
The Max Problem Revisited: The Importance of Mutation in
Genetic Programming

Timo Kötzing
Algorithms and Complexity

Max-Planck-Institut für Informatik
66123 Saarbrücken, Germany

Andrew M. Sutton, Frank Neumann
School of Computer Science

University of Adelaide
Adelaide, SA 5005, Australia

Una-May O’Reilly
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

ABSTRACT
This paper contributes to the rigorous understanding of ge-
netic programming algorithms by providing runtime com-
plexity analyses of the well-studied Max problem. Several
experimental studies have indicated that it is hard to solve
the Max problem with crossover-based algorithms. Our
analyses show that different variants of the Max problem
can provably be solved using simple mutation-based genetic
programming algorithms.

Our results advance the body of computational complex-
ity analyses of genetic programming, indicate the impor-
tance of mutation in genetic programming, and reveal new
insights into the behavior of mutation-based genetic pro-
gramming algorithms.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Algorithms, Performance

Keywords
Genetic Programming, Mutation, Theory, Runtime Analysis

1. INTRODUCTION
The goal of this paper is to advance the computational

complexity analysis of genetic programming. This type of
analysis has significantly increased the theoretical under-
standing of other types of evolutionary algorithms (see the
books [1, 12] for a comprehensive presentation).

Genetic programming (GP) refers to a class of evolution-
ary algorithms that evolve, for a specific task, executable
structures, such as computer programs. Pioneered by Koza [8]
in the early 1990’s, genetic programming has been demon-
strably successful at solving human competitive program-
ming problems arising from diverse domains. There are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

numerous examples of genetic programming, where subtree
crossover is the only variation operator used. The Max prob-
lem [5] was introduced as a means of qualitatively gauging
the limitations of crossover as it interplays with a fixed tree
height (or size). It has a very nice and simple formulation
and is easy to solve analytically. Given a set of functions, a
set of terminals, and a bound D on the maximum depth of
a genetic programming tree, the goal is to evolve a tree that
returns the maximum value possible given any combination
of functions and terminals. It was observed that on the
Max problem “Subtree discovery and movement takes place
mostly near the leaf nodes, with nodes near the root left
untouched, where diversity drops quickly to zero in the tree
population. GP is then unable to create fitter trees via the
crossover, leaving a mutation operator as the only common,
but ineffective, route to discovery of fitter trees.” (abstract,
[5]) A later investigation found that mutation would eventu-
ally help find an optimal solution, albeit slowly for the Max
problem, i.e. “the later stages of GP runs are effectively per-
forming randomized hill climbing and so solution time grows
exponentially with depth of the solution” (pg 229, [9]).

We revisit the Max problem also because its solution space
is easy to think about and its solutions are known in advance.
It is parameterized in a manner that changes its solution and
its parameterizations allow incremental difficulty. Our algo-
rithms employ the HVL-Prime operator introduced in [3].
HVL-Prime is an update of one of the first GP mutation
operators. These were either random subtree selection and
replacement or substitution of a node with a different func-
tion or terminal (considering what arity the node is). HVL-
prime introduces more gentle and incremental variation by
changing a program tree at just one node, or by growing
or deleting the tree by the minimum number of nodes pos-
sible. It satisfies the need to search trees which vary in
both height, size and structure while introducing variations
in these dimensions by the smallest step possible.

Initial steps in the computational complexity analysis of
genetic programming have been made in [3] by studying the
runtime of (1+1) GP algorithms on the problems ORDER
and MAJORITY introduced in [6]. These investigations
have been extended in [11] to parsimony and multi-objective
GP algorithms for generalizations of these two problems.
Furthermore, GP algorithms have been studied in the PAC
learning framework [7] and general studies on the learnabil-
ity of evolutionary algorithms for Boolean functions have
already been carried out before in [4, 15]. ORDER and
MAJORITY are in some sense easy to optimize as they
have independent problem semantics. The (1+1) GP al-

1333

gorithms studied in [3] use a variable-length representation
that is important since syntax trees can usually grow and
shrink during the optimization process. Inner nodes of such
a tree contain function symbols and leaf nodes represent ter-
minal symbols, i. e. constants or variables. In ORDER and
MAJORITY the only function is a join operation which does
not have any effect on the function value. The Max problem
has the important property that different functions such as
addition and multiplication are available but the set of ter-
minals consists of the simplest forms, i.e., only of one specific
constant. We will analyze variants of (1+1) GP on differ-
ent variants of the Max problem. The problems distinguish
each other in the set of functions and terminals available for
evolution of maximum solutions.

