper with a discussion in Section 5.

2. MATHEMATICAL PRELIMINARIES
In this paper we consider the (µ + λ) EA, an algorithm

which bases its progress on mutation (see Algorithm 1 for
a detailed description). We consider only the mutation op-
erator which flips each bit independently with probability
1/n. Ties in the selection of fitter individuals are broken so
that individuals from the offspring population are preferred
(this allows the (1+1) EA to cross plateaus and is consistent
with the definition of, for example, [Dro04]); further ties are
broken uniformly at random.

Algorithm 1: (µ+ λ) EA

1 Let P be a set of µ uniformly chosen bit strings;
2 repeat
3 O ← ∅;
4 for i = 1 to λ do
5 pick x u.a.r. from P ;
6 O ← O ∪ {mutate(x)};
7 for x ∈ P ∪O do evaluate f(x);
8 P ← µ f -maximal elements from P ∪O;

9 until forever ;

Note that all references to the “run time” or the “number
of steps” of an algorithm always concern the expected first
hitting time of the optimum, as mentioned above.

2.1 Drift Theorems
We will use a variety of drift theorems to derive the the-

orems of this paper. Drift, in this context, describes the
expected change of the best-so-far solution within one itera-
tion with respect to some potential. In later proofs we will
define potential functions on best-so-far solutions and prove
bounds on the drift; these bounds then translate to expected
run times with the use of the drift theorems from this sec-
tion.

The literature knows a large number of drift theorems;
this selection is not representative, but merely contains those
theorems needed for this paper.

The simplest drift theorem concerns additive drift.

Theorem 1 (Additive Drift [HY04]). Let (Xt)t≥0

be random variables describing a Markov process over a fi-
nite state space S ⊆ R. Let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt = 0. If
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there exist c > 0 such that

E(Xt −Xt+1|T > t) ≥ c,

then

E(T |X0) ≤ X0

c
.

We will not give the version of the multiplicative drift the-
orem for upper bounds, due to [DJW12], as it is implied by
the Variable Drift Theorem given in [Joh10, Theorem 4.6]
(independently developed in [MRC08, Section 8]); this drift
theorem is applicable when the drift is not uniform across the
search space; frequently one can find a uniform lower bound
and use the additive drift theorem, but using the variable
drift theorem will typically give much better bounds. The
version of the Variable Drift Theorem that we use is due
to [RS12], which removes the restriction of h being differen-
tiable.

Theorem 2 (Variable Drift [RS12]). Let (Xt)t≥0

be random variables describing a Markov process over a fi-
nite state space S ⊆ R+

0 and let xmin := min{x ∈ S | x > 0}.
Furthermore, let T be the random variable that denotes the
first point in time t ∈ N for which Xt = 0. Suppose that
there exists a monotone increasing function h : R+ → R+

such that 1/h is integrable and

E(Xt −Xt+1 | Xt) ≥ h(Xt)

holds for all t < T . Then,

E(T | X0) ≤ xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx.

Finally, in order to derive lower bounds on the run time
of EAs, we use the Negative Drift Theorem.

Theorem 3 (Negative Drift [OW11, OW12]).
Let (Xt)t≥0 be real-valued random variables describing a
stochastic process over some state space. Suppose there
is an interval [a, b] ⊆ R, two constants δ, ε > 0 and,
possibly depending on ` = b − a, a function r(`) satisfying
1 ≤ r(`) = o(`/ log `) such that, for all t ≥ 0, the following
conditions hold.

1. E(Xt+1 −Xt | a < Xt < b) ≥ ε;

2. For all j ≥ 0, P (|Xt+1 −Xt| ≥ j | a < Xt) ≤ r(`)

(1+δ)j
.

Then there is a constant c such that, for T = min{t ≥ 0 :
Xt ≤ a | X0 ≥ b}, we have

P (T ≤ 2c`/r(`)) = 2−Ω(`/r(`)).

3. ONEMAX
In this section we present our results regarding OneMax.

We fix a (stochastic) OneMax function f according to one
of our models. It is easy to verify that, in each of the stochas-
tic models we consider, there is a sequence of independent
random variables (Xk)k≤n such that the following holds.

• For each evaluation of f on a bit string with exactly k
1s, the return value is drawn at random ∼ Xk (recall
that all evaluations of fitness functions are indepen-
dent).

