
On the Transformation Capability of Feasible
Mechanisms for Programmable Matter
Othon Michail1, George Skretas2, and Paul G. Spirakis3

1 Department of Computer Science, University of Liverpool, UK
Othon.Michail@liverpool.ac.uk

2 Computer Engineering and Informatics Department (CEID), University of
Patras, Greece
skretas@ceid.upatras.gr

3 Department of Computer Science, University of Liverpool, UK
Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece
P.Spirakis@liverpool.ac.uk

Abstract
In this work, we study theoretical models of programmable matter systems. The systems under
consideration consist of spherical modules, kept together by magnetic forces and able to perform
two minimal mechanical operations (or movements): rotate around a neighbor and slide over
a line. In terms of modeling, there are n nodes arranged in a 2-dimensional grid and forming
some initial shape. The goal is for the initial shape A to transform to some target shape B
by a sequence of movements. Most of the paper focuses on transformability questions, meaning
whether it is in principle feasible to transform a given shape to another. We first consider the
case in which only rotation is available to the nodes. Our main result is that deciding whether
two given shapes A and B can be transformed to each other, is in P. We then insist on rotation
only and impose the restriction that the nodes must maintain global connectivity throughout
the transformation. We prove that the corresponding transformability question is in PSPACE
and study the problem of determining the minimum seeds that can make feasible, otherwise
infeasible transformations. Next we allow both rotations and slidings and prove universality: any
two connected shapes A,B of the same order, can be transformed to each other without breaking
connectivity. The worst-case number of movements of the generic strategy is Ω(n2). We improve
this to O(n) parallel time, by a pipelining strategy, and prove optimality of both by matching
lower bounds. In the last part of the paper, we turn our attention to distributed transformations.
The nodes are now distributed processes able to perform communicate-compute-move rounds.
We provide distributed algorithms for a general type of transformations.

Keywords and phrases programmable matter, transformation, reconfigurable robotics, shape
formation, complexity, distributed algorithms

1 Introduction

Programmable matter refers to any type of matter that can algorithmically change its physical
properties. “Algorithmically” means that the change (or transformation) is the result of
executing an underlying program. Depending on the implementation, the program could
either be a centralized algorithm capable of controlling the whole programmable matter
system (external control) or a decentralized protocol stored in the material itself and executed
by various sub-components of the system (internal control). For a concrete example, imagine
a material formed by a collection of spherical nanomodules kept together by magnetic forces.
Each module is capable of storing (in some internal representation) and executing a simple
program that handles communication with nearby modules and that controls the module’s
electromagnets, in a way that allows the module to rotate or slide over neighboring modules.

© Othon Michail, George Skretas, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

70
3.

04
38

1v
1

 [
cs

.D
S]

 1
3

M
ar

 2
01

7

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

Such a material would be able to adjust its shape in a programmable way. Other examples
of physical properties of interest for real applications would be connectivity, color [27, 5],
and strength of the material.

Computer scientists, nanoscientists, and engineers are more and more joining their
forces towards the development of such programmable materials and have already produced
some first impressive outcomes (even though it is evident that there is much more work
to be done in the direction of real systems), such as programmed DNA molecules that
self-assemble into desired structures [30, 13] and large collectives of tiny identical robots that
orchestrate resembling a single multi-robot organism (Kilobot system) [31]. Other systems for
programmable matter include the Robot Pebbles [21], consisting of 1cm cubic programmable
matter modules able to form 2-dimensional (usually abbreviated “2D”) shapes through self-
disassembly, and the Millimotein [24], a chain of programmable matter which can fold itself
into digitized approximations of arbitrary 3-dimensional (usually abbreviated “3D”) shapes.
Ambitious long-term applications of programmable materials include molecular computers,
collectives of nanorobots injected into the human circulatory system for monitoring and
treating diseases, or even self-reproducing and self-healing machines.

Apart from the fact that systems work is still in its infancy, there is also an apparent
lack of unifying formalism and theoretical treatment. The following are some of the very
few exceptions aiming at understanding the fundamental possibilities and limitations of
this prospective. The area of algorithmic self-assembly tries to understand how to program
molecules (mainly DNA strands) to manipulate themselves, grow into machines and at
the same time control their own growth [13]. The theoretical model guiding the study in
algorithmic self-assembly is the Abstract Tile Assembly Model (aTAM) [35, 29] and variations.
Recently, a model, called the nubot model, was proposed for studying the complexity of
self-assembled structures with active molecular components [36]. This model “is inspired
by biology’s fantastic ability to assemble biomolecules that form systems with complicated
structure and dynamics, from molecular motors that walk on rigid tracks and proteins that
dynamically alter the structure of the cell during mitosis, to embryonic development where
large-scale complicated organisms efficiently grow from a single cell” [36]. Another very
recent model, called the Network Constructors model, studied what stable networks can
be constructed by a population of finite-automata that interact randomly like molecules
in a well-mixed solution and can establish bonds with each other according to the rules of
a common small protocol [28]. The development of Network Constructors was based on
the Population Protocol model of Angluin et al. [2], that does not include the capability of
creating bonds and focuses more on the computation of functions on inputs. A very interesting
fact about population protocols is that they are formally equivalent to chemical reaction
networks (CRNs), “which model chemistry in a well-mixed solution and are widely used to
describe information processing occurring in natural cellular regulatory networks” [14]. Also
the recently proposed Amoebot model, “offers a versatile framework to model self-organizing
particles and facilitates rigorous algorithmic research in the area of programmable matter”
[10, 12, 11]. An indication of the potential that the research community sees in this effort, is
the 1st Dagstuhl Seminar on “Algorithmic Foundations of Programmable Matter”, which
took place in June 2016 and attracted leading scientist (both theoreticians and practitioners)
from Algorithms, Distributed Computing, Robotics, and DNA Self-Assembly, with the aim
at joining their forces to push forward this emerging subject.

Each theoretical approach, and to be more precise, each individual model, has its own
beauty and has lead to different insights and developments regarding potential programmable
matter systems of the future and in some cases to very intriguing technical problems and

O. Michail, G. Skretas, and P. G. Spirakis 3

open questions. Still, it seems that the right way for theory to boost the development of more
refined real systems is to reveal the transformation capabilities of mechanisms and technologies
that are available now, rather than by exploring the unlimited variety of theoretical models
that are not expected to correspond to a real implementation in the near future.

In this paper, we follow such an approach, by studying the transformation capabilities of
models for programmable matter, which are based on minimal mechanical capabilities, easily
implementable by existing technology.

1.1 Our Approach
We study a minimal programmable matter system consisting of n cycle-shaped modules,
with each module (or node) occupying at any given time a cell of the 2D grid (no two nodes
can occupy the same cell at the same time). Therefore, the composition of the programmable
matter systems under consideration is discrete. Our main question throughout is whether an
initial arrangement of the material can transform (either in principle, e.g., by an external
authority, or by itself) to some other target arrangement. In more technical terms, we are
provided with an initial shape A and a target shape B and we are asked whether A can be
transformed to B via a sequence of valid transformation steps. Usually, a step consists either
of a valid movement of a single node (in the sequential case) or of more than one nodes at
the same time (in the parallel case). We consider two quite primitive types of movement.
The first one, called rotation, allows a node to rotate 90° around one of its neighbors either
clockwise or counterclockwise (see, e.g., Figure 7 in Section 3) and the second one, called
sliding, allows a node to slide by one position “over” two neighboring nodes (see, e.g., Figure
2 in Section 5). Both movements succeed only if the whole direction of movement is free
of obstacles (i.e., other nodes blocking the way). More formal definitions are provided in
Section 2. One part of the paper focuses on the case in which only rotation is available to the
nodes and the other part studies the case in which both rotation and sliding are available.
The latter case has been studied to some extent in the past in the, so called, metamorphic
systems [16, 17, 15], which makes those studies the closest to our approach.

For rotation only, we introduce the notion of color-consistence and prove that if two
shapes are not color-consistent then they cannot be transformed to each other. On the
other hand color-consistence does not guarantee transformability as there is an infinite set of
pairs (A,B) such that A and B are color consistent but still they cannot be transformed
to each other. At this point, observe that if A can be transformed to B then the inverse
is also true, as all movements considered in this paper are reversible. We distinguish
two main types of transformations: those that are allowed to break the connectivity of
the shape during the transformation and those that are not and call the corresponding
problems Rot-Transformability and RotC-Transformability. We prove that RotC-
Transformability is a proper subset of Rot-Transformability by showing that a
line-folding problem is in Rot-Transformability\RotC-Transformability. Our main
result regarding Rot-Transformability is that Rot-Transformability ∈ P. To prove
polynomial-time decidability, we prove that two shapes A and B are transformable to each
other iff both A and B have at least one movement available (without any movement available,
a shape is blocked and can only trivially transform to itself). Therefore, transformability
reduces to checking the availability of a movement in the initial and target shapes. The idea
is that if a movement is available in a shape A, then there is always a way to extract from A

a 2-line (i.e., two neighboring nodes). Such a 2-line can move freely in any direction and
can also extract further nodes to form a 4-line. A 4-line in turn can also move freely to
any direction and is also capable of extracting nodes from the shape and transferring them,

4 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

one at a time, to any desired target position. In this manner, the 4-line can transform A to
a line with leaves around it that is color-consistent to A (based on a proposition that we
prove, stating that any shape has a corresponding color-consistent line-with-leaves). Similarly,
B, given that it is color-consistent with A, can be transformed by the same approach to
exactly the same line-with-leaves, and then, by reversibility, it follows that A and B can
be transformed to each other by using the line-with-leaves as an intermediate. This set of
transformations do not guarantee the preservation of connectivity during the transformation.
That is, even though the initial and target shapes considered are connected shapes, the
shapes formed at intermediate steps of the transformation may very well be disconnected
shapes.

We next study RotC-Transformability, in which again the only available movement is
rotation, but now connectivity of the material has to be preserved throughout the transform-
ation. The property of preserving the connectivity is expected to be a crucial property for
programmable matter systems, as it allows the material to maintain coherence and strength,
to eliminate the need for wireless communication, and, finally, enables the development
of more effective power supply schemes, in which the modules can share resources or in
which the modules have no batteries but are instead constantly supplied with energy by
a centralized source (or by a supernode that is part of the material itself). Such benefits
can lead to simplified designs and potentially to reduced size of individual modules. We
first prove that RotC-Transformability ∈ PSPACE. The rest of our results here are
strongly based on the notion of a seed. This stems from the observation that a large set of
infeasible transformations become feasible by introducing to the initial shape an additional,
and usually quite small, seed; i.e., a small shape that is being attached to some point of
the initial shape. In particular, we prove that a 3-line seed, if placed appropriately, is
sufficient to achieve folding of a line (otherwise impossible). We then investigate seeds that
could serve as components capable of traveling the perimeter of an arbitrary connected
shape A. Such shapes are very convenient as they are capable of “simulating” the universal
transformation techniques that are possible if we have both rotation and sliding movements
available (discussed in the sequel). To this end, we prove that all seeds of size ≤ 4 cannot
serve for this purpose, by proving that they cannot even walk the perimeter of a simple
line shape. Then we focus on a 6-seed and prove that such a seed is capable of walking the
perimeter of a large family of shapes, called discrete-convex shapes. This is a first indication,
that there might be a large family of shapes that can be transformed to each other with
rotation only and without breaking connectivity, by extracting a 6-seed and then exploiting
to transfer nodes to the desired positions. To further support this, we prove that the 6-seed
is capable of performing such transfers, by detaching pairs of nodes from the shape, attaching
them to itself, thus forming an 8-seed and then being still capable to walk the perimeter of
the shape.

Next, we consider the case in which both rotation and sliding are available and insist
on connectivity preservation. We first provide a proof that this combination of simple
movements is universal w.r.t. transformations, as any pair of connected shapes A and B of
the same order, can be transformed to each other without ever breaking the connectivity
throughout the transformation (a first proof of this fact had already appeared in [15]).
This generic transformation requires Θ(n2) sequential movements in the worst case. By a
potential-function argument we show that no transformation can improve on this worst-
case complexity for some specific pairs of shapes and this lower bound is independent of
connectivity preservation; it only depends on the inherent transformation-distance between
the shapes. To improve on this, either some sort of parallelism must be employed or more

O. Michail, G. Skretas, and P. G. Spirakis 5

powerful movement mechanisms, e.g., movements of whole sub-shapes in one step. We
investigate the former approach, and prove that there is a pipelining general transformation
strategy that improves the time to O(n) (parallel time). We also give a matching Ω(n) lower
bound. On the way, we also show that this parallel complexity is feasible even if the nodes are
labeled, meaning that individual nodes must end up in specific positions of the target-shape.

Afterwards, we propose a distributed algorithm that transforms any compact shapes
into a line using the rotation-sliding movement without breaking the connectivity of the
shape. We note that a unique leader is required, each node has 4 ports and we aim to
minimise the memory as much as possible. The communication is synchronous with each node
broadcasting messages to its neighbours each turn. Following this, we propose an algorithm
that transforms any shape into a line. We have the same requirements and communication
and our goal again to minimize the amount of memory required in the system.

In Section 1.2 we discuss further related literature. Section 2 brings together all definitions
and basic facts that are used throughout the paper. In Section 3, we study programmable
matter systems equipped only with rotation movement. In Section 4, we insist on rotation
only, but additionally require from the material to maintain connectivity throughout the
transformation. In Section 5, we investigate the combined effect of rotation and sliding
movements. Connectivity can always be preserved in this case. Section 6 focuses on
distributed transformations having access to both rotation and sliding. Finally, in Section 7
we conclude and give further research directions that are opened by our work.

