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Abstract

Propositional satisfiability (SAT) is one of the most fundamental problems in computer
science. Its worst-case hardness lies at the core of computational complexity theory, for
example in the form of NP-hardness and the (Strong) Exponential Time Hypothesis. In
practice however, SAT instances can often be solved efficiently. This contradicting behavior
has spawned interest in the average-case analysis of SAT and has triggered the development
of sophisticated rigorous and non-rigorous techniques for analyzing random structures.

Despite a long line of research and substantial progress, most theoretical work on random
SAT assumes a uniform distribution on the variables. In contrast, real-world instances often
exhibit large fluctuations in variable occurrence. This can be modeled by a non-uniform
distribution of the variables, which can result in distributions closer to industrial SAT
instances.

We study satisfiability thresholds of non-uniform random 2-SAT with n variables and
m clauses and with an arbitrary probability distribution (pi)i∈[n] with p1 > p2 > . . . > pn > 0
over the n variables. We show for p21 = Θ

(∑n
i=1 p

2
i

)
that the asymptotic satisfiability

threshold is at m = Θ
((

1 −
∑n

i=1 p
2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2))
and that it is coarse. For

p21 = o
(∑n

i=1 p
2
i

)
we show that there is a sharp satisfiability threshold at m =

(∑n
i=1 p

2
i

)−1
.

This result generalizes the seminal works by Chvatal and Reed [FOCS 1992] and by Go-
erdt [JCSS 1996].

∗This paper is partially funded by the project Skalenfreie Erfüllbarkeit (project no. 416061626) of the German
Research Foundation (DFG).



1 Introduction

Satisfiability of Propositional Formulas (SAT) is one of the most thoroughly researched topics
in theoretical computer science. It was one of the first problems shown to be NP-complete by
Cook [15] and, independently, by Levin [30]. Today SAT stands at the core of many techniques
in modern complexity theory, for example NP-completeness proofs [29] or running time lower
bounds assuming the (Strong) Exponential Time Hypothesis [10, 17, 26, 27].

In addition to its importance for theoretical research, Propositional Satisfiability is also
famously applied in practice. Despite the theoretical hardness of SAT, many problems arising in
practice can be transformed to SAT instances and then solved efficiently with state-of-the-art
solvers. Problems like hard- and software verification, automated planning, and circuit design
are often transformed into SAT instances. Such formulas arising from practical and industrial
problems are therefore referred to as industrial SAT instances. The efficiency of SAT solvers on
these instances suggests that they have a structure that makes them easier to solve than the
theoretical worst-case.

1.1 Uniform Random k-SAT and the satisfiability threshold conjec-
ture:

Random k-SAT is used to study the average-case complexity of Boolean Satisfiability. In the
model, a random formula Φ with n variables, m clauses, and k literals per clause is generated
in conjunctive normal form. Each of these formulas has the same uniform probability to be
generated. Therefore, we also refer to this model as uniform random k-SAT.

One of the most prominent questions related to studying uniform random k-SAT is trying to
prove the satisfiability threshold conjecture. The conjecture states that for a uniform random
k-SAT formula Φ with n variables and m clauses there is a real number rk such that

lim
n→∞

Pr (Φ is satisfiable) =

{
1 m/n < rk;

0 m/n > rk.

Chvatal and Reed [11] and, independently, Goerdt [24] proved the conjecture for k = 2 and
showed that r2 = 1. For larger values of k upper and lower bounds have been established, e. g.,
3.52 6 r3 6 4.4898 [18, 25, 28]. Methods from statistical mechanics [32] were used to derive a
numerical estimate of r3 ≈ 4.26. Coja-Oghlan and Panagiotou [12, 13] showed a bound (up to
lower order terms) for k > 3 with rk = 2k log 2− 1

2 (1 + log 2)± ok(1). Finally, Ding, Sly, and
Sun [19] proved the exact position of the threshold for sufficiently large values of k. Still, for k
between 3 and the values determined by Ding, Sly, and Sun the conjecture remains open.

The satisfiability threshold is also connected to the average hardness of solving instances. For
uniform random k-SAT for example, the on average hardest instances are concentrated around
the threshold [33].

1.2 Non-Uniform Random SAT

There is a large body of work which considers other random SAT models, e. g. regular random
k-SAT [7, 8, 14, 39], random geometric k-SAT [9] and 2 + p-SAT [1, 34–36]. However, most of
these are not motivated by modeling the properties of industrial instances. One such property is
community structure [4], i. e. some variables have a bias towards appearing together in clauses.
It is clear by definition that such a bias does not exist in uniform random k-SAT. Therefore,
Giráldez-Cru and Levy [23] proposed the Community Attachment Model, which creates random
formulas with clear community structure. However, the work of Mull et al. [38] shows that
instances generated by this model have exponentially long resolution proofs with high probability,
making them hard on average for solvers based on conflict-driven clause learning.

Another important property of industrial instances is their degree distribution. The degree
distribution of a formula Φ is a function f : N→ N, where f(x) denotes the fraction of different
Boolean variables that appear x times in Φ (negated or unnegated). Instances created with the
uniform random k-SAT model have a binomial distribution, while some families of industrial
instances appear to follow a power-law distribution [2], i. e. f(x) ∼ x−β , where β is a constant
intrinsic to the instance. Therefore, Ansótegui et al. [3] proposed a random k-SAT model with
a power-law degree distribution. Empirical studies by the same authors [2, 3, 5, 6] found that
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this distribution is beneficial for the runtime of SAT solvers specialized in industrial instances.
However, it looks like instances generated with their model can be solved faster than uniform
instances, but not as fast as industrial ones: median runtimes around the threshold still seem to
scale exponentially for several state-of-the-art solvers [22].

Therefore, we want to consider a generalization of the model by Ansótegui et al. [2]. Our model
allows instances with any given ensemble of variable distributions instead of only power laws: We
draw m clauses of length k at random. For each clause the k variables are drawn with a probability
proportional to the n-th distribution in the ensemble, then they are negated independently with a
probability of 1/2 each. This means, the probability ensemble is part of the model, but the number
of variables n determines which distribution from the ensemble we actually use. We call this model
non-uniform random k-SAT and denote it by D (n, k, (~px)x∈N,m). Although D (n, k, (~px)x∈N,m)
cannot capture all properties of industrial instances, e.g. community structure, it can help us to
investigate the influence of the degree distribution on the structure and on the computational
complexity of such instances in an average-case scenario.

As one of the steps in analyzing this connection, we would like to find out for which ensembles
of variable probability distributions an equivalent of the satisfiability threshold conjecture holds
in non-uniform random k-SAT. In previous works we already proved upper and lower bounds on
the threshold position [21] and showed sufficient conditions on sharpness [20]. In this work we
are interested in actually determining the satisfiability threshold for k = 2. It has to be noted
that Cooper et al. [16] and Levy [31] already studied thresholds in a similar random 2-SAT
model. The difference is that in their models the degrees are fixed and the random instances
determined in a configuration-model-like fashion, while in our model we only have a sequence of
expected degrees from which the actual degrees might deviate. Another difference is that we do
a complete analysis of the model we consider, while they have additional constraints on their
degree sequences. However, if we assume the expected degrees that our model implies to be the
actual degrees, the thresholds determined by Cooper et al. and by Levy coincide with the ones
we derive for our model.

1.3 Our Results

We investigate the position and behavior of the satisfiability threshold for non-uniform random
2-SAT. That is, we fix the number of variables n and the variable distribution ~pn from the
ensemble and vary the number of clauses m(n). To this end, we use the following definition and
say that a function m∗(n) is an asymptotic satisfiability threshold if

Pr
Φ∼D(n,k,(~px)x∈N,m)

(Φ satisfiable) =

{
1− o(1) if m(n) = o(m∗(n))

o(1) if m(n) = ω(m∗(n)).

We also say that an asymptotic satisfiability threshold m∗(n) is sharp if for all ε > 0

Pr
Φ∼D(n,k,(~px)x∈N,m)

(Φ satisfiable) =

{
1− o(1) if m(n) 6 (1− ε) ·m∗(n)

o(1) if m(n) > (1 + ε) ·m∗(n).