• ∀j ≤ k < n : P (Xj < Xk+1) ≥ P (Xk < Xk+1);
intuitively, the larger the true difference in OneMax-
value, the more likely this is reflected in a random
OneMax evaluation. This simplifies some conditions.

Note that these two properties capture two important prop-
erties of the OneMax function: symmetry in the positions
(only the number of 1s decides on the fitness, not the posi-
tion), and monotonicity (the more 1s a bit string has, the
higher its fitness; we need this comparison-based version,
given the comparison-based definition of the (1+1) EA).

We start by giving an upper and a lower bound for the
(1+1) EA in Section 3.1; in Section 3.2 we give upper bounds
for population-based EAs, showing that populations are ef-
ficient for the stochastic versions of OneMax we consider.

3.1 (1+1) EA
Our first theorem gives an upper bound for the (1+1) EA

on OneMax, generalizing a theorem from [Dro04].

Theorem 4. Suppose there is a positive constant c < 1/9
such that

∀k < n : P (Xk < Xk+1) ≥ 1− cn− k
n

. (1)

Then the (1+1) EA optimizes f in Θ(n logn) steps. Fur-
thermore, if Equation (1) holds for all k < n − ` for some
` > 2, and we have

∀k < n : P (Xk < Xk+1) ≥ 1− `

n
,

then (1+1) EA optimizes f in n2 + n2O(`) steps.

Proof. Let pk = c(n− k)/n.
We show that there is a positive drift on the number of

1s. Let k be the number of 1s of the current search point.
Let E0 be the event that the new search point has at least

one more 1 and the comparison of old and new search point
indicates correctly that the new search point is better. Let
E1 be the event that the new search point has less 1s than
the current search point, and that this new search point
is nonetheless accepted. Clearly, the expected number of
1s conditional on E1 is at least k − 2. Note that P (E0) ≥
(1−pk)(n−k)/(en) and P (E1) ≤ pkk/n. Thus, the expected
increase in the number of 1s is at least

P (E0)− 2P (E1) ≥ (1− pk)
n− k
en

− 2pk
k

n

≥ n− k
en

− pk
(

2 +
n− k
en

)
≥ n− k

en
− 3pk

=
n− k
n

(1/e− 3/c).

Using c < 1/9 we see that 1/e−3/c is a constant > 0, giving
a multiplicative drift as desired.

Regarding the “furthermore” clause, we do not have suf-
ficient drift when we use the number of 1 as the potential
function. Thus, we change our potential function in a way
which could also be used to show an exp(O(n)) bound for
optimizing the needle function with the (1+1) EA. Intu-
itively, this drift function takes care of the plateau of the
last ` OneMax values.
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We define a helper function a so that, for all i ≥ 1,

a(i) =

{
i!
`!

(4`)`−i, if i ≤ `;
1, otherwise.

We now define the potential in terms of a as follows. A given
search point with exactly k 0s has potential

g(k) =

k∑
i=1

a(i).

This potential function makes it particularly easy to com-
pute the differences of the potentials of similar search points
(it is a sum of successive a(i)). Also note that the sequence a
is falling quickly for arguments ≤ `, so that the sum of such
elements can be bounded from above by twice its largest el-
ement. We only sketch the remaining argument. From our
observations and the assumptions of the theorem one can
directly compute a drift of 1/n towards the optimum, using
almost the same arguments as in the first part of this proof
(the biggest exception is that, for jumps away from the op-
timum, we notice that larger and larger jumps hurt us less
and less, so that an expected jump of 2 away is sufficient to
consider). It is easy to see that g(n) = n+exp(O(`)), which
gives the desired result.

Now we come to our second theorem, a lower bound for
the (1+1) EA on OneMax.

Theorem 5. Suppose there is ` ≤ n/4 and a constant
c > 16 such that

∀k, n− ` ≤ k < n : P (Xk < Xk+1) ≤ 1− cn− k
n

.

Then the (1+1) EA optimizes f in 2Ω(`) many steps.

Proof. We want to show that there is a constant nega-
tive drift on the number of ones in the interval between n−`
and n; however, we will count iterations of the process only
when an actual change in the number of 1s occurs (i.e., we
condition on the change), as otherwise the drift would be
too small (this will only yield a smaller bound than when
counting all other steps as well). See also [RS12] regarding
an explicit negative drift theorem in the presence of self-
loops. Let k ≥ n − ` be the number of 1s of the current
search point. Since we do not count steps without change,
it suffices to show that the drift conditional on lowering the
number of 1s is at least twice the drift conditional on in-
creasing the number of 1s (i.e., the negative drift is twice
the size of the positive drift). This would yield a negative
drift of at least 2/3 (this uses that we have a minimal step
width of 1).

