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ABSTRACT
Human lives are increasingly influenced by algorithms, which there-
fore need to meet higher standards not only in accuracy but also
with respect to explainability. This is especially true for high-stakes
areas such as real estate valuation. Unfortunately, the methods
applied there often exhibit a trade-off between accuracy and ex-
plainability.

One explainable approach is case-based reasoning (CBR), where
each decision is supported by specific previous cases. However, such
methods can be wanting in accuracy. The unexplainable machine
learning approaches are often observed to provide higher accuracy
but are not scrutable in their decision-making.

In this paper, we apply evolutionary algorithms (EAs) to CBR
predictors in order to improve their performance. In particular,
we deploy EAs to the similarity functions (used in CBR to find
comparable cases), which are fitted to the data set at hand. As
a consequence, we achieve higher accuracy than state-of-the-art
deep neural networks (DNNs), while keeping interpretability and
explainability.

These results stem from our empirical evaluation on a large data
set of real estate offers where we compare known similarity func-
tions, their EA-improved counterparts, and DNNs. Surprisingly,
DNNs are only on par with standard CBR techniques. However,
using EA-learned similarity functions does yield an improved per-
formance.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; • Com-
puting methodologies→ Neural networks; Probabilistic reasoning.
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1 INTRODUCTION
Algorithms have been guiding human decision-making for quite
some time, affecting the way we shop or how we select a movie
to watch. Increasingly, they are employed in sensitive areas such
as finance [11], medicine [32], and the legal system [19] as well
as real estate valuations [8, 30]. In such delicate areas algorithms
need to fulfill a plethora of requirements: They need to be accurate,
trustworthy, and therefore scrutable to the user. Furthermore, they
must not exacerbate existing biases or prejudices. In the context of
real estate, these requirements are necessary as setting the price of
a house or apartment correctly is of crucial importance to buyer,
seller, and the bank providing financing. However, the algorithms
applied there typically fall short of the posed requirements.

On the one hand, explainable algorithms outline their reasoning
or provide evidence for the decisions they make and are therefore
scrutable. A commonly used explainable approach is built on the
following intuition: A human, who is about to make a decision,
naturally compares the current situation to similar past experiences
and their outcomes. This process is heavily used by professional real
estate appraisers and can be formalized into the case-based reasoning
(CBR) framework. There, real estate valuations are estimated as an
average of past sales of comparable properties, which then serve
as witnesses for the obtained prediction. This enables humans to
check the predictions by looking at the basis on which the algorithm
picked the price, allowing them to decide whether the prediction
is trustworthy or if it exacerbates certain biases. In algorithmic
applications, the central part of CBR is a similarity function that
defines how similar the property to be valued is to a property
whose value is known. Similarity functions that have been applied
before include simple metrics on attribute vectors [5]. The similarity
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functions can also be learned from the data set at hand so they are
fitted to it [15].

On the other hand, unexplainable approaches like deep neural net-
works (DNNs) have been used to valuate real estate properties [30],
but they fail the trust requirement as they only provide an opaque
output without any reasoning. With the inherent complexity of a
DNN, one is not able to explain in retrospect how a certain output
value is produced. Such methods are therefore liable to exacerbate
existing biases [14, 21, 28, 29], which can only be discovered by
statistical analysis of many predictions. A user cannot check an
individual prediction for them. Nevertheless, DNNs have several
advantages. Standard architectures can be applied to a variety of
areas without relying on domain experts, which can save cost and
time resources, and at the same time they are observed to provide
high accuracy [30].

In this paper, we improve upon previous explainable methods
by using evolutionary algorithms (EAs), which are getting more and
more popular in the field of artificial intelligence [36]. In particular,
for CBR predictors we apply EAs to find good similarity functions
that are fitted to the considered data set, allowing us to improve
the accuracy of CBR while maintaining its explainability. More-
over, while previous approaches based on similarity functions do
not scale to large data sets as they rely on maximum likelihood
estimation and numerical methods [27], our approach reduces the
complexity for a single prediction from linear to logarithmic. This
improvement can be attributed to the use of geometric data struc-
tures that allows us to find similar objects efficiently.

To evaluate the resulting adaptation, we perform an empirical
evaluation on a large data set of Japanese real estate offers [22],
where we compare the different approaches. The results show that,
surprisingly, the unexplainable DNNs do not beat known CBR
approaches. However, our EA-assisted CBR method outperforms
all others, yielding an explainable approach with higher accuracy.