1.2 Further Related Work
Mobile and Reconfigurable Robotics. There is a very rich literature on mobile and
reconfigurable robotics. In mobile (swarm) robotics systems and models, as are, for example,
the models for robot gathering [6, 25] and deployment [33] (cf., also [19]), geometric pattern
formation [34, 8], and connectivity preservation [7], the modules are usually robots equipped
with some mobility mechanism making them free to move in any direction of the plane (and
in some cases even continuously). In contrast, we only allow discrete movements relative to
neighboring nodes. Modular self-reconfigurable robotic systems form an area on their own,
focusing on aspects like the design, motion planning, and control of autonomous robotic
modules [4, 38, 1, 37]. The model considered in this paper bears similarities to some of
the models that have appeared in this area. The main difference is that we follow a more
computation-theoretic approach, while the studies in this area usually follow a more applied
perspective.

Puzzles. Puzzles are combinatorial one-player games, usually played on some sort of board.
Typical questions of interest are whether a given puzzle is solvable and finding the solution
with the fewest number of moves. Answers to these questions range from being in P up
to PSPACE-hard or even undecidable when some puzzles are generalized to the entire
plane with unboundedly many pieces [9, 22]. Famous examples of puzzles are the Fifteen
Puzzle, Sliding Blocks, Rush Hour, Pushing Blocks, and Solitaire. Even though none of
these is equivalent to the model considered here, the techniques that have been developed
for solving and characterizing puzzles may turn very useful in the context of programmable
matter systems. Actually, in some cases, such puzzles show up as special cases of the
transformation problems considered here (e.g., the Fifteen Puzzle may be obtained if we
restrict a transformation of node-labelled shapes to take place in a 4x4 square region).

Passive Systems. Most of the models discussed so far including the model under considera-

6 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

tion in this paper, are active models, meaning that the movements are in the complete control
of the algorithm. In contrast, in passive models the underlying algorithm cannot control
the movements but in most cases it can decide in some way which movements to accept
and which not. The typical assumption is that the movements are controlled by a scheduler
(possibly adversarial), which represents some dynamicity of the system or the environment.
Population Protocols [2, 3] and variants are a typical such example. For example, in Network
Constructors [28] nodes move around randomly due to the dynamicity of the environment and
when two of them interact the protocol can decide whether to establish a connection between
them; that is, the protocol has some implicit control of the system’s dynamics. Another
passive model, inspired from biological multicellular processes, was recently proposed by
Emek and Uitto [18]. Most models from the theory of algorithmic self-assembly, like the
Abstract Tile Assembly Model (aTAM) [35, 29], fall also in this category. In this paper, we
are only concerned with active systems. Hybrid models combining active capabilities and
passive dynamics, remain an interesting open research direction.

2 Preliminaries

The programmable matter systems considered in this paper operate on a 2-dimensional
square grid. As usual, each position (or cell) of the grid is uniquely referred to by its x
and y coordinates, where x ≥ 0 corresponds to the row and y ≥ 0 to the column. Such a
system consists of a set V of n modules, called nodes throughout. Each node may be viewed
as a spherical module fitting inside a cell of the grid. At any given time, each node u ∈ V
occupies a cell o(u) = (ox(u), oy(u)) = (i, j) (omitting the time index for simplicity here and
also whenever clear from context) and no two nodes may occupy the same cell. In some
cases, when a cell is occupied by a node we may refer to that cell by a color, e.g., black,
and when a cell is not occupied (i.e., it is empty) we usually refer to it as white. At any
given time t, the positioning of nodes on the grid defines an undirected neighboring relation
E(t) ⊂ V × V , where {u, v} ∈ E iff ox(u) = ox(v) and |oy(u)− oy(v)| = 1 or oy(u) = oy(v)
and |ox(u)− ox(v)| = 1, that is, if u and v are either horizontal or vertical neighbors on the
grid, respectively. It is immediate to observe that every node can have at most 4 neighbors
at any given time. A more informative way to define the system at a given time t, and thus
often more convenient, is as a mapping Pt : N≥0 × N≥0 → {0, 1} where Pt(i, j) = 1 iff cell
(i, j) is occupied by a node.

At any given time t, P−1
t (1) defines a shape. Such a shape is called connected if E(t)

defines a connected graph. A connected shape is called convex if for any two occupied cells,
the line that connects their centers does not pass through an empty cell. We call a shape
discrete-convex if for any two occupied cells, belonging either to the same row or the same
column, the line that connects their centers does not pass through an empty cell; i.e., in the
latter we exclude diagonal lines.

In general, shapes can transform to other shapes via a sequence of one or more movements
of individual nodes. Time consists of discrete steps (or rounds) and in every step, zero or
more movements may occur, possibly following a computation sub-step either centralized or
distributed, depending on the application. In the sequential case, at most one movement
may occur per step, and in the parallel case any number of “valid” movements may occur
in parallel. 1 We consider two types of movements: (i) rotation and (ii) sliding. In both

1 By “valid”, we mean here subject to the constraint that their whole movement paths correspond to
pairwise disjoint sub-areas of the grid.

O. Michail, G. Skretas, and P. G. Spirakis 7

movements, a single node moves relative to one or more neighboring nodes as we explain
now.

A single rotation movement of a node u is a 90° rotation of u around one of its neighbors.
Let (i, j) be the current position of u and let its neighbor be v occupying the cell (i− 1, j)
(i.e., lying below u). Then u can rotate 90° clockwise (counterclockwise) around v iff the
cells (i, j + 1) and (i− 1, j + 1) ((i, j − 1) and (i− 1, j − 1), respectively) are both empty. By
rotating the whole system 90°, 180°, and 270°, all possible rotation movements are defined
analogously. See Figure 1.

i

i− 1

j + 1j

rotation is possible after rotation

Figure 1 Rotation to the right and down. A node on the black dot (in row i− 1) and empty cells
at positions (i, j + 1) and (i− 1, j + 1) are required for this movement. Then an example movement
is given.

A single sliding movement of a node u is a one-step horizontal or vertical movement “over”
a horizontal or vertical line of (neighboring) nodes of length 2. In particular, if (i, j) is the
current position of u, then u can slide rightwards to position (i, j + 1) iff (i, j + 1) is not
occupied and there exist nodes at positions (i− 1, j) and (i− 1, j+ 1) or at positions (i+ 1, j)
and (i+ 1, j + 1), or both. Precisely the same definition holds for up, left, and down sliding
movements by rotating the whole system 90°, 180°, and 270° counterclockwise, respectively.
Intuitively, a node can slide one step in one direction, if there are two consecutive nodes
either immediately “below” or immediately “above” that direction that can assist the node
slide (see Figure 2). 2

i+ 1

i

i− 1

j + 1j

sliding is possible after sliding

Figure 2 Sliding to the right. Either the two blues (dots in row i + 1) or the two blacks (dots in
row i− 1) and an empty cell at position (i, j + 1) are required for this movement. Then an example
movement with the two blacks is given.

Let A and B be two shapes. We say that A transforms to B via a movement m (which
can be either a rotation or a sliding), denoted A m→ B, if there is a node u in A such that if
u applies m, then the shape resulting after the movement is B (possibly after rotations and
translations of the resulting shape, depending on the application). We say that A transforms
in one step to B (or that B is reachable in one step from A), denoted A→ B, if A m→ B for
some movement m. We say that A transforms to B (or that B is reachable from A) and
write A B, if there is a sequence of shapes A = C0, C1, . . . , Ct = B, such that Ci → Ci+1

2 Observe that there are plausible variants of the present definition of sliding, such as to slide with nodes
at (i − 1, j) and (i + 1, j + 1) or even with a single node at (i − 1, j) or at (i + 1, j). In this paper,
though, we only focus on our original definition.

8 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

for all i, 0 ≤ i < t. We should mention that we do not always allow m to be any of the two
possible movements. In particular, in Sections 3 and 4 we only allow m to be a rotation, as
we there restrict attention to systems in which only rotation is available. We shall clearly
explain what movements are permitted in each part of the paper.

I Proposition 1. The relation “transforms to” (i.e., ‘ ’) is a partial equivalence relation.

Proof. The relation ‘ ’ is a binary relation on shapes. To show that it is a partial equivalence
relation, we have to show that it is symmetric and transitive.

For symmetricity, we have to show that for all shapes A and B, if A B then B A.
It suffices to show that for all A,B, if A → B then B → A, meaning that every one-step
transformation (which can be either a single rotation or a single sliding) can be reversed. For
the rotation case, this follows by observing that a rotation of a node u can be performed
iff there are two consecutive empty positions in its trajectory. When u rotates, it leaves its
previous position empty, thus, leaving in this way two consecutive positions empty for the
reverse rotation to become enabled. The argument for sliding is similar.

For transivity, we have to show that for all shapes A, B, and C, if A B and B C

then A C. By definition, A B if there is a sequence of shapes A = C0, C1, . . . , Ct = B,
such that Ci → Ci+1 for all i, 0 ≤ i < t and B C if there is a sequence of shapes
B = Ct, Ct+1, . . . , Ct+l = C, such that Ci → Ci+1 for all i, t ≤ i < t+ l. So, for the sequence
A = C0, C1, . . . , Ct = B,Ct+1, . . . , Ct+l = C it holds that Ci → Ci+1 for all i, 0 ≤ i < t+ l,
that is, A C. J

When the only available movement is rotation, there are shapes in which no rotation can
be performed (we will see such examples in Section 3). If we introduce a null rotation, then
every shape may transform to itself by applying the null rotation. That is, reflexivity is also
satisfied, and, together with symmetricity and transivity from Proposition 1, “transforms to”
(by rotations only) becomes an equivalence relation.

I Definition 1. Let A be a connected shape. Color black each cell of the grid that is occupied
by a node of A. A cell (i, j) is part of a hole of A if every infinite length single path starting
from (i, j) (moving only horizontally and vertically) necessarily goes through a black cell.
Color black also every cell that is part of a hole of A, to obtain a compact black shape A′
(i.e., one with no holes in it). Consider now polygons defined by unit-length line segments
of the grid. Define the perimeter of A as the minimum-area such polygon that completely
encloses A′ in its interior. The fact that the polygon must have an interior and an exterior
follows directly from the Jordan curve theorem [23].

I Definition 2. Now, color red any cell of the grid that has contributed at least one of its
line-segments to the perimeter and is not black (i.e., is not occupied by a node of A). Call
this the cell-perimeter of shape A. See Figure 3 for an example.

I Definition 3. The external surface of a connected shape A, is a shape B, not necessarily
connected, consisting of all nodes u ∈ A such that u occupies a cell defining at least one of
the line-segments of A’s perimeter.

I Definition 4. The extended external surface of a connected shape A, is defined by adding
to A’s external surface all nodes of A whose cell shares a corner with A’s perimeter (for
example, the black node just below the hole, in Figure 3).

I Proposition 2. The extended external surface of a connected shape A, is itself a connected
shape.

O. Michail, G. Skretas, and P. G. Spirakis 9

Figure 3 The perimeter (polygon of unit-length line segments colored blue) and the cell-perimeter
(cells colored red) of a shape A (white spherical nodes; their corresponding cells have been colored
black). The dashed black cells correspond to a hole of A.

Proof. The perimeter of A is connected, actually, it is a cycle. This connectivity is preserved
by the extended external surface, as whenever the perimeter moves straight, we have two
horizontally or vertically neighboring nodes on the extended external surface and whenever
it makes a turn, we either stay put or preserve connectivity via an intermediate diagonal
node (from those nodes used to extend the external surface). J

Observe, though, that the extended external surface is not necessarily a cycle. For
example, the extended external surface of a line-shape is equal to the shape itself (and,
therefore, a line).

2.1 Problem Definitions
We here provide formal definitions of all the transformation problems that are considered in
this work.

Rot-Transformability. Given an initial shape A and a target shape B (usually both
connected), decide whether A can be transformed to B (usually, under translations and
rotations of the shapes) by a sequence of rotation only movements.

RotC-Transformability. The special case of Rot-Transformability in which A and
B are connected shapes and, additionally, connectivity must be preserved throughout the
transformation.

RS-Transformability. Given an initial shape A and a target shape B (usually both
connected), decide whether A can be transformed to B (usually, under translations and
rotations of the shapes) by a sequence of rotation and sliding movements.

Minimum-Seed-Determination. Given an initial shape A and a target shape B (usually
only with rotation available and a proof that A and B are not transformable to each other
without additional assumptions) determine a minimum-size seed and an initial positioning
of that seed relative to A that makes the transformation from A to B feasible. There are
several meaningful variations of this problem. For example, the seed may or may not form

10 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

part of the target shape or the seed may be used as an intermediated step to show feasibility
with “external” help and then be able to show that, instead of externally providing it, it
is possible to extract it from the initial shape A via a sequence of moves. We will clearly
indicate which version is considered in each case.

In the above problems, the goal is to show feasibility of a set of transformation instances
and, if possible, to provide an algorithm that decides feasibility. 3

In the last part of the paper, we consider distributed transformation tasks. There, the
nodes are distributed processes able to perform communicate-compute-move rounds and
the goal is to program them so that they (algorithmically) self-transform their initial
arrangement to a target arrangement.

Distributed-Transformability. Given an initial shape A and a target shape B (usually
by having access to both rotation and sliding), the nodes (which are now distributed
processes), starting from A, must transform themselves to B by a sequence of communication-
computation-movement rounds. In the distributed transformations, we mostly consider
the case in which A can be any connected shape and B is a spanning line, i.e., a linear
arrangement of all the nodes.