On this occasion, rather than use Max as a vehicle for
qualitatively analyzing crossover, we derive the computa-
tional complexity of mutation-based hill climbing genetic
programming algorithms that provably solve it. Some ge-
netic programming algorithms have focused on using muta-
tion as an alternative to crossover, to exploit its effective-
ness in adaptive search. Stochastic iterated hill climbing
(SIHC) [13, 14] is one such example. SIHC is most similar
to our (1+1) mutation-based hillclimber. For a search pro-
cess bounded by a maximally sized tree of n nodes, the time
complexity of our algorithms for the entire range of variants
is bounded by O(n log2 n) when one mutation operation pre-
cedes each fitness evaluation. When multiple mutations are
successively applied before each fitness evaluation, the time
complexity bound is O(n2). This bound can be reduced to
O(n logn) if the mutations are biased to replace a random
leaf with distance d from the root with probability 2−d . It
seems surprising that the Max problem is so solved with a
hill climbing algorithm that uses mutation when, in a pop-
ulation based setting, neither subtree crossover alone or in
tandem with mutation is effective. Our intention is not to
question crossover and we do not claim that genetic pro-
gramming problems are all well represented by Max . How-
ever, our analyses would suggest that there is low cost and
possible value to evaluating the scale at which a mutation-
based hill climber effectively solves one’s problem before it
is necessary to resort to a population and crossover-based
genetic programming algorithm. They further suggest that,
with informed guidance, depth-dependent mutation can ef-
fectively support the exploration and discovery of solution-
dependent genetic materials.

We proceed as follows. In Section 2, we formally introduce
the problem and algorithms that are subject to our inves-
tigations. In Section 3, we study (1+1) GP-single where
mutation is applied once before each fitness evaluation. Our
strategy is to consider which operations monotonically in-
crease the fitness of the current solution so we can compute
the likelihood of each layer of the tree becoming fixed to
correct functions and the overall cost of fixing every level
correctly. The expected time to solve the problem is dom-
inated by the time to fix the tree at its deepest level, D.
We present results for more general (1+1) GP-multi in Sec-
tion 4. Finally, we show in Section 5 how biased mutation
operators can lead to better runtime bounds. We finish with
some discussion and conclusions.

2. THE MAX PROBLEM
The task for the Max problem is to find a program (as

given by a syntax tree) which returns the largest possible

value for a given set of binary functions F , terminal set T ,
with a depth limit D for the syntax tree. The complete tree
of depth D has therefore 2D leaves, 2D − 1 inner nodes, and
in total 2D+1 − 1 nodes. We denote by n = 2D+1 − 1 the
maximal number of nodes in a binary tree of depth D.

We investigate different variants of the Max problem as
defined in [5]. This problem has already been subject to
theoretical investigations of genetic programming using only
crossover as a variation operator [9] which show that such
algorithms find it difficult to produce optimal solutions.

For fixed D, F , T , we denote the corresponding Max Prob-
lem as MAX-depth-D-F -T . We consider the following types
of the Max Problems.

• The problem MAX-depth-D-{+}-{1} is the perhaps
simplest Max Problem; the optimal tree is a full binary
tree, with + at interior nodes and 1s at leaves. The
value of an optimal solution is 2D.

• MAX-depth-D-{+,×}-{t} is the problem where we have
two functions + and × and one terminal symbol t. No-
table special cases for t include the following.

– If t > 2, then, for all interior nodes, × is always
preferred over +.

– If t = 1, then we can have large subtrees evaluat-
ing to 1; optimizing nodes first suggests to label
them + (while they are parents of leaves) and
then × (when both child trees evaluate to some-
thing ≥ 2).

– If t = 0.5, then there are three layers of + (count-
ing from just above the leaves) before × is strictly
preferred.

For a current tree X, we will denote by F (X) the num-
ber of inner nodes (labeled with functions) and by T (X) the
number of terminals (leaves). Note that T (X) = F (X) + 1
holds for any possible tree X. The fitness f(X) of a tree is
the value at the root node, in other words, the value com-
puted by the entire syntax tree.

We consider the HVL-Prime operator composed of the
three following mutation operators on a given tree X.

• The operator substitute replaces a randomly chosen
inner node of X with a new node u ∈ F selected uni-
formly at random.

• The operator insert randomly chooses a leaf v in X
and selects u uniformly at random from T ; then it
replaces v with a node w chosen uniformly at random
from F whose children are u and v, with the order of
the children chosen randomly. If insert results in a
tree that has depth greater than D, it is not accepted.
In this case, insert behaves like a null operation.

• The operator delete randomly chooses a leaf node v
of X, with parent p and sibling u; then it replaces p
with u and deletes p and v.

We analyze a (1+1) GP algorithm without crossover (de-
tailed in Algorithm 1 below) that performs k HVL-Prime
mutation operations to produce an offspring. We consider
two variants which differ by how they choose k. For (1+1) GP-
single, we set k = 1, so that it performs exactly one muta-
tion at a time according to the HVL-Prime framework. For
(1+1) GP-multi, we choose k = 1 + Pois(1), so that the

1334

number of mutations at a time varies randomly according
to the Poisson distribution with parameter 1. We will im-
plicitly use the observation that k following this distribution
is, with constant probability, equal to 1; similarly, it is with
constant probability equal to 2.

