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ABSTRACT
In the context of black box optimization, one of the most common

ways to handle deceptive attractors is to periodically restart the

algorithm. In this paper, we explore the benefits of combining the

simple (1+1) Evolutionary Algorithm (EA) with the Luby Universal

Strategy - the (1 + 1) EAU , a meta-heuristic that does not require

parameter tuning.

We first consider two artificial pseudo-Boolean landscapes, on

which the (1 + 1) EA exhibits exponential run time. We prove that

the (1 + 1) EAU has polynomial run time on both instances.

We then consider the Minimum Vertex Cover on two classes

of graphs. Again, the (1 + 1) EA yields exponential run time on

those instances, and the (1 + 1) EAU finds the global optimum in

polynomial time.

We conclude by studying the Makespan Scheduling. We consider

an instance on which the (1 + 1) EA does not find a (4/3 − ϵ )-
approximation in polynomial time, and we show that the (1 +
1) EAU reaches a (4/3 − ϵ )-approximation in polynomial time. We

then prove that the (1 + 1) EAU serves as an Efficient Polynomial-

time Approximation Scheme (EPTAS) for the Partition Problem, for

a (1 + ϵ )-approximation with ϵ > 4/n.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
• Theory of computation→ Theory of randomized search heuris-
tics;
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1 INTRODUCTION
In the context of real-world optimization, there is usually very little

analytical knowledge of the problem at hand, and classical numer-

ical methods often fail. Problems of this kind can be approached

with black-box optimizers - algorithms that access the function to

be optimized only via the evaluation of possible solutions.

Optimizers of this kind often exhibit a large variance in run time,

due to a strong dependence of the run time on initial conditions.

Typically, a significant number of iterations are wasted trapped in

deceptive basins of attraction: sets of states that lead the search

away from the optimal solution. A simple and effective strategy for

handling this problem is to use restarts. In this scenario, an algo-

rithm is periodically re-initialized after some time (the restart time),
with the hope that if it has already become trapped in a deceptive

basin then it can be allotted another chance to discover the global

optimum. The success of a restart strategy depends on the structure

of the attractor basins in the search space, as well as the length of

the period between restarts. These two properties are intimately

related. Restart policies for discrete black box algorithms have been

studied for decades from an experimental perspective [6, 16]. In

these works, good restart times are often proposed dynamically

by some process based on the fitness of the solutions seen by the

algorithm so far.

The utility of re-initializing with a uniformly chosen random

point depends strongly on the function under consideration. Let X

be a fixed domain, and consider any family of functions F ⊆ { f |
f : X → R} s.t. for all x ∈ X there is a f ∈ F that attains a unique

global optimum at f (x ). Then the restart strategy that uses uniform

measure on the samples is the optimal choice [9]. On the other hand,

if there are more restrictions on the global structure of the space

F , different restart strategies can be employed. This is the idea

behind iterated local search [14] in which restarts are nonuniform,

and it is assumed that smaller perturbations can escape deceptive

attractor basins. In this paper, we shall assume the former situation,

inwhich no information is known and so the best policy is restarting

uniformly at random. Such function families are a common object

of study, for example in the field of black-box complexity.

A restart strategy for a black-box algorithm is an infinite sequence

(t1, t2, . . . , tt , . . .) that specifies the algorithm should be run from

https://doi.org/10.1145/3205455.3205525
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a uniformly random starting point for t1 steps, then restarted uni-

formly at random and run again for t2 steps and so forth. Note

that strategies of this kind are always set "a priori", and do not

directly make use of possible best solutinos found at a given time

step. The optimal restart strategy is the sequence that minimizes the

expected number of runs until a run returns the optimal solution.

Given any Las Vegas algorithm, it is possible to derive theoretically

the optimal restart time - the value that yields the fastest possi-

ble convergence over all such restart times. This result is due to

Luby, Sinclair, and Zuckermann [15], but was also discovered in

the context of backpropagation training for neural networks [17].

The optimal restart time is often unknown or difficult to compute.

Therefore, Luby et al. describe a universal strategy that on any given

Las Vegas algorithm yields run time of at most a logarithmic factor

worse than the one obtain with the optimal strategy. This strategy

is not tailored to any specific problem, and it has the advantage

that no parameter tuning is needed. Our work consists of adapting

the results mentioned above to commonly studied local search

heuristics.

In the framework given by Luby et al. [15], only a priori restart
strategies are considered, although it has been observed that other

approaches can be beneficial cf. de Perthuis de Laillevault et al. [1],

Gyorgy and Kocsis [7]. Another strategy that is not covered in this

setting is the Bet-and-Run, first introduced by Fischetti and Monaci

[3]. This strategy has been particularly successful in improving

state-of-the-art solvers to approach combinatorial problems (cf.

Friedrich et al. [4]), and has been studied theoretically in the context

of EAs (cf. Lissovoi et al. [13]). In contrast to all strategies mentioned

above, Luby sequences require no parameter tuning.
We explore the benefits of using the universal strategy with

EAs on various fitness landscapes. In Section 2 we give an account

of the algorithms and restart strategies studied in this paper. We

then test the benefits of using the universal strategy, and draw a

comparison with the Bet-and-Run in Section 3. We then study the-

oretically some combinatorial optimization problems in Section 4,

and experimentally in Section 5. We conclude the paper in Section 6.