If an asymptotic threshold is not sharp, we call it coarse.
Let ~pn = (p1, p2, . . . , pn) be the variable probability distribution we use. W. l. o. g. we assume

p1 > p2 > . . . > pn. We are going to show that there are three cases depending on ~pn:

1. If p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = Θ
(∑n

i=2 p
2
i

)
, then we can show that the asymptotic

satisfiability threshold is at m = Θ
(
q−1
max

)
, where qmax = Θ

(
(p1 · p2) /

(
1−

∑n
i=1 p

2
i

))
is

the maximum clause probability. We can also show that this threshold is coarse. The
coarseness stems from the emergence of an unsatisfiable sub-formula of size 4, which
contains only the two most probable variables.

2. If p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
, then the asymptotic threshold is at

m = Θ
((

1−
∑n
i=1 p

2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2))
and it is again coarse. This time the coarse-

ness stems from the emergence of an unsatisfiable sub-formula with 3 variables and 4
clauses.

3. If p2
1 = o

(∑n
i=1 p

2
i

)
, then there is a sharp threshold at exactly m = 1/

(∑n
i=1 p

2
i

)
.
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Note that these three cases give us a complete dichotomy of coarseness and sharpness for the
satisfiability threshold of non-uniform random 2-SAT. This result generalizes the seminal works
by Chvatal and Reed [11] and by Goerdt [24] to arbitrary variable probability distributions and
includes their findings as a special case (c. f. Section 6). We summarize our findings in the
following theorem.

Theorem 1.1. Let D (n, 2, (~px)x∈N,m) be the non-uniform random 2-SAT model with n vari-
ables, m clauses, and an ensemble of probability distributions (~px)x∈N. Let ~pn = (p1, p2, . . . , pn)
be the n-th distribution from the ensemble. W. l. o. g. let p1 > p2 > . . . > pn. If
p2

1 = o
(∑n

i=1 p
2
i

)
, then D (n, 2, (~px)x∈N,m) has a sharp satisfiability threshold at m =(∑n

i=1 p
2
i

)−1
. Otherwise, D (n, 2, (~px)x∈N,m) has a coarse satisfiability threshold at

m = Θ
((

1−
∑n
i=1 p

2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2))
.

1.4 Techniques

For the sharp threshold result, we only show the conditions on sharpness. These also imply the
existence of an asymptotic threshold. For the coarse threshold results, however, we first have to
show the existence of an asymptotic threshold at some number of clauses m∗(n). Then, we have
to show that for some range of constants ε ∈ [ε1, ε2] the probability to generate a satisfiable
instance at ε ·m∗(n) is a constant bounded away from zero and one.

We extend and generalize the proof ideas of Chvatal and Reed [11]. In order to show a lower
bound on the threshold, we investigate the existence of bicycles. Bicycles were introduced by
Chvatal and Reed. They are sub-formulas which appear in every unsatisfiable formula. We can
show with a first moment argument, that these do not appear below a certain number of clauses,
thus making formulas satisfiable.

In order to show an upper bound on the threshold, we investigate the existence of snakes.
Snakes are unsatisfiable sub-formulas and have also been introduced by Chvatal and Reed. We
can show with a second-moment argument that snakes of certain sizes do appear above a certain
number of clauses, thus making formulas unsatisfiable. However, we need to be careful and
distinguish more possibilities of partially mapping snakes onto each other than in the uniform
case. Unfortunately, this method does not work if p2

1 = Θ
(∑n

i=1 p
2
i

)
and p2

2 = Θ
(∑n

i=2 p
2
i

)
. In

that case we lower-bound the probability that an unsatisfiable sub-formula containing only the
two most-probable variables exists. This can be done with a simple inclusion-exclusion argument
and the resulting lemma also work for k > 3.

2 Preliminaries

We analyze non-uniform random k-SAT on n variables and m clauses. We denote by X1, . . . , Xn

the Boolean variables. A clause is a disjunction of k literals `1 ∨ . . . ∨ `k, where each literal
assumes a (possibly negated) variable. For a literal `i let |`i| denote the variable of the literal. A
formula Φ in conjunctive normal form is a conjunction of clauses c1 ∧ . . . ∧ cm. We conveniently
interpret a clause c both as a Boolean formula and as a set of literals. We say that Φ is satisfiable
if there exists an assignment of variables X1, . . . , Xn such that the formula evaluates to 1. Now
let (~pn)n∈N be an ensemble of probability distributions, where ~pn = (pn,1, pn,2, . . . , pn,n) is a
probability distribution over n variables with Pr (X = Xi) = pn,i =: pn(Xi).

Definition 2.1 (Clause-Drawing Non-Uniform Random k-SAT). Let m,n, k be given, and
consider any ensemble of probability distributions (~pn)n∈N, where ~pn = (pn,1, pn,2, . . . , pn,n) is a
probability distribution over n variables with

∑n
i=1 pn,i = 1. The clause-drawing non-uniform

random k-SAT (non-uniform random k-SAT) model D (n, k, (~px)x∈N,m) constructs a random
SAT formula Φ by sampling m clauses independently at random. Each clause is sampled as
follows:

1. Select k variables independently at random from the distribution ~pn. Repeat until no
variables coincide.

2. Negate each of the k variables independently at random with probability 1/2.
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For the sake of simplicity and since we will always only consider one distribution from the
ensemble, we will omit the index n throughout the paper, e. g. the probability distribution ~pn
will be denoted as (p1, p2, . . . , pn). W. l. o. g. we will assume p1 > p2 > . . . pn.

The clause-drawing non-uniform random k-SAT model is equivalent to drawing each clause
independently at random from the set of all k-clauses which contain no variable more than once.
The probability to draw a clause c over n variables is then

qc :=

∏
`∈c p(|`|)

2k
∑
J∈Pk({1,2,...,n})

∏
j∈J pj

, (2.1)

where Pk(·) denotes the set of cardinality-k elements of the power set. The factor 2k

in the denominator comes from the different possibilities to negate variables. Note that
k!
∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j is the probability of choosing a k-clause that contains no vari-

able more than once. We can now write

qc = C
k!

2k

∏
X∈S

pn(X), (2.2)

where we define C := 1/
(
k! ·
∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j

)
. For k = 2 it holds that

C = 1/
(
1−

(∑n
i=1 p

2
i

))
. Hiding this factor in C makes clause probabilities easier to handle.

Throughout the paper we let qmax denote the maximum clause probability as defined in Equa-
tion (2.2). In Section 3 and Section 4 we will assume qmax = o(1). The case qmax = Θ(1)
will be handled in Section 5. Note that this case can only happen for p2

1 = Θ
(∑n

i=1 p
2
i

)
and

p2
2 = Θ

(∑n
i=2 p

2
i

)
.

3 Bi-Cycles and a Lower Bound on the Satisfiability
Threshold

Chvatal and Reed [11] define the following sub-structure of 2-SAT formulas and show that every
unsatisfiable 2-CNF contains this substructure.

Definition 3.1 (bi-cycle). We define a bicycle of length t to be a sequence of t+ 1 clauses of
the form

(u,w1) , (w̄1, w2) , . . . , (w̄t−1, wt) , (w̄t, v),

where w1, . . . , wt are literals of distinct variables and u, v ∈ {w1, . . . , wt, w̄1, . . . , w̄t}.

To lower-bound the probability for a random 2-CNF to be satisfiable it is therefore sufficient
to upper-bound the probability that such a formula contains a bicycle. This is done in the
following two lemmas. Their proofs are oriented along the lines of the proof of Theorem 3 from
[11].

Lemma 3.1. Consider a non-uniform random 2-SAT formula Φ with p2
1 = o

(∑n
i=1 p

2
i

)
. Then,

Φ is satisfiable with probability at least 1− o(1) for a number of clauses m < (1− ε)
(∑n

i=1 p
2
i

)−1
,

where ε > 0 is a constant.

Proof. To show this result, we show that the expected number of bicycles is o(1) for the setting
we consider. The result then follows by Markov’s inequality.

First, we fix a set S ⊆ [n] of variables to appear in a bicycle with |S| = t > 2 . The probability
that a specific bicycle B with these variables appears in Φ is

Pr (B in Φ) =

(
m

t+ 1

)
(t+ 1)!︸ ︷︷ ︸

positions of B in Φ

·Pr (u ∨ w1) · Pr (w̄t ∨ v)

t−1∏
h=1

Pr (w̄h ∨ wh+1).