Let pk = c(n− k)/n. Clearly, the negative drift is at least
pkk/(en).

Let E0 be the event that the new search point has at
least one more 1 and the comparison of old and new search
point indicates correctly that the new search point is better.
Clearly, the expected number of 1s conditional on E0 is at
most k + 2 and P (E0) ≤ (n − k)/n. This gives a positive
drift of at most 2(n − k)/n. Dividing the lower bound for
the negative drift by the upper bound for the positive drift,
we get a ratio of at least

pkk

en

n

2(n− k)
=

ck

2en
.

From k ≥ 3n/4 and c > 16 we get the desired bound of
2 on the ratio. As the (1+1) EA makes long jumps with
sufficiently small probability, an application of the Negative
Drift Theorem (Theorem 3) concludes the proof.

Our two theorems can be used for easy corollaries, showing
the optimization time of the (1+1) EA given different noise
models. We first consider the noise model given in [Dro04].

Corollary 6 ([Dro04]). Suppose prior noise which,
with probability p, flips a bit uniformly at random. Then we
have that the (1+1) EA optimizes OneMax in time

Θ(n logn), if p ≤ 1/(10n);

polynomial, if p = O(logn/n);

superpolynomial, if p = ω(logn/n) ∩ 1− ω(logn/n);

polynomial, if p = 1−O(logn/n).

Proof. Suppose first p ≤ c/n for some c ≤ 1/10 and let
k < n. We estimate P (Xk < Xk+1) by observing that that
the event Xk ≥ Xk+1 requires the individual with k 1s to
be evaluated to k+ 1 or the other to k. The first option has
probability ≤ p(n − k)/n, the second of p ≤ c/n. Thus, we
get the desired bound from Theorem 4.

In the case of p ≤ c logn/n we similarly get the bound
P (Xk ≥ Xk+1) ≤ c logn/n; this is sufficient up to a dis-
tance of c logn from the optimum, which gives a polynomial
bound.

Suppose p = ω(logn/n)∩ 1− ω(logn/n). Then, for all k,
we estimate P (Xk = Xk+1) as ≥ p(1 − p) (either both Xk
and Xk+1 evaluate to k or both to k + 1). Theorem 5 gives
a superpolynomial run time.

Suppose now p = 1−O(logn/n). If Xk evaluates to k−1,
then Xk < Xk+1. However, P (Xk = k − 1) ≥ logn/(2n) so
that Theorem 4 gives the desired result.

Regarding posterior noise we give the following corollary.

Corollary 7. Suppose posterior noise, sampling from
some distribution D with variance σ2. Then we have that
the (1+1) EA optimizes OneMax in polynomial time if
σ2 = O(logn/n). On the other hand, if, for example,
D is exponentially distributed with parameter 1, then the
(1+1) EA optimizes OneMax in superpolynomial time only.

Proof. We have Xk ∼ k + D and Xk+1 ∼ k + 1 + D;
let D′ be the difference of two independent copies of D. We
have

P (Xk < Xk+1) = P (0 < Xk+1 −Xk) = P (−1 < D′).

The variance of the difference of two i.i.d. centered variables
both with variance σ2 is 2σ2; let D′ be this difference. Now
we apply Chebyshev’s Inequality to see that

P (|D′| ≥ 1) ≤ 2σ2.

Thus, for σ2 = O(logn/n), the probability of being at least 1
from the mean while having a variance of O(logn/n) is
O(logn/n), as sufficient for polynomial run time (see Theo-
rem 4).

In the case of D an exponential distribution we have a
constant chance of Xk ≥ k + 2 and Xk+1 ≤ k + 2, which
leads to the claimed result using Theorem 5.
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3.2 Population-Based EA
In this section we give upper bounds for a population-

based EA. In particular, we consider parent populations (i.e.,
the (µ+ 1) EA). From [Wit06] we know that the (µ+ 1) EA
needs Θ(µn + n logn) iterations to optimize the static ver-
sion of OneMax. We conjecture a similar run time for suffi-
ciently benevolent noisy versions, but, for simplicity also for
the requirements on the noise model, we only give a slightly
weaker bound.