2 DEFINITIONS AND TECHNICAL TOOLS
2.1 Algorithms and Framework
The (µ+1) EA is a simple population-based Evolutionary Algorithm

(cf. Algorithm 1). Initially, a population of size µ is generated u.a.r.

A parent is then selected u.a.r. and an offspring is generated via

uniform mutation. The offspring is then added to the population

and the element with worst fitness is discarded. This algorithm uses

no diversity-preserving mechanism and the selection pressure is

quite low (cf. Friedrich et al. [5]). The (1 + 1) EA is a specialization

of the (µ + 1) EA with µ = 1. It requires as input an individual

of fixed length. An offspring is generated with an operator that

resembles asexual reproduction. The fitness is then computed, and

the less desirable result is discarded. In this paper we only perform

the analysis on the (1 + 1) EA, and compare it with the (µ + 1) EA
for µ > 1, using pre-existing results.

Given a fitness function f : {0, 1}n −→ R≥0, we describe the

run time of the (1 + 1) EA as a Markov chain {Xt }t ≥0 with Xt the
f -value reached at time step t . We study the run time as the first

hitting time τ = inft {Xt = OPT }, with OPT the global optimum

Algorithm 1: (µ + 1) EA

t ← 0;

Choose population Pt of µ individuals u.a.r.;

while convergence criterion not met do
select parent x ∈ Pt u.a.r.;
generate y by flipping each bit of x w.p.

1

n ;

select z ∈ Pt with worst fitness;

if f (z) ≤ f (y) then
Pt+1 ← Pt \ {z} ∪ {y};

else
Pt+1 ← Pt ;

t ← t + 1;

of f . Since the (1 + 1) EA requires only a single fitness evaluation

per step, then any upper bound on the number of steps τ yields an

upper bound on the expected number of fitness evaluations. In this

paper, we also study the (1 + 1) EA as an approximation algorithm.

To this end, we consider the following definition.

Definition 2.1. Consider a function f : {0, 1}n −→ R≥0, and

denote withOPT the global minimum. An ϵ-approximation ofOPT
is any solution x ∈ {0, 1}n s.t. f (x )/OPT ≤ ϵ .

We analyze the run time of the (1 + 1) EA as an approximation

algorithm, by looking at the first hitting time τϵ = inft {Xt ≤
ϵOPT }. Note that if Pr(τ < +∞) = 1, then Pr(τϵ < +∞) = 1 for

all ϵ ≥ 1. The definitions above are only valid for minimization

problems. However, symmetric definitions hold for maximization

problems.

2.2 The Luby Universal Strategy
In this context, a restart strategy for a black-box algorithm is an

infinite sequence (t1, t2, . . . , tt , . . .) that specifies that the algorithm
should be run from a uniformly random starting point for t1 steps,

then restarted uniformly at random and run again for t2 steps and so
forth. Thus, we consider only a priori restart strategies, although it

has been observed that other kinds of restart techniques may fasten

the expected run time of randomized algorithms (cf. de Perthuis de

Laillevault et al. [1] and Lissovoi et al. [13]).

The optimal restart strategy is the sequence that minimizes the

expected number of runs until a run returns the optimal solution.

In the context of Las Vegas algorithms, when the density function

of the convergence probability over time is known, then the opti-

mal strategy can be computed exactly (cf. Luby et al. [15]). More

formally, let A be any Las Vegas algorithm, and with an abuse of

notation let τ denote the r.v. that returns the number of calls to the

fitness function, until either the global optimum or an approxima-

tion of it is reached (cf. Definition 2.1). Following the definition of

Luby et al. [15], we call an algortthm Las Vegas if it always converges
in finite time. Letp (t ) = Pr(τ = t ) be the probability of convergence
at step t , and q(t ) =

∑
t ′≤t p (t

′) =
∑
t ′≤t Pr(τ = t ′) the probability

of search termination before step t , i.e. the cumulative distribution

function. Then the following theorem holds.
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Algorithm 2: The Universal StrategyU for A.

i ← 1, t ← [ ];

while convergence criterion not met do
if ∃k ∈ N : i = 2

k − 1 then
run A for 2

k−1
steps;

t[i]← 2
k−1

;

else if ∃k ∈ N : 2
k−1 ≤ i < 2

k − 1 then
run A for t[i − 2

k−1 + 1] steps;

t[i]← t[i − 2
k−1 + 1];

i ← i + 1;

Theorem 2.2 (Theorem 1 in Luby et al. [15]). For any Las Vegas
algorithm A, let p (t ) and q(t ) be as above. Consider the function

ℓ(t ) :=
1

q(t )
*
,
t −

∑
t ′<t

q(t ′)+
-
.

The optimal restart strategy for A is the repeating sequence S =
(t∗, . . . , t∗, . . . ) with t∗ defined as t∗ := argmin

t ≥0

{ℓ(t )}.

Intuitively, this theorem tells us that for any black-box algorithm

that converges in finite time, there exists an optimal restart strategy,

and this strategy always consists of consecutively running for t∗

steps. Note that the optimality of S holds both for finite t∗ and for

t∗ = +∞. In the latter case, the optimal strategy is to not restart

the process at all. The proof of the theorem above is based on the

following lemma.