For literals wi over variables xi it holds that

Pr (wj ∨ wi) =
C

2
pi · pj ,
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where 1 6 C =
(
1−

∑n
i=1 p

2
i

)−1
= 1 + o(1), since

∑n
i=1 p

2
i = o(1) due to the requirement

p2
1 = o

(∑n
i=1 p

2
i

)
. There are at most t! possibilities to arrange the t variables in a bicycle and 2t

possibilities to choose literals from the t variables. For the probability that any bicycle with the
variables from S appears in Φ it now holds that

Pr (S-bicycle in Φ) 6 mt+1 · t! · 2t ·
(
C

2

)t+1

·
∏
i∈S

p2
i

(
2 ·
∑
i∈S

pi

)2

where the last factor accounts for the possibilities to choose u and v. It now holds that

Pr (Φ contains a bicycle) 6
n∑
t=2

∑
S⊆Pt(V )

mt+1 · t! · 2t ·
(
C

2

)t+1

22 ·
∏
i∈S

p2
i

(∑
i∈S

pi

)2

6 2 ·
n∑
t=2

(C ·m)
t+1 · t! · t2 · p2

1 ·
∑

S⊆Pt(V )

∏
i∈S

p2
i

6 2 ·
n∑
t=2

(C ·m)
t+1 · t2 · p2

1 ·

(∑
i∈S

p2
i

)t

= o

2 ·
n∑
t=2

(
C ·m

(∑
i∈S

p2
i

))t+1

· t2
 ,

where we used
∑
i∈S pi 6 t · p1 in the second,

∑
S⊆Pt(V )

∏
i∈S p

2
i 6 1

t! ·
(∑

i∈S p
2
i

)t
in

the third line, and the requirement p2
1 = o

(∑n
i=1 p

2
i

)
in the fourth line. It is obvious

that this probability is o(1) as soon as the sum becomes a constant. This holds for

m < (1− ε)
(∑n

i=1 p
2
i

)−1
<
(
C ·
∑n
i=1 p

2
i

)−1
, where ε > 0 is a constant.

It has to be noted that in the former lemma we ignored the factor C in our bound. We can do
this, since for p2

1 = o
(∑n

i=1 p
2
i

)
it always is 1 + o(1) and does not make a difference for sharpness

due to our definition. In the case of p2
1 = Θ

(∑n
i=1 p

2
i

)
, we can show the following result with a

similar proof, but now we have to take C into account, since it might become super-constant.

Lemma 3.2. Consider a non-uniform random 2-SAT formula Φ with p2
1 = Θ

(∑n
i=1 p

2
i

)
and

qmax = o(1). Then, Φ is satisfiable with probability at least 1 − o(1) for a number of clauses

m = o

((
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1
)

. Also, there is a constant ε ∈ (0, 1) such that Φ is satisfiable

with a positive constant probability for a number of clauses m 6 (1− ε)
(
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1

.

Proof. As in the proof of Lemma 3.1 it holds that

Pr (Φ unsat) 6 Pr (Φ contains a bicycle)

6
n∑
t=2

∑
S⊆Pt(V )

mt+1 · t! · 2t ·
(
C

2

)t+1

22 ·
∏
i∈S

p2
i

(∑
i∈S

pi

)2

6 2 ·
n∑
t=2

(C ·m)
t+1 · t! ·

∑
S⊆Pt(V )

(∏
i∈S

p2
i

)
·

(∑
i∈S

pi

)2

. (3.1)

We can now do a more detailed analysis of the term
∑
S⊆Pt(V )

(∏
i∈S p

2
i

)
·
(∑

i∈S pi
)2

as follows

∑
S⊆Pt(V )

(∏
i∈S

p2
i

)
·

(∑
i∈S

pi

)2

6 p2
1 · t2 · p2

1 ·
1

(t− 1)!
·

(
n∑
i=2

p2
i

)t−1

+ t2 · p2
2 ·

1

t!
·

(
n∑
i=2

p2
i

)t

= O

t3 · p4
1 ·

1

t!
·

(
n∑
i=2

p2
i

)t−1
 (3.2)
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where the second line is just a case distinction between the terms with p1 ∈ S and p1 /∈ S and
the last line follows due to p2 6 p1 and the requirement

∑n
i=2 p

2
i 6

∑n
i=1 p

2
i = O

(
p2

1

)
. It holds

that p4
1 ·
(∑n

i=2 p
2
i

)t−1
= O

((
p1 ·

(∑n
i=2 p

2
i

)1/2)t+1
)

for t > 3. For t = 2 we can actually show

that ∑
S⊆Px(V )

Pr (S-bicycle in F )

6 (C ·m)3 ·∑i,j∈V p
3
i · p3

j

6 (C ·m)3 · p3
1 ·

(
n∑
i=2

p3
i

)
+ (C ·m)3

(
n∑
i=2

p3
i

)2

6 (C ·m)3 · p3
1 ·

(
n∑
i=2

p2
i

)3/2

+ (C ·m)3 ·

(
n∑
i=2

p2
i

)3

= O

(C ·m)3 ·

p1 ·

(
n∑
i=2

p2
i

)1/2
t+1

 (3.3)

where the first line holds since each of the three 2-clauses in the bicycle must contain both
variables, the second line is again a case distinction, the third line follows due to the monotonicity
of vector norms, and the fourth line follows due to p2 6 p1 and

∑n
i=2 p

2
i 6

∑n
i=1 p

2
i = O(p2

1).
We can now plug Equation (3.2) and Equation (3.3) into Equation (3.1) to get

Pr (Φ unsat) 6 2 ·K ·
n∑
t=2

C ·m ·
p1 ·

(
n∑
i=2

p2
i

)1/2
t+1

t3.

for some constant K that is only determined by the probability vector.

That means, for m = o
(
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1

the expression is o(1) and for

m 6 (1− ε) ·
(
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1

for some sufficiently large constant ε ∈ (0, 1),

the expression is a constant smaller than 1 as desired.

Note that this lemma captures both cases for p2
1 = Θ

(∑n
i=1 p

2
i

)
. If also p2

2 = Θ
(∑n

i=2 p
2
i

)
,

then
(
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1

= Θ
(
q−1
max

)
is the asymptotic threshold as we stated in the

introduction. The case qmax = Θ(1) has to be excluded, since for that case the asymptotic
threshold is a constant. The above lemma might then give us a value so small that the ranges
where we can lower- and upper-bound satisfiability to constants away from zero resp. one do not
overlap. Thus, this case is handled separately in Section 5.

4 Snakes and an Upper Bound on the Satisfiability Thresh-
old

The two lemmas from the previous section provided a lower bound on the satisfiability threshold
for non-uniform random 2-SAT. By using the second moment method, we can also derive an
upper bound on the threshold. Again, this proof is inspired by Chvatal and Reed [11, Theorem 4],
who provide us with the following definition.

Definition 4.1 (snake). A snake of size t is a sequence of literals w1, w2, . . . , w2t−1 over distinct
variables. Each snake A is associated with a set FA of 2t clauses (w̄i, wi+1), 0 6 i 6 2t− 1, such
that w0 = w2t = w̄t.

We will also call the variable |wt| of a snake its central variable. Note that the set of clauses
FA defined by a snake A is unsatisfiable. Also, the snakes (w1, . . . , wt−1, wt, wt+1, . . . , ws),
( ¯wt−1, ¯wt−2 . . . , w̄1, wt, wt+1, . . . , ws), (w1, . . . , wt−1, wt, w̄s, ¯ws−1 . . . , ¯wt+1) and
( ¯wt−1, ¯wt−2 . . . , w̄1, wtw̄s, ¯ws−1 . . . , ¯wt+1) create the same set of formulas.
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x1 x2 xt−1 xt xt+1 xs−1 xs

Figure 1: Variable-variable-incidence graph of a snake w1, w2, . . . , ws where |wi| = xi (the
variable of the literal wi) for 1 6 i 6 s = 2t− 1.

The variable-variable incidence graph (VIG) for a formula Φ is a simple graph GΦ = (VΦ, EΦ)
with VΦ consisting of all variables appearing in Φ and two variables being connected by an edge
if they appear together in at least one clause of Φ. An example for a snake’s VIG can be seen in
Figure 1. This representation will come in handy later in the proof of Lemma 4.6.

In order to show our upper bounds, we will prove that snakes of a certain length t appear
with sufficiently high probability in a random formula Φ ∼ D (n, k, (~px)x∈N,m) To this end we
utilize the second moment method: If X > 0 is a random variable with finite variance, then

Pr (X > 0) > E[X ]2

E[X2 ] .