Algorithm 1: (1+1) GP

Choose X as a leaf from T u. a. r.;1

while optimum not reached do2

X ′ ← X;3

Choose k;4

for i = 1 to k times do5

Choose m ∈ {substitute, insert, delete}6

u. a. r.;
X ′ ← m(X ′);7

if f(X ′) ≥ f(X) then X ← X ′8

3. ANALYSIS FOR (1+1) GP-single
We begin by analyzing the simple case of the (1+1) GP-

single in which a single mutation is performed in each it-
eration. For all versions we consider, we show that the
(1+1) GP-single can efficiently solve the MAX problem in
time bounded above by O(n log2 n). We first introduce some
definitions that facilitate the analysis.

Definition 1. We say a position in a tree X is fixed if
it contains a node that cannot be deleted without reducing
the fitness.

Definition 2. We say a tree is fixed to level 0 ≤ k ≤ D
if every position at depth up to k is already fixed.

We now show that, as long as the probability to fix a
node is not too small, the (1+1) GP-single can efficiently fix
all nodes down to a particular level in the tree using only
the mutation operator described in Section 2. We will later
prove this probability bound holds for all cases we consider.

Lemma 3. During the execution of (1+1) GP-single, if
the probability to fix an unfixed child of a fixed position is
Ω(1/n), then the expected time until the tree is fixed to level
m is O(nm2).

Proof. In a nonempty tree, the root position is already
fixed. Hence, without loss of generality, we start with a tree
that is already fixed to some level k ≥ 0.

We first bound the expected time to transform X into a
tree X ′ that is fixed to level k + 1. Let i be the number
of unfixed positions in level k + 1. By the supposition of
the claim, the probability of reducing the number of unfixed
nodes at this level is at least i/(cn) for a constant c.

Since the number of unfixed nodes at level k+1 will never
decrease during a run of the algorithm, the time to transform
X into a tree X ′ that is fixed to level k + 1 is bounded by

2k+1∑
i=1

cn

i
= O(n log 2k+1) = O(nk).

Summing up the runtime for distinct values of k we get an
upper bound on the time to fix an arbitrary tree to level m.

m∑
k=0

O(nk) = O(nm2).

+

+

+

+

1 1

+

1 1

+

+

1 1

+

1 1

+

+

+

1 1

+

1 1

+

+

1 1

+

1 1

Figure 1: An optimal tree for MAX-depth-D-{+}-
{1} with D = 4.

We are now ready to prove bounds on the runtime of the
(1+1) GP-single on different variants of the Max Problem.
We start with the simplest variant, MAX-depth-D-{+}-{1}.
See Figure 1 for an illustration of the optimal tree for D = 4
on this variant.

Theorem 4. The expected time for the (1+1) GP-single
to optimize MAX-depth-D-{+}-{1} is in O(n log2 n).

Proof. During execution of the (1+1) GP-single, a dele-
tion is never accepted since it would always result in an infe-
rior solution. Hence a position is fixed as soon as it contains
a node. Moreover, the optimal solution is found as soon as
the tree is fixed to level D, that is, the complete binary tree
of depth D has been built.

An unfixed position with a fixed parent becomes fixed
after a specific insertion operation occurring with probability
at least 1/(3n). This satisfies the conditions of Lemma 3 and
the expected time to fix the tree to level D is O(nD2) =
O(n log2 n) since D = log n.

We are now interested in incorporating multiplication func-
tion nodes into the problem. The analysis for F = {+,×} is
similar to the above case when the terminal value is strictly
larger than one. As an example of this class of program tree,
see Figure 2 for the optimal depth-four tree when t = 2.

Theorem 5. The expected time for the (1+1) GP-single
to optimize MAX-depth-D-{+,×}-{t}, for all t > 1, is in
O(n log2 n).

Proof. Again, in this case, deletions are never accepted.
Hence a position is fixed as soon as it contains a node.
An unfixed position with a fixed parent becomes fixed af-
ter a specific insertion that occurs with probability at least
1/(3n). By Lemma 3, the tree becomes fixed to level D after
O(n log2 n) operations in expectation.

After this point, the tree may not yet be optimal. If t > 2,
the tree is optimal after all function nodes are transformed
to × nodes. In this case, since z2 > 2z for all z ≥ t, such
a transformation always results in an improving fitness and
by the coupon collector theorem [10], all nodes have been
transformed to × nodes after O(n logn) operations in ex-
pectation. If t = 2, the function nodes at level D − 1 are
irrelevant since t2 = 2t and the above bound remains valid.

If 1 < t < 2, the tree is optimal when function nodes at
depth D − 1 are + nodes since in this case t2 < 2t, and the
remainder of the function nodes in the tree are × nodes. In
this case, z2 > 2z for all z ≥ 2t, so each specific substitu-
tion guarantees an improving move. Again by the coupon

1335

×

×

×

+/×

2 2

+/×

2 2

×

+/×

2 2

+/×

2 2

×

×

+/×

2 2

+/×

2 2

×

+/×

2 2

+/×

2 2

Figure 2: An optimal tree for MAX-depth-D-{+,×}-
{2} with D = 4.

collector theorem, the correct substitutions have been made
after O(n logn) operations in expectation. In all cases, the
expected time to transform the function nodes is dominated
by the time to fix the tree to level D.