In our analysis, we further identify an advantage that CBR has
over DNNs. One of the fundamental rules in real estate valuation
is that the value of a property is heavily influenced by its loca-
tion. Hence, its surrounding properties are an important indicator
for its price. While DNNs are a general framework that can be
used to achieve good results without relying on domain knowledge,
they seem to be unable to make these local relationships, as this
information is only implicitly present in the weights learned dur-
ing training. On the other hand, CBR makes explicit connections
between properties, which turns out to intrinsically capture this
important aspect. When providing DNNs with information about
surrounding properties, they become much more accurate.

Structure of the Paper. This work is structured as follows. In Sec-
tion 2, we introduce preliminary notation and used metrics. We
discuss various methods to evaluate real estate properties in Sec-
tion 3. In particular, this includes the CBR and DNN approach, as
well as our proposed method to utilize EAs to improve the underly-
ing similarity functions. We evaluate our work in Section 4.2 and
conclude it in Section 5.

1.1 Related Work
Early work in the computerized assessment of residential properties
was mainly conducted using linear regression techniques, e.g. [7].

They were superseded by hedonic price models, which determine
the price by estimating the effect of each characteristic a property
has. These well-researched models have remained the dominant
technique for decades [18]. However, since hedonic models assume
that a property’s price is the sum of its desirable attributes, they are
limited. With the advent of more general machine learning methods
like Support Vector Regression, Random Forests, and Deep Neural
Networks, these have also been applied to real estate valuations.
While thesemethods are more accurate and outperform the classical
hedonic models [1, 8, 10, 24, 35, 38], they lack explainability due to
their black box character.

Moreover, it has been observed that the explainable approach of
taking the average of the 𝑘-nearest neighbors beats Support Vector
Regression and Multi-layer Perceptrons (simple neural networks),
while Regression Trees perform even better [5].

Further explainable approaches were obtained by introducing
the concept of case-based reasoning and rule-based reasoning (a
hedonic regression model) to real estate valuations [15]. There, it
was observed that the CBR approach works better on a database
of rental prices, while the rule-based approach was superior on a
sales database. We extend their work by learning a more complex
similarity function for case-based reasoning using EAs, which are
applicable to large data sets.

EAs have been previously applied to real estate valuation [17],
where they are utilized to learn a hedonic model. To the best of our
knowledge, EAs have not been used to learn similarity functions
for real estate valuation before.

We work with a data set of real estate offers from the Japanese
"LIFULL HOME’S Data Set" [22], which has been used before to
compare DNNs with Kriging, a generalization of Gaussian modeling
to spatial data [35]. In particular, they look at the nearest neighbor
Gaussian processes model, which enables the application of Kriging
to big data sets. In contrast to our contribution, they examine rent
price predictions on data set samples with sizes from 104 to 106.
They find that for the largest sample size 106 Kriging and DNNs
perform similarly but DNNs are superior on the extreme ends of
the price range. While they only consider simple architectures,
like previously used neural networks with up to 5 layers [33], we
examine more complex architectures. In particular, we use the
state-of-the-art TabNet [4], a high-performance and interpretable
canonical deep tabular data learning architecture. In the context
of real estate, two further architectures are proposed on Kaggle1, a
data science community offering machine learning competitions:
A DNN published in a competition on real estate prices [12] and
one published in another real estate price prediction challenge with
the intent to serve as a baseline for DNNs with tabular data [25].
Throughout this work, we denote the former architecture by Kaggle
Housing and the latter by Kaggle Baseline, both of which are also
considered in our evaluation.

2 PRELIMINARIES
LetN andR denote the set of natural and real numbers, respectively.
For 𝑛 ∈ N, we define [𝑛] = [1, 𝑛] ∩ N. Let R = R ∪ {−∞,∞} be
the extended real numbers. For a vector 𝒗 we denote by 𝑣𝑖 the 𝑖-th
entry of 𝒗.

1www.kaggle.com

www.kaggle.com
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2.1 Error Measures
In order to evaluate the quality of a predictor, we take a set of 𝑛
objects, whose values 𝒚 ∈ R𝑛 are known. We then give the objects
(but not the values) to the predictor, which then generates a set
of predictions �̂� ∈ R𝑛 . Now we want to measure how well the
predictionsmatch the actual values of the objects. One suchmeasure
is given by the mean percentage error (MPE), which is defined as

MPE(𝒚, �̂�) =
∑
𝑖∈[𝑛] 1 − 𝑦𝑖/𝑦𝑖

𝑛
.

The MPE can be used to determine whether the predictor has a bias,
i.e., tends to produce predictions that are larger or smaller than
the ground truth. One disadvantage, however, is that prediction
errors may cancel each other. This can be avoided by using the
well-known mean absolute percentage error (MAPE), that is,

MAPE(𝒚, �̂�) =
∑
𝑖∈[𝑛] |1 − 𝑦𝑖/𝑦𝑖 |

𝑛
.