We define the following indicator variables for each snake A of size t

XA =

{
1 if FA appears exactly once in Φ

0 otherwise

and their sum Xt =
∑
AXA. For carefully chosen t we will show E

[
X2
t

]
= O(E [Xt ]

2
) to show

a coarse and E
[
X2
t

]
= (1 + o(1)) · (E [Xt ]

2
) to show a sharp threshold. This implies a constant

resp. 1 − o(1) probability to be unsatisfiable due to the second moment method. In the case
of p2

1 = o(
∑n
i=1 p

2
i ), we will chose t = Θ

(
log2 f(n)

)
, where we define f(n) =

(∑n
i=1 p

2
i

)
/p2

1. For
p2

1 = Θ(
∑n
i=1 p

2
i ) and p2

2 = o(
∑n
i=2 p

2
i ) we choose t = 2. We only want to use the method for

these two cases. The third case with p1 = Θ
(∑n

i=1 p
2
i

)
and p2 = Θ

(∑n
i=2 p

2
i

)
will be handled

with the more general Lemma 4.7.
Now, if we want to use the second moment method, we first have to ensure that the expected

number of snakes of a certain size is large enough. The following lemma provides a lower bound
on this expected number.

Lemma 4.1. Let Xt be the number of snakes of size s+ 1 = 2t whose associated formulas appear
exactly once in a non-uniform random 2-SAT formula. Then it holds that

E [Xt ] >
1

2
(m− 2t)2t · C2t · e−(m−2t) 2t·qmax

1−2t·qmax ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=2

p2
i − (2t− 2) · p2

2

)2t−2

.

Proof. It holds that

E [Xt ] (4.1)

=
∑

snake
A=(w1,...,w2t−1)

(
m

2t

)
· (2t)! ·

2t−1∏
i=0

Pr((w̄i, wi+1)) ·

(
1−

∑
c∈FA

P (c)

)m−2t

> (m− 2t)2t

(
1−

∑
c∈FA

P (c)

)m−2t(
C

2

)2t ∑
snake

A=(w1,...,ws)

p(|wt|)4 ·
2t−1∏
i=1
i 6=t

p(|wi|)2

> (m− 2t)2t

(
1−

∑
c∈FA

P (c)

)m−2t(
C

2

)2t

22t−1
n∑
j=1

p4
j · (2t− 2)! ·

∑
S⊆[n]\{j}

∏
s∈S

p2
s

 . (4.2)

First, notice that

∑
S⊆[n]\{j}

∏
s∈S

p2
s >

1

(2t− 2)!

(
n∑
i=2

p2
i − (2t− 2) · p2

2

)2t−2

. (4.3)
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It now holds that(
1−

∑
c∈FA

P (c)

)m−2t

> (1− 2t · qmax)
m−2t

> exp

(
−(m− 2t)

2t · qmax

1− 2t · qmax

)
, (4.4)

where we used (1− x) > e−
x

1−x for x ∈ [0, 1). Plugging Equation (4.3) and Equation (4.4) into
Equation (4.2) we get the result as desired.

In order to use the second moment method we have to show that this expected value is at
least a constant if we want to show a coarse threshold and asymptotically bigger than a constant
if we want to show a sharp threshold. Hence, the following lemmas give lower bounds on E [Xt ]
for the first two cases and the respective ranges of t we consider.

Lemma 4.2. Let Xt be the number of snakes of size t that appear exactly once in a non-uniform

random 2-SAT formula with p2
1 = o(

∑n
i=1 p

2
i ) and m = (1 + ε)

(∑n
i=1 p

2
i

)−1
for some ε > 0.

Then it holds that

E [Xt ] > (1− o(1)) ·m2t

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)2t−2

= ω(1)

if t = o
(√

f(n)
)
∩ ω (log f(n)), where f(n) =

(∑n
i=1 p

2
i

)
/p2

1.

Proof. It holds that

E [Xt ] >
1

2
(m− 2t)2t · C2t · e−(m−2t) 2t·qmax

1−2t·qmax ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=2

p2
i − (2t− 2) · p2

2

)2t−2

.

Furthermore,(
n∑
i=2

p2
i − (2t− 2)p2

2

)2t−2

>

(
n∑
i=1

p2
i − (2t− 3) · p2

1

)2t−2

=

(
n∑
i=1

p2
i

)2t−2

·
(

1− (2t− 3) · p2
1∑n

i=1 p
2
i

)2t−2

>

(
n∑
i=1

p2
i

)2t−2

· exp

(
− (2t− 2) · (2t− 3)/f(n)

1− (2t− 3)/f(n)

)

=

(
n∑
i=1

p2
i

)2t−2

· (1− o(1)),

where we used t = o(
√
f(n)) in the last line. Equivalently,

(m− 2t)
2t > m2t · exp

(
− 4t2/m

1− 2t/m

)
= m2t · (1− o(1)),

which holds since t2 = o(f(n)) and f(n) · p2
1 =

∑n
i=1 p

2
i 6

∑n
i=1 p1 · pi = p1 implies f(n) 6 p−1

1

and thus m = 1/
(∑n

i=1 p
2
i

)
= 1/

(
f(n) · p2

1

)
> f(n). Since we know that C = 1

1−∑n
i=1 p

2
i
, this

also implies 1 6 C 6 1
1−1/f(n) = O(1). We also know that

exp

(
−(m− 2t)

2t · qmax

1− 2t · qmax

)
= 1− o(1),

as qmax = O(C · p2
1) implies m · t · qmax = O

(
t·p21∑n
i=1 p

2
i

)
= O

(
t

f(n)

)
= o(1). The expected value

now simplifies to

E [Xt ] = (1− o(1)) ·m2t

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)2t−2

.
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It holds that

m2 ·

(
n∑
i=1

p4
i

)
> m2 · p4

1 =
(1 + ε)2 · p4

1

(
∑n
i=1 p

2
i )

2 =
(1 + ε)2

f(n)2
,

where we used m = (1 + ε)
(∑n

i=1 p
2
i

)−1
. With the same fact it holds that(

m ·
n∑
i=1

p2
i

)2t−2

= (1 + ε)2t−2.

Since we know that t = ω(log f(n)), it holds that

E [Xt ] > (1− o(1)) · (1 + ε)2t

f(n)2
= ω(1)

as desired.

Lemma 4.3. Let Xt be the number of snakes of size t that appear exactly once in a non-
uniform random 2-SAT formula with p2

1 = Θ(
∑n
i=1 p

2
i ) and p2

2 = o(
∑n
i=2 p

2
i ). For t = 2 and

m = Ω

((
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1
)
∩ o
(
q−1
max

)
it holds that

E [X2 ] > (1− o(1)) ·m4 · C4 · p4
1 ·

(
n∑
i=1

p2
i

)2

.

Furthermore,

E [X2 ] =


Ω(1) ,m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

and

ω(1) ,m = ω

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)
∩ o
(

(qmax)
−1
)
.

Proof. First, note that the range of m in the second case is not empty, since

q−1
max = Ω

(
1

C · p1 · p2

)
= ω

(
1

C · p1 (
∑n
i=2 p

2
i )

1/2

)

due to p2
2 = o(

∑n
i=2 p

2
i ). With t = 2 it holds that

E [X2 ] >
1

2
(m− 4)4 · C4 · e−(m−4) 4·qmax

1−4·qmax ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=2

p2
i − 2 · p2

2

)2

due to Lemma 4.1 We now get(
n∑
i=2

p2
i − 2 · p2

2

)2

>

(
n∑
i=2

p2
i

)2

·
(

1− 2 · p2
2∑n

i=2 p
2
i

)2

=

(
n∑
i=2

p2
i

)2

· (1− o(1)),

where we used p2
2 = o

(∑n
i=2 p

2
i

)
. Equivalently,

(m− 4)
4 > m4 ·

(
1− 4

m

)4

= m4 · (1− o(1)),

which holds since m = Ω
(
C · p1

(∑n
i=2 p

2
i

)1/2)−1

= ω(1). First, we can see that

n∑
i=2

p2
i 6 p2 ·

n∑
i=2

pi = o

( n∑
i=2

p2
i

)1/2

·

(
n∑
i=2

pi

) = o

( n∑
i=2

pi

)2
 ,
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since p2
2 = o

(∑n
i=2 p

2
i

)
and since

∑n
i=2 p

2
i 6 (

∑n
i=2 pi)

2
. Now we distinguish two cases. Either

p1 = 1− ε for some constant ε > 0 or p1 = 1− 1/g(n) for some g(n) = ω(1). In the first case,
C = O(1). This implies

m−1 = O

C · p1

(
n∑
i=2

p2
i

)1/2
 = o

(
C ·

(
n∑
i=2

pi

))
= o(1),

since p1 6 1 and
∑n
i=2 pi = O(1). In the second case, C = O(g(n)), but also

∑n
i=2 pi 6 1/g(n).