Theorem 8. Let µ be given and, for each k < n, let Yk
denote the minimum over µ independent copies of Xk. If
there is a positive constant c < 1/9 such that

∀k, n/4 < k < n : P (Yk < Xk+1) ≥ 1− cn− k
nµ

, (2)

then the (µ+ 1) EA optimizes f in O(µn logn) iterations.

Note that the requirement of Equation (2) might seem to
get more restrictive with growing µ; however, it only gets
linearly more restrictive in the fraction on the right-hand-
side, while the impact of growing µ on the random variable
Yk is typically much stronger.

Proof. Let pk = c(n− k)/(nµ).
We show that there is a positive drift on the number of

ones in the current best search point. Let k be the number
of 1s of the current best search point.

Let E0 be the event that the new search point has at least
one more 1 than the best one and the comparison of old and
new search point indicates correctly that the new search
point is better. We have P (E0) ≥ (1− pk)(n− k)/(eµn).

Let E1 be the event that the new search point has less
1s than the current best search point, the best search point
is unique, and that this unique search point is discarded
(if the best search point is not unique, E1 is the empty
event). Clearly, the expected number of 1s conditional on
E1 (if E1 6= ∅) is at least k−2. We have P (E1) ≤ pk. Thus,
the expected increase in the number of 1s is at least

P (E0)− 2P (E1) ≥ (1− pk)
n− k
eµn

− 2pk

=
n− k
eµn

− pk
(

2 +
n− k
eµn

)
≥ n− k

eµn
− 3pk.

Using the choice of c and the definition of pk, we see that
we have sufficient multiplicative drift as desired.

From these theorems we can again derive many corollaries
regarding concrete noise models. These includes corollaries
implying an exponential speedups of populations of loga-
rithmic size, when compared with the performance of the
(1+1) EA!

Corollary 9. Suppose prior noise which, with probabil-
ity p, flips a bit uniformly at random. Let µ ≥ 5 logn/p.
Then we have that the (µ + 1) EA optimizes OneMax in
time O(µn logn). In particular, for p = 1/2, we have that a
population size of µ ≥ 10 logn suffices for an optimization
time of O(µn logn).

Proof. For k ≥ n/4, the probability that none of µ in-
dividuals with k 1s is evaluated to k − 1 is ≤ 1/(µn), as a

simple computation shows (we omit the details of the appli-
cation of the Chernoff Bound). Thus, Theorem 8 gives the
desired result.

The intuitive reason behind the previous corollary was
that, regardless of the noisy evaluation of the best-so-far
individual, all worse individuals have a constant chance each
to be strictly worse.

Corollary 10. Let any non-negative additive posterior
noise be given which has a non-zero constant probability of
evaluating to < 1. Then there is a constant c such that,
for µ ≥ c logn, the (µ+ 1) EA optimizes OneMax in time
O(µn logn).

Proof. Let D be the posterior noise and p = P (D < 1)
a constant 6= 0. The case of p = 1 is trivial. Let c =
−2/ log(1− p) and µ = dc logne. We have

P (Yk ≥ k+1) = P (D ≥ 1)µ ≤ (1−p)−2 logn/ log(1−p) = n−2.

This implies the claimed result.

Note that the last corollary applies, for example, to addi-
tive posterior noise taken from an exponential distribution
with parameter 1.

4. LEADINGONES
We follow up on the section about OneMax with results

for LeadingOnes. For this purpose we now fix a stochastic
LeadingOnes function f according to one of our models.
For each k, we let xopt

k be the bit string which has only 1s,
except for position k + 1; let xpes

k be the bit string with

k leading ones and otherwise only 0s. In a sense, xopt
k is

optimal for a bit string with a leading ones value of k, while
xpes
k is pessimal. We let (Xopt

k )k≤n and (Xpes
k )k≤n be two

sequences of independent random variables such that, for all
k ≤ n, Xopt

k ∼ f(xopt
k ) and Xpes

k ∼ f(xpes
k ). We will assume

the following about f .

• For each evaluation of f on a bit string with the left-
most zero at position k + 1, the return value is drawn
according to a distribution which is in between Xpes

k

and Xopt
k with respect to stochastic dominance.

• ∀j ≤ k < n : P (Xopt
j < Xopt

k+1) ≥ P (Xopt
k < Xopt

k+1).