Both measures are intuitively understandable, and in contrast to
other loss functions allow us to compare the success on different
price ranges, since the errors are given in percentage and are there-
fore not relative to the size of the numbers in the data itself. In
particular, the MAPE is standard in machine learning and was used
in the context of predicting real estate prices before [8, 35].

3 REAL ESTATE VALUATION
In this section, we introduce a well-known prediction scheme that
is already being applied to real estate valuation [5, 15]. We propose
extensions to make the method work on large data sets, and explain
how EAs can be used to improve its performance. Moreover, we
briefly explain how DNNs are used to predict real estate prices [1,
30, 35].

3.1 Valuation with Case-Based Reasoning
Case-Based Reasoning. When applying CBR, we gain knowledge
about a new property by considering similar properties whose
valuations are known. Formally, this means that we have a set of
properties 𝑃 , divided into two sets 𝑃𝑢 and 𝑃𝑣 , denoting unvalued
and valued properties, respectively. The valuations of properties
in 𝑃𝑣 are given by a function 𝑓value : 𝑃𝑣 → R, while a symmetric
similarity function 𝑠 : 𝑃 × 𝑃 → R≥0 indicates how similar two
properties in 𝑃 are. Now, we predict the value of an unvalued
property 𝑝𝑢 ∈ 𝑃𝑢 as

𝑓pred (𝑝𝑢 ) =
∑
𝑝𝑣 ∈𝑃𝑣 𝑠 (𝑝𝑢 , 𝑝𝑣) · 𝑓value (𝑝𝑣)∑

𝑝𝑣 ∈𝑃𝑣 𝑠 (𝑝𝑢 , 𝑝𝑣)
. (1)

This definition is well known and often referred to as weighted
average prediction [16].

The similarity function 𝑠 can be used to represent a natural
notion of closeness. In the real estate case an intuitive choice is the
squared inverse geographical distance, which we denote as location-
based similarity (LBS). Another commonly used approach is to
develop the similarity function manually based on the attributes of
the properties. One example is the unweighted Euclidean distance
between attribute vectors [5]. This function can be generalized by
assigning weights to the attributes and allowing the use of different
metrics. The resulting parameters can then be adjusted to fit a

given data set using machine learning techniques [15]. However,
this method is not computationally feasible for large data sets, since
the expensive objective function has to be computed often [27].

Extending the CBR Approach. We propose finding similarity func-
tions via EAs. This offers a number of advantages: (1) the similarity
function is still fitted to the data set at hand and therefore promises
better performance, (2) EAs are very flexible and do not rely on
special properties of the function to learn, such as differentiability,
and (3) since EAs need to evaluate the objective function less often
than comparable optimization techniques, they are better suited to
large data sets. We refer to this method as the CBR+EA approach.

Formally, we encode a property 𝑝 ∈ 𝑃 as an attribute vector
𝑎(𝑝) ∈ R𝑛 , where, for 𝑖 ∈ [𝑛], the entry 𝑎𝑖 (𝑝) corresponds to the
𝑖-th attribute of the property. We propose to learn the inverse of a
weighted quasi-norm. That is, we learn 𝑞 ∈ R+ and a weight vector
w ∈ R𝑛 and then define the similarity for two properties 𝑝1, 𝑝2 ∈ 𝑃

to be

𝑠𝑞,𝒘 (𝑝1, 𝑝2) =
( ∑︁
𝑖∈[𝑛]

𝑤𝑖 ( |𝑎𝑖 (𝑝1) − 𝑎𝑖 (𝑝2) |)𝑞
)−1/𝑞

.

This measure has four key advantages: (1) it has previously demon-
strated good performance as a distancemeasure in high dimensional
spaces [2], (2) it can represent a wide variety of similarity functions
due to weighting and a variable exponent, (3) it only exposes a
reasonable number of parameters (namely the number of attributes
plus one), and, (4) by introducing 𝑞, we extend the function learned
by [15] while by allowing weighting, we extend the Euclidean norm
employed by [5].

Application to Large Data Sets. Note that, by Equation (1), determin-
ing a price for a single unvalued property 𝑝𝑢 involves computing
the similarity function for all objects in the data set. This may be-
come infeasible when using large data sets. Moreover, even if all
computations are performed, the resulting amount of data may be
too large for a human to grasp in order to verify the decision of the
algorithm. To mitigate both problems, we extend upon our model
by introducing filtering as well as pre- and post-selection.