Lemma 2.3 (Lemma 1 in Luby et al. [15]). For any Las Vegas
algorithm A, let p (t ) and q(t ) be as above, and consider a restart
strategy R = (t , . . . , t , . . . ). Let τR be the run time of A following
the restart strategy R. Then there holds

E [τR ] =
1

q(t )
*
,
t −

∑
t ′<t

q(t ′)+
-
≤

t

q(t )
.

While being theoretically relevant, Theorem 2.2 cannot be easily

used in practise, because p (t ) and q(t ) are often unknown or hard to
compute. For these reasons, Luby et. al. give a universal strategy, that
has expected run time of a logarithmic factor worse then the one

achieved by the optimal restart strategy. This strategy is indicated

byU = (t1, t2, . . . , tn , . . . ) and it is defined recursively as

ti =

{
2
k−1

if i = 2
k − 1;

ti−2
k−1+1

if 2
k−1 ≤ i < 2

k − 1;

The restart strategyS for an algorithmA is presented in Algorithm

2. The following theorem holds.

Theorem 2.4 (Theorem 5 in Luby et al. [15]). For any Las Vegas
algorithmA, let τ ∗ be the run time ofA following the optimal restart
strategy, and denote τU the run time of A following the universal
strategyU . Then it holds E [τU ] ≤ 192E [τ ∗] (log

2
(E [τ ∗]) + 5).

The theorem above only makes the assumption that E [τ ∗] is
finite. In particular, the run time of A without restarts needs not

be finite. From Theorem 2.4 it trivially follows that the run time of

the universal strategy can be upper-bounded with the run time of

any non-optimal restart strategy. More formally,

Corollary 2.5. For any Las Vegas algorithm A, let τU be the
run time of A following the universal restart strategy, and denote τR
the run time of A following any given restart strategy R . Then there
holds E [τU ] ≤ 192E [τR ] (log

2
(E [τR ]) + 5).

Since the (1 + 1) EA on any fitness function f : {0, 1}n −→ R
has expected run time at most nn (cf. Droste et al. [2]), then the

(1 + 1) EA fulfils the definition of Las Vegas algorithm given in

Luby et al. [15]. In the remaining part of this paper we denote with

(1 + 1) EAU the (1 + 1) EA following the Luby universal strategy

as given in Algorithm 2.

3 PSEUDO-BOOLEAN LANDSCAPES
3.1 Deceptive Basins of Attraction
We analyze the run time of the (1 + 1) EAU , and comparing with

the run time of the (µ + 1) EA, on the following fitness

TwoMax(x1, . . . ,xn ) = max {|x |
1
,n − |x |

1
} +

n∏
i=1

xi ,

where |x |
1
returns the number of 1s in the input string. Among

all search points with more than
n
2

1-bits, this function increases

with the number of ones. Among all search points with less than
n
2

1-bits, it increases with the number of zeros. This function has two

branches and it is symmetric w.r.t. the underlying hypercube. The

point 0
n
is a local optimum, while the point 1

n
is a global optimum.

The leftmost branch is a basin of attraction for the local optimum.

The following theorem gives an estimate of the related expected

value for the (µ + 1) EA.

Theorem 3.1 (Theorem 1 in Friedrich et al. [5]). The proba-
bility that the (µ+1) EA with no diversity-preserving mechanism and
µ = o(n/ logn) optimises TwoMax in time nn−1 is at most 1/2−o(1).
Its expected optimization time is Ω(nn ).

This result is intuitively motivated by the fact that 0
n
is a de-

ceptive attractor: if the algorithm reaches 0
n
, then the probability

of hitting the global optimum afterwards is n−n . In the remaining

part of this section we show that the (1 + 1) EAU yields better run

time than the (µ + 1) EA on the TwoMax. To this end, we consider

the following lemma.

Lemma 3.2. The (1+1) EA reaches a local optimum of the TwoMax
in expected O (n logn) many fitness evaluations. Moreover, the prob-
ability that the solution is only a local optimum is 1/2.

This lemma follows immediately from the fact that the (1+1) EA
optimizes the OneMax within O (n logn) fitness evaluations (cf.
Droste et al [2] and Mühlenbein [18]), and from the fact that the

problem is symmetric w.r.t. the underlying hypercube. The lemma

above is useful in proving an upper bound on the run time of the

(1+1) EAU on the function TwoMax. The following theorem holds.

Theorem 3.3. The (1 + 1) EAU reaches the global maximum of
TwoMax in expected O (n log

2 n) many fitness evaluations.

Proof. We first prove the upper bound on the run time of the

(1 + 1) EAU , and then we prove the tail bound. We proceed by

identifying a finite restart strategy that yields better expected run

time than the (1+ 1) EAwith no restarts, and then we use Theorem
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2.4 to obtain the desired upper bound. To this end, denote with τ̄
the run time of the (1 + 1) EA until a local optimum is reached. We

consider the restart strategy R = (t̄ , . . . , t̄ , . . . ) with t̄ := 2E [τ̄ ].

Using Lemma 3.2 together with Markov’s inequality, we conclude

that

q(t̄ ) ≥
1

2

Pr(τ̄ < 2E [τ̄ ]) ≥
1

4

.

Thus, if we denote with τR the run time of the (1+ 1) EA following

the strategy R, from Lemma 2.3 it follows that

E [τR ] ≤
t̄

q(t̄ )
≤ 8E [τ̄ ] = O (n logn).