We now consider the case when the terminal values are
constrained to one. This case is slightly trickier because now
it is possible that some deletion mutations are accepted.

Theorem 6. The expected time for the (1+1) GP-single
to optimize MAX-depth-D-{+,×}-{1} is in O(n log2 n).

Proof. The optimal solution is a complete binary tree
of depth D where level D consists of 2D leaves, level D − 1
consists of 2D−1 + nodes, level D− 2 consists of 2D−2 + or
× nodes, and all remaining levels consist only of × nodes.

Unlike in the cases of MAX-depth-D-{+}-{1} and MAX-
depth-D-{+,×}-{t} for t > 1, a node can be deleted if it
evaluates to 1 and its parent is a × node. However, if a
function node evaluates to at least 2, it cannot be deleted
since doing so would result in an inferior solution. In this
case, a depth-D tree X? is an optimal solution if and only
if it is fixed to level D and all nodes at levels up to D − 3
are × nodes (see Figure 3).

Consider a node v in an unfixed position such that the
parent of v is fixed. For this variant of the MAX problem,
a position containing a + node is always fixed. Hence, the
position containing v becomes fixed if either (1) v is a ×
node that undergoes substitution to a + node, or (2) v is
a leaf node which undergoes an insert operation involving a
+ node. Either of these situations occur with probability at
least 1/(3n) so we can invoke Lemma 3 and the time until
the tree becomes fixed to level D is O(n log2 n).

After this point, no deletions can occur, and no nodes at
level D − 1 will be substituted to × nodes since this would
result in an inferior tree. We can ignore any substitutions at
level D − 2 since they result in a tree with the same value.
The tree becomes optimal when all nodes above D − 3 are
substituted into times nodes. A substitution of an arbitrary
node occurs with probability at least 1/(3n). By the coupon
collector theorem, all nodes are transformed to × nodes after
an expected O(n logn) number of evaluations. Thus the
expected time to solve the tree is dominated by the the time
to fix the tree to level D.

3.1 Terminals of smaller value
Gathercole and Ross [5] showed that the MAX problem

can be made progressively more difficult for traditional GP

×

×

+/×

+

1 1

+

1 1

+/×

+

1 1

+

1 1

×

+/×

+

1 1

+

1 1

+/×

+

1 1

+

1 1

Figure 3: An optimal tree for MAX-depth-D-{+,×}-
{1} with D = 4.

by decreasing the size of the constant terminal. For example,
in their paper they used the values t = 0.5 and t = 0.25. We
find in the case of the (1+1) GP-single that such a decrease
does not affect the asymptotic character of the runtime.

Theorem 7. The expected time for the (1+1) GP-single
to optimize MAX-depth-D-{+,×}-{0.5} is in O(n log2 n).

Figure 4 illustrates the depth-four optimal tree. Before
proving Theorem 7, we make a few observations that facil-
itate the proof. Let us first define a “light node” as any
interior node labeled × with at least one child evaluating to
strictly less than 1. We make the following remark.

Remark 8. Starting from any initial tree, after an ex-
pected O(n logn) iterations, the (1+1) GP-single never gen-
erates a tree containing light nodes.

Proof. We first observe that no new light nodes can be
created. Obviously a deletion cannot create a light node.
Furthermore, an insertion cannot create a light node since
the value at the root of the new tree would be half the value
at the root of the old tree, reducing the overall fitness of the
tree. Finally, we show that a substitution cannot create a
light node. Suppose v is a node labeled + whose children
evaluate to x and y. The substitution operation that re-
labels v with × is only accepted if xy ≥ x+ y. Without loss
of generality, suppose x ≤ y. Since x ≥ 1 + y/x, it follows
that the resulting node cannot be light.

Now suppose we start with an initial tree that contains
k light nodes. Let v be a particular light node whose chil-
dren evaluate to x and y where x < 1. A substitution at
v is always accepted since xy < y < y + x. Furthermore,
the substitution removes that particular light node. Remov-
ing any light node by substitution occurs with probability
at least k/(3n). Since no new light nodes are created, the
expected time until all light nodes have vanished is at most

3n

k∑
i=1

1/i = O(n logn).

Note that some light nodes can also be removed by deletion
(if they have a leaf child), but this only means the light
nodes vanish faster by at most a constant factor.

If the initial tree is a single leaf node, then light nodes
can never appear during the execution of the (1+1) GP-
single. However, we would also like to show that the bound
holds regardless of how the tree is initialized. The important

1336

×

+/×

+

+

0.5 0.5

+

0.5 0.5

+

+

0.5 0.5

+

0.5 0.5

+/×

+

+

0.5 0.5

+

0.5 0.5

+

+

0.5 0.5

+

0.5 0.5

Figure 4: An optimal tree for MAX-depth-D-{+,×}-
{0.5} with D = 4.

matter is that a deletion can only occur when the parent
of the deleted leaf is labeled ×. Such a node is light by
definition, hence if there are no light nodes, there are no
deletions possible.