Thus,

m−1 = O

C · p1

(
n∑
i=2

p2
i

)1/2
 = o

(
C ·

(
n∑
i=2

pi

))
= o(1).

This gives us m = ω(1) and it implies qmax = o(1). We know that

exp

(
−(m− 4)

4 · qmax

1− 4 · qmax

)
= 1− o(1),

as m = o
(
q−1
max

)
. The expected value now simplifies to

E [X2 ] = (1− o(1)) ·m4 · C4 ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)2

> (1− o(1)) ·m4 · C4 · p4
1 ·

(
n∑
i=1

p2
i

)2

,

since
(∑n

i=1 p
4
i

)
> p4

1. It holds that E [X2 ] = Ω(1) for m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

and

E [X2 ] = ω(1) for m = ω

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

as desired.

Now we are ready to prove an upper bound on the non-uniform random 2-SAT threshold.
To get to know the proof technique, we start with the much simpler case p2

1 = Θ
(∑n

i=1 p
2
i

)
and

p2
2 = o

(∑n
i=2 p

2
i

)
. The proof contains a small case distinction depending on how the shared

clauses of two snakes A and B influence Pr (XA ∧XB). The next lemma establishes that there
is a regime of m where random formulas are unsatisfiable with a positive constant probability.

Lemma 4.4. Consider a non-uniform random 2-SAT formula Φ with p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
. Then Φ is unsatisfiable with positive constant probability for

m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

.

Proof. First, we want to show that for m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

, FA for a snake A of

size |FA| = 4 appears in Φ with constant probability. Since Lemma 4.3 gives us a lower bound
on E [X2 ], we only need to consider E

[
X2

2

]
now. We use the same approach as Chvatal and

Reed [11] and split E
[
X2

2

]
into two parts as follows

E
[
X2

2

]
=
∑
A

∑
B

Pr (XA ∧XB) =
∑
A

 ∑
B : B 6∼A

Pr (XA ∧XB) +
∑

B : B∼A
Pr (XA ∧XB)

,
where B ∼ A denotes FA ∩ FB 6= ∅. We will show that the part for B � A is at most
(1 + o(1)) · E [X2 ]

2
and that the other part is O(E [X2 ]

2
).

First let us consider the part for B � A. It holds that

Pr (XA ∧XB) =

(
m

8

)
· 8! ·

( ∏
c∈FA

Pr (c)

)
·

( ∏
c∈FB

Pr (c)

)
·

(
1−

∑
c∈FA∪FB

Pr (c)

)m−8

,

while

Pr (XA) =

(
m

4

)
· 4! ·

( ∏
c∈FA

Pr (c)

)
·

(
1−

∑
c∈FA

Pr (c)

)m−4

. (4.5)
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This readily implies

Pr (XA ∧XB) 6 Pr (XA) · Pr (XB)

(
1−∑c∈FA∪FB

Pr(c)
)m−8(

1−∑c∈FA
Pr(c)

)m−4(
1−∑c∈FB

Pr(c)
)m−4

6 (1 + o(1)) · Pr (XA) · Pr (XB) ,

since
(
m
8

)
· 8! 6

((
m
4

)
· 4!
)2

and since(
1−

∑
c∈FA

Pr (c)

)m−4

> (1− 4 · qmax)
m−4

> exp

(
−4 · (m− 4) · qmax

1− 4 · qmax

)
= 1− o(1)

for any snake A with 4 clauses, since m · qmax = O
(

p1·p2
p1·(

∑n
i=2 p

2
i )

1/2

)
= o(1). This establishes

∑
A

∑
B : B�A

Pr (XA ∧XB) 6 (1 + o(1))
∑
A

∑
B : B�A

Pr (XA) Pr (XB) 6 (1 + o(1))E [X2 ]
2
. (4.6)

Now we turn to the case that B ∼ A. We want to show that this second sum is O
(
E [X2 ]

2
)

.

Let l = |FA ∩ FB |. The first and simplest case is FA = FB. This obviously happens if A = B,
but also for three other snakes. So it holds that∑

A

∑
B : |FA∩FB |=4

Pr (XA ∧XB) = 4 · E [X2 ] = O
(
E [X2 ]

2
)
, (4.7)

since Pr (XA ∧XB) = Pr (XA) and E [X2 ] = Ω(1).
It now holds that∑

A

∑
B : |FA∩FB |=l

Pr (XA ∧XB)

6

(
m

8− l

)
· (8− l)! ·

(
1−

∑
c∈FA∪FB

Pr (c)

)m−8+l

· 23 · 2!

(
C

2

)4

·

·

 n∑
i=1

p4
i ·

∑
S⊆[n]\{i}:
|S|=2

∏
s∈S

p2
s

 · ∑
B : |FA∩FB |=l

∏
c∈FB\FA

Pr(c) (4.8)

where we accounted for the l possible positions of clauses from FA ∪ FB in Φ, for the 23 · 2!
possibilities to create a snake A from chosen variables if the central variable is determined already,
and for the ways to choose those variables. Now we want to bound

∑n
i=1 p

4
i ·
∑
S⊆[n]\{i}:
|S|=2

∏
s∈S p

2
s.

In order to do so we distinguish between the cases that p1 appears in the snake as the central
variable, a non-central variable or not at all to show the following

n∑
i=1

p4
i ·

∑
S⊆[n]\{i}:
|S|=2

∏
s∈S

p2
s


6 p4

1 ·

(
n∑
i=2

p2
i

)2

+

(
n∑
i=2

p4
i

)
· p2

1 ·

(
n∑
i=2

p2
i

)
+

(
n∑
i=2

p4
i

)
·

(
n∑
i=2

p2
i

)2

6 p4
1 ·

(
n∑
i=2

p2
i

)2

+ p2
1 ·

(
n∑
i=2

p2
i

)3

+

(
n∑
i=2

p2
i

)4

= O

p4
1 ·

(
n∑
i=2

p2
i

)2
 ,
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where we used the facts that
∑n
i=1 p

4
i 6

(∑n
i=1 p

2
i

)2
and the prerequisite

∑n
i=1 p

2
i = O(p2

1). If
we plug this into Equation (4.8), we get

∑
A

∑
B : |FA∩FB |=l

Pr (XA ∧XB) = O

m8−l · C4 · p4
1 ·

(
n∑
i=2

p2
i

)2

·
∑
B :

|FA∩FB |=l

∏
c∈FB\FA

Pr(c)

 .

(4.9)
Now we consider the cases l ∈ {1, 2, 3}. For l = 1 we know one clause which contains the central
and one of the non-central variables. Thus, it holds that

∑
B : |FA∩FB |=1

∏
c∈FB\FA

Pr(c) 6

(
C

2

)3

·
∑

x∈(S∪{i})
p3
x ·

 ∑
y∈(S∪{i})\{x}

py ·

 ∑
z∈[n]\{x,y}

p2
z


= O

(
C3 · p3

1 · p2

(
n∑
i=2

p2
i

))
,

where the last line can be derived again by considering the possible cases for p1. Together with
Equation (4.9), it now holds that∑

A

∑
B : |FA∩FB |=1

Pr (XA ∧XB)

= O

m7 · C7 · p7
1 · p2 ·

(
n∑
i=2

p2
i

)3
 = o(1) = o

(
E [X2 ]

2
)
, (4.10)

due to the choice of m and the prerequisite p2
2 = o

(∑n
i=2 p

2
i

)
.

For l = 2 there can be two cases happening. Either all three variables appear in the two
clauses or only two do. In the first case, one variable from S ∪ {i} appears in B twice as the
center, while the other two appear only once. In the second case, one variable from S ∪ {i}
appears in B twice again as the center and one new variable appears twice.∑

B : |FA∩FB |=2

∏
c∈FB\FA

Pr(c) = O

(
C2 · p2

1 · p2
2 + C2 · p2

1 ·

(
n∑
i=2

p2
i

))
,

Again with Equation (4.9), it holds that∑
A

∑
B : |FA∩FB |=2

Pr (XA ∧XB)

6 O

m6 · C6 · p6
1 ·

(
n∑
i=2

p2
i

)3
 = O(1) = O

(
E [X2 ]

2
)
, (4.11)

where we used our choice of m again.
The last case is l = 3. This case can not happen, since the 3 clauses for B already fully

determine the last clause, which also has to align with one of A, i. e. we do not have any degree
of freedom to make FA 6= FB .