We conclude by applying Theorem 2.4 to obtain that E
[
τS

]
≤

1536E [τ̄ ] (log
2
E [τ̄ ] + 5) = O (n log

2 n). □

3.2 Slopes and Plateaus
We analyze the run time of the (1 + 1) EAU on the following

function [13].

fh (x ) =

{
|x |

1
if |x |

1
≥ n/2;

h otherwise.
(1)

This function depends on the parameterh. Forh > n/2 this function
exhibits a plateau in the leftmost region of the hypercube, and a

slope in the rightmost region. The plateau is a deceptive basin,

whereas the slope guides the algorithm toward the global optimum.

We consider the function fh , to replicate the setting that Lissovoi

et al. proposed for their analysis on the Bet-and-Run strategy. The

following theorem gives a lower bound for the run time of the

(1 + 1) EA on this instance. As noted in Lemma 3.3 in Lissovoi et

al. [13], the expected optimization time of the (1 + 1) EA on the

instance fh is at least (h − n/2)!, for h > n/2. Note that h needs not

be constant for increasing problem size. For example, a choice of

h = 3n/4 yields a lower-bound on the ru time of the (1 + 1) EA as

(n/4)!. We consider the case of the (1 + 1) EA using the universal

strategy on the function fh as defined above, for h > n/2. We

observe that these algorithms with the universal strategy yield

expected polynomial run time. In order to perform the analysis we

use the following lemma.

Lemma 3.4. Consider the (1 + 1) EAmaximizing the function fh
for any choice of h > n/2, and denote with τ its run time. Then we
have Pr(τ ≤ cn logn) = Ω(1), for an appropriate constant c .

Proof. We first observe that for an initial solution x0 sampled

u.a.r. it holds |x0 |1 ≥ n/2 + π/(4e )
√
n w.p. at least 1/4 (cf. Lemma 1

in Kötzing et al. [11]). Suppose that an initial solution x0 is sampled

s.t. |x0 |1 ≥ n/2 + π/(4e )
√
n. Then in order to reach the leftmost

plateau at least Ω(
√
n) bit flips are necessary. Also, any upper-

bound on the probability that x0 reaches the plateau is also an

upper-bound on the probability that any subsequent point further

up the slope does not reach the plateau. Therefore, given an initial

point |x0 |1 ≥ n/2 + π/(4e )
√
n, we can roughly upper-bound the

probability of reaching the plateau in the next iteration with an

upper-bound for the probability of performing a jump greater than⌈
π
4e
√
n
⌉
, which is

n∑
j=

⌈
π
4e
√
n
⌉

1

n

j (
1 −

1

n

)n−j
≤ n−Ω(

√
n)

Therefore, the probability that the next individual remains on the

slope is at least 1 − n−Ω(
√
n)
. We conclude that in a phase of length

Θ(n logn) the (1 + 1) EA samples only points on the slope w.p. at

least (1 − n−Ω(
√
n) )Θ(n logn) = Ω(1). Assuming that the (1 + 1) EA

only samples points on the slope, then the (1 + 1) EA climbs the

slope within O (n logn) expected steps with single bit-flips, as in

the case of OneMax (cf. Droste et al [2] and Mühlenbein [18]). □

We remark that the lemma above, as well as the underlying ideas

for the proof, is inspired by the work of Lissovoi et al. [13]. Note that

in the lemma above we do not use the requirement that h − n/2 is

constant for increasing problem size. We can use the lemma above

to prove that an upper bound on the runtime of the (1+1) EA using

the universal strategy. The following theorem holds.

Theorem 3.5. Consider the (1 + 1) EAU optimizing the instance
fh as defined above, and denote with τU its run time. Then it holds
E [τU ] = O (n log

2 n).

Proof. We first prove the upper bound on the expected run

time, with an argument similar to the one given in Theorem 3.3.

We proceed by identifying a finite restart strategy that yields better

expected run time than the (1+ 1) EAwith no restarts, and then we

use Theorem 2.4 to obtain the desired upper bound. As usual, we

denote with τ the run time of the (1 + 1) EA with no restarts. We

consider the restart strategy R = (t̄ , . . . , t̄ , . . . ) with t̄ = cn logn,
for an appropriate constant c as in Lemma 3.4. Note that by Lemma

3.4 we have q(t̄ ) = Pr(τ ≤ cn logn) = Ω(1). If we denote with τR
the run time of the algorithm following the restart strategy R , then

there holds

E [τR ] ≤
t̄

q(t̄ )
=

cn logn

Ω(1)
= O (n logn).

The claimed theorem follows from Theorem 2.4, since E [τU ] =

O (E [τR ] logE [τR ]) = O (n log
2 n). □

4 COMBINATORIAL OPTIMIZATION
4.1 On the Minimum Vertex Cover
Given a graph G = (V ,E) the Minimum Vertex Cover problem

(MVC) consists of finding a minimal subset of vertices s.t. each

edge is incident to at least one vertex in the set. The MVC is NP-
complete and has no polynomial-time approximation algorithm,

unless P = NP. In this section, we investigate the benefits of using

restarts with the (1 + 1) EA when searching for a MVC. Given a

graph G = (V ,E) of order n and an indexing of V , each subset of

vertices U ⊆ V is stored in memory as a pseudo-Boolean array

(x1, . . . ,xn ) where xi = 1 iff. the i-th element is in U . We use a

fitness function as given in Khuri [10] and He et al. [8], defined as

f (x ) =
n∑
i=1

*.
,
xi + n(1 − xi )

n∑
j=1

(1 − x j )ei j
+/
-

(2)

with ei j the coefficients of the adjacency matrix

ei j =

{
1 if there is an edge (i, j ) ∈ E;