In filtering, we learn a vector 𝒇 ∈ R𝑛≥0 that we can wrap around
a given similarity function 𝑠 such that we get a filtered similarity
function 𝑠𝒇 . For two properties 𝑝1, 𝑝2 ∈ 𝑃 we define

𝑠𝒇 (𝑝1, 𝑝2) =
{
0, if ∃𝑖 ∈ [𝑛] : |𝑎𝑖 (𝑝1) − 𝑎𝑖 (𝑝2) | ≥ 𝑓𝑖 and
𝑠 (𝑝1, 𝑝2), otherwise.

Intuitively, the filtering ensures that two properties are considered
not similar at all when their attribute vectors differ by too much in
at least one component.

Our second extension of the CBR approach is motivated by the
fact that the value of a property 𝑝𝑢 ∈ 𝑃𝑢 is mostly influenced by
its location [20], making it unlikely that properties with a large
geographical distance to 𝑝𝑢 contribute reasonable values to the
prediction. Therefore, we introduce pre-selection, which works as
follows. When predicting the value of 𝑝𝑢 , we want to compute
the function in Equation (1), which involves computing the sim-
ilarity between 𝑝𝑢 and all valued properties 𝑝𝑣 ∈ 𝑃𝑣 . To avoid
this, we approximate the weighted average prediction 𝑓pred by only
considering the subset of properties in 𝑃𝑣 containing the 𝑘 ∈ N>0
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properties that are geographically closest to 𝑝𝑢 (among those whose
geographical distance to 𝑝𝑢 is below a certain threshold 𝑟 ∈ R≥0).
Pre-selection can be implemented efficiently using geometric data
structures like R*-trees [6]. This reduces the number of required
computations of the similarity function, which in turn further re-
duces the computational cost of the fitness function.

Finally, in order to reduce the number of objects that influence
the price, therefore improving human verifiability, we introduce
post-selection. There, the weighted average (Equation (1)) is only
taken over the𝑚 ∈ N>0 valued properties (which also pass pre-
selection) that are most similar to 𝑝𝑢 .

In total, the resulting prediction function is given by

𝑓
𝑞,𝒘,𝒇 ,𝑚,𝑘,𝑟

pred (𝑝𝑢 ) =

∑
𝑝𝑣 ∈𝑃 ′

𝑣
𝑠
𝑞,𝒘
𝒇

(𝑝𝑢 , 𝑝𝑣) · 𝑓value (𝑝𝑣)∑
𝑝𝑣 ∈𝑃 ′

𝑣
𝑠
𝑞,𝒘
𝒇

(𝑝𝑢 , 𝑝𝑣)
,

where 𝑃 ′𝑣 is the subset of properties of 𝑃𝑣 , that fulfill the require-
ments of pre- and post-selection with parameters𝑚,𝑘 , and 𝑟 , and
𝑠
𝑞,𝒘
𝒇

is the above mention weighted 𝑠𝑞,𝒘 similarity function after
applying the filter 𝒇 .

3.2 Searching Similarity Functions with EAs
We now use an EA to find good values for the parameters of this
similarity function. In particular, we consider a tuple (𝑞,𝒘,𝒇 ,𝑚, 𝑘, 𝑟 )
of the parameters as an individual. Throughout several generations,
a population of multiple individuals is altered using mutation and
crossover. All parameters are mutated separately with a fixed prob-
ability; if selected for mutation, the new value is sampled from
a normal distribution centered at the current value. We employ
uniform crossover, which means that each parameter is taken from
either parent with the same probability. For parameters that are
vectors (𝒘 and 𝒇 ), the crossover is applied element-wise. The fitness
of an individual, i.e., the performance of the prediction function
obtained when using the corresponding parameters, is evaluated as
follows. The given data set is split into two sets containing valued
and unvalued properties, respectively. We then predict the values
of all unvalued properties by using the similarity function defined
by the parameters of the individual on the valued properties. The
MAPE (see Section 2.1) of these predictions then represents the
fitness value. Among the individuals encountered throughout all
generations, the one with the highest fitness value is then used to
obtain the final similarity function.

3.3 Valuation with Deep Neural Networks
Deep neural networks (DNNs) are algorithmic computing systems
that are designed after biological neural networks [31], e.g., the
human brain. A feed forward neural network consists of neurons,
which are arranged in layers that are typically densely connected
to each other. A neuron processes the linear combination of the
weighted output of all (hence the term dense) neurons in the previ-
ous layer. In turn, its output is obtained by applying an activation
function to the combination of the resulting value and a bias value.
In the end, multiple such layers form a DNN.