Putting equations (4.7), (4.10), and (4.11) together, establishes∑
A

∑
B : B∼A

Pr (XA ∧XB) = O
(
E [X2 ]

2
)
.

Together with Equation (4.6), this gives us

E
[
X2

2

]
=
∑
A

 ∑
B : B 6∼A

Pr (XA ∧XB) +
∑

B : B∼A
Pr (XA ∧XB)

 = O
(
E [X2 ]

2
)

and implies

Pr (X2 > 0) > E[X2 ]2

E[X2
2 ]

= Ω(1).

as desired.
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The following lemma complements the former one, showing that above that regime of m
random formulas are unsatisfiable with probability 1− o(1).

Lemma 4.5. Consider a non-uniform random 2-SAT formula Φ with p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
. Then Φ is unsatisfiable with probability 1 − o(1) for

m = ω

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

.

Proof. We will show the result for m = ω

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)
∩ o

(
q−1
max

)
. For any

m = Ω
(
q−1
max

)
it follows by the fact that the probability that Φ is unsatisfiable is non-decreasing

in m. However, the proof follows the same lines as the one for Lemma 4.4: We use the second
moment method, but this time we want to show E

[
X2

2

]
= (1+o(1)) ·E [X2 ]

2
in order to achieve

Pr (X2 > 0) > E[X2 ]2

E[X2
2 ]

= 1− o(1).

Again, we look at the different parts of the following equation’s right-hand side

E
[
X2

2

]
=
∑
A

∑
B

Pr (XA ∧XB) =
∑
A

 ∑
B : B 6∼A

Pr (XA ∧XB) +
∑

B : B∼A
Pr (XA ∧XB)

.
Since our prerequisites ensure m · qmax = o(1),∑

A

∑
B : B�A

Pr (XA ∧XB) 6 (1 + o(1))E [X2 ]
2
. (4.12)

still holds.
Again, we turn to the case B ∼ A and let l = |FA ∩ FB |. Now we want to show that∑

A

∑
B : B∼A

Pr (XA ∧XB) =
∑
A

∑
B : |FA∩FB |=l

Pr (XA ∧XB) = o
(
E [X2 ]

2
)
.

For l = 4 it holds that∑
A

∑
B : |FA∩FB |=4

Pr (XA ∧XB) = 4 · E [X2 ] = o
(
E [X2 ]

2
)
, (4.13)

since now E [X2 ] = ω(1) due to Lemma 4.3. For l = 1 it still holds that

∑
A

∑
B : |FA∩FB |=1

Pr (XA ∧XB) = O

m7 · C7 · p7
1 · p2 ·

(
n∑
i=2

p2
i

)3

·

 .

From Lemma 4.3 we know that

E [X2 ] > (1− o(1)) ·m4 · C4 · p4
1 ·

(
n∑
i=1

p2
i

)2

= ω(1)

in our context. With p2
2 = o

(∑n
i=2 p

2
i

)
this implies

∑
A

∑
B : |FA∩FB |=1

Pr (XA ∧XB) = o

m7 · C7 · p7
1 ·

(
n∑
i=2

p2
i

)7/2

·

 = o
(
E [X2 ]

2
)

as desired. For l = 2 we still get

∑
A

∑
B : |FA∩FB |=2

Pr (XA ∧XB) = O

m6 · C6 · p6
1 ·

(
n∑
i=2

p2
i

)3

·

 = o
(
E [X ]

2
)
.

Since the case l = 3 cannot happen, this already establishes
∑
A

∑
B : |FA∩FB |=l Pr (XA ∧XB) =

o
(
E [X2 ]

2
)

as desired.
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The former two lemmas together with Lemma 3.2 establish that in the case
of p2

1 = Θ
(∑n

i=1 p
2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
the asymptotic threshold is at

m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

and that it is coarse.

We now turn to the case p2
1 = Θ

(∑n
i=1 p

2
i

)
. Again, we have to consider different possibilities

for the shared clauses of snakes A and B to influence Pr (XA ∧XB). In the proofs of the former
case this was rather easy, since we only considered the smallest possible snakes of size 3. Now
the distinction becomes a bit more difficult. We will distinguish several cases: If the number of
shared clauses is at least t− 1 then Pr (XA ∧XB) is by roughly a factor of (1 + ε)t smaller than

E [Xt ]
2
. If the shared clauses form at least two connected sub-formulas, then there are enough

variable appearances pre-defined for B to make Pr (XA ∧XB) sufficiently small. The last case
is that there is only one connected sub-formula, which is a lot smaller than t− 1. In that case
we have to carefully consider what happens to the central variable from B, since this variable
appears most times in B and the many appearances take degrees of freedom away from other
variables, therefore making Pr (XA ∧XB) small.

Lemma 4.6. Consider a non-uniform random 2-SAT formula Φ with p2
1 = o

(∑n
i=1 p

2
i

)
. Then Φ

is unsatisfiable with probability 1− o(1) for m > (1 + ε) ·
(∑n

i=1 p
2
i

)−1
, where ε > 0 is a constant.

Proof. Again, we utilize the second moment method. We want to show that FA for a snake A
of size t appears in Φ with probability 1− o(1), i. e. Φ is almost surely unsatisfiable. This will

hold for some t = o
(√

f(n)
)
∩ ω (log f(n)), where f(n) =

(∑n
i=1 p

2
i

)
/
(
p2

1

)
. Thus, we choose

t = Θ
(
log2 f(n)

)
. We will later see why we chose t this way. Again, we define XA as an indicator

variable for the event that the formula FA associated with snake A appears exactly once in Φ and

Xt =
∑

snake A of size t

XA.

As in the proof of Lemma 4.5 we want to show E
[
X2
t

]
6 (1 + o(1)) · E [Xt ]

2
, giving us the

desired result. We again split the expected value into two sums

E
[
X2
t

]
=
∑
A

∑
B

Pr (XA ∧XB) =
∑

B : B�A
Pr (XA ∧XB) +

∑
B : B∼A

Pr (XA ∧XB),

where B ∼ A denotes FA ∩ FB 6= ∅. We will now consider the parts over B � A and B ∼ A
separately, starting with B � A.

As in the proof of Lemma 4.5, we want to show that∑
A

∑
B : B�A

Pr (XA ∧XB) = (1 + o(1)) · E [Xt ]
2
. (4.14)

It holds that

Pr (XA ∧XB) =

(
m

4t

)
· (4t)! ·

( ∏
c∈FA

Pr (c)

)
·

( ∏
c∈FB

Pr (c)

)
·

(
1−

∑
c∈FA∪FB

Pr (c)

)m−4t

,

while

Pr (XA) =

(
m

2t

)
· (2t)! ·

( ∏
c∈FA

Pr (c)

)
·

(
1−

∑
c∈FA

Pr (c)

)m−2t

.

This already gives us

Pr (XA ∧XB) 6 Pr (XA) · Pr (XB)

(
1−∑c∈FA∪FB

Pr(c)
)m−4t(

1−∑c∈FA
Pr(c)

)m−2t(
1−∑c∈FB

Pr(c)
)m−2t ,
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since
(
m
4t

)
· (4t)! 6

((
m
2t

)
· (2t)!

)2
. W.l.o.g.