0 otherwise;

We focus on two classes of graphs s.t. the run time of the (1+ 1) EA
is exponential, and show that the run time of the (1 + 1) EAU is
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polynomial on those instances. The first class of graphs that we

consider is the case of a complete bipartite graph. More formally,

Definition 4.1. We say that a graph G = (V ,E) is complete bi-

partite if there exists a partition {V1,V2} of V such that V1 and V2

are independent sets, and every pair of vertices (u,v ) ∈ V1 ×V2 is

adjacent.

Let G = (V ,E) be any finite complete bipartite graph with parti-

tions {V1,V2}. Suppose that |V1 | < |V2 | and consider the run time of

the (1 + 1) EA on the corresponding fitness f , as given in Equation

2. Then bothV1 andV2 are local optima, but onlyV1 is a global opti-

mum. Suppose that at any point in time the solutionV2 is produced.

Then no neighbouring solutions have equal or smaller fitness, and

the (1 + 1) EA cannot easily escape the local optimum. This phe-

nomenon has already been observed in the literature. In fact, the

following theorem holds.

Theorem 4.2 (Theorem 5 in Oliveto et al. [19]). Consider
a bipartite graph with partitions |V1 | = ϵn and |V2 | = (1 − ϵ )n
respectively with ϵ ≤ 1/2. The expected optimization time of the
(1+1) EA to find the optimal solution of the bipartite graph isΩ(nn/ϵ ).
With probability at least 1/(2e ) − 2

−Ω(n) the (1 + 1) EA finds the
global optimum in time O (n logn).

We prove that the (1 + 1) EAU finds the MVC on any complete

bipartite graph in expected polynomial fitness evaluations. The

following theorem holds.

Theorem 4.3. On complete bipartite graph the (1 + 1) EAU finds
a MVC after expected O (n log

2 n) fitness evaluations.

Proof. From Theorem 4.2 we have that there exists a constant

c > 0 s.t. the (1 + 1) EA finds a MVC within cn logn fitness evalua-

tions, with constant probability. Fix t̄ = cn logn, and consider the

restart strategy R = (t̄ , . . . , t̄ , . . . ). If we denote with τR the run

time of the (1 + 1) EA following the strategy R, from Lemma 2.3 it

follows that

E [τR ] ≤
t̄

q(t̄ )
= O (n logn),

where we have used that q(t̄ ) = Ω(1), again from Theorem 4.3.

We conclude by applying Theorem 2.4 to obtain that E [τU ] =

O (E [τR ] logE [τR ]) = O (n log
2 n). □

The second class of vertex-cover instances we consider is the

Papadimitriou-Steiglitz (PS) class, as defined as follows. Fix an

integer n of the form n = 3k + 4, for some k > 0. A PSn graph of

order n consists of three rows (disjoint subsets) of verticesV1,V2,V3

s.t. in the first two rows there are k + 2 vertices, whereas in the

third row there are only k nodes. Each element in V1 is connected

to a single element in V2 and each element in V2 is connected to a

single element in V1. Each node in V3 is connected to all nodes in

V2, and there are no connections between V1 and V3. The expected

time for the (1 + 1) EA to optimize a PSn is 2
Ω( 3
√
n)
. With constant

probability the (1 + 1) EA finds a global optimum after expected

O (n logn) fitness evaluations (cf. Theorem 2 in Oliveto et al. [19]).

We show that the run time of the (1 + 1) EAU is polynomial on

this instance. Again, we define a restart strategy R = (t̄ , . . . , t̄ , . . . )
with t̄ = cn logn for a sufficiently large constant c > 0 and s.t.

q(t̄ ) = Ω(1). We then upper-bound the run time of the (1+ 1) EAU

in terms of the expected run time of the (1 + 1) EA following the

restart R. The following lemma holds.

Lemma 4.4. On the PSn graph the (1 + 1) EAU finds a MVC after
expected O (n log

2 n) fitness evaluations.

We omit a formal proof as the Lemma above can be proven as in

the case of Theorem 4.3.

4.2 On the Makespan Scheduling Problem
We analyze the run time of the (1 + 1) EA and (1 + 1) EAU on

the makespan sheduling problem, which consists of assigning jobs

to resources at particular times. The most basic version works as

follows: Assign n jobs J1, J2, . . . , Jn to m machines with varying

processing power, and minimize the total elapsed time. The case of

m = 2 machines with equal processing power is an instance of the

Partition Problem, which consists of finding a partition {S1, S2} of a

base set S s.t. the sum of the numbers in S1 is equal to the sum of the

numbers in S2. The partition problem is a well-known NP-complete

problem. In this section, we analyze the run time of the (1 + 1) EA
until an approximation of the global optimum is reached.

For a partition problem over a set of n elements {w1, . . . ,wn }, each

solution is represented via a pseudo-boolean array of length n,
where the ith coefficient is xi = 1 if assigned to one partition, and

xi = 0 to the other one. We search for an approximation of the

absolute minimum of the function

f (x ) := max




n∑
j=1

Wjx j ,
n∑
j=1

Wj (1 − x j )


.