• ∀j ≤ k < n : P (Xpes
j < Xpes

k+1) ≥ P (Xpes
k < Xpes

k+1).

We show that, despite the more drastic consequences of
noise, we still find sufficient conditions for efficient optimiza-
tion similar to the ones we have already seen in Section 3.

We begin by giving upper and lower bounds for the
(1+1) EA in Section 4.1. In Section 4.2 and Section 4.3 we
show the effectiveness of parent and offspring populations,
respectively, for the stochastic LeadingOnes problem by
giving upper bounds.

4.1 (1+1) EA

Theorem 11. Suppose there is a positive constant c <
1/12 such that

∀k < n : P (Xopt
k < Xpes

k+1) ≥ 1− c

kn
(3)

Then the (1+1) EA optimizes f in O(n2) steps.
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Proof. Let pk = c/(kn). We show that there is a positive
drift on the number of leading 1 bits. Let k be the length of
the prefix of the current search point consisting of 1s.

We stick to our previous notation and denote by E0 the
event that the new search point has a longer prefix consist-
ing of 1s and the comparison of old and new search point
indicates correctly that the new search point is better. Let
E1 be the event that the new search point has a smaller
number of leading ones than the current search point, and
that it is accepted. Conditioning on E1 we can trivially
bound the expected number of leading ones below by 0. We
have P (E0) ≥ (1− pk)/(en) and P (E1) ≤ pk(1− e−1) ≤ pk.
Therefore, the expected increase in the number of leading
1s is

P (E0)− kP (E1) ≥ (1− pk)

en
− kpk

≥ 1

en
− pk

(
1

en
+ k

)
≥ 1

en
− pk · (2k) .

Due to our choice of c < 1/6 and our definition of pk we
have a positive additive drift of 1/(2en) leading to an upper
bound ofO(n2) for the expected run time of the algorithm by
applying the Additive Drift Theorem (see Theorem 1).

It is only to be expected that noise disrupts the opti-
mization of LeadingOnes immensely. Consequently, our
following corollaries to Theorem 11 are rather weak with
respect to the noise allowed (basically, the algorithm will
only experience constantly many incorrect decisions during
optimization, in expectation).

Corollary 12. Suppose prior noise which, with proba-
bility p, flips a bit uniformly at random. Then we have
that the (1+1) EA optimizes LeadingOnes in time O(n2)
if p ≤ 1/(3n2).

Proof. Suppose first p ≤ 1/(3n2) and let k < n. We
estimate P (Xopt

k < Xpes
k+1) by observing that the event

Xopt
k ≥ Xpes

k+1 requires the individual with k 1s to be eval-
uated to ≥ k + 1 or the other to ≤ k. The first option has
a probability of at most p/n, the second of pk/n. Hence,
P (Xopt

k < Xpes
k+1) ≥ 1− (k+ 1)/(3n3) ≥ 1− 1/(3n2) and the

desired bound follows from Theorem 11.

Regarding posterior noise we give the following corollary.

Corollary 13. Suppose posterior noise, sampling from
a centered distribution D with variance σ2. Then we have
that the (1+1) EA optimizes LeadingOnes in O(n2) if
σ2 ≤ 1/(12n2).

Proof. Note that, in this case, Xopt
k ∼ Xpes

k , for all
k ≤ n. With the same argument as in Corollary 7 we have
P (Xopt

k < Xpes
k+1) ≥ 1 − 2σ2. Thus, for σ2 = 1/(12n2) the

claim follows from Theorem 11.

Next we give a lower bound for the (1+1) EA for the prior
noise model. We will not give a general lower bound that
holds for both of our models because it is very easy for the
(1+1) EA to detect an inferior noisy offspring by selection
if LeadingOnes is subjected to posterior noise.

Theorem 14. Suppose prior noise which, with probability
1/2, flips a bit uniformly at random. Then we have that the

(1+1) EA optimizes LeadingOnes in 2Ω(n) steps.

Proof. We show that there is a constant negative drift
on the number of ones in the interval between 99n/100 and
n. Let k ≥ 99n/100 be the number of 1s of the current
search point.

Let E0 be the event that the new search point has at least
one more 1 than the current search point and the comparison
of old and new search point indicates that the new search
point is to be accepted. The expected number of 1s condi-
tional on E0 is at most k+ 2 and we have a trivial bound of
P (E0) ≤ (n− k)/n ≤ 1/100.