Proof of Theorem 7. After O(n logn) time, all nodes
are non-light. It follows that at this point, and for the re-
mainder of the execution no deletions are possible and, by an
argument analogous to the proof of Theorem 4, the entire
tree is fixed after at most O(n log2 n) expected iterations.
After fixation, the interior node labels are corrected after
O(n logn) expected substitutions.

4. ANALYSIS FOR (1+1) GP-multi

Theorem 9. The expected time for the (1+1) GP-multi
to optimize MAX-depth-D-{+}-{1} is in O(n2).

Proof. Let X be a non-optimal tree, i. e. not the com-
plete binary tree of depth D. Then there is at least one leaf
in the tree that does not have depth D. A mutation that per-
forms exactly one insertion operation at that leaf increases
the fitness by 1. Such a mutation occurs with probability
at least 1/(3en) since the probability that Poisson muta-
tion performs exactly one operation is 1/e and there are 3
distinct types of operation. The fitness of a solution is de-
termined by the number of leaves in the tree and is at most
2D. Hence, the expected time until an optimal tree has been
achieved is upper bounded by

2D−1∑
i=0

3en = O(n2).

In this section we will state and prove a theorem about the
performance of (1+1) GP-multi on MAX-depth-D-{+,×}-
{1} (see Theorem 10). The difficulty of the analysis lies in
the variable number of operations: while (1+1) GP-single
makes exactly one application of the HVL-Prime operator,
(1+1) GP-multi makes a random number of them, as given
by sampling a Poisson distribution with parameter 1; the
expected number of application of the HVL-Prime operator
is thus 2.

Theorem 10. The expected time for the (1+1) GP-multi
to optimize MAX-depth-D-{+,×}-{1} is in O(n2).

Proof. We argue by analyzing the Markov chain gener-
ated by the (1+1) GP-multi. We divide the set of all possible

max = O(n) opt

max−1

...
...

i + 1

i

...
...

0

O(p + 1/m3)

Ω(1/m)

Ω(p + 1/m)

f-based bad trees good trees
level

Figure 5: State diagram and transition probabilities
between different types (good/bad) of tree and dif-
ferent f-based levels dependent on the number m of
nodes in the tree.

trees (i.e., possible best-so-far solutions) into groups. Each
tree is either good or bad as defined later in this proof; in-
tuitively, good trees are easy to improve, while bad trees are
not. We also divide the best-so-far solutions into f -based
levels: given the value f(X) it returns its f -based level is
log6/5(f(X)). As an exception, the tree with optimal fitness
has its own f -based level. We will show that good trees have
a reasonable chance of of improving their fitness by a factor
of at least 6/5, thus climbing up a level; furthermore, we
will see that we will not have bad trees for too much of the
time.

As the optimal fitness is O(2n), we have Θ(n) f -based
levels, and up to 2 groups of trees per f -based level (the
group of good ones and the group of bad ones). See Figure 5
for a graphical depiction.

We will argue that the tree representing the best-so-far so-
lution will climb up one f -based level in an expected number
of O(n) iterations. The tree can never go down an f -based
level, as the fitness of the best-so-far solution never goes
down. As there are Θ(n) f -based levels, this will finish the
proof (using a simple waiting time argument).

To show the bound on the time to climb an f -based level,
we give bounds on the transition probabilities in the state
diagram; in particular, we will prove the claims on the tran-
sition probabilities shown in Figure 5.

Let X be the current (non-optimal) tree. We let m ≤ n
be the number of different nodes in X. We let V be the set
of all interior nodes v of X such that

1. all ancestors of v are labeled ×;

2. The depth of v is not D − 1.

1337

3. v does not evaluate to the maximally possible value,
given the depth restriction.

Note that, for any increase of the value of a node from v ∈ V
by a factor of c increases the value of the whole tree by c
(if all parts outside the subtree rooted at v stay the same);
this uses Item 1 of the above list. Furthermore, V = ∅ is
equivalent to X being the optimal tree.

We consider the following different types of nodes in V .
We let V × be the set of all nodes of V labeled ×, V + the
set of all nodes of V labeled +.

We partition the set V × into the two sets V ×≤4, where one

child tree evaluates to ≤ 4, and V ×≥5 of all remaining nodes.

We partition V + into the three sets V +
(≤2,≤2), V

+
(≥3,1) and

V +
(≥3,≥2) as follows. The set V +

(≤2,≤2) contains all those nodes

that have both child tree evaluate to ≤ 2; V +
(≥3,1) contains

all those nodes that have one subtree evaluate to at least 3
and the other to 1; finally, the nodes from V +

(≥3,≥2) have one

child tree evaluating to ≥ 3 and the other to ≥ 2.

The different kinds of interior nodes are summarized as
follows (some of the types are “good,” some are “bad;” this
distinction will be used soon).

Good interior nodes Bad interior nodes

+

≤ 2 ≤ 2

+

≥ 3 1

+

≥ 3 ≥ 2

×

≥ 5 ≥ 5

×

? ≤ 4

Figure 6: Good and bad interior nodes

For all v ∈ V ×≤4 ∪ V +
(≤2,≤2) ∪ V +

(≥3,≥2), we call an improve-

ment by a factor of at least 6/5 obtained by changing only
elements in the subtree rooted at v an improvement-move
at v. In this sense, these nodes are “good.”