For problems of this kind some positive results have already been

presented. In Witt [20] it is shown that the (1 + 1) EA reaches

a (4/3 + δ )-approximation ratio in expected O (n) many fitness

evaluations, whereas it reaches a 4/3-approximation in expected

O (n2) many fitness evaluations (cf. Table 1). In this section we study

a worst-case example by which the (1 + 1) EA does not reach an

approximation better than 4/3 − ϵ within polynomial many fitness

evaluations, for each 0 < ϵ < 1/3. We show that on the same

instance the (1 + 1) EAU finds the optimal solution in polynomial

time. We consider the following definition.

Definition 4.5. Let n be even and fix a constant 0 < ϵ < 1/3.

We define the makespan scheduling instanceWϵ = {J1, . . . , Jn } by
setting

J1 = J2 :=
1

3

−
ϵ

4

and Ji =
1

n − 2

(
1

3

+
ϵ

2

)
for all 3 ≤ i ≤ n.

It can be shown (cf. Witt [20]) that for each ϵ > 0 the (1 + 1) EA
does not find a 4/3 − δ approximation of a global optimum in

polynomially many steps, on the instanceWϵ . In fact, let n be even

and fix a constant 0 < ϵ < 1/3. Then the (1 + 1) EA needs at

least nΩ(n)
to generate a solution with better approximation ratio

than 4/3 − ϵ on the instanceWϵ . Despite the negative result above,

we prove that the (1 + 1) EA reaches a (4/3 − ϵ )-approximation

with constant probability Ω(1) on that instance. We then use this

information to argue that the (1+ 1) EAwith the universal strategy

finds the global optimum in polynomial time. Useful in the analysis

is the following definition.
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Definition 4.6. Consider an instance of the the Partition problem

W = (w1, . . . ,wn ). For any characteristic vector x the critical job

size s (x ) consists of the processing timew j of the smallest job on

the fuller machine.

On any instance of the Partition problem it is possible to obtain

an upper bound on the f -value reached after a phase of length

that is linear in the problem size, given that the critical job size

is upper-bounded by a constant. The following technical lemma

holds.

Lemma 4.7 (Lemma 2 in Witt [20]). For an instance of the par-
tition problemW , let ℓ be a lower bound on the optimal solution,
and define P =

∑
i wi . Suppose that the largest job is smaller than

P/2, and suppose that from some time t∗ the critical job size of the
current search point of the (1+ 1) EA is upper-bounded by a constant
s∗. Then for any γ > 1 and 0 < δ < 1 the (1 + 1) EA reaches an
f -value at most ℓ + s∗/2 + δP/2 in at most ⌈en log(γ/δ )⌉ steps w.p.
at least 1 − γ−1. Moreover, the expected number of steps is at most
2⌈en log(2/δ )⌉.

We use the lemma above to prove some upper bounds on the run

time of the (1 + 1) EA on the worst case instancesWϵ as defined

above.We first show that the (1+1) EA reaches a 4/3-approximation

after expected O (n) fitness evaluations for all 0 < ϵ < 1/3. We then

prove that the (1 + 1) EA reaches a (4/3 − ϵ )-approximation on the

instanceWϵ at least with constant probability. Combining these

results we can finally prove that on the instanceWϵ the (1+1) EAU
reaches a (4/3 − ϵ )-approximation after expected O (n logn) fitness
evaluations.

Lemma 4.8. Fix a constant 0 < ϵ < 1/3. On the instanceWϵ the
(1 + 1) EA reaches a 4/3-approximation after O (n) expected fitness
evaluations.

Proof. We observe that if the two big jobs are assigned to a

single machine and all small jobs to the second machine, then the

corresponding f -value is at least

J1 + J2 =
2

3

−
ϵ

2

,

and this configuration yields the desired approximation ratio. Thus,

w.l.o.g. we can assume that the critical volume is upper-bounded

as 1/(n − 2) (1/3 + ϵ/2). We can apply Lemma 4.7 with ℓ = 1/2 and

P = 1 to obtain that the (1 + 1) EA reaches an f -value of at most

1/2+ δ/4+ 1/2(1/(n − 2) (1/3+ ϵ/2)) after expected 2⌈en log(2/δ )⌉
steps. In the remaining part of the proof we give an upper bound of δ
in order to reach the desired approximation ratio. SinceOPT = 1/2

we have that

1

OPT

(
1

2

+
δ

4

+
1

2

(
1

n − 2

(
1

3

+
ϵ

2

)))
≤

4

3

from which it follows that the equation above is satisfied by taking

δ ≤
2n − 3(ϵ + 2)

3(n − 2)

for n sufficiently large. Therefore, from Lemma 4.7 we obtain an

upper bound on the expected number of steps as

2

⌈
en log

(
6(n − 2)

2n − 3(ϵ + 2)

)⌉
for any constant 0 < ϵ < 1/3, and for n sufficiently large. □

Using a similar argument we show that the (1 + 1) EA reaches a

(4/3− ϵ )-approximation after O (n) fitness evaluations at least with
constant probability Ω(1). Again, using Lemma 4.7 the following

lemma holds.

Lemma 4.9. Fix a constant 0 < ϵ < 1/3. On the instanceWϵ the
(1 + 1) EA reaches a (4/3 − ϵ )-approximation after ⌈en logγ ⌉ many
fitness evaluations, w.p. at least (γ − 1)/(4γ 3), for all γ > 1.