Let E1 be the event that the new search point differs from
the old by flipping exactly one 1 in the right half of positions,
and that it is accepted. We want to estimate P (E1). There
are at least 49n/100 1s in the right half of positions, so the
probability of flipping exactly one of them and no other is
at least 49/(100e). In order to estimate the probability of
accepting such an offspring, we consider two cases. First,
assume that the parent has a leading ones value of at least
n/2. Then the probability of the noisy evaluation evaluating
the parent to a value < n/2 is at least 1/4 (by choosing to
flip a bit in the left half in the evaluation), while evaluating
the offspring to its true value ≥ n/2 has a probability of at
least 1/2. In total we have P (E1) ≥ 49/(800e) in this case.

Second, assume that the parent has a leading ones value
of < n/2. Then both parent and offspring have the same
leading ones value; with probability 1/4 they both evaluate
to their true value, which favors the offspring. Thus, in
this case, we get P (E1) ≥ 49/(400e). Overall we have now
P (E1) ≥ 49/(800e) > 1/50

Thus, we have that the total (negative) drift of

P (E1)− 2P (E0) ≥ 49/(800e)− 2/100

which gives us a constant negative drift. Since long jumps
are sufficiently small (due to our choice of using the number
of 1s as potential), we can apply Theorem 3 which yields our
result.

4.2 Parent Populations

Theorem 15. Let µ be given and, for each k < n, let
Yk denote the minimum over µ observed values of Xopt

k . If
there is a positive constant c < 1/12 such that

∀k : n/4 < k < n⇒ P (Yk < Xpes
k+1) ≥ 1− c

µkn
, (4)

then the (µ+ 1) EA optimizes f in O(µn2) steps.

Note that, due to the dependence of Yk on µ, Equation (4)
typically gets less restrictive with growing µ, just as in The-
orem 8.

Proof. Let pk = c/(µkn). We show that there is a pos-
itive drift on the number of leading 1 bits of a current best
individual. Let k be the length of the prefix of the current
search point consisting of 1s. Let E0 be the event that a best
individual is improved by at least 1 and accepted by muta-
tion. Let E1 be the event that the new individual has a
smaller prefix consisting of 1s and that the unique best indi-
vidual is dropped from the parent population. We have that
P (E0) ≥ (1−pk)/(eµn), assuming pessimistically that there
is only one best individual. On the other hand P (E1) ≤ pk.

Since, conditioned on E1, the expected number of leading
ones of a best individual is trivially at least 0 we can bound

1388



the expected increase in the number of leading 1s of a best
individual below by

P (E0)− kP (E1) ≥ (1− pk)
1

eµn
− kpk

≥ 1

eµn
− pk

(
1

eµn
+ k

)
≥ 1

eµn
− pk(2k) ,

and the last term can be bounded below by 1/(2eµn) due
to our choice of c < 1/12 and the definition of pk. Applying
Theorem 1 yields an upper bound of 2eµn2 for the expected
number of generations until the optimum is found. Taking
the cost of initialization into account we have an expected
run time of µ+ 2eµn2, proving our claim.

Theorem 15 is not strong enough to derive an upper bound
for the prior noise model where a bit flip is performed with
certain probability. This is because the probability that a
best individual is dropped from the population is too high.
Regarding posterior noise, we can still derive the following
corollary.

Corollary 16. Let any non-negative additive posterior
noise be given which has a non-zero constant probability of
evaluating to < 1. Then there is a constant c such that, for
µ ≥ c logn, the (µ+1) EA optimizes LeadingOnes in time
O(µn2).

Proof. Let D be the posterior noise and p = P (D < 1) a
non-zero constant. Let c = −3/ log(1−p) and µ = dc logne.
We have

P (Yk < Xk+1) = 1−P (D ≥ 1)µ ≥ 1−(1−p)−3 logn/ log(1−p) ,

and the last term equals 1− n−3 which yields the result by
applying Theorem 15.

4.3 Offspring Populations
In this section we consider the (1 + λ) EA. The next the-

orem gives conditions for efficient optimization of stochastic
LeadingOnes problems. The bound we give is the same as
is shown for static LeadingOnes in [JDJW05].