3 Rotation

In this section, the only permitted movement is 90° rotation around a neighbor.
Consider a black and red checkered coloring of the 2D grid, similar to the coloring of a

chessboard. Then any shape S may be viewed as a colored shape consisting of b(S) blacks
and r(S) reds. Call two shapes A and B color-consistent if b(A) = b(B) and r(A) = r(B) and
call them color-inconsistent otherwise. Call a transformation from a shape A to a shape C
color-preserving if A and C are color consistent. Observe now, that if A→ B, then A and B
are color-consistent, because a rotation can never move a node to a position of different color
than its starting position. This implies that if A C, then A and C are color-consistent,
because any two consecutive shapes in the sequence are color-consistent. We conclude that:
I Observation 1. The rotation movement is color-preserving. Formally, A C (restricted to
rotation only) implies that A and C are color-consistent. In particular, every node beginning
from a black (red) position of the grid, will always be on black (red, respectively) positions
throughout a transformation consisting only of rotations.

Based on this property of the rotation movement, we may call each node black or red
throughout a transformation, based only on its initial coloring. The above observation gives
a partial way to determine that two shapes A and B cannot be transformed to each other by
rotations.

I Proposition 3. If two shapes A and B are color-inconsistent, then it is impossible to
transform one to the other by rotations only.

We now show that the inverse is not true, that is, it does not hold that any two
color-consistent shapes can be transformed to each other by rotations. This is trivial for
disconnected shapes, as any collection of isolated nodes cannot move at all, and either we

3 An immediate next goal is to devise an algorithm able to compute an actual transformation or even
compute or approximate the optimum transformation (usually with respect to the number of moves).
We leave these as interesting open problems.

O. Michail, G. Skretas, and P. G. Spirakis 11

consider only the cardinalities of the colors, in which case any two such shapes of equal
cardinalities correspond to the same shape, or we also consider the precise positions of the
nodes on the grid (e.g. by their relative distances), in which case no two such shapes can be
transformed to each other. Thus, we show a counterexample for the case of connected shapes.
We begin with a proposition relating the number of black and red nodes in a connected
shape.

I Proposition 4. A connected shape with k blacks has at least d(k−1)/3e and at most 3k+ 1
reds.

Proof. For the upper bound, observe that a black can hold up to 4 distinct reds in its
neighborhood, which implies that k blacks can hold up to 4k reds in total, even if the blacks
were not required to be connected to each other. To satisfy connectivity, every black must
share a red with some other black (if a black does not satisfy this, then it cannot be connected
to any other black). Any such sharing reduces the number of reds by at least 1. As at least
k − 1 such sharings are required for each black to participate in a sharing, it follows that we
cannot avoid a reduction of at least k − 1 in the number of reds, which leaves us with at
most 4k − (k − 1) = 3k + 1 reds.

For the lower bound, if we invert the roles of blacks and reds, we have that l reds can hold
at most 3l+1 blacks. So, if k is the number of blacks, it holds that k ≤ 3l+1⇔ l ≥ (k−1)/3
and due to the fact that the number of reds must be an integer, we conclude that for k blacks
the number of reds must be at least d(k − 1)/3e. J

I Proposition 5. There is a generic connected shape, called line-with-leaves, that has a
color-consistent version for any connected shape. In other words, for k blacks it covers the
whole range of reds from d(k − 1)/3e to 3k + 1 reds.

Proof. Consider a bi-color line starting with a black node and ending to a black node, such
that all k blacks are exhausted, as shown in Figure 4. To do this, k − 1 reds are needed in
order to alternate blacks and reds on the line. Next, “saturate” every black (i.e. maximize its
degree) by adding as many red nodes as it can fit around it (recall that the maximum degree
of every node is 4). The resulting saturated shape has k blacks and 3k + 1 reds. This shape
covers the 3k + 1 upper bound on the possible number of reds. By removing red leaf-nodes
(i.e., of degree 1) one after the other, we can achieve the whole range of numbers of reds,
from k − 1 to 3k + 1 reds. It suffices to restrict attention to the range from k to 3k + 1 reds.
Take now any connected shape A and color it in such a way that red is the majority color,
that is l ≥ k, where l is the number of reds and k is the number of blacks (there is always
a way to do that). From the upper bound of Proposition 4, l can be at most 3k + 1, so
we have k ≤ l ≤ 3k + 1 for any connected shape A, which falls within the range that the
line-with-leaves can represent. Therefore, we conclude that any connected shape A has a
color-consistent shape B from the line-with-leaves family. J

Figure 4 A saturated line-with-leaves shape, in which there are k = 5 blacks and 3k + 1 = 16
reds.

12 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

I Proposition 6. There is an infinite set of pairs (A,B) of connected shapes, such that A
and B are color-consistent but cannot be transformed to each other by rotations only.

Proof. For shape A, take a rhombus as shown in Figure 5, consisting of k2 blacks and (k+1)2

reds, for any k ≥ 2. In this shape, every black node is “saturated”, meaning that it has 4
neighbors, all of them necessarily red. This immediately excludes the blacks from being
able to move, as all their neighboring positions are occupied by reds. But the same holds
for the reds, as all potential target-positions for a rotation are occupied by reds. Thus, no
rotation movement can be applied to any such shape A and A can only be transformed to
itself (by null rotations). By Proposition 5, any such A has a color-consistent shape B from
the family of line-with-leaves shapes, such that B is not equal to A (actually in B several
blacks may have degree 3 in contrast to A where all blacks have degree 4). We conclude that
A and B are distinct color-consistent shapes which cannot be transformed to each other, and
there is an infinite number of such pairs, as the number k2 of black nodes of A can be made
arbitrarily large. J

Figure 5 A rhombus shape, consisting of k2 = 9 blacks and (k + 1)2 = 16 reds.

Propositions 3 and 6 give a partial characterization of pairs of shapes that cannot be
transformed to each other. Observe that the impossibilities proved so far, hold for all possible
transformations based on rotation only, i.e., they do not restrict the transformation in any
way as would be, for example, to not allow the transformation to break the connectivity of
the shape at any time.

A small shape of particular interest is a bi-color pair or 2-line. Such pairs can move easily
in any direction, which makes them very useful components of transformations. One way to
simplify some transformations would be to identify as many such pairs as possible in a shape
and treat them in a different way than the rest of the nodes. A question in this respect is
whether all the minority-color nodes of a connected shape can be completely to (distinct)
nodes of the majority color. We show that this is not true.

I Proposition 7. There is an infinite family of connected shapes, such that, if A is a shape
in the family of size n, then any matching of A leaves at least n/8 nodes of each color
unmatched.

Proof. See Figure 6. J

Recall that Rot-Transformability is the language of all transformation problems
between connected shapes that can be solved by rotation only and RotC-Transformability
is its subset obtained by the restriction that the transformation should not break the
connectivity of the shape at any point during the transformation. We begin by showing that
the inclusion between the two languages is strict, that is, there are strictly more feasible

O. Michail, G. Skretas, and P. G. Spirakis 13

Figure 6 The counterexample.

transformations if we allow connectivity to break. We prove that by showing that there is a
feasible transformation in Rot-Transformability\RotC-Transformability.

I Theorem 5. RotC-Transformability ⊂ Rot-Transformability.

Proof. RotC-Transformability ⊆ Rot-Transformability is immediate, as any trans-
formation that does not break the shape’s connectivity is also a valid transformation for
Rot-Transformability. So, it suffices to prove that there is a transformation problem in
Rot-Transformability\RotC-Transformability. Consider a (connected) horizontal
line of any even length n, and let u1, u2, . . . , un be its nodes. The transformation asks to fold
the line onto itself, forming a double-line of length n/2 and width 2, i.e., a n/2× 2 rectangle.

It is easy to observe that this problem is not in RotC-Transformability for any n > 4:
the only nodes that can rotate without breaking connectivity are u1 and un, but any of their
two possible rotations only enables a rotation that will bring the nodes back to their original
positions. This means that, if the transformation is not allowed to break connectivity, then
such a shape is trapped in a loop in which only the endpoints can rotate between three
possible positions, therefore it is impossible to fold a line of length greater than 4.

On the other hand, if connectivity can be broken, we can perform the transformation
by the following simple procedure, consisting of n/4 phases: In the beginning of every
phase i ∈ {1, 2, . . . , bn/4c}, pick the nodes u2i−1, u2i, which shall at that point be the two
leftmost nodes of the original line. Rotate u2i−1 once clockwise, to move above u2i, then u2i

three times clockwise to move to the right of u2i−1 (the first of these three rotations breaks
connectivity and the third restores it), and then rotate u2i−1 twice clockwise to move to the
right of u2i, then u2i twice clockwise to move to the right of u2i−1 and repeat this alternation
until the pair that moves to the right meets the previous pair, which will be when u2i−1
becomes the left neighbor of u2i−2 on the upper line of the rectangle under formation, or, in
case i = 1, when u2i−1 goes above un (see Figure 7). If n/4 is not an integer, then perform a
final phase, in which the leftmost node of the original line is rotated once clockwise to move
above its right neighbor, and this completes folding. J

This means that allowing the connectivity to break enables more transformations, and
this motivates us to start from this simpler case. But we already know from Proposition 6,
that even in this case an infinite number of pairs of shapes cannot be transformed to each
other. Aiming at a general transformation, we ask whether there is some minimal addition

14 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1

2

3 4

5 6

7 8

9 10

Figure 7 Line folding.

to a shape that would allow it to transform. The solution turns out to be as small as a 2-line
seed lying initially somewhere “outside” the boundaries of the shape (e.g., just below the
lowest row occupied by the shape).

Based on the above assumptions, we shall now prove that any pair of color-consistent
connected shapes A and B can be transformed to each other. Recall from the discussion
before Proposition 7, that 2-line shapes can move freely in any direction. The idea is to use
this 2-line in order to extract from the shape another 2-line, and use the two 2-lines together
as a 4-line seed. The 4-line can also move freely in all directions. Then we shall use the
4-line as a transportation medium for those nodes that cannot move alone. In particular, we
partition the nodes of the shape into those that can leave the shape as part of a 2-line and
those that cannot. The latter nodes require the help of the 4-line to move them by carrying
them, one at a time, in the form of a shape of order 5, which can only move diagonally (due
to color-preservation of Proposition 3). We exploit these mobility mechanisms to transform
A into a uniquely defined shape from the line-with-leaves family of Proposition 5 (meaning
that any two color-consistent shapes are matched to the same shape from the family). But
if any connected shape A with an extra 2-line can be transformed to its color-consistent
line-with-leaves version with an extra 2-line, then this also holds inversely due to reversibility
of rotations (discussed in the proof of Proposition 1), and it follows that any A can be
transformed to any B by transforming A to its line-with-leaves version LA and then inverting
the transformation from B to LB = LA.

I Theorem 6. If connectivity can break and there is a 2-line seed provided “outside” the
initial shape, then any pair of color-consistent connected shapes A and B can be transformed
to each other by rotations only.

Proof. Without loss of generality (due to symmetry and the 2-line’s unrestricted mobility),
it suffices to assume that the seed is provided somewhere below the lowest row l occupied
by the shape A. We show how A can be transformed to LA with the help of the seed. We

O. Michail, G. Skretas, and P. G. Spirakis 15

define LA as follows: Let k be the cardinality of the minority color, let it be the black color.
As there are at least k reds, we can create a horizontal line of length 2k, i.e., u1, u2, . . . , u2k,
starting with a black, i.e., u1 is black, and alternating blacks and reds. In this way, the
blacks are exhausted. The remaining ≤ (3k+ 1)− k = 2k+ 1 reds are then added as leaves of
the black nodes, starting from the position to the left of u1 and continuing counterclockwise,
i.e., below u1, below u3, ..., below u2k−1, above u2k−1, above u2k−3, and so on. This gives
the same shape from the line-with-leaves family, for all color-consistent shapes (observe that
the leaf to the right of the line is always placed). LA shall be constructed on rows l − 5 to
l − 3 (not necessarily inclusive), with u1 on row l − 4 and a column j preferably between
those that contain A.

First, extract a 2-line from A, from row l, so that the 2-line seed becomes a 4-line seed.
To see that this is possible for every shape A of order at least 2, distinguish the following
two cases: (i) If the lowest row has a horizontal 2-line, then the 2-line can leave the shape
without any help and approach the 2-seed. (ii) If not, then take any node u of row l. As
A is connected and has at least two nodes, u must have a neighbor v above it. The only
possibility that the 2-line u,v is not free to leave A is when v has both a left and a right
neighbor. Figure 8 shows how this can be resolved with the help of the 2-line seed (now the
2-line seed approaches and extracts the 2-line).

2-line seed binds

4-line constructed

2-line unable to leave

(a) (b) (c)

(d) (e)

Figure 8 Extracting a 2-line with the help of the 2-line seed.

To transform A to LA, given the 4-line seed, do the following:
While the minority color (color chosen for u1) is still present in A:

If on the current lowest row occupied by A, there is a 2-line that can be extracted
alone and move towards LA, then perform the shortest such movement that attaches
the 2-line to the right endpoint of LA’s line u1, u2,
If not, then use the 4-line to extract a single node from the lowest row of A. If that
node fits to the right endpoint of LA’s line, place it there, otherwise, transfer it to an
unoccupied position below row l − 7 to be used later.