∑
c∈FB Pr (c) 6

∑
c∈FA Pr (c). Now it holds that(

1−
∑

c∈FA∪FB
Pr (c)

)m−4t (
1

1−∑c∈FA
Pr(c)

)m−2t (
1

1−∑c∈FB
Pr(c)

)m−2t

=
(

1−
∑
c∈FB

Pr(c)

1−∑c∈FA
Pr(c)

)m−4t (
1

1−∑c∈FA
Pr(c)

)2t (
1

1−∑c∈FB
Pr(c)

)m−2t

6 exp
(
−(m− 4t) ·

∑
c∈FB

Pr(c)

1−∑c∈FA
Pr(c) + 2t ·

∑
c∈FA

Pr(c)

1−∑c∈FA
Pr(c) + (m− 2t) ·

∑
c∈FB

Pr(c)

1−∑c∈FB
Pr(c)

)
6 exp

(
2t ·

∑
c∈FA

Pr(c)

1−∑c∈FA
Pr(c) + 2t ·

∑
c∈FB

Pr(c)

1−∑c∈FB
Pr(c)

)
6 exp

(
4t · 2t·qmax

1−2t·qmax

)
,

where the second-to-last line followed with
∑
c∈FA Pr (c) 6

∑
c∈FA Pr (c) and qmax is the max-

imum clause probability. This expression is 1 + o(1), since t2 · qmax = o
(
C · f(n) · p2

1

)
=

o
(∑n

i=1 p
2
i

)
= o(1). We now get

Pr (XA ∧XB) = (1 + o(1)) · Pr (XA) · Pr (XB)

for A � B and thus∑
A

∑
B : B�A

Pr (XA ∧XB) 6 (1 + o(1)) ·
∑
A

∑
B : B�A

Pr (XA) Pr (XB) 6 (1 + o(1)) · E [X2 ]
2
.

Second, we look at snakes B ∼ A. For those we want to show∑
B : B∼A

Pr (XA ∧XB) = o
(
E [Xt ]

2
)
. (4.15)

This now becomes a bit more complicated than in the case of t = 2, since we can not always
surely say how many variables are predefined by shared clauses in snake B. As before, we are
now classifying snakes B ∼ A according to the number l = |FA ∩ FB | of shared clauses, but
also according to the number j of nodes in the variable-variable incidence graph GFA∩FB . Note
that actually, the number of variables that FA and FB have in common (regardless of signs)
could be greater! In fact, they could share all their variables without having a single clause in
common. However, right now we are only interested in ways to incorporate clauses from FA as
common clauses into FB . To that end, we only need to consider the variables from these clauses
as shared variables. Suppose now that snake A is fixed. We now know that there are 2t− 1− j
free variables in B, i. e. variables which are not predetermined by shared clauses. Furthermore
we can give an upper bound on the number c of connected components of GFA∩FB . It is easy to
see that c 6 j − l for l < t (GFA∩FB is a forest), c 6 j − l + 1 for t 6 l < 2t (we could create a
cycle), and c = j − l + 2 for l = 2t (FA = FB). Fixing l and j it holds that∑

snakes A, B :
|E(GFA∩FB )|=l, |V (GFA∩FB )|=j

Pr (XA ∧XB)

6

(
m

4t− l

)
· (4t− l)! ·

(
C

2

)4t−l
· 22t−1 · (2t− 2)!

 ∑
SA⊆[n] :
|SA|=2t−2

∏
x∈SA

p(x)2 ·
∑
y∈[n]

p(y)4

 ·

· 4
((

2t+ 2

2(j − l) + 2

))2

· c! · 2c · 2t · (2t− 1− j)! · 22t−1−j ·

 ∑
SB⊆[n] :

|SB |=2t−1−j

∏
x∈SB

p(x)2

 ·

· p2(j−l+1)
1 ·

(
1−

∑
c∈Fa∪FB

P (c)

)m−(4t−l)

. (4.16)

Before we upper bound this expression even further, let us explain where it comes from. There are(
m

4t−l
)
· (4t− l)! positions for the 4t− l clauses of Fa∪FB in the m-clause formula Φ. There are at
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most 22t−2 · (2t− 2)! possibilities of forming different snakes (signs and positions) from the 2t− 2
variables excluding |wt| and two possible signs for |wt|. In snake A each variable appears exactly
twice, except for |wt|, which appears four times. Now we want to count the ways of mapping
GFA∩FB to GFA and GFB respectively. Following the argumentation from [11] we can see that
there are 2

(
2t+2

2j−2l+2

)
possible mappings for GFA and GFB respectively. These mappings fix the

shared clauses we choose from A as well as the positions where shared clauses can appear in B,
but not where exactly which clause will appear. We know that GFA∩FB contains c connected
components. If they are of same length, they can be interchanged in c! ways. Furthermore, each
component might be flipped, i. e. the sign of every literal in the component and their order in B
can be inverted. For components which are paths, this does not change the set of shared clauses
they originate from. Nevertheless, there is still the possibility of having one component which is
not a path. For this component there are at most 2t ways of mapping it onto its counterpart (if
it is a cycle) due to [11]. Now we know the shared clauses from FA and the exact position of
these clauses in FB as well as positions reserved for non-determined variables in snake B. The
remaining 2t− 1− j non-determined variables from B can be chosen arbitrarily. Also, there are
22t−1−j · (2t− 1− j)! possibilities for them to fill out the blanks of snake B. The remaining at
most 2(j − l+ 1) appearances of variables in FB are determined by the previous choices and give

an additional factor of at most p
2(j−l+1)
1 . Note that the case that one of our free variables in B

is a central variable is also captured by this upper bound, since
∑n
i=1 p

4
i 6 p2

1 ·
∑n
i=1 p

2
i . The

other m− (4t− l) clauses of F are supposed to be different from those in FA ∪ FB , so that both
FA and FB appear exactly once.

Now we want to simplify that expression a bit. It holds that
(
1−

∑
C∈Fa∪FB P (C)

)m−(4t−l)
6

1 and that

C4t−l 6

(
1 +

∑n
i=1 p

2
i

1−
∑n
i=1 p

2
i

)4t

6 exp

(
4t ·

∑n
i=1 p

2
i

1−
∑n
i=1 p

2
i

)
= 1 + o(1),

since t·
∑n
i=1 p

2
i = o(f(n)1/2 ·

∑n
i=1 p

2
i ) = o(f(n)3/2 ·p2

1) = o(f(n)−1/2) = o(1) due to p1 6 f(n)−1.
Again, ∑

S⊆[n] :
|S|=x

∏
s∈S

p(s)2 6
1

x!

(
n∑
i=1

p2
i

)x
.

This step also cancels out the factors (2t− 2)! and (2t− 1− j)!. Also, all factors of 2 that appear
cancel out with c 6 j − l + 2. We will also use the following estimation((

2t+ 2

2(j − l) + 2

))2

· c! 6 (2t+ 2)4(j−l+1)

(2(j − l + 1)!)2
· (j − l + 2)! 6 (2t+ 2)4(j−l+1).

Plugging everything back into Equation (4.16) we get∑
snakes A, B :

|E(GFA∩FB )|=l, |V (GFA∩FB )|=j

Pr (XA ∧XB)

6 4 · (1 + o(1)) ·m4t−l · (2t+ 2)5(j−l+1) ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)4t−j−3

· p2(j−l+1)
1 (4.17)

Remember that due to Lemma 4.2

E [Xt ]
2 > (1− o(1)) ·m4t

(
n∑
i=1

p4
i

)2

·

(
n∑
i=1

p2
i

)4t−4

.

We will distinguish three cases now, depending on the value of j − l. First j − l = 0, then
j − l > 2 and finally j − l = 1. For each of these cases we want to show

∑
snakes A, B :

|E(GFA∩FB )|=l, |V (GFA∩FB )|=j

Pr (XA ∧XB) = o

(
E [Xt ]

2

log4 f(n)

)
.
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Since 1 6 l 6 2t and 2 6 j 6 2t− 1, we will get an additional factor of 4t2 when summing over
all snakes A ∼ B. With our choice t = Θ

(
log2 f(n)

)
, this adds up to∑

B : B∼A
Pr (XA ∧XB) = o

(
E [Xt ]

2
)

as desired.
Now let us consider the first case, j = l. This can only happen if GFA∩FB contains a cycle,

i. e. l > t. It now holds that∑
snakes A, B :

|E(GFA∩FB )|=l, |V (GFA∩FB )|=l

Pr (XA ∧XB)

6 4 · (1 + o(1)) ·m4t−l · (2t+ 2)5 ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)4t−l−3

· p2
1

= O

t5(m · n∑
i=1

p2
i

)−l
·
p2

1 ·
∑n
i=1 p

2
i∑n

i=1 p
4
i

· E [Xt ]
2


= O

(
t5 (1 + ε)

−t · f(n) · E [Xt ]
2
)

= o

(
E [Xt ]

2

log4 f(n)

)
,

due to
∑n
i=1 p

4
i > p4

1 and due to our choice t = Θ(log2 f(n)).
The second case we consider is j − l > 2. It holds that∑

snakes A, B :
|E(GFA∩FB )|=l, |V (GFA∩FB )|>l+2

Pr (XA ∧XB)