The weights and biases are then adjusted to fit the data as fol-
lows. In the forward-propagation step, part of the data (a batch) is
passed through the DNN to obtain the predictions thereof. These

predictions are then evaluated according to a loss function. To min-
imize the loss function, the weights and biases of the DNN are
adapted using gradient descent in order to improve the quality of
the predictions in the back-propagation step. After the whole data
set is passed through the DNN once, we say that one epoch passed.
After sufficiently many epochs, the DNN is trained. Predictions for
a new object are then obtained by passing it through the DNN.

In a recurrent neural network the current layer additionally re-
ceives its own last value as an input. TabNet [4], a neural network
designed especially for tabular data, follows such a recurrent struc-
ture. In particular, each recurrent block consists of a feature trans-
former (a network on its own), an attentive transformer (which
aggregates how much each feature has been used in the current
decision step) and a mask (which ensures that the model focuses
on the most important features).

3.4 Using Location Data for DNNs
The location of a property is known to highly determine its price [20].
Hence, to make useful predictions about a property, information
about the prices of the properties in its surrounding area is very
useful for predictions.

Making the connections between nearby properties is usually
very difficult for DNNs, which learn a direct relationship between
the attributes of a property and its value. On the other hand, CBR is
all about the relationship of properties among each other, and only
indirectly makes the connection to the value of a property with the
help of the comparison objects.

In the case of the location-based CBR approach LBS (see Sec-
tion 3.1), these relationships are captured in a single value that
represents the average price in the neighborhood of a property.
Since this value can be computed easily in advance, we take it as a
standard input for the considered DNNs.

We note that, instead of using the LBS values as input for the
DNN, one can instead utilize the predictions made by a more sophis-
ticated CBR approach. Therefore, we also consider combinations
of the explainable CBR+EA method and the DNNs, in order to see
whether this ensemble leads to an improved performance.

4 EMPIRICAL COMPARISON
We empirically evaluate the above mentioned approaches in order
to answer the following questions.

(1) Does the explainable EA-assisted CBR approach improve the
valuation performance compared to previous state-of-the-art
methods?

(2) How does the geography of a property affect the different
approaches? Is there a specific kind of area, such as cities, in
which a particular approach is dominant?

(3) How resilient are the approaches to unclean data?
(4) How does the location data provided by CBR approaches

affect the performance of the DNNs?
In the following, we first describe our experimental setup and
present our results afterwards.

4.1 Setup
Data Set. We evaluate the different approaches on a large real

estate data set from Japan. The “LIFULL HOME’S Data Set” [22] is
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Figure 1: Locations of properties in the considered data set.
Each blue point represents one property.

available to computer science researchers worldwide upon request
through the Japanese National Institute of Informatics. It contains
both rental and sales as well as residential and commercial proper-
ties. Here, we focus on residential sales properties in the data set to
test the approaches in a specific, real-world use case.

Besides standard property attributes, such as asking price, or liv-
ing area, we use additional data included in the set, like the distance
to the nearest schools and bus station, and an urbanity score. Addi-
tionally, we use 12 attributes that further increase the information
about a property, without reducing the size of the data set due to
missing values. The full list of attributes can be found in [3].

Furthermore, we apply basic cleaning rules. For properties that
occur multiple times in the data set, we only consider the latest
entry to prevent using the same properties in training and test set,
leaving us with 723 680 entries. We remove outliers, i.e., data with
unrealistic prices (> 300 000 000Y) or location outside of Japan. We
are then left with 723 115 entries, whose distribution over Japan
can be observed in Figure 1.

Experimental Setup. The standard approach to evaluating the
performance of a method when solving a regression task is to split
the available data into two sets: a training set on which the method
can learn and a test set on which it is evaluated. Commonly, this
split is done randomly, where 80% of the data are used for training,
while the remaining 20% are used for testing. Here, we consider
another split instead, which better reflects the practical applications
in real estate. In particular, the current or future price of a property
is predicted only knowing prices of past properties. We model
this use case by splitting our data set into training and test sets at
2017-03-01, which results roughly in the common 80/20 ratio. All
prices posted before that date are treated as known and used for
training and all others are used as test data. We now search for a
similarity function by running the EA and train the DNNs, on the
same training sets.

The hyperparameters are mostly selected from existing best
practices. The ones chosen for the EA are described in Table 1.
We picked the number of generations in the EAs such that we did
not observe or expect further improvements in fitness beyond that
point. All CBR experiments are written in Rust 1.50.0.

Table 1: EA Parameters. The sample size defines how many
predictions are made to estimate the fitness of an individual.
The type switch probability defines how likely mutation
swaps pre-selection between radius and 𝑘-nearest neighbors.