Once the minority color has been exhausted from A, alternate the two colors until u2k−3
has been placed (u2k−1 and u2k will only be placed in the end as they are part of the 4-line).
To do this, use the 4-line to transfer nodes from A and from the “repository” maintained
below LA. When this occurs, if there are no more nodes left, run the termination phase,
otherwise transfer the remaining nodes with the 4-line, one after the other, and attach
them around the line of LA, beginning from the position to the left of u1 counterclockwise,
as decribed above (skipping the position u2k).

16 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

Termination phase: the line-with-leaves is ready, apart from positions u2k−1, u2k which
require a 2-line from the 4-line. If the position above u2k−1 is empty, then extract a
2-line from the 4-line and transfer it to the positions u2k−1, u2k. This completes the
transformation. If the position above u2k−1 is occupied by a node u2k+1, then place the
whole 4-line vertically with its lowest endpoint on u2k (as in Figure 9). Then rotate the
top endpoint counterclockwise, to move above u2k+1, then rotate u2k+1 clockwise around
it to move to its left, then rotate the node above u2k counterclockwise to move to u2k−1,
and finally restore u2k+1 to its original position. This completes the construction (the
2-line that always remains can be transferred in the end to a predefined position).

J

(a) (b) (c)

(d) (e) (f)

Figure 9 The termination phase of the transformation.

The natural next question is to what extent can the 2-line seed assumption be dropped.
Clearly, by Proposition 6, this cannot be always possible. The following corollary gives
a sufficient condition to drop the 2-line seed assumption, without looking deep into the
structure of the shapes that satisfy it.

I Corollary 7. Assume rotations only and that connectivity can break. Let A and B be two
color-consistent connected shapes such that each one of them can self-extract a 2-line. Then
A and B can be transformed to each other.

We remind that a rotation move in a grid can occur towards 4 directions: NorthEast(1),
SouthEast(2), SouthWest(3), NorthWest(4). In order for the first move to occur a node
has to be present North OR East but not both. The same requirements apply for moves 2, 3
and 4 respectively. If the connectivity of the shape can be broken and two nodes, A and B,
are next to each other and A can perform a rotation using B, then B can perform a rotation
using A if the connectivity of the shape can be broken.

I Lemma 8. A 2-seed can be extracted from a shape iff a single rotation move is available
on the shape.

Proof. If a move is available on a shape but not on the perimeter, that move can be
transferred to the perimeter through transformations.

Let us consider a shape that has only two holes which are next to each other. We
will call them cell A and E respectively. Without loss of generality let us consider that cell

O. Michail, G. Skretas, and P. G. Spirakis 17

A is west of E. We name S the cell south of A and SE the cell south of E. Now we propose
the following method. The node residing in cell S rotates to the cell E and then the node
in cell SE rotates to the cell A. After these two moves, cell S is renamed to A and SE is
renamed to E. The cell south of the new A and E are named S and SE respectively. This
method can be repeated indefinitely until the two white cells reach the end of the grid.

We have shown how two white cells can“travel” south. By reversing the method the two
white cells can travel north. The two white cells can travel east and west with a simple
transformation before the method. After naming the four cells above, the node in cell S
rotates to E. After this step we have two white cells, A and S. Now rename S into E and E
into S. Now repeat the method and the two white positions will start travelling east. For the
opposite direction, rotate the node in position SE to cell A, and rename A into SE and SE
into A. Now repeat the method and the white cells can travel east. By using a combination
of the above steps, the two white cells can move freely through the grid and reach any place.

Now consider a shape where there are more than 2 holes but at least two are next to each
other. We will show that the two white cells that are side by side can travel to the perimeter
of the shape using the above method even if they reach other white cells. Without loss of
generality suppose that the two white cells are the southernmost pair travelling south. If the
travelling nodes ever meet a white cell south of them, we just need to show that we can turn
this cell (S) from a white one to a black one. Thus we perform the following act: Check if
there is a node west of A. If there is, move him south of A. Note that the cell west of S is
always a black node because we cannot have two white cells next to each other south of A.
If not check if there is a node north of A. Note that there is always a node north of A, else a
move would never be available which is prohibited. Now move the node north of A to the
west of A then south of A. This move is available if there is a node northwest of A. If there
is not, move the node north of A, east of A then south of A. This move is available only if
there is a node northeast of A. If there is not, move the node east to the northeastern cell of
A then east of A then south of A. If there is not one, we reach the following shape.See figure
10

The first node available northeast of A or northwest of A can be moved with rotations
to the cell south of A. If a node is not available on either of those lines then either the
connectivity of the shape is breached because we know that there are nodes north of A
which have to be connected with the rest of the shape, or the A cell is not part of the shape.
Both of those are not allowed so there is always a node northeast or northwest of A. Thus
there is always a way to fill the cell south of A. In a similar fashion if the cell south of E
was white, we could always fill it.

A 2-seed can be extracted from a shape if a single rotation move is available on
the perimeter of the shape.

Without the loss of generality suppose that nodes A and B are east-west to each
other respectively, they are the southernmost nodes with a move available and none of
them have any nodes in the two cells directly south of them. This means that the other
can move as well. If node A can perform a rotation to move south of B then afterwards B
can perform a rotation to move west of A. Then B can rotate south of A and A west of
B. This four step method can be repeated forever until either one of them finds a node
south. If one of them finds a node south, called C i.e. A find a node south of him then B
moves north of A and A moves east of C. Then A and C perform the four step method.
If the two nodes keep repeating this eventually they will disconnect from the shape as a 2-seed.

18 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

If a move is not available a 2-seed cannot be extracted.

If a move is not available then no node can perform a rotation move. This means
that no node can begin the process to extract himself as part of a 2-seed. J

A

Figure 10 Proof for 2seed extraction to the perimeter.

I Theorem 9. Rotation-Transformability belongs to P.

Proof. In Lemma 8, we proved that we can extract a 2-seed from a shape iff a move is
initially available. By Theorem 6, if both shapes A and B have a 2-seed available then they
can be transformed to each other. It follows that two shapes A and B can be transformed to
each other iff both have a move available. Now we define a n× n grid where any shape with
n nodes can fit in. The time it takes for an algorithm to check if one of the shapes has a
move available is O(n). If for example the algorithm checks each individual node, that takes
O(1) time and, therefore, O(n) time for n nodes. So for two shapes it takes O(n) time to
check if a move is available in each of the shapes. Thus, the problem belongs to P.

If the two shapes, A and B, are the same, then they can trivially transform to each other
without any moves. An algorithm can check this by simply mapping the grid of the first
shape, which takes O(n) time, and then check the second shape to see if the black cells
match. If it ever finds a black cell that does not exist on the first shape, or it finds a white
cell when it expected a black cell, then it decides that the two shapes are not the same. This
process takes O(n) time because it is equals to the time it takes to visit every n node. Thus,
it takes O(n) time to check if A = B. J

4 Rotation and Connectivity Preservation

In this section, we restrict our attention to transformations that transform a connected shape
A to one of its color-consistent shapes B, without ever breaking the connectivity of the
shape on the way. As already mentioned in the introduction, connectivity preservation is a
very desirable property for programmable matter, as, among other positive implications, it
guarantees that communication between all nodes is maintained, it minimizes transformation
failures, requires less sophisticated actuation mechanisms, and increases the external forces
required to break the system apart.

We begin by proving that RotC-Transformability can be decided in deterministic
polynomial space.

O. Michail, G. Skretas, and P. G. Spirakis 19

I Theorem 10. RotC-Transformability is in PSPACE.

Proof. We first present a nondeterministic Turing machine (NTM) N that decides Trans-
formability in polynomial space. N takes as input two shapes A and B, both consisting
of n nodes and at most 4n edges. A reasonable representation is in the form of a binary
n× n matrix (representing a large enough sub-area of the grid) where an entry is 1 iff the
corresponding position is occupied by a node. Given the present configuration C, where
C = A initially, N nondeterministically picks a valid rotation movement of a single node.
This gives a new configuration C ′. Then N replaces the previous configuration with C ′ in its
memory, by setting C ← C ′. Moreover, N maintains a counter moves (counting the number
of moves performed so far), with maximum value equal to the total number of possible shape
configurations, which is at most 2n2 in the binary matrix encoding of configurations. To set
up such a counter, N just have to reserve for it n2 (binary) tape-cells, all initialized to 0.
Every time N makes a move, as above, after setting a value to C ′ it also increases moves by
1, i.e., sets moves← moves+ 1. Then N takes another move and repeats. If it ever holds
that C ′ = B (may require N to perform a polynomial-space pattern matching on the n× n
matrix to find out), then N accepts. If it ever holds that the counter is exhausted, that
is, all its bits are set to 1, N rejects. If A can be transformed to B, then there must be a
transformation beginning from A and producing B, by a sequence of valid rotations, without
ever repeating a shape. Thus, some branch of N ’s computation will follow such a sequence
and accept, while all non-accepting branches will reject after at most 2n2 moves (when moves
reaches its maximum value). If A cannot be transformed to B, then all branches will reject
after at most 2n2 moves. Thus, N correctly decides Transformability. Every branch of N ,
at any time, stores at most to shapes (the previous and the current), which requires O(n2)
space in the matrix representation, and a 2n2-counter which requires O(n2) bits. It follows
that every branch uses space polynomial in the size of the input. So, far we have proved that
Transformability is decidable in nondeterministic polynomial (actually, linear) space. By
applying Savitch’s theorem [32] 4, we conclude that Transformability is also decidable in
deterministic polynomial space (actually, quadratic), i.e., it is in PSPACE. J

Recall that in the line folding problem, the initial shape is a (connected) horizontal line
of any even length n, with nodes u1, u2, . . . , un, and the transformation asks to fold the line
onto itself, forming a double-line of length n/2 and width 2. As part of the proof of Theorem
5, it was shown that if n > 4, then it is impossible to solve the problem by rotation only (if
n = 4, it is trivially solved, just by rotating each endpoint above its unique neighbor). In the
next proposition, we employ again the idea of a seed to show that with a little external help
the transformation becomes feasible.

I Proposition 8. If there is a 3-line seed v1, v2, v3, horizontally aligned over nodes u3, u4, u5
of the line, then the line can be folded.

Proof. We distinguish two cases, depending on whether we want the seed to be part of
the final folded line or not. If yes, then we can either use a 4-line seed directly, over nodes
u3, u4, u5, u6, or a 3-line seed but require n to be odd (so that n+ 3 is even). If not, then n
must be even. We show the transformation for the first case, with n odd and a 3-line seed
(the other cases can be then treated with minor modifications).

4 Informally, Savitch’s theorem establishes that any NTM that uses f(n) space can be converted to a
deterministic TM that uses only f2(n) space. Formally, it establishes that for any function f : N→ N,
where f(n) ≥ log n, NSPACE(f(n)) ⊆ SPACE(f2(n)).

20 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

We first show a simple reduction from an odd line with a 3-line seed starting over its third
node to an even line with a 4-line seed starting over its third node. By rotating u1 clockwise
over u2, we obtain the 4-line seed u1, v1, v2, v3. It only remains to move the whole seed two
positions to the right (by rotating each of its 2-lines clockwise around themselves). In this
manner, we obtain an even-length line u2, . . . , un and a 4-line seed starting over its third
node, without breaking connectivity. Therefore, in what follows we may assume that the
initial shape is an even-length line u1, u2, . . . , un with a 4-line seed v1, v2, v3, v4 horizontally
aligned over nodes u3, u4, u5, u6.

See Figure 11. J

1

u1 u2

v1 v2 v3 v4

1

u2

v1 v3 v4u1

v2
2 3

u2

v1 v4

v2

v3u1
4

4
v1

v2

5
v1 v1

6

v1
7

u2

v2

v3u1 v1v4

8
v4

v2

9

v4
9

u2 v3u1 v2 v1 v4

10
u2 u2

11 10
v3 v3

11 10
v1 v1

11

u2u1 v2 v3 v4 v1

12
u1 u1

13 12
v2 v2

13 12
v4 v4

13

u2 u1 v3 v2 v1 v4 2-line leaves right

u2 u1 v3 v2 v1 v4

Figure 11 The main subroutine of line folding with connectivity preservation.

We believe that in order to transform one shape to another we first need to find a seed
that can both move on the perimeter of a shape and being able to reach every possible cell
of the perimeter. We call this for simplicity: traverse the perimeter. After this is guaranteed
we want the seed to be able to extract nodes and move them gradually to specific cells of the

O. Michail, G. Skretas, and P. G. Spirakis 21

perimeter in order to create the desired shape. Thus the seed could actually simulate the
rotation-sliding movement. We begin with the smallest seed possible and try to tackle the
problem of moving on the perimeter of a line. Note that we do not allow the nodes of the
shape to move in order to simplify and strengthen the model.

I Proposition 9. A 2-seed cannot traverse the perimeter a line without breaking the con-
nectivity.

Proof. Observe figure 12, shape number 1. The 2-seed has reached the end of the line and
now it tries to move east of the line and then south of it. Note that the black node has 2
possible moves. It can either perform a single move and stop above the red node, or perform
two subsequent moves and stop east of the red node. No matter the choice, the red node
then is not able to move because any possible move would break the connectivity of the
shape. See figure 12, shapes number 2, 3. Thus the black node has to stay in place and
only the red node can move now. Observe now that the red node is trapped in a loop of 2
possible moves (excluding the act of moving above the black node which would not allow us
to try and move under the line): become the new endpoint or move under the end of the line.
The first case leads necessarily to the second case because it is the only legal move available
(excluding the move of looping back). See figure 13. But when we each the second case, once
more we are limited into looping back to the initial positions. Thus a 2-seed cannot traverse
the perimeter of a line without breaking the connectivity J

1 2 3

Figure 12 Black node movement for 2-seed.