Let such a v be given. We now show that an improvement-
move at v has a probability of Ω(1/m) with the following
case analysis.
Case 1: v ∈ V ×≤4.
Changing the subtree which evaluates to ≤ 4 into a tree that
evaluates to one more (which is possible, using Property 3
of nodes in V) and leaving everything else the same (which
has probability Ω(1/m)) increases the value of the tree by a
factor of at least 5/4 > 6/5.
Case 2: v ∈ V +

(≤2,≤2).

With probability Ω(1/m), the value of one of the subtrees
improves by 1 (this is possible, as all nodes from V do not
have optimal value yet); all other elements of X are left

unchanged. This will increase the value of v by at least
5/4 ≥ 6/5.
Case 3: v ∈ V +

(≥3,≥2).

Let v ∈ V +
(≥3,≥2). Let a and b be the respective values of

the child trees of v. We consider flipping the label of v and
leaving all other labels the same (which has a probability of
Ω(1/m)). Thus, we get an increase in fitness by a factor of

a · b
a + b

=

(
1

a
+

1

b

)−1

≥
(

1

2
+

1

3

)−1

=
6

5
.

This completes the different cases.
We distinguish the following two kinds of trees. Bad trees

are trees with V ×≤4 = V +
(≤2,≤2) = V +

(≥3,≥2) = ∅. All other

trees are good. Intuitively, for good trees, we can find v
such that we can make an improvement-move at v. Thus,
using the analysis of improvement-moves, we see that all
good trees have a chance of increasing in fitness by a factor
of at least 6/5 with probability Ω(1/m).

We proceed now as follows. First, we show that bad trees
turn into good ones with probability Ω(1/m). Then we show
that, for good trees, it is at least as likely to improve the
fitness by a factor of 6/5 as it is to change into a bad tree
(up to constant factors).

Suppose first X is bad; as V 6= ∅, it is easy to see that
there is v ∈ V(≥3,1). The probability for changing the subtree
of v with value 1 into a tree with value ≥ 2 and leaving
everything else the same is Ω(1/m). This results in a good
tree.

Suppose now X is good; let v be a node closest to the root
in X such that v ∈ V ×≤4 ∪ V +

(≤2,≤2) ∪ V +
(≥3,≥2). Suppose X

is turned into a bad tree X ′. For this, one of three events
has to happen. We let E1 be the event that, in X ′, an
ancestor of v is now labeled +; we let E2 be the event that
v ∈ V ×≥5 ∪ V +

(≥3,1) (with respect to X ′); we let E3 be the

event that v now evaluates to its maximal value. We let p
be the probability that either of E2 or E3 happens:

p = P (E2 ∪ E3).

We will find events E′2 and E′3 corresponding to the events
E2 and E3, respectively, such that there is a constant k with
P (E′2) ≥ kP (E2) and P (E′3) ≥ kP (E3); furthermore, we
will show P (E1) = O(1/m3). Also, in either of the events
E′2 and E′3, the f -based level of X ′ will be strictly higher
than in X. This will establish all the transition probabilities
given in Figure 5.
Regarding E1: An ancestor of v is labeled with + in X ′.
Suppose v′ is the ancestor of v highest up in the tree that
is labeled with + in X ′. As X ′ is bad, one of the children
of v′ in X ′ evaluates to 1; however, by choice of v′ (high
up in the tree), we have that, in X, both children of v′

evaluated to at least 5. Thus, in one of the two subtrees
rooted at a child of v′, all interior nodes labeled + had to
flip, and there were at least 3 of those (as otherwise the
value is at most 4); furthermore, the label of v′ changed.
This has a probability of O(1/m4), and there are at most
log(m) possible ancestors of v′ where this can happen. Thus,
this event has a probability of O(log(m)/m4) ⊆ O(1/m3).
Regarding E2: v is now a “bad” node in one of the following
two ways.
Case 1: v ∈ V ×≥5 with respect to X ′.
For all the three cases for the classification of v with respect
to X, we got an increase of fitness by a factor of at least

1338

5/4 times as much in the (up to constant factors) at least as
likely event of not changing anything else to worse values.
Case 2: v ∈ V +

(≥3,1) with respect to X ′. Case 2.1: v ∈ V ×≤4

with respect to X.
In this case, the label of v flipped, which has probability
O(1/m). An improvement-move at v has a probability of
Ω(1/m), which finishes this case. Case 2.2: v ∈ V +

(≤2,≤2)

with respect to X.
The node v has a value of at least 4 in X ′. In order for this
not to be improving by a factor of at least 4/3, both subtrees
rooted at the children of v previously had to evaluate to 2. In
this case, the change from X to X ′ required reducing one of
the subtrees in value to 1, which has probability O(1/m). An
improvement-move at v has a probability of Ω(1/m), which
finishes this case. Case 2.3: v ∈ V +

(≥3,≥2) with respect to X.

In one of the subtrees, all + nodes have been flipped or
deleted with probability O(1/m). An improvement-move at
v has a probability of Ω(1/m), which finishes this case.