Theorem 17. Let λ ≥ 72 logn and, for each k < n, let
Yk denote the maximum over λ observed values of Xopt

k (be-
longing to inferior individuals) and let Zk denote the max-
imum over at least λ/6 observed values of Xpes

k (belonging
to better individuals). Suppose there are positive, non-zero
constants q < 1 and c < q/2 such that

∀k < n : P (Yk < Xpes
k+1) ≥ q , (5)

and

∀k < n : P (Yk−1 < Zk) ≥ 1− c

k(1 + en
λ

)
. (6)

Then the (1+λ) EA optimizes f in O(n+n2/λ) generations
and needs O(n2 + λn) fitness evaluations.

Proof. Let pk = c/(k(1 + en
λ

)). We show that there is a
positive drift on the number of leading 1 bits. Let k be the
length of the prefix of the current search point consisting of
1s.

Let E0 be the event that at least one offspring is improved
by at least 1 and is correctly accepted. Let E1 be the event

that at least one offspring has a smaller prefix consisting of
1s than the current search point, and that it is still accepted.
We have that P (E0) can be bounded below by

q

(
1−

(
1− 1

en

)λ)
≥ q λ

en+ λ
.

The above inequality can be shown by induction on λ, see
also [He10, Theorem 1].

In order to estimate P (E1) let E2 be the event that more
than λ/6 copied offspring are created. We have

P (E1) ≤ P (E1|E2)P (E2) + P (E1|E2)P (E2) .

Equation (6) gives us P (E1|E2) ≤ pk. By using a Cher-

noff bound we further get P (E2) ≤ e−λ/24. Bounding the

other probabilities by 1 we obtain P (E1) ≤ pk + e−λ/24.
Conditioning on E1, the expected number of leading ones is
trivially at least 0. Therefore, the expected increase in the
number of leading 1s is

P (E0)− kP (E1) ≥ q λ

en+ λ
− k

(
pk + e−

λ
24

)
≥ q λ

en+ λ
− k

(
pk +

1

n3

)
≥ q λ

en+ λ
− 2kpk

= (q − 2c)
λ

en+ λ
.

Due to our choice of q and c < q/2 we have that q − 2c is
a positive constant. Applying Theorem 1 yields an upper
bound of O(n + en2/λ) for the expected number of gener-
ations. Since λ fitness evaluations are performed in each
generation the expected number of fitness evaluations until
an optimum is found is therefore O(λn+ n2).

We give the following corollary, showing the superiority
of EAs with offspring populations over the (1+1) EA, even
with only small populations.

Corollary 18. Let p be bounded away from 0 and 1 by
a constant. Suppose prior noise which, with probability p,
flips a bit uniformly at random. Then there is a constant c
such that, for λ with c logn ≤ λ ≤ 2c logn, we have that the
(1 + λ) EA optimizes LeadingOnes in time O(λn+ n2).

Proof. We give a rough sketch of the argument. We
want to apply Theorem 17. It is easy to see that Equa-
tion (5) holds as, most likely, all the inferior individuals are
not evaluated better than they are, and with constant prob-
ability the good individual is evaluated to its true value.
Equation (6) follows since, given sufficiently many good in-
dividuals (in this case λ/6), there is a high probability that
at least one of them evaluates to its true value, while all infe-
rior individuals do not improve just as in our considerations
regarding Equation (5).

5. DISCUSSION
In this paper we consider the optimization of noisy ver-

sions of OneMax and LeadingOnes. The summary of the
results is that populations are necessary for successful op-
timization for any substantial noise levels. The surprising
result is that even very small populations (of size logarith-
mic in the problem size) already lead to very high robustness
to noise (see Corollaries 9 and 18).
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From the formal analysis we see the reason for this robust-
ness: In a (parent) population of size µ, while the best indi-
vidual might look bad in a given generation, there will surely
be (objectively) worse individuals which also look worse.
This holds as long as there are enough individuals in the par-
ent populations to make sure that one of them will evaluate
worse than the (objectively) best individual. For example,
if a non-best individual will evaluate worse than the best
individual with constant probability, a logarithmic number
of non-best individuals is large enough to get very high con-
fidence that such a bad individual is dropped. This obser-
vation probably extends to the analysis of the (µ + λ) EA
with µ > 1 and λ > 1.

As for offspring populations, in the (1+λ) EA the current
individual is cloned multiple times and thus hedges against
bad evaluations (as long as good evaluations are sufficiently
likely). This does not extend to the analysis of the (µ+λ) EA
with µ > 1 and λ > 1 in a straightforward way, as clones
might be made from sub-optimal individuals.
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