1 2 3

Figure 13 Red node movement for 2-seed).

I Proposition 10. A 4-seed cannot traverse the perimeter of a line without breaking the
connectivity.

Proof. Consider the last time, tlast, that the black and red nodes in rows≤i increases from
2 to 3. This means that either a black or a red moved at tlast from i+ 1 to i. From now
on, none of those 3 nodes can go back to rows>i and there is one node remaining in rows>i.

22 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

Actually that node u must necessarily be in row i+ 1, otherwise the connectivity would have
broken. So no node from rows≤i can return to rows>i anymore and there is a single node
u remaining in row r + 1. We begin by finding the possible shapes that meet the above
requirements.

The rotation of the node at tlast was necessarily clockwise, as the closest counterclockwise
move to the line is from (i + 1, j + 1) to (i, j), but it requires (i, j) to be empty before
rotating, but then 2 nodes in rows≤i and only one additional (u) in rows>i cannot support
connectivity. We will now distinguish the tlast into cases.

If u is a black node: If u is at position (i+ 1, j − 2) then it is stuck forever (blue node
cannot move and the other black and red cannot go up any more to carry u. It also cannot
be at (i+ 1, j + 2) as this does not permit a clockwise move of a red from (i+ 1, j + 1), so it
has to be at (i+ 1, j). See figure 15 shape number 2. Node u is connected to A only via the
red below it, which therefore cannot move unless u moves first(because no node can return
to row>i any more to support u via another path. But the only way for u to move is for
the black southeast node to move first, which in turn cannot move unless the rightmost red
moves up which is impossible as no node may return to row>i (that red node can move down
but then the only available movement is to return to its previous position.

If u is a red node: It cannot be at (i+ 1, j − 3) as before and it cannot be at (i+ 1, j + 1)
as the rotation at tlast was then necessarily from (i+ 1, j) which is blocked by u. Observe
that the clockwise rotation could not have been from (i+ 1, j + 2). The only way to support
connectivity in this case with 2 nodes in rows≤i and 2 in rows>i, is by having the following
shape but then a clockwise rotation of the upper black is impossible. Therefore, if u is a red
node it has to be at (i+ 1, j − 1). See figure 15 shape number 1. Either nodes in rows≤i
cannot move at all, or if the bottom black is far away, the rightmost black is trapped in a
loop going down and then up to its original positions as before.

Therefore the 4-seed cannot traverse the perimeter of a line without breaking the con-
nectivity.

J J

j-3 j-2 j j+1 j+2j-1

i+2

i+1

i

i-1

i-2

Figure 14 Starting position of 4-seed on a line.

I Proposition 11. A 6-seed can traverse the perimeter of a discrete-convex shape without
breaking the connectivity.

Proof. Consider a folded 6-seed occupying cells (i, j), (i, j + 1), (i, j + 2) and (i − 1, j),
(i− 1, j + 1), (i− 1, j + 2). Since the shape is discrete-convex, iff there is any node present in
cells (i, j + 3) or (i− 1, j + 3), there can be no node present in cells (i, j − 1) or (i− 1, j − 1).
For the same reason if there is a node in cells (i − 2, j) or (i − 2, j + 1) or (i − 2, j + 2)

O. Michail, G. Skretas, and P. G. Spirakis 23

21

Figure 15 Black and red cases for node u).

there can be no node in cells (i+ 1, j) or (i+ 1, j + 1) or (i+ 1, j + 2).In order to place this
seed at those cells, one of the neighbouring cells has to be occupied by a node. Without
loss of generality, suppose that the 6-seed tries to move east. There are 4 distinct cases for
this move. Note that in the following 4 cases we assume the absolute minimum amount of
neighbouring nodes. If at any case there were more present at the shape, the rotations would
be the exact same without any modification or problem.

A node occupies cell (i, j + 3). In order for this shape to be discrete-convex, a node has
to be present in cell (i− 1, j + 3). In this case the 6-seed has to move north and performs
the rotations described in figure 16, 17, 18, 19 if a node is present in cell (i+ 1, j + 3) and
the orientations described in figures 20 if a node is not present in cell (i+ 1, j + 3) in order
to keep moving.

A node occupies cell (i− 1, j + 3) and no node occupies cell (i, j + 3). In this case the
6-seed performs the rotations described in figure 21 in order to climb the step. Note that
since the 6-seed begins and ends the move while preserving its shape, it is guaranteed that
any number of steps can be climbed this way.

A node occupies cell (i− 2, j + 3) and no node occupies cell (i− 1, j + 3) or (i, j + 3). In
this case the 6-seed performs the rotations described in figure 22 rotations in order to slide
east.

No nodes occupy cells (i− 2, j + 3), (i− 1, j + 3) and (i, j + 3). In this case the 6-seed
performs the rotations described in figure 23 in order to reach a shape that matches the
conditions of the step case. Therefore the 6-seed can now perform a climb move in order to
continue.

We can replicate the results for south, west, north directions by simply rotating the whole
shape by 90, 180, 270 degrees respectively. J

i,j

1

2

1

2

1
2

1

2

12

1 2 3 4 5 6 7

Figure 16 Method for going north.

I Proposition 12. An 8-seed can traverse the perimeter of a discrete-convex shape without
breaking the connectivity.

Proof. Consider a folded 8-seed occupying cells (i, j) (i, j+1) (i, j+2) (i, j+3) and (i−1, j),
(i− 1, j + 1), (i− 1, j + 2), (i− 1, j + 3). Since the shape is discrete-convex, iff there is any

24 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

i,j

1

2

1
2

4

3

1

2

12

1 2 3 4 5 6

Figure 17 Method for going north with node at (i-2,j+2).

i,j

1

2

1

2
1

2

3

1 2 3 4

Figure 18 Method for going north with node at (i-2,j+1).

i,j

1
2

1

2
3

1

2

1

2

1 2 3 4 5 6

Figure 19 Method for going north with node at (i-2,j).

1 1

2

3

1
2

34

12

34

1 2 3 4 5

2

3

Figure 20 Method for climbing north.

1

2

1 1

2

3

2

i,j

1

2

12

34

1 2 3 4 5 6 7

Figure 21 Method for climbing a step.

O. Michail, G. Skretas, and P. G. Spirakis 25

2

13

4

5

6

1 2

Figure 22 Method for sliding.

1

2 1

2

1 2

3 4 1

2

3

4

1 2 3 4 5 6 7

Figure 23 Method for transforming.

node present in cells (i, j + 4) or (i− 1, j + 4), there can be no node present in cells (i, j − 1)
or (i − 1, j − 1). For the same reason if there is a node in cells (i − 2, j) or (i − 2, j + 1)
or (i− 2, j + 2) or (i− 2, j + 3) there can be no node in cells (i+ 1, j) or (i+ 1, j + 1) or
(i+ 1, j + 2) or (i+ 1, j + 3).In order to place this seed at those cells, one of the neighbouring
cells has to be occupied by a node. Without loss of generality, suppose that the 8seed tries
to move east. There are 4 distinct cases for this move. Note that in the following 4 cases, if
not mentioned, we assume the absolute minimum amount of neighbouring nodes. If at any
case there were more present at the shape, the rotations would be the exact same without
any modification or problem.

A node occupies cell (i, j + 4). In order for this shape to be discrete-convex, a node has
to present in cell (i− 1, j + 4). In this case the 8seed has to move north and performs the
rotations described in figure 24 if a node is present in cell (i+ 1, j + 4); and the orientations
described in figure 25 if a node is not present in cell (i+ 1, j + 4) in order to keep moving.

A node occupies cell (i− 1, j + 4) and no node occupies cell (i, j + 4). In this case the
8-seed performs the rotations described in figure 26 and in figure 27 order to climb the
step. Note that since the 8-seed begins and ends the move while preserving its shape, it is
guaranteed that any number of steps can be climbed this way.

A node occupies cell (i− 2, j + 4) and no node occupies cell (i− 1, j + 4) or (i, j + 4). In
this case the 8-seed performs the rotations described in figure 28 rotations in order to slide
east.

No nodes occupy cells (i− 2, j + 4), (i− 1, j + 4) and (i, j + 4). In this case the 8-seed
performs the rotations described in figure 29 in order to reach a shape that matches the
conditions of the first case. Therefore the 8-seed can now perform a climb move in order to
continue.

We can replicate the results for south, west, north directions by simply rotating the whole
shape by 90, 180, 270 degrees respectively. J

Our goal here was to show that since both a 6-seed and an 8-seed can traverse the
perimeter of any discrete-convex shape, then a 6-seed may be able to start extracting 2 nodes

26 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1
2

1
2

1
2

1
2

1 2 3 4 5

Figure 24 Method for going north.

12

3

1

2
1

2

3

1

2

3

4
1

2
3

4

5

1

2

3
4

5
6

2

3

4

1

1

4321 5 6

7 8 9

Figure 25 Method for climbing north.

13

4 2

12

3

1
2

3 1
2

3

4

1 2 3 4 5

Figure 26 Method for climbing a step with a node at cell (i-2,j+2).

1

2

3
4

12
3

4

1
2

3 1

2

3

4

1

2

1

2

1

2

1

2

3

1

2

3

5

4 1

2

3

1 2 3 4 5 6

7 8 9 10 11

Figure 27 Method for climbing a step.

O. Michail, G. Skretas, and P. G. Spirakis 27

1

2

3

4

1 2 3 4 5 6

1 2

3

1

2

3

1

2

3

4

12

Figure 28 Method for sliding.

1
2

1

2
1

2

3

4

1

2

3

4

5

1

2

1

2

3

4

1

2

3

4
1

2

3

1

23
1

2 3

1

2 2

1

3

4

1

2

3

4

1 2 3 4 5 6

7 8 9 10 11 12

13 14

Figure 29 Method for transforming.

28 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

at a time from the shape A , move them as an 8-seed at a designated cell, leave them there,
and continue this loop while creating i.e. a line with leaves. Afterwards we could perform
the same method for shape B. If we succeeded in both shapes, then we could transform one
to another.

5 Rotation and Sliding

In this section, we study the combined effect of rotation and sliding movements.
We shall prove that rotation and sliding together, are transformation-universal, meaning

that they can transform any given shape to any other shape of the same size without ever
breaking the connectivity during the transformation. It would be useful for the reader to
recall Definitions 1, 2, 3, and 4 and Proposition 2, from Section 2, as the results that follow
make extensive use of them.

As the perimeter is a (connected) polygon, it can be traversed by a particle walking on its
edges (the unit-length segments). We now show how to “simulate” the particle’s movement
and traverse the cell-perimeter by a node, using rotation and sliding only.

I Lemma 11. If we place a node u on any position of the cell-perimeter of a connected
shape A, then u can walk the whole cell-perimeter and return to its original position by using
only rotations and slidings.

Proof. We show how to “simulate” the walk of a particle moving on the edges of the perimeter.
The simulation implements the following simple rules:
1. If the current line-segment traversed by the particle concerns the same red cell as the one

of the immediately previous line-segment traversed, then stay put.
2. If not:

a. If the two consecutive line-segments traversed form a line-segment of length 2, then
move by sliding one position in the same direction as the particle.

b. If the two consecutive line-segments traversed are perpendicular to each other, then
move by a single rotation in the same direction as the particle.

It remains to prove that u can indeed always perform the claimed movements. (1) is
trivial. For (2.a), a line-segment of length 2 on the perimeter is always defined by two
consecutive blacks to the interior and two consecutive empty cells to the exterior (belonging
to the cell-perimeter), therefore, u can slide on the empty cells. For (2.b), there must be a
black in the internal angle defined by the line-segments and an empty cell diagonally to it, in
the exterior (for an example, see the right black node on the highest row containing nodes of
A, in Figure 3, Section 2). Therefore, rotation can be performed. J

Next, we shall prove that u need not be an additional node, but actually a node belonging
to the shape, and in particular one of those lying on the shape’s boundary.

I Lemma 12. Let A be a connected shape of order at least 2. Then there is a subset R of
the nodes on A’s external surface, such that |R| ≥ 2 and for all u ∈ R, if we completely
remove u from A, then the resulting shape A′ = A− {u} is also connected.

Proof. If the extended external surface of A contains a cycle, then such a cycle must
necessarily have length at least 4 (due to geometry). In this case, any node of the intersection
of the external surface (non-extended) and the cycle can be removed without breaking
A’s connectivity. If the extended external surface of A does not contain a cycle, then it
corresponds to a tree graph which by definition has at least 2 leaves, i.e., nodes of degree

O. Michail, G. Skretas, and P. G. Spirakis 29

exactly 1. Any such leaf can be removed without breaking A’s connectivity. In both cases,
|R| ≥ 2. J

I Lemma 13. Pick any u ∈ R (R defined on a connected shape A as above). Then u can
walk the whole cell-perimeter of A′ = A− {u} by rotations and slidings.

Proof. It suffices to observe that u already lies on the cell-perimeter of A′. Then, by Lemma
11, it follows that such a walk is possible. J

We are now ready to state and prove the universality theorem of rotations and slidings.

I Theorem 14. Let A and B be any connected shapes, such that |A| = |B| = n. Then
A and B can be transformed to each other by rotations and slidings, without breaking the
connectivity during the transformation.

Proof. It suffices to show that any connected shape A can be transformed to a spanning line
L by rotations and slidings only and without breaking connectivity during the transformation.
If we show this, then A can be transformed to L and B can be transformed to L (as A and B
have the same order, therefore correspond to the same spanning line L), and by reversibility
of these movements, A and B can be transformed to each other via L.