This finishes the different cases and the analysis for E2.
Regarding E3: v evaluates to its maximal value in X ′.
Then, if no node outside of the subtree rooted at v flips,
we have an improvement-move at v. This is, up to constant
factors, as likely as E3.

This completes the analysis of the different events and
shows that, if O(p+ 1/m3) is a bound on the probability for
X to become a bad tree, then Ω(p+ 1/m) is a bound on the
probability for X ′ to gain an f -based level over X.

This finishes proving the claims implicit in Figure 5 and,
thus, completes the proof.

5. BIASED MUTATIONS
In the previous sections, we have analyzed the runtime

of different simple GP algorithms for variants of the the
Max Problem. One important step was to analyze how the
algorithms can make progress by growing the tree using in-
sertion operations. In this section, we will study the grow-
ing of trees by insertion operations further. We point out
theoretical properties of the insertion operator that is part
of the algorithms introduced in Section 2. Using this op-
erator, subtrees which already have many nodes are more
likely to be expanded. Depending on the problem at hand,
a more equal growth might be preferable. The use of bi-
ased mutation operators for variable length representations
has recently been explored in [2]. We present an insertion
operator leading to a more balanced tree growth and show
improved upper bounds when using this operator.

5.1 Growing Trees by Biased Insertions
We consider the stochastic process detailed in Algorithm 2

below for growing an infinite binary tree. We study the ex-
pected time until a particular node v in the infinite binary
tree is created. The following theorem shows that the ex-
pected time to create any node with depth > 1 is infinite.

Algorithm 2: Standard insertions

Start with a tree X consisting of a single leaf r;1

Iteratively replace a leaf in X chosen uniformly at2

random by a node with two leaves as children;

Theorem 11. For any given node v with depth strictly
greater than 1 in the complete infinite binary tree, the ex-

pected number of iterations until v is created when growing
the tree with standard insertions is infinite.

Proof. Fix a child v of the root. We compute the ex-
pected time until v is expanded as follows. The earliest
iteration that v can be expanded is iteration 2, with proba-
bility 1/2; in iteration 3, if v is not expanded already (with
probability 1/2), v is expanded with probability 1/3, and so
on. This gives the following formula for the expected time
until v is expanded.

∞∑
i=2

i · 1

i

i−2∏
j=1

j

j + 1
=

∞∑
i=2

1

i− 1
=∞.

As no node can be created before any of its ancestors, this
finishes the proof.

With an alternate model for growing trees, we get a more
balanced result as follows. Consider the following stochastic
process growing an infinite binary tree.

Algorithm 3: Biased insertions

Start with a tree X consisting of a single leaf r;1

Iteratively replace a randomly chosen leaf in X, where a2

leaf of distance d to the root has probability 2−d of
being chosen, by a node with two leaves as children;

It is easy to see that, in a binary tree, this gives a proba-
bility distribution on the leaves.

Theorem 12. Using Algorithm 3, the expected number of
iterations until a particular node v is created is Θ(2d), where
d is the distance of v to the root.

Proof. Let v be any node in the infinite binary tree, let
d be its distance to the root. Using induction on d with
trivial base case, we assume the expected time until the
parent of v is expanded to be 2d − 1. Once the parent of
v is expanded, the expected time until v is expanded is 2d

iterations. This results in a total number of iterations of
2d − 1 + 2d = 2d+1 − 1.

5.2 Runtime Analysis for Biased Mutation
Inspired by these remarks, we modify insert and delete

so that a leaf is not chosen uniformly, but instead with prob-
ability 2−d, where d is the distance of the leaf to the root. We
call the versions of (1+1) GP based on these modified vari-
ation operators (1+1) GP-balanced-single and (1+1) GP-
balanced-multi.

Theorem 13. The expected time for (1+1) GP-balanced-
single to optimize MAX-depth-D-{+}-{1} is O(n logn).

Proof. We argue similarly as in Theorem 4. The optimal
solution is the complete binary tree of depth D and deletions
are never accepted.

Let X be a non-optimal tree; suppose all nodes on some
level k − 1 are interior nodes (counting levels as distance
to the root). Using a simple coupon collector argument,
all nodes on level k are made interior nodes within an ex-
pected number of iterations of at most

∑2k

i=1
2k

i
= O(2kk).

Thus, summing over all levels, we get a total expected run-

ning time for (1+1) GP-balanced-single of
∑log(n)

k=1 O(2kk) =
O(n log(n)). This last step is entailed by a well-known sum-
mation formula, or by observing that the terms grow super-
exponentially, and, hence, the last term dominates.

1339

Table 1: Runtime bounds for the Max problem.

Problem (1+1) GP-

MAX-depth-D- single multi balanced

{+}-{1} O(n log2 n) O(n2) O(n logn)
{+×}-{t}, t>1 O(n log2 n)
{+×}-{t}, t=1 O(n log2 n) O(n2) O(n logn)
{+×}-{t}, t=1/2 O(n log2 n)

Combining the above analysis with the arguments proving
Theorem 6, we have the following result.