Parameter Value

Number of generations 200
Restart threshold 10
Population size 20
Sample size 10 000
Mutation rate 0.2
Type switch probability 0.05
Offsprings per parent 5

Regarding the DNNs, the architecture of Kaggle Housing and
Kaggle Baseline consist of 5 and 4 densely connected layers with
200, 100, 50, 25, 1 and 128, 128, 64, 1 neurons, respectively. All layers
use relu as activation function. For the architecture of TabNet, we
refer the reader to the original source [4]. We chose the number
of training epochs analogous to how we determined the number
of generations for the EAs. Kaggle Baseline and Kaggle Housing
yielded almost no improvements after 50 epochs, while TabNet
seems to require much longer training. Due to time constraints,
we introduced a time-out by allowing all networks to train for 200
epochs. For deep neural networks we employ TensorFlow2 1.7.0 and
Python 3.8. A complete list of dependencies is available alongside
the source code.3

To measure the performance, we now ask all predictors to make
predictions about all properties in the test set and calculate the
MAPE (Section 2.1) among these. To this end, the known similarity
functions as well as the EA-produced ones are given the training
data as valued properties 𝑃𝑣 . Exemplary EA-produced similarity
function parameters (i.e., the fittest individual generated in the run)
can be found in [3].

In total we consider seven methods in our experiments. Among
them the explainable ones are

• Location-based similarity (LBS),
• Unweighted similarity (Unweighted4),
• EA-learned similarity (CBR+EA).

For pre- and post-filtering (see Section 3.1), we set 𝑟 = 10 km for
LBS and Unweighted, whereas the CBR+EA method can decide
between using 𝑘 and 𝑟 , which are constrained to 𝑘 ≤ 2000 and
𝑟 ≤ 50 km, respectively. Moreover, in preliminary experiments we
determined values for𝑚 that yield a good trade-off between run
time and prediction quality. We set 𝑚 = ∞ for LBS and 𝑚 = 50
for Unweighted, to obtain a good such trade-off. For CBR+EA we
consider two variants, one where𝑚 ≤ ∞ and one where𝑚 ≤ 10.
The latter is particularly important, as in that case the number of
considered comparison objects is small enough to be evaluated by
a human.

2https://tensorflow.com
3A full copy of the code can be found at https://github.com/BenBals/Towards-
Explainable-Real-Estate under a license that enables free use for scientific purposes.
4This configuration uses the Euclidean distance, which performed best on our clean
data set out of those considered by [5].

https://tensorflow.com
https://github.com/BenBals/Towards-Explainable-Real-Estate
https://github.com/BenBals/Towards-Explainable-Real-Estate
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(a) CBR approaches (b) CBR+EA (𝑚 ≤ 10) and DNN approaches

Figure 2: Density plot of percentage errors (see Section 2). Dashed lines show the corresponding mean percentage error
(Section 2.1). For improved readability, the plot is cut off at 50% percentage error (making up for 3.7 % of predictions).

Among the unexplainable methods, we consider Kaggle Baseline,
Kaggle Housing, and TabNet.

We note that all methods (except LBS and Unweighted) are inher-
ently random, which is why each run may yield different outcomes.
To obtain meaningful statements, we perform each experiment 10
times, and report the average MAPE and the standard deviation.

4.2 Results
First, we evaluate the quality of predictions generally and per pre-
fecture before we turn our focus on analyzing the performance on
unclean data, in order to determine how much the methods are
affected by faulty values in the training data. Lastly, we compare
the DNNs when using different kinds of location data as input, as
explained in Section 3.4.

General Predictive Performance. Figure 3 lists performance metrics
of different DNN and CBR approaches, which we can use to an-
swer Question 1. As can be seen, the LBS and Unweighted methods
already yield viable results with a MAPE of 16% and 13.7%, deter-
ministically. To our surprise, the neural networks did not provide
more accuracy, only one of them getting close to the performance
of the Unweighted method, which is Kaggle Baseline achieving a
MAPE of 14.3% over the 10 runs on average with a standard devia-
tion of 0.2%. There, only one run reached a MAPE of 13.8%, which
is on par with the performance of the Unweighted method. The
other two DNNs were farther off, with a MAPE of up to 20.4% on
average. Despite not being as bad, the results of TabNet were rather
unreliable with a standard deviation of 5.3% over the 10 runs.