Pick the rightmost column of the grid containing at least one node of A, and consider
the lowest node of A in that column. Call that node u. Observe that all cells to the right of
u are empty. Let the cell of u be (i, j). The final constructed line will start at (i, j) and end
at (i, j + n− 1).

The transformation is partitioned into n− 1 phases. In each phase k, we pick a node from
the original shape and move it to position (i, j+ k), that is, to the right of the right endpoint
of the line formed so far. In phase 1, position (i, j + 1) is a cell of the cell-perimeter of A.
So, even if it happens that u is a node of degree 1, by Lemma 12, there must be another
such node v ∈ A that can walk the whole cell-perimeter of A′ = A− {v} (the latter, due to
Lemma 13). As u 6= v, (i, j + 1) is also part of the cell-perimeter of A′, therefore, v can move
to (i, j + 1) by rotations and slidings. As A′ is connected (by Lemma 12), A′ ∪ {(i, j + 1)}
is also connected and also all intermediate shapes were connected, because v moved on the
cell-perimeter and, therefore, it never disconnected from the rest of the shape during its
movement.

In general, the transformation preserves the following invariant. At the beginning of phase
k, 1 ≤ k ≤ n− 1, there is a connected shape S(k) (where S(1) = A) to the left of of column
j (j inclusive) and a line of length k − 1 starting from position (i, j + 1) and growing to the
right. Restricting attention to S(k), there is always a v 6= u that could move to position
(i, j + 1) if it were not occupied. This implies that before the final movement that places
it on (i, j + 1), v must have been in one of (i+ 1, j) and (i+ 1, j + 1), if we assume that v
always walks in the clockwise direction. Observe now that from each of these positions v can
perform zero or more right slidings above the line in order to reach the position above the
right endpoint of the line. When this occurs, a final clockwise rotation makes v the new right
endpoint of the line. The only exception is when v is on (i+ 1, j + 1) and there is no line to
the right of (i, j) (this implies the existence of a node on (i+ 1, j), otherwise connectivity of
S(k) would have been violated). In this case, v just performs a single downward sliding to
become the right endpoint of the line. J

I Theorem 15. The transformation of Theorem 14 requires Θ(n2) movements in the worst
case.

30 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

Proof. Consider a ladder shape of order n, as depicted in Figure 30. The strategy of Theorem
14 will choose to construct the line to the right of node u. The only node that can be selected
to move in each phase without breaking the shape’s connectivity is the top-left node. Initially,
this is v, which must perform dn/2e movements to reach its position to the right of u. In
general, the total number of movements M , performed by the transformation of Theorem 14
on the ladder, is given by

M =
⌈n

2

⌉
+ 2 ·

(n−3)/2∑
i=1

⌈n
2

⌉
+ i

=
⌈n

2

⌉
(n− 2) + 2 ·

(n−3)/2∑
i=1

i

= Θ(n2).

J

v

u

2

3

4

5

6

7

8

1

u

3

4

5

1 2

11
6 7 8 9 10

v

Figure 30 Transforming a ladder into a spanning line.

Theorem 15 shows that the above generic strategy is slow in some cases, as is the case of
transforming a ladder shape into a spanning line. We shall now show that there are pairs
of shapes for which any strategy and not only this particular one, may require a quadratic
number of steps to transform one shape to the other.

I Definition 16. Define the potential of a shape A as its minimum “distance” from the line
L, where |A| = |L|. The distance is defined as follows: Consider any placement of L relative
to A and any pairing of the nodes of A to the nodes of the line. Then sum up the Manhattan
distances 5 between the nodes of each pair. The minimum sum between all possible relative
placements and all possible pairings is the distance between A and L and also A’s potential.
In case the two shapes do not have an equal number of nodes, then any matching is not
perfect and the distance can be defined as infinite.

Observe that the potential of the line is 0 as it can be totally aligned on itself and the
sum of the distances is 0.

I Lemma 17. The potential of the ladder is Θ(n2).

Proof. We prove it for horizontal placement of the line, as the vertical case is symmetric.
Any such placement leaves either above or below it at least half of the nodes of the ladder

5 The Manhattan distance between two points (i, j) and (i′, j′) is given by |i− i′|+ |j − j′|.

O. Michail, G. Skretas, and P. G. Spirakis 31

(maybe minus 1). W.l.o.g. let it be above it. Every two nodes, the height increases by 1,
therefore there are 2 nodes at distance 1, 2 at distance 2,. . ., 2 at distance n/4. Any matching
between these nodes and the nodes of the line gives for every pair a distance at least as large
as the vertical distance between the ladder’s node and the line, thus, the total distance is at
least 2 · 1 + 2 · 2 + ...+ 2 · (n/4) = 2 · (1 + 2 + ...+ n/4) = (n/4) · (n/4 + 1) = Θ(n2). We
conclude that the potential of the initial ladder is Θ(n2). J

I Theorem 18. Any transformation strategy based on rotations and slidings and performing
a single movement per step, requires Θ(n2) steps to transform a ladder into a line.

Proof. To show that Ω(n2) movements are needed to convert the ladder to a line, it suffices
to observe that the difference in their potentials is that much and that one rotation or one
sliding can decrease the potential by at most 1. J

I Remark. The above lower bound is independent of connectivity preservation. It is just a
matter of the total distance based on single distance-one movements.

Finally, it is interesting to observe that such lower bounds can be computed in polynomial
time, because there is a polynomial-time algorithm for computing the distance between two
shapes.

I Proposition 13. Let A and B be connected shapes. Then their distance d(A,B) can be
computed in polynomial time.

Proof. The algorithm picks a node u ∈ B, a cell c of the grid occupied by a node v ∈ A,
and an orientation o ∈ north, east, south, west and draws a copy of the shape B, starting
with u on c and respecting the orientation o. Then, it constructs (in its memory) a complete
weighted bipartite graph (X,Y), where X and Y are equal to the node-sets of A and B,
respectively. The weight w(x, y) for x ∈ X and y ∈ Y is defined as the distance from x

to y (given the drawing of shape B relative to shape A). To compute the minimum total
distance pairing of the nodes of A and B for this particular placement of A and B, the
algorithm computes a minimum cost perfect matching of (X,Y), e.g., by the Kuhn-Munkres
algorithm (a.k.a. the Hungarian algorithm) [26], and the sum of the weights of its edges k,
and sets dist = min{d, k}. Then the algorithm repeats for the next selection of u ∈ B, cell c
occupied by a node v ∈ A, and orientation o. In the end, the algorithm gives dist as output.
To see that dist = d(A,B), observe that the algorithm just implements the procedure for
computing the distance, of Definition 16, with the only differences being that it does not
check all pairings of the nodes, instead directly computes the minimum-cost pairing, and that
it does not try all relative placements of A and B but only those in which A and B share
at least one cell of the grid. To see that this selection is w.l.o.g., assume that a placement
of A and B in which no cell is shared achieves the minimum distance and observe that, in
this case, A could be shifted one step “closer” to B, strictly decreasing their distance and,
thus, contradicting the optimality of such a placement. As the relative placements of A and
B are 4n2 and the Kuhn-Munkres algorithm is a polynomial-time algorithm (in the size of
the bipartite graph), we conclude that the algorithm computes the distance in polynomial
time. J

To give a faster transformation either pipelining must be used (allowing for more than
one movement in parallel) or more complex mechanisms that move sub-shapes consisting of
many nodes, in a single step.

32 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

5.1 Parallelizing the Transformations
We now maintain the connectivity preservation requirement but allow an unbounded number
of rotation and/or sliding movements to occur simultaneously in a single step.

I Proposition 14. There is a pipelining strategy that transforms a ladder into a line in O(n)
parallel time.

Proof. Number the nodes of the ladder 1 through n starting from the top and following the
ladder’s connectivity until the bottom-right node is reached. These gives an even-numbered
upper diagonal and an odd-numbered lower diagonal. Node 1 moves as in Theorem 15. Any
even node 2 ≤ w < n− 1 starts moving as long as its upper odd neighbor has reached the
same level as w (e.g., node 2 first moves after node 1 has arrived to the right of node 3).
Any odd node 1 < z < n starts moving as long as its even left neighbor has moved one level
down (e.g., node 3 first moves after node 2 has arrived to the right of 5). After a node starts
moving, it moves in every step as in Theorem 15 (but now many nodes can move in parallel,
implementing a pipelining strategy). It can be immediately observed that any node i starts
after at most 3 movements of node i− 1 (actually, only 2 movements for even i), so after
roughly at most 3n steps, node n − 2 starts. Moreover, a node that starts, arrives at the
right endpoint of the line after at most n steps, which means that after at most 4n = O(n)
steps all nodes have taken their final position in the line. J

Proposition 14 gives a hint that pipelining could be a general strategy to speed-up
transformations. We next show how to generalize this technique to any possible pair of
shapes.

I Theorem 19. Let A and B be any connected shapes, such that |A| = |B| = n. Then there
is a pipelining strategy that can transform A to B (and inversely) by rotations and slidings,
without breaking the connectivity during the transformation, in O(n) parallel time.

Proof. The transformation is a pipelined version of the sequential transformation of Theorem
14. Now, instead of picking an arbitrary next candidate node of S(k) to walk the cell-perimeter
of S(k) clockwise, we always pick the rightmost clockwise node vk ∈ S(k), that is, the node
that has to walk the shortest clockwise distance to arrive at the line under formation. This
implies that the subsequent candidate node vk+1 to walk, is always “behind” vk in the
clockwise direction and is either already free to move or is enabled after vk’s departure.
Observe that after at most 3 clockwise movements, vk cannot block any more the way
of vk+1 on the (possibly updated) cell-perimeter. Moreover, the clockwise move of vk+1,
only introduces a gap in its original position, therefore it only affects the structure of the
cell-perimeter “behind” it. The strategy is to start the walk of node vk+1 as soon as vk is no
longer blocking its way. As in Proposition 14, once a node starts, it moves in every step, and
again any node arrives after at most n movements. It follows, that if the pipelined movement
of nodes cannot be blocked in any way, after 4n = O(n) steps all nodes must have arrived at
their final positions. Observe now that the only case in which pipelining could be blocked
is when a node is sliding through a (necessarily dead-end) “tunnel” of height 1 (such an
example is the red tunnel on the third row from the bottom, in Figure 3). To avoid this, the
nodes shortcut the tunnel by visiting only its first position (i, j) and then simply skipping
the whole walk inside it (that walk would just return them to position (i, j) after a number
of steps). J

We next show that even if A and B are labeled shapes, that is, their nodes are assigned
the indices 1, . . . , n (uniquely, i.e., without repetitions), we can still transform the labeled A

O. Michail, G. Skretas, and P. G. Spirakis 33

to the labeled B with only a linear increase in parallel time. We only consider transformations
in which the nodes never change indices in any way (e.g., cannot transfer them, or swap
them), so that each particular node of A must eventually occupy (physically) a particular
position of B (the one corresponding to its index).

I Corollary 20. The labeled version of the transformation of Theorem 19 can be performed
in O(n) parallel time.

Proof. Recall from Theorem 14 that the line were constructed to the right of some node
u. That node was the lowest node in that column, therefore, there is no node below u in
that column. The procedure of Theorem 19, if applied on the labeled versions of A and B
will result in two (possibly differently) labeled lines, corresponding to two permutations of
1, 2, . . . , n, call them πA and πB. It suffices to show a way to transform πA to πB in linear
parallel time, as then labelled A is transformed to πA, then πA to πB , and then πB to B (by
reversing the transformation from B to πB), all in linear parallel time.

To do this, we actually slightly modify the procedure of Theorem 19, so that it does not
construct πA in the form of a line, but in a different form that will allow us to transform it
fast to πB without breaking connectivity. What we will construct is a double line, with the
upper part growing to the right of node u as before and the lower part starting from the
position just below u and also growing to the right. The upper line is an unordered version
of the left half of πB and the lower line is an unordered version of the right half of πB. To
implement the modification, when a node arrives above u, as before, if it belongs to the
upper line, it goes to the right endpoint of the line as before, while if it belongs to the lower
line, it continues its walk in order to teach the right endpoint of the lower line.

When the transformation of labeled A to the folded line is over, the procedure has to
order the nodes of the folded line and then unfold in order to produce πB. We first order
the upper line in ascending order. While we do this, the lower line stays still in order to
preserve the connectivity. When we are done, we order the lower line in descending order,
now keeping the upper line still. Finally, we perform a parallel right sliding of the lower line
(requiring linear parallel time), so that its inverse permutation ends up to the right of the
upper line, thus forming π.

It remains to show how the ordering of the upper line can be done in linear parallel
time without breaking connectivity. To do this, we simulate a version of the odd-even sort
algorithm (a.k.a. parallel bubble sort) which sorts a list of n numbers with O(n) processors
in O(n) parallel time. The algorithm progresses in odd and even phases. In the odd phases,
the odd positions are compared to their right neighbor and in the even phases to their left
neighbor and if two neighbors are ever found not to respect the ordering a swap of their
values is performed. In our simulation, we break each phase into two subphases as follows.
Instead of performing all comparisons at once, as we cannot do this and preserve connectivity,
in the first subphase we do every second of them and in the second subphase the rest so that
between any pair of nodes being compared there are 2 nodes that are not being compared
at the same time. Now if the comparison between the ith and the i + 1 node indicates a
swap, then i+ 1 rotates over i+ 2, i slides right to occupy the previous position of i+ 1, and
finally i+ 1 slides left over i and then rotates left around i to occupy i’s previous position.
This swapping need 4 steps and does not break connectivity. The upper part has n/2 nodes,
each subphase takes 4 steps to swap everyone (in parallel), each phase has 2 sub-phases, and
O(n) phases are required for the ordering to complete, therefore, the total parallel time is
O(n) for the upper part and similarly O(n) for the lower part. This completes the proof. J

34 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

An immediate observation is that a linear-time transformation does not seem satisfactory
for all pairs of shapes. To this end, take a square S and rotate its top-left corner u, one
position clockwise, to obtain an almost-square S′. Even though, a single counter-clockwise
rotation of u suffices to transform S′ to S, the transformation of Theorem 19 may go all the
way around and first transform S′ to a line and then transform the line to S. In this particular
example, the distance between S and S′, according to Definition 16, is 2, while the generic
transformation requires Θ(n) parallel time. So, it is plausible to ask if any transformation
between two shapes A and B can be performed in time that grows as a function of their
distance d(A,B). We show that this cannot always be the case, by presenting two shapes A
and B with d(A,B) = 2, such that A and B require Ω(n) parallel time to be transformed to
each other.