Theorem 14. The expected time for (1+1) GP-balanced-
single to optimize MAX-depth-D-{+,×}-{1} is O(n logn).

Furthermore, for (1+1) GP-balanced-multi we can also
obtain much improved results.

Theorem 15. The expected time for (1+1) GP-balanced-
multi to optimize MAX-depth-D-{+}-{1} is O(n logn).

Proof. Let a non-optimal tree with m nodes; thus, the
tree has at most m/2 leaves at maximal depth. Expanding
one of the leaves at maximal depth has thus a probability of
at most m/(n+1); hence, expanding one of the leaves which
is not at maximal depth has a probability of 1−m/(n+ 1).
Expanding a leaf at non-maximal depth and changing noth-
ing else will give a strictly larger tree (recall that making
only a single change has constant probability). Thus, if there
are still k = n −m nodes missing for the complete binary
tree of depth log(n+ 1), we have a probability of Ω(k/n) to
decrease the number of missing nodes by 1. Furthermore,
the number of missing nodes never increases. Using a mul-
tiplicative drift theorem, the result follows.

6. DISCUSSION AND CONCLUSIONS
Analyzing the computational complexity of genetic pro-

gramming algorithms on exemplary problems can help to
understand the behavior of these algorithms in a rigorous
manner. The runtime bounds presented in this paper (sum-
marized in Table 1) show that simple mutation provably
helps to solve the variants of the Max problem presented
in this paper. Furthermore, we have studied mutation in
greater detail and shown that biased mutation operators
lead to improved runtime bounds of O(n logn) which can
be considered optimal as such algorithms usually encounter
the coupon collector effect.

One might remark how a simple algorithm like (1+1) GP
is more effective than conventional genetic programming with
its population and tree-based crossover on the Max problem
and consider what this suggests more generally. First, it mo-
tivates a reminder that mutation is likely neglected more of-
ten than it should be. HVL-Prime is attractive because it is
an incremental operator. While it takes small steps, if these
steps can also be combined, like in the case of (1+1) GP-
multi, it offers a different means of variation. Since tree
growth and fitness improvement are coupled but not con-
trolled nor well-understood, diverse variation operators may
be helpful. While mutation works well specifically on the
Max problem, this success may not be general to mutation.
However, maintaining simple (1+1) GP algorithms in one’s

library might allow for scaling a problem to a point where
it no longer can be easily solved by hill climbing. At that
point, conventional genetic programming may be merited.

7. REFERENCES
[1] A. Auger and B. Doerr, editors. Theory of

Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, 2011.

[2] S. Cathabard, P. K. Lehre, and X. Yao. Non-uniform
mutation rates for problems with unknown solution
lengths. In H.-G. Beyer and W. B. Langdon, editors,
FOGA, pages 173–180. ACM, 2011.

[3] G. Durrett, F. Neumann, and U.-M. O’Reilly.
Computational complexity analysis of simple genetic
programming on two problems modeling isolated
program semantics. In Proc. of FOGA’11, pages
69–80, 2011.

[4] V. Feldman. Evolvability from learning algorithms. In
C. Dwork, editor, STOC, pages 619–628. ACM, 2008.

[5] C. Gathercole and P. Ross. An adverse interaction
between crossover and restricted tree depth in genetic
programming. In Proceedings of the First Annual
Conference on Genetic Programming, GECCO ’96,
pages 291–296, 1996.

[6] D. E. Goldberg and U.-M. O’Reilly. Where does the
good stuff go, and why? How contextual semantics
influences program structure in simple genetic
programming. In W. Banzhaf, R. Poli, M. Schoenauer,
and T. C. Fogarty, editors, EuroGP, volume 1391 of
Lecture Notes in Computer Science, pages 16–36.
Springer, 1998.

[7] T. Kötzing, F. Neumann, and R. Spöhel. PAC learning
and genetic programming. In N. Krasnogor and P. L.
Lanzi, editors, GECCO, pages 2091–2096. ACM, 2011.

[8] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[9] W. B. Langdon and R. Poli. An analysis of the MAX
problem in genetic programming. In Advances in
Genetic Programming 3, chapter 13, pages 301–323.
MIT Press, 1997.

[10] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[11] F. Neumann. Computational complexity analysis of
multi-objective genetic programming. In GECCO.
ACM, 2012. to appear.

[12] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity. Springer, 2010.

[13] U.-M. O’Reilly. An Analysis of Genetic Programming.
PhD thesis, Carleton University, Ottawa-Carleton
Institute for Computer Science, Ottawa, Ontario,
Canada, 22 Sept. 1995.

[14] U.-M. O’Reilly and F. Oppacher. Program search with
a hierarchical variable length representation: Genetic
programming, simulated annealing and hill climbing.
In Y. Davidor, H.-P. Schwefel, and R. Manner, editors,
Parallel Problem Solving from Nature – PPSN III,
number 866 in Lecture Notes in Computer Science,
pages 397–406. Springer-Verlag, 1994.

[15] L. G. Valiant. Evolvability. J. ACM, 56(1), 2009.

1340