On the other hand, the EA-improved CBR approaches consis-
tently yielded the best results. The CBR+EA (𝑚 ≤ ∞) method
obtained an average MAPE of 12.1% with a standard deviation
of 0.1%. Moreover, the CBR+EA (𝑚 ≤ 10) variant, which uses at
most 10 comparison objects to compute the final prediction ob-
tained the same results with only a slight increase in the standard
deviation (0.2%). Thus, we obtain solid human verifiability (as less
than 10 objects are easy to comprehend) with practically no loss in
performance.

Looking at the percentage errors in Figure 2, we can get a clearer
picture of the prediction performances. The LBS method tends to
overshoot the predictions, whereas the other CBR methods, which
are based on the same technique feature similar error densities.
Notably, tuning the parameters of the similarity functions with
EAs instead of using an unweighted one, further concentrated the
density around 0, as can be seen by the peaks in the distribution
(Figure 2a).

In comparison, Figure 2b reveals that the DNNs tend to predict
values that are too small, except for TabNet whose MPE is very
close to 0. However, its distribution is less concentrated around 0
than the CBR+EA method, which results in a worse MAPE.

Local Variations in Predictive Performance. Since property prices are
highly determined by location, local variations in the available data
are very likely to influence accuracy. To measure this, we consider
the best performing CBR and DNN methods, which are CBR+EA

Figure 3: Predictive performance of CBR and DNN ap-
proaches over 10 runs. The bars denote the average MAPE in
percent and the whiskers show the standard deviation of the
MAPE over the ten runs.
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(a) CBR+EA (𝑚 ≤ 10) (b) Kaggle Baseline

Figure 4: MAPE in percent per prefecture. Prefectures with less than 100 properties in the test set are shown in gray.

and Kaggle Baseline, respectively, and compute the error measures
for each of the prefectures of Japan. To obtain reliable results, we
only consider the 30 out of 47 prefectures in which we have at least
100 properties in the test set. The results are shown in Figure 4. In
the following, we use this figure to answer Question 2.

While both plots look similar in many locations, there are areas
where they diverge visibly. Most notably, for the CBR+EA predic-
tions there is one prefecture (Nagano, shown yellow in Figure 4a),
which features a MAPE of 56%. On the other hand, the predictions
of Kaggle Baseline in the same prefecture yield a smaller MAPE
of 37%. As can be seen in Figure 1, this prefecture is rather sparsely
populated. In fact it only contains 165 properties, which is way be-
low the average number of properties per prefecture, which is 3749.
For CBR, this is an issue as it bases its valuations purely on the prop-
erties in the vicinity of a property. While this can be advantageous,
as these properties are likely especially relevant, it also makes the
approach more vulnerable to local quality differences in the data or
the number of training data close by. On the contrary, while DNNs
take local variables into account, they are trained on the whole data
set and use that information for every prediction. Consequently,
the DNNs can be more resilient to such local variations than CBR,
which leads to a more homogeneous picture in Figure 4b.

If, however, the surrounding area features enough comparison
objects, CBR can utilize this local information better than DNNs,
which leads to stronger blue coloring in the densely populated
prefectures surrounding the yellow one in Figure 4a.

Unclean Data. Since data cleaning requires lots of time and domain
knowledge, the resilience of a method to not properly cleaned data
is of high importance. To answer Question 3, we re-ran all our exper-
iments without applying our cleaning steps outlined in Section 4.1,
which adds only 565 additional properties as input data.

Despite this small change in the considered data, the effects
are severe, as can be observed in Figure 5. For the CBR-based ap-
proaches, performance deteriorates by at least 24% (LBS), which
is now the best method among the explainable ones. In fact, for

the previously well performing unweighted method the MAPE in-
creases by 76.5% compared to the clean data, which yields a value
of 92.2%. Still, improving the similarity functions with EAs yields a
strong performance increase, reducing the MAPE by more than 30%
compared to the unweighted similarity function.

Similar issueswith uncleaned data have been observed before [15].
Weighted average prediction is particularly sensitive to outliers in
price, due to the nature of the average [16]. A single misvaluated
property can therefore heavily influence the predictions of many
similar properties. This effect might be mitigated by using a median
instead of an average, as explained in [9].

In stark contrast to the observations on the clean data, here the
DNNs can outperform all CBR approaches. While the performance
also decreases for the DNNs, the two methods Kaggle Baseline and
TabNet only suffer a loss of 0.8% and 5.2% MAPE, respectively. The
effects are stronger for Kaggle Housing, where the MAPE increased

Figure 5: Predictive performance of CBR and DNN ap-
proaches over 10 runs on unclean data. The bars denote the
average MAPE in percent and the whiskers show the stan-
dard deviation of the MAPE over the ten runs.
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Figure 6: Predictive performance of the DNN approaches for
different inputs of location data. Results using LBS predic-
tions are equal to those on clean data, which are shown in
Figure 3.

by 27.3% when using unclean data. Still, we can conclude that the
DNN approaches tend to be more resilient to unclean data than the
CBR methods.