Proof. Suppose that the two big jobs are assigned to different

machines at the beginning of the process. This event occurs w.p.

1/2. Assuming that the two big jobs are never moved in this phase,

then the critical job size is bounded from above as

s∗ ≤
1

(n − 2)

(
1

3

+
ϵ

2

)
. (3)

We use Lemma 4.7 to obtain that the algorithm reaches an f -value
of at most 1/2+ δ/4+ 1/2(1/(n − 2) (1/3+ ϵ/2)) after ⌈en log(γ/ϵ )⌉,
w.p. at least 1 − γ−1

. We solve the inequality

1

OPT

(
1

2

+
δ

4

+
1

2

(
1

n − 2

(
1

3

+
ϵ

2

)))
≤

4

3

− ϵ

w.r.t. the variable δ , to obtain that any choice

δ ≤
2n − 6nϵ + 9ϵ − 6

3n − 6

yields the desired approximation ratio, forn sufficiently large. There-

fore, the (1 + 1) EA reaches the desired approximation ratio within

at most ⌈
en log

(
γ (3n − 6)

2n − 6nϵ + 9ϵ − 6

)⌉
≤

⌈
en logγ

⌉
steps w.p. at least (1/2) (1 − γ−1), and for n sufficiently large. We

conclude by estimating a lower bound on the probability that the

two big jobs are not moved in this phase. Since the probability of

performing a chosen bit-flip is approximately 1/en, then we can

obtain the desired lower bound as(
1 −

2

en

) ⌈en logγ ⌉
≥

1

2γ 2
.

for n sufficiently large. We conclude that the (1 + 1) EA reaches

at least the desired approximation ratio after ⌈en logγ ⌉ w.p. at lest
1/4(1 − γ−1)γ−2 = (γ − 1)/(4γ 3). □

We remark that in the proof given above the choice γ = 1/2 is

arbitrary. A similar result holds by choosing γ to be any constant

0 < γ < 1. We can use the theorem above to give an upper bound on

the run time of the (1+ 1) EAU . We first identify a non-optimal im-

proving restart strategy and then apply Theorem 2.4. The following

theorem holds.

Theorem 4.10. Fix a constant 0 < ϵ < 1/3. On the instanceWϵ
the (1 + 1) EAU reaches a (4/3 − ϵ )-approximation after expected
O (n logn) fitness evaluations.

Proof. We proceed by first defining a (non-optimal) strategy

that yields polynomial run time, and then use this information to

find an upper bound on the run time of the (1 + 1) EAU . For all

γ > 1, we define the strategyR := (t̄ , . . . , t̄ , . . . ) with t̄ = ⌈en logγ ⌉.
From Lemma 4.9 we can lower-bound the cumulative distribution
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function q(t̄ ) as q(t̄ ) ≥ (γ − 1)/(4γ 3). If we fix γ = Θ(1) then from

Lemma 2.3 it follows that

E [τR ] ≤
t̄

q(t̄ )
≤

4γ 3

γ − 1

⌈en logγ ⌉ = O (n)

where τR denotes the run time of the (1 + 1) EA following the

strategy R. We apply Corollary 2.5 to conclude that E [τU ] =

O (E [τR ] logE [τR ]) = O (n logn). □

In the analysis above, the key observation is that if larger jobs are

placed evenly on the two machines at the beginning of the process,

then the run time significantly improves. It is possible to generalize

this idea, to obtain that the (1+1) EA reaches a (1+ϵ )-approximation

on any instance of the partition problem in expected ⌈en log(2/ϵ )⌉

steps, w.p. at least 2
(−e log e+e ) ⌈2/ϵ ⌉ ln(2/ϵ )−⌈2/ϵ ⌉

(cf. Theorem 3 in

Witt [20]). We can use this result to derive the following upper-

bound on the run time of the (1 + 1) EAU on any instance of the

Partition problem.

Lemma 4.11. On any instance of the Partition Problem, the (1 +
1) EAU finds a (1 + ϵ )-approximation after expected

O

(
n log

(
1

ϵ

) (
logn +

⌈
1

ϵ

⌉
log

(
1

ϵ

))
2

⌈
2

ϵ

⌉
((e log e−e ) ln( 2

ϵ )+1)
)

fitness evaluations, for all ϵ > 4/n.

Proof. Again, we first define a (non-optimal) restart strategy,

and then we use Corollary 2.5 to give an upper-bound on the run

time of the (1 + 1) EAU . We consider the restart strategy R =

(t̄ , . . . , t̄ , . . . ) with t̄ = ⌈en log(2/ϵ )⌉. From Theorem 3 in Witt [20]

it follows that

q(t̄ ) ≥ 2
(−e log e+e ) ⌈2/ϵ ⌉ ln(2/ϵ )−⌈2/ϵ ⌉ .

We denote with τR the run time of the (1 + 1) EA following the

restart strategy R. Then it follows that

E [τR ] ≤
⌈en log(2/ϵ )⌉

q(t̄ )

≤ ⌈en log(2/ϵ )⌉2(e log e−e ) ⌈2/ϵ ⌉ ln(2/ϵ )+ ⌈2/ϵ ⌉ .