I Proposition 15. There are two shapes A and B with d(A,B) = 2, such that A and B
require Ω(n) parallel time to be transformed to each other.

Proof. The two shapes, a black and a red one, are depicted in Figure 31. Both shapes form
a square which is empty inside and also open close to the middle of its bottom side. The
difference between the two shapes is the positioning of the bottom “door” of length 2. The
red shape has it exactly in the middle of the side, while the black shape has it shifted one
position to the left. Equivalently, the bottom side of the red shape is “balanced”, meaning
that it has an equal number of nodes in each side of the vertical dashed axis that passes
through the middle of the bottom, while the black shape is “unbalanced” having one more
node to the right of the vertical axis than to its left.

To transform the black shape into the red one, a node must necessary cross either the
vertical or the horizontal axis. Because, if nothing of the two happens, then, no matter the
transformation, we won’t be able to place the axes so that the running shape has two pairs
of balanced quadrants, while, on the other hand, the red shape satisfies this, by pairing
together the two bottom quadrants and the two upper quadrants. Clearly, no move can be
performed in the upper quadrants initially, as this would break the shape’s connectivity. The
only nodes that can move initially are u and w and no other node can ever move unless first
approached by some other node that could already move. Observe also that u and w cannot
cross the vertical boundary of their quadrants, unless with help of other nodes. But the only
way for a second node to move in any of these quadrants (without breaking connectivity) is
for either u or w to reach the corner of their quadrant which takes at least n/8− 2 steps and
then another n/8 steps for any (or both) of these nodes to reach the boundary, that is, at
least n/4− 2 steps, which already proves the required Ω(n) parallel-time lower bound (even
a parallel algorithm has to pay the initial sequential movement of either u or w). J

6 Distributed Transformations with Rotation and Sliding

LineTransformationProblem: Transform any connected shape into a shape where all
nodes are either in the x axis or the y axis.

I Definition 21. A node on a black cell of the grid is called a potential hole node if removing
him would create a non-compact shape.

I Definition 22. We define a local-info based movement (lib movement), a movement that a
leader decides to perform without consulting the whole network.

I Proposition 16. No algorithm based on lib movements can solve the line transformation
problem without breaking the connectivity.

O. Michail, G. Skretas, and P. G. Spirakis 35

v uw

Figure 31 Counterexample for distance

Proof. Observe the following shapes. See figure 32 If an algorithm performed a lib movement
at the first shape, the same algorithm would have to perform the same movement at the
second shape because it cannot distinguish the two shapes. That movement would break the
connectivity on the second shape therefore no algorithm based on lib movements could solve
the line formation problem on both shapes. J

Figure 32 Lib movement counterexample

I Definition 23. A shape is called compact when it has no holes.

I Lemma 24. If all nodes in a connected shape have two or more neighbours, then there it
at least one cycle present.

Proof. Assume a connected graph where every node has at least 2 neighbours and there
is no cycle present. Every node has 2 edges and we have n nodes. The sum of all edges is
2n/2 = n because we have double counted every edge. Now a connected graph without a
cycle is called a tree and a tree has n − 1 edges. If and edge is added (n edges) the tree
creates a cycle. J

I Lemma 25. In compact shapes, there is always a lib movement that does not break the
connectivity.

Proof. Observe that there is no shape where all nodes have 3 or 4 neighbours and when
a node has only one neighbour it can always perform a lib movement. Suppose that a
shape exists where no lib movements are available. Each node in this shape has at least 2
neighbours so there is at least one cycle. If this cycle is compact, then a node can consult
his neighbours to see if it is a bridge in order to move. (HeIt can do this by asking whether
the two neighbours it has, have a different node as a common neighbor). This is a lib
movement because the information required is local based. Therefore a lib movement is
always available. J

36 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1: procedure Compact-Line(Leader) . The difference between a
move and a travel action is, that the leader moving means that it swaps his settings to a
neighbouring node, while a leader traveling means that it moves his current node.

2: label← 0, phase← 0, check ← 0, state← 0, buck ← 0, num← 0, line← 0
3: while r = 1 do
4: p0 ← north, p1 ← east, p2 ← south, p3 ← west, orien(node) = 1;
5: Send north, east, south, west to p0, p1, p2, p3 respectively;
6: end while
7: while r = 2, 3 AND buck = 0 do
8: Send tick = up, right, down, left; Send num = 0, 1, 0,−1 to p0, p1, p2, p3

respectively;
9: Receive (tick′, num′, ack′);

10: Do for every tick′, num′ received;
11: if num′ > num then
12: line = tick′; num = num′;
13: end if
14: if ack′ = null then
15: state+ +;
16: else
17: state−−;
18: end if
19: if state ≥ 2 then
20: follow the path described on the line;
21: end if
22: if line has been reached then
23: buck = 1;
24: end if
25: end while
26: while r = 2, 3, .. AND buck = 1 do
27: Receive(flag′, qu′);
28: if label = 0 then
29: move west; flag(node) = 1;
30: if no node available west then
31: label + +;
32: end if
33: end if
34: if label = 1 then
35: move east; flag(node) = 1;
36: if no node available east then
37: label + +;
38: end if
39: end if
40: if flag′ = 0 AND flag = 0 then
41: if label = 2 then
42: if neighbours = 1 then
43: label + +;
44: else if neighbours = 2 AND neighbours not opposite then
45: if neighbours are p0, p1 then
46: send qu = 1 to p0; label + +;
47: end if
48: if neighbours are p1, p2 then
49: send qu = 1 to p1; label + +;
50: end if

O. Michail, G. Skretas, and P. G. Spirakis 37

51: if neighbours are p2, p3 then
52: send qu = 1 to p2; label + +;
53: end if
54: if neighbours are p3, p0 then
55: send qu = 1 to p3; label + +;
56: end if
57: else
58: move;
59: end if
60: end if
61: if label = 3 AND phase = 0 then
62: if qu′ = 1 then
63: phase = 1;
64: else
65: label −−; move;
66: end if
67: end if
68: if label = 3 AND phase = 1 then
69: travel;
70: end if
71: end if
72: if flag′ = 1 OR flag = 1 then
73: flag = 1; phase = 0; label = 2; move;
74: end if
75: end while
76: end procedure

38 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1: procedure Compact-Line(Non-Leader)
2: flag ← 0, orien← 0, mark ← 0
3: while orien = 0 do
4: Receive(north′, south′, east′, west′, tick′, num′, qu′)
5: if p0 receives south OR p1 receives west OR p2 receives north OR p3 receives
east then

6: orien = 1;
7: end if
8: if p0 receives east OR p1 receives south OR p2 receives west OR p3 receives north

then
9: pn = p(n−1)mod3; orien = 1;
10: end if
11: if p0 receives north OR p1 receives east OR p2 receives south OR p3 receives

swest then
12: pn = p(n−2)mod3; orien = 1;
13: end if
14: if p0 receives west OR p1 receives north OR p2 receives east OR p3 receives south

then
15: pn = p(n−3)mod3; orien = 1;
16: end if
17: Sendnorth, east, south,west to p0, p1, p2, p3 respectively;
18: end while
19: while orien = 1 do
20: if mark = 0 then
21: Receive(tick′, num′);
22: Send tick =conc(tick′, up), tick =conc(tick′, right), tick =conc(tick′, down),

tick =conc(tick′, left) to p0, p1, p2p3 respectively;
23: Send num = num′ + 0, num = num′ + 1, num = num′ + 0, num = num′ − 1

to p0, p1, p2, p3 respectively;
24: Send ack = 1 to the node who sent you tick;
25: mark = 1; path = m where m is the number of the port that received the

tick′ − num′; message;
26: end if

O. Michail, G. Skretas, and P. G. Spirakis 39

27: if mark=1 then
28: Receive(ack′, tick′, qu′);
29: if tick′ was not null then
30: Send(ack = 1) to ppath;
31: else if ack′ was not null then
32: Send(ack = 1) to ppath;
33: end if
34: if qu = 0 then
35: if p0 has neighbour then
36: Sendqu = approve;
37: else
38: Sendqu = reject;
39: end if
40: end if
41: if qu = 1 then
42: if p1 has neighbour then
43: Sendqu = approve;
44: else
45: Sendqu = reject;
46: end if
47: end if
48: if qu = 2 then
49: if p2 has neighbour then
50: Sendqu = approve;
51: else
52: Sendqu = reject;
53: end if
54: end if
55: if qu = 3 then
56: if p3 has neighbour then
57: Sendqu = approve;
58: else
59: Sendqu = reject;
60: end if
61: end if
62: Sendflag to p1;
63: end if
64: end while
65: end procedure

40 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

I Theorem 26. The Compact Line algorithm solves the Line Formation problem for any
compact starting shape without breaking the connectivity.

Algorithm Description: The operation of the algorithm is split into 3 stages. The
orientation stage(1), the line marking stage(2) and the movement stage(3). The first stage
consists of the leader starting from a random node. It sets the orientation for the current
node by marking ports 0,1,2,3 as “north”, “east”, “south”, “west” respectively. It then sends
the orientation to all neighbours. All nodes receiving the orientation change their ports to
coincide with the one the leader defined, and then propagate the message to their neighbours.
Once a node sets its orientation once, it ignores all messages that concern it.

In the second stage the leader searches for the rightmost node. It begins by broadcasting
two messages to all neighbours: tick and num. The tick message consists of the direction
the message was sent to. The num message is a number which starts as 0 and each time it
is propagated through nodes, we add the following number: 0 for north , +1 for east, 0 for
south and −1 for west. When a non leader node receives these messages, it propagates them
to its neighbours after appending up, right, down, left, for neighbours 0,1,2,3 respectively, to
the tick message and after adding the number to the num message following the method
mentioned above. The node also sends a message called ack to the node who sent the tick
and num. It then stores the node (path node) who sent the tick and marks himself. When
a marked node receives a tick-num message it sends them to the path node along with an
ack message. When the leader receives a num-tick message, it compares the num it received
with the num′ it has in store. If the one it received is bigger, it replaces the num′ with num
and keeps the tick′ message it received. Now, if the leader does not receive an ack for two
consecutive rounds it starts following the path it has stored in the variable named line. Once
it reaches the destination it marks the current node and starts moving west, marking all
nodes in its path. It then returns to the node it marked first. The leader has now marked a
designated line where it will move all other nodes to. This ends phase 2.

The third stage consists of a loop being performed until all nodes form a line. Loop
description: The leader moves randomly to nodes checking if they are on the correct line
(flag = 1). If it finds one and receives a message (flag′=1), the leader marks it. If it finds
one does not receive a message (flag=1), it checks two things. First it checks if the node
has only one neighbour. Secondly it checks if the node has two neighbours not opposite
to each other. If it does complete the second requirement, it sends a qu message to one of
them asking it if the 2 nodes who are neighbours to it (the leader), have another common
neighbour. The node then answers approve or reject. If any of those two checks are true
(one neighbour, approve) the leader moves in a random fashion. Once it receives a message
flag′=1, it marks the node. That finishes the loop description.

Proof. The goal is to show that any compact shape will always end up in a line. We need to
show that the connectivity will be preserved throughout the transformation and the shape
will not get stuck in a shape which is not a line.

The first two phases cannot break the connectivity because no movement takes place.
The leader is moving between nodes. The third phase consists of the loop. The loop has
three phases. The lib movement, the search for the line, and the placement on the line.
Observe that if a node performs a lib movement and iy does not break the connectivity, all
its subsequent moves will not break it as long as no other node has moved. This guarantees
that if the lib movement preserves the connectivity, the second and third phase will preserve
it as well. Now in both checks performed by the algorithm, it is ensured that the node has
no bridges so any movement it performs will not break the connectivity.

O. Michail, G. Skretas, and P. G. Spirakis 41

The first two phases will not turn the shape into an undesired one, because no movement
takes place. All we have to show is that the loop won’t do it as well. The first case is whether
a lib movement will always be available. Observe that there is no shape where all nodes have
3 or 4 neighbours. In this protocol we have a lib movement available when a node has only 1
neighbour or when a cluster of 4 nodes creates a square. Suppose that there is a shape that
has no lib movements available. Every node has at least 2 neighbours. Such a shape can only
be a cycle consisting of all nodes. This cycle is either a non compact shape or it consists of
only 4 nodes. But both of those circumstances are prohibited because we have established
that we are talking about compact shapes where there are no lib movements. Thus a lib
movement is always available.

The second case is whether the moving node will always find the right point of rightmost
node of the line. Since the moving node is moving in random it will not get stuck in a loop.
The rightmost node of the line is always accessible from any node on the shape.