Location Data. As previously explained in Section 3.4 the location
of a property has a large impact on its value. Therefore, we consider
the easily computable information provided by LBS to be part of the
standard input for the DNNs. That is, we supply the DNNs with the
predictions made using LBS in all above-mentioned experiments.

To answer Question 4, we examine how much of an advantage
this yields for the DNNs. To this end, we performed the experiments
on clean data again, without using the LBS predictions as input for
the DNNs. Figure 6 shows the results.

Non-surprisingly, the performance of all DNNs decreases when
the location data is withheld. For the best-performing DNN, Kaggle
Baseline, the increase in MAPE is smallest with 4.9%, yielding a
value of 19.2%. As a consequence, and somewhat surprising, all
DNNs perform worse than LBS on its own, which obtained a MAPE
of 16%. This highlights how reliant neural networks are on the
relationships between close-by data points captured by the LBS
information that was provided before.

Asmentioned before, it is also interesting to examinewhether the
performance of the DNNs increases if more sophisticated location
data is provided as input. Therefore, we ran the same experiments
but provided the predictions of the CBR+EA (𝑚 ≤ 10) method as
input for the DNNs. As expected, this improves the performance of
the DNNs. Kaggle Baseline now achieves a MAPE of 12.7%, which
is better than the standard CBR-methods. Surprisingly, however,
it does not improve below the CBR+EA methods, whose data was
provided as input. We can conclude that the DNN approaches are
very reliant on the information provided by the CBR predictions.

5 CONCLUSION & FUTUREWORK
In this paper, we introduce an EA-learned CBR approach for pre-
dicting real estate prices which, outperforms not only other CBR
approaches but also deep neural networks. The most important
factor to this approach is the synergy between the explainable CBR

method and the optimum seeking EA. Even though the EA itself
is non-explainable, the resulting similarity function can be inter-
preted and predictionsmade using it can be explainedwith the usual
CBR witness system. Thereby, we marry an unexplainable machine
learning technique and an explainable approach to receive both
accuracy and explainability. Through its comparison properties,
our approach also enables an interactive human-algorithm process,
which allows rapid integration into existing, human-performed real
estate valuation.

Additionally, we investigate how reliant the DNNs are on loca-
tion data, which provides them with semantic information regard-
ing surrounding properties and greatly improves their performance.
However, some DNNs perform worse than the LBS method, even
when providing the LBS prediction as an input. Similarly, while the
performances of the DNNs improves when allowing them to utilize
the CBR+EA predictions, they do not match the quality obtained
when using these predictions on their own. One potential expla-
nation is that the data set encompassing all properties in Japan
is too heterogeneous for the DNNs to recognize and utilize local
patterns. Future work could explore whether training different net-
works for the different prefectures improves the performance in
each one of them, in order to analyze this conjecture. Another as-
pect that may be investigated is the architecture (layers, activation
functions, etc.) of the considered neural networks. While the above
considered architectures are standard in machine learning, there
are techniques to further improve the performance of DNNs, e.g.,
by utilizing skip connections or performing Neural Architecture
Search (NAS) [34]. An interesting direction would be evolutionary
NAS, which has been used to generate more sophisticated neural
networks before [23]. There, EAs have previously been applied in
the context of image recognition or classification [13, 26, 37]. To
the best of our knowledge, they have not been applied to tabular
data before. So far, our preliminary experiments have not shown
improvements here.

We note that our combination of CBR+EA with DNNs can be
seen as a so-called ensemble method, which refers to the combina-
tions of two or more machine learning algorithms that have the
potential to achieve better performance than any of them could
alone [39]. While this was not the case in our experiments, it would
be interesting to investigate other ensembles.

While the neural networks perform worse in most of our experi-
ments, they were not affected as much when working with unclean
data. There, the best performing DNN is almost not affected by
the change in data quality. On the other hand, the performance
of the CBR methods deteriorates to a point where the predictions
are unusable. As explained above, one explanation may be that
CBR methods rely on taking the average of determined comparison
objects, which tends to be affected heavily by faulty data. Future
work may explore how this performance drop can be mitigated.

While considering other data like rental prices [35], or a compar-
ison with other techniques like hedonic price or decision tree based
models [1, 18], is beyond the scope of this paper, future work might
extend our evaluation and validate our approach using different
data sets and methods. Since we see great potential in machine
learned but explainable methods, we also look forward to further
applications in other domains, especially those where the stakes
are high.
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