Again, from Corollary 2.5 it follows that the algorithm reaches

the desired approximation ratio after O (E [τR ] logE [τR ]) fitness
evaluations. □

Note that from Lemma 4.11 it follows that the (1+1) EAU serves

as an EPTAS for the Partition Problem, for a (1 + ϵ )-approximation

with ϵ > 4/n. In other words, for the (1 + 1) EAU an increase in

problem size has the same relative effect of O (n logn) on the Run

Time regardless of the approximation ratio, for ϵ > 4/n.

5 EXPERIMENTS
Given the positive results of Section 3.1, we experimentally compare

the performance of the (µ+1) EAwith the (1+1) EAU (cf. Algorithm

2), on the MVC problem.

We consider a network that was collected from survey partici-

pants using a Facebook app (cf. McAuley and Leskovec [12]). Each

node in the dataset represent a user. Two nodes are connected if the

respective users are Facebook friends. The dataset was anonymized

by replacing the Facebook-internal ids for each user with a new

value. The resulting graph has 2888 vertices and 2981 edges. Its

maximum node degree is ∆ = 769. A visualization of this network

approximation general worst case worst case
ratio case no restarts w/ restarts
4/3 + ϵ O (n) O (n) O (n logn)
4/3 O (n2) O (n) O (n logn)

4/3 − ϵ nΩ(n) nΩ(n) O (n logn)

Table 1: Run time of the (1 + 1) EA and (1 + 1) EAU on the
Makespan Sheduling, for a set of size n and a fixed constant
0 < ϵ < 1/3, as given in Lemma 4.8 and Theorem 4.10. The
bounds for the general case, and the worst case for a (4/3−ϵ )-
approximation follow fromWitt [20].

is presented in Figure 1. We choose this network because some

of its characteristics, such as community structure, are commonly

observed on a larger scale.

We search for the MVC of the network described above with

the (1 + 1) EA, (µ + 1) EA with µ = 10, 30, 70, 80, and (1 + 1) EAU .

We approach the problem by minimizing the function (u (x ), |x |
1
)

in lexicographical order, with u (x ) the function that returns the

number of uncovered edges. We let each algorithm run for a given

time budget and look at the sample mean and sample standard

deviation of the best solution found in that time frame. The time

budget is given in number of calls to the fitness function. The

results are displayed in Figure 2. We observe that the (1 + 1) EAU
outperforms the (µ + 1) EA for any choice of µ hereby considered.

Note that the (µ + 1) EA with µ = 70 outperforms the (µ + 1) EA
with µ = 80. This indicates that increasing µ for µ > 70 may not

result in a better performance.

All tests are performed on MacBook Pro (13" Retina, Beginning

2015), with operating system Mac OS X Version 10.13.2, processor

2.7GHz dual-core Intel Core i5 (Turbo Boost up to 3.1GHz) with

3MB shared L3 cache, and memory 8GB of 1866MHz LPDDR3. All

algorithms are implemented in C++ on Xcode Version 9.2 (9C40b),

and implemented as OSX command line executables.

6 CONCLUSIONS
In this paper we adapt the work on restart strategies by Luby et

al. [15] to the of case of the simple (1 + 1) EA. We show that the

universal restart strategy - that does not require any parameter

tuning - can be an effective tool to escape local optima. We discuss

some instances of commonly studied problems by which the run

time of the (1 + 1) EA is exponential, whereas the run time of the

(1 + 1) EAU is polynomial on those instances.

We first study two pseudo-boolean landscapes, the TwoMax and
function fh as defined in Equation 1. In both cases the (1 + 1) EA
performs poorly (cf. Friedrich et al. [5] and Lissovoi et al. [13]),

whereas the run time of the (1 + 1) EAU is upper-bounded as

O (n log
2 n) (cf. Theorem 3.3 and Theorem 3.5).

We then consider the Minimum Vertex Cover problem. We focus

on complete bipartite graphs and on Papadimitriou-Steiglitz (PS)

instances. In the first case the (1 + 1) EA yields run time at least

Ω(nn/ϵ ) with ϵn the size of the smallest partition; in the second

case the (1 + 1) EA has run time at least 2
Ω( 3
√
n)

(cf. Oliveto et al.
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Figure 1: A visualization of the Facebook dataset presented
in McAuley and Leskovec [12]. Each node consists of a Face-
book user. For every two nodes there is a connecting edge if
the corresponding users are Facebook friends.

[19]). On both classes of instances the (1 + 1) EAU has run time

O (n log
2 n) (cf. Theorem 4.4 and Lemma 4.3).

We study the Makespan Scheduling on two machines with equal

computational power. Following the work of Witt [20], we prove

that the (1 + 1) EAU outperforms the (1 + 1) EA on a worst-case

instance (cf. Theorem 4.10 and Table 1). We show that the (1 +
1) EAU serves as a EPTAS for the Partition problem, for sufficiently

large approximation (cf. Lemma 4.11).

We experimentally compare the run time of the (1 + 1) EA, the
(1+ 1) EAU , and the (µ + 1) EA. We consider a network taken from

Facebook (cf. McAuley and Leskovec [12]), and we search for the

Minimum Vertex Cover. We observed that for fixed time budget the

(1 + 1) EAU outperforms all other algorithms (cf. Figure 2).

We plan to further explore the relationship between randomized

algorithms, fitness landscapes and restart strategies in the future.
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