The third problem is whether the move on the rightmost part of the line creates a non
compact shape. Since the line begins from the rightmost part of the shape, each time a node
moves east of it, it has only one neighbour which is the rest of the line. So it cannot create a
non-compact shape. J

I Theorem 27. The Line Transform algorithm solves the Line Formation problem for any
starting shape without breaking the connectivity.

7 Conclusions and Further Research

There are many open problems related to the findings of the present work. We here restricted
attention to the two extremes, in which the transformation either preserves connectivity or
is free to break it arbitrarily. A compromise could be to allow some restricted degree of
connectivity breaking, like necessarily restoring it in at most k ≥ 0 steps (a special case of
this had been already proposed as an open question in [15]). There are other meaningful
“good” properties that we would like to maintain throughout a transformation. An interesting
example, is the strength of the shape. One of the various plausible definitions is as the
minimum strength sub-shape of the shape (i.e., its weakest part; could possibly be captured
by some sort of minimum geometric cuts). Then, a strength-preserving transformation would
be one that reaches the target shape while trying to maximize this minimum.

In the transformations considered in this paper, there was no a priori constraint on the
maximum area that a transformation is allowed to cover or on the maximum dimensions that
its intermediate shapes are allowed to have. It seems in general harder to achieve a particular
transformation if any of these restrictions is imposed. For example, the generic transformation
of Theorem 6 requires some additional space below the shape and the transformations of
Theorems 14 and 19 convert any shape first to a spanning line, whose maximum dimension is
n, even though the original shape could have a maximum dimension as small as

√
n. Another

interesting fact about restricting the boundaries is that in this way we get models equivalent
to several interesting puzzles. For example, if the nodes are labeled, the initial shape is a
square with a single empty cell, and the boundaries are restricted to the dimensions of the
square, we get a generalization of the famous 15-puzzle (see, e.g., [9] for a very nice exposition
of this and many more puzzles and 2-player games). Techniques developed in the context of
puzzles could prove valuable for analyzing and characterizing discrete programmable matter
systems.

We intentionally restricted attention to very minimal actuation mechanisms, namely
rotation and sliding. More sophisticated mechanical operations would enable a larger set

42 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1: procedure Line-Transform(Leader)
2: label← 0, phase← 0, check ← 0, state← 0, buck ← 0, num← 0, line← 0
3: while r = 1 do
4: p0 ← north, p1 ← east, p2 ← south, p3 ← west, orien(node) = 1;
5: Send north, east, south, west to p0, p1, p2, p3 respectively;
6: end while
7: while r = 2, 3 AND buck = 0 do
8: Send tick = up, right, down, left and num = 0, 1, 0,−1 to p0, p1, p2, p3

respectively;
9: Receive (tick′, num′, ack′);

10: Do for every tick′, num′ received;
11: if num′ > num then
12: line = tick′; num = num′;
13: end if
14: if ack′ = null then
15: state+ +;
16: else
17: state−−;
18: end if
19: if state ≥ 2 then
20: follow the path described on the line;
21: end if
22: if line has been reached then
23: buck = 1;
24: end if
25: end while
26: while r = 2, 3, .. AND buck = 1 do
27: Receive(flag′, qu′);
28: if label = 0 then
29: move west; flag(node) = 1;
30: if no node available west then
31: label + +;
32: end if
33: end if
34: if label = 1 then
35: move east; flag(node) = 1
36: if no node available east then
37: label + +;
38: end if
39: end if
40: if (thenflag′ = 0 AND flag = 0)
41: if label = 2 then
42: if neighbours = 1 then
43: label + +;
44: else if neighbours = 2 AND neighbours not opposite then
45: if neighbours are p0, p1 then
46: send qu = 1 to p0; label + +;
47: end if

O. Michail, G. Skretas, and P. G. Spirakis 43

48: if neighbours are p1, p2 then
49: send qu = 1 to p1; label + +;
50: end if
51: if neighbours are p2, p3 then
52: send qu = 1 to p2; label + +;
53: end if
54: if neighbours are p3, p0 then
55: send qu = 1 to p3; label + +;
56: end if
57: else if neighbour = 2 AND neighboursopposite then
58: if neighbours are p0, p2 then
59: Sendqu = 2 to p0; label + +;
60: end if
61: if neighbours are p1, p3 then
62: Sendqu = 3 to p1; label + +;
63: end if
64: else
65: move;
66: end if
67: end if
68: if label = 3 AND phase = 0 then
69: if ack′ is null then
70: wait+ +;
71: end if
72: if ack′ is not null then
73: wait−−;
74: end if
75: if wait = 2 then
76: label −−; move;
77: end if
78: if qu′ = k where k is the number of the port from where the qu’ was
received then

79: phase = 1; Sendclear = 1 to all ports;
80: end if
81: end if
82: if label = 3 AND phase = 1 then
83: travel;
84: end if
85: end if
86: if flag′ = 1 OR flag = 1 then
87: flag = 1; phase = 0; label = 2; travel;
88: end if
89: end while
90: end procedure

44 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1: procedure Line-Transform(Non-Leader)
2: flag ← 0, orien← 0, mark ← 0
3: while orien = 0 do
4: Receive(north′, south′, east′, west′, tick′, num′, qu′)
5: if p0 receives south OR p1 receives west OR p2 receives north OR p3 receives
east then

6: orien = 1;
7: end if
8: if p0 receives east OR p1 receives south OR p2 receives west OR p3 receives north

then
9: pn = p(n−1)mod3; orien = 1;
10: end if
11: if p0 receives north OR p1 receives east OR p2 receives south OR p3 receives

swest then
12: pn = p(n−2)mod3; orien = 1;
13: end if
14: if p0 receives west OR p1 receives north OR p2 receives east OR p3 receives south

then
15: pn = p(n−3)mod3; orien = 1;
16: end if
17: Sendnorth, east, south,west to p0, p1, p2, p3 respectively;
18: end while
19: while orien = 1 do
20: if mark = 0 then
21: Receive(tick′, num′);Send tick =conc(tick′, up), tick =conc(tick′, right),

tick =conc(tick′, down), tick =conc(tick′, left) to p0, p1, p2p3 respectively;
22: Send num = num′ + 0, num = num′ + 1, num = num′ + 0, num = num′ − 1

to p0, p1, p2, p3 respectively;
23: Send ack = 1 to the node who sent you tick
24: mark = 1; path = m where m is the number of the port that received the

tick′ − num′; message;
25: end if
26: if mark=1 then
27: Receive(ack′, tick′, qu′);
28: if tick′ was not null then
29: Send(ack = 1) to ppath;
30: else if ack′ was not null then
31: Send(ack = 1) to ppath;
32: end if
33: if qu′ = 0, 1, 2, 3 then
34: path = m where m is the number of the port that received the qu′; message;
35: Sendqu = qu′ to all ports; Sendack = 1 to portpath; mark = 2;
36: end if
37: Send flag to p1;
38: end if

O. Michail, G. Skretas, and P. G. Spirakis 45

39: if mark = 2 then
40: Sendflageast;Receive(ack′, tick′, clear′);
41: if ack′ was not blank then
42: Send ack = 1 to ppath

43: end if
44: if clear′ = 1 from ppath then
45: Sendclear = 1 to all ports; path = null; mark = 1;
46: end if
47: end if
48: end while
49: end procedure

of transformations and possibly also reduce the time complexity. Such examples, could be
the ability of a node to become inserted between two neghboring nodes (while pushing them
towards opposite directions). This could enable parallel mergings of two lines of length n/2
into a line of length n in a single step (an, thus, for example, transforming a square to a line
in polylogarithmic time). Another, is the capability of rotating whole lines of nodes (like
rotating arms, see, e.g., [36]).

There are also some promising specific technical questions. We do not yet know what is
the complexity of RotC-Transformability. The fact that a 6-seed is capable of transfering
pairs of nodes to desired positions, suggests that shapes having such a seed in their exterior or
being capable of self-extracting such a seed, will possibly be able to transform to each other.
Even if this turns out to be true, it is totally unclear whether transformations involving at
least one of the rest of the shapes are feasible.

Moreover, we didn’t study the problem of computing or approximating the optimum
transformation. It seems that the problem is computationally hard. A possible approach
to prove NP-hardness would be by proving NP-hardness of Rectilinear Graphic TSP
(could be via a reduction from Rectilinear Steiner Tree or Rectilinear TSP, which
are both known to be NP-complete [20]) and then giving a reduction from that problem to
the problem of a 2-seed exploring a set of locations on the grid.

Finally, regarding the distributed transformations, there are various interesting variations
of the model considered here, that would make sense. One of them is to assume nodes that
are oblivious w.r.t. their orientation.

46 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

References

1 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D Demaine, Robin Flatland, John
Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots.
Computational geometry, 46(8):917–928, 2013.

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, March 2006.

3 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, November 2007.

4 Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized control
for lattice-based self-reconfigurable robots. The International Journal of Robotics Research,
23(9):919–937, 2004.

5 Xuli Chen, Li Li, Xuemei Sun, Yanping Liu, Bin Luo, Changchun Wang, Yuping Bao,
Hong Xu, and Huisheng Peng. Magnetochromatic polydiacetylene by incorporation of
fe3o4 nanoparticles. Angewandte Chemie International Edition, 50(24):5486–5489, 2011.

6 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving the
robots gathering problem. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1181–1196. Springer, 2003.

7 Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping mobile ro-
bot swarms connected. In Proceedings of the 23rd international conference on Distributed
computing, DISC’09, pages 496–511, Berlin, Heidelberg, 2009. Springer-Verlag.

8 Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming
sequences of geometric patterns with oblivious mobile robots. Distributed Computing,
28(2):131–145, April 2015.

9 Erik D Demaine. Playing games with algorithms: Algorithmic combinatorial game theory.
In International Symposium on Mathematical Foundations of Computer Science, pages 18–
33. Springer, 2001.

10 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot–a new model for programmable
matter. In Proceedings of the 26th ACM symposium on Parallelism in algorithms and
architectures (SPAA), pages 220–222, 2014.

11 Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W Richa, Christian
Scheideler, and Thim Strothmann. On the runtime of universal coating for programmable
matter. In International Conference on DNA-Based Computers, pages 148–164. Springer,
2016.

12 Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nano-
scale Computing and Communication, page 21. ACM, 2015.

13 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55:78–88,
2012.

14 David Doty. Timing in chemical reaction networks. In Proc. of the 25th Annual ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 772–784, 2014.

15 Adrian Dumitrescu and János Pach. Pushing squares around. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 116–123. ACM, 2004.

16 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for fast loco-
motion of metamorphic robotic systems. The International Journal of Robotics Research,
23(6):583–593, 2004.

O. Michail, G. Skretas, and P. G. Spirakis 47

17 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for meta-
morphic systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transac-
tions on Robotics and Automation, 20(3):409–418, 2004.

18 Yuval Emek and Jara Uitto. Dynamic networks of finite state machines. In Interna-
tional Colloquium on Structural Information and Communication Complexity, pages 19–34.
Springer, 2016.

19 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivi-
ous mobile robots. Synthesis lectures on distributed computing theory, 3(2):1–185, 2012.

20 Michael R Garey, Ronald L Graham, and David S Johnson. Some NP-complete geometric
problems. In Proceedings of the eighth annual ACM symposium on Theory of computing,
pages 10–22. ACM, 1976.

21 Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter modules for
programmable matter through self-disassembly. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 2485–2492. IEEE, 2010.

22 Robert A Hearn and Erik D Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science, 343(1-2):72–96, 2005.

23 Camille Jordan. Cours d’analyse de l’École polytechnique, volume 1. Gauthier-Villars et
fils, 1893.

24 Ara N Knaian, Kenneth C Cheung, Maxim B Lobovsky, Asa J Oines, Peter Schmidt-
Neilsen, and Neil A Gershenfeld. The milli-motein: A self-folding chain of programmable
matter with a one centimeter module pitch. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1447–1453. IEEE, 2012.

25 Evangelos Kranakis, Danny Krizanc, and Euripides Markou. The mobile agent rendezvous
problem in the ring. Synthesis Lectures on Distributed Computing Theory, 1(1):1–122, 2010.

26 Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

27 Yunfeng Lu, Yi Yang, Alan Sellinger, Mengcheng Lu, Jinman Huang, Hongyou Fan, Raid
Haddad, Gabriel Lopez, Alan R Burns, Darryl Y Sasaki, et al. Self-assembly of mesoscopic-
ally ordered chromatic polydiacetylene/silica nanocomposites. Nature, 410(6831):913–917,
2001.

28 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed stable
network construction. Distributed Computing, 29(3):207–237, 2016.

29 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the 32nd annual ACM symposium on Theory of computing
(STOC), pages 459–468, 2000.

30 Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

31 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly
in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

32 Walter J Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of computer and system sciences, 4(2):177–192, 1970.

33 Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Uniform deployment of mobile agents in asynchronous rings. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, pages 415–424. ACM,
2016.

34 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM J. Comput., 28(4):1347–1363, March 1999.

35 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, June 1998.

48 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

36 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages
353–354. ACM, 2013.

37 Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Brief announcement: pattern
formation problem for synchronous mobile robots in the three dimensional euclidean space.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
447–449. ACM, 2016.

38 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S Chirikjian. Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

	1 Introduction
	1.1 Our Approach
	1.2 Further Related Work

	2 Preliminaries
	2.1 Problem Definitions

	3 Rotation
	4 Rotation and Connectivity Preservation
	5 Rotation and Sliding
	5.1 Parallelizing the Transformations

	6 Distributed Transformations with Rotation and Sliding
	7 Conclusions and Further Research