6 4 · (1 + o(1)) ·m4t−l · (2t+ 2)5(j−l+1) ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)4t−j−3

· p2(j−l+1)
1

= O

t5(j−l+1) ·m−l
(

n∑
i=1

p2
i

)−j+1

·

(
n∑
i=1

p4
i

)−1

· p2(j−l+1)
1 · E [Xt ]

2


= O

t5(j−l+1)

(
m ·

n∑
i=1

p2
i

)−l
· p

2(j−l+1)
1

p4
1 (
∑n
i=1 p

2
i )
j−l−1

· E [Xt ]
2


= O

(
t5(j−l+1) · p

2(j−l−1)
1

(
∑n
i=1 p

2
i )
j−l−1

· E [Xt ]
2

)
= O

(
t5(j−l+1)f(n)−(j−l−1) · E [Xt ]

2
)

= O

(
t10 ·

(
t5

f(n)

)j−l−1

· E [Xt ]
2

)
= o

(
E [Xt ]

2

log4 f(n)

)
,

since j − l − 1 > 1 and t = Θ(log2 f(n)).
The last case we consider is j − l = 1. This happens if we either only have one connected

component in GFA∩FB that does not form a cycle or if GFA∩FB contains a cycle and one other
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connected component. In the latter case, we get∑
snakes A, B :

|E(GFA∩FB )|=l, |V (GFA∩FB )|=l+1
cycle in GFA∩FB

Pr (XA ∧XB)

6 4 · (1 + o(1)) ·m4t−l · (2t+ 2)10 ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)4t−l−4

· p4
1

= O

t10

(
m ·

n∑
i=1

p2
i

)−l
· p4

1∑n
i=1 p

4
i

· E [Xt ]
2


= O

(
t10 (1 + ε)

−t · E [Xt ]
2
)

= o

(
E [Xt ]

2

log4 f(n)

)
,

since a cycle can only exist for l > t and since we choose t = Θ(log2 f(n)).
If GFA∩FB that does not form a cycle, we have to look a bit more closely now, since we cannot

guarantee a large enough t to make the expression sufficiently small. Instead, we will consider
different cases for the central variable in B. First, we assume that the central variable is a free
variable. Then, we actually get

4 · (1 + o(1)) ·m4t−l · (2t+ 2)10 ·

(
n∑
i=1

p4
i

)2

·

(
n∑
i=1

p2
i

)4t−l−5

· p2
1

= O

t10

(
m ·

n∑
i=1

p2
i

)−l
· p2

1∑n
i=1 p

2
i

· E [Xt ]
2


= O

(
t10f(n)−1 · E [Xt ]

2
)

= o

(
E [Xt ]

2

log4 f(n)

)
,

since now we have a second variable that we can choose freely and which appears at least 4 times.
Now we assume that the central variable in B is not free. What could happen? It could

coincide with a non-central variable from A or with the central variable from A. Also, the central
variable could already appear once or twice in shared clauses in the first and one to four times in
the second case.

Let us start with the case that it coincides with a non-central variable in A. Then, one of the
variables that appears twice in A appears an additional (not in shared clauses) 2 or 3 times as
the central node in B, depending on the number of shared clauses it already appears in. So, in
total it either appears 4 times or 5 times, replacing one appearance of a variable that appears
twice in A and 2 resp. 3 appearances of unfree variables in B. Since

∑n
i=1 p

5
i 6 p1

∑n
i=1 p

4
i , the

former case gives us an upper bound. We get at most

4 · (1 + o(1)) ·m4t−l · (2t+ 2)10 ·

(
n∑
i=1

p4
i

)2

·

(
n∑
i=1

p2
i

)4t−l−5

· p2
1

= O

t10

(
m ·

n∑
i=1

p2
i

)−l
· p2

1∑n
i=1 p

2
i

· E [Xt ]
2


= O

(
t10f(n)−1 · E [Xt ]

2
)

= o

(
E [Xt ]

2

log4 f(n)

)
.

The other case is that it coincides with the central variable from A. Then, the variable
that appears 4 times in A might appear 0 to 3 additional times (not in shared clauses) in B,
depending on the number of shared clauses it already appears in. It cannot appear an additional
4 times, since the central variable of A must appear in a shared clause at least once for the
variable to not be free. However, this means that all our unfree variables actually belong to
distinct variables that appear twice in A and an additional time in B. If some of them belonged
to the same variable, this would again imply l > t− 1 and we could handle this case by having
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a large enough l. Let x ∈ {0, 1, 2, 3} be the number of times that the central variable from A
appears additionally in B. We now get

4 · (1 + o(1)) ·m4t−l · (2t+ 2)10 ·

(
n∑
i=1

p4+x
i

)
·

(
n∑
i=1

p2
i

)4t−l−4−(4−x)

·

(
n∑
i=1

p3
i

)4−x

= O

t10

(
m ·

n∑
i=1

p2
i

)−l
·
(∑n

i=1 p
4+x
i

)
·
(∑n

i=1 p
3
i

)4−x
(
∑n
i=1 p

4
i )

2
(
∑n
i=1 p

2
i )

4−x · E [Xt ]
2


= O

(
t10 ·

(∑n
i=1 p

4+x
i

)
·
(∑n

i=1 p
3
i

)4−x
(
∑n
i=1 p

4
i )

2
(
∑n
i=1 p

2
i )

4−x · E [Xt ]
2

)
.

It remains to show that

t10 ·
(∑n

i=1 p
4+x
i

)
·
(∑n

i=1 p
3
i

)4−x
(
∑n
i=1 p

4
i )

2
(
∑n
i=1 p

2
i )

4−x = o

(
1

log4 f(n)

)
.

In order to do so, consider p1, p2, . . . , pn. We now split the probabilities into those with
pi > p1/ logy f(n) and those with pi < p1/ logy f(n), where y ∈ N will be determined later. Now
let Nmax = {i ∈ [n] | pi > p1/ logy f(n)}. It holds that

Nmax ·
(

p1

logy f(n)

)2

+
∑

i∈[n] : pi<p1/ logy f(n)

p2
i 6

n∑
i=1

p2
i = f(n) · p2

1.

This implies Nmax = O
(
f(n) · log2y f(n)

)
. We now distinguish two cases:

Nmax > f(n)2/3 · log4y/3 f(n) and Nmax < f(n)2/3 · log4y/3 f(n).

Now assume the first case, Nmax > f(n)2/3 · log4y/3 f(n). It holds that

n∑
i=1

p4
i > f(n)2/3 · log4y/3(f(n)) ·

(
p1

logy f(n)

)4

=
f(n)2/3

log(8/3)y f(n)
· p4

1.

This implies

t10 ·
(∑n

i=1 p
4+x
i

)
·
(∑n

i=1 p
3
i

)4−x
(
∑n
i=1 p

4
i )

2
(
∑n
i=1 p

2
i )

4−x 6 t10 ·
f(n) · p4+x

1 ·
(
f(n) · p3

1

)4−x · log(16/3)y f(n)

f(n)4/3 · p8
1 · (f(n) · p2

1)
4−x

= t10 · f(n)−1/3 · log(16/3)y f(n) = o

(
1

log4 f(n)

)
as desired, since

∑n
i=1 p

x
i 6 px−2

1 ·
∑n
i=1 p

2
i = f(n) ·px1 for x ∈ N with x > 3 and t = Θ

(
log2 f(n)

)
.

Now assume Nmax < f(n)2/3 · log4y/3 f(n). It holds that

n∑
i=1

p3
i < f(n)2/3 · log4y/3(f(n)) · p3

1 +
p1

logy f(n)
·

∑
i∈[n] : pi<p1/ logy f(n)

p2
i

6 f(n)2/3 · log4y/3(f(n)) · p3
1 +

f(n)

logy f(n)
· p3

1

= O
(

f(n)

logy f(n)
· p3

1

)
.

This readily implies

t10 ·
(∑n

i=1 p
4+x
i

)
·
(∑n

i=1 p
3
i

)4−x
(
∑n
i=1 p

4
i )

2
(
∑n
i=1 p

2
i )

4−x = O

t10 ·

(∑n
i=1 p

4
i

)
· px1 ·

(
f(n)

logy f(n) · p
3
1

)4−x

p4
1 · (
∑n
i=1 p

4
i ) · (f(n) · p2

1)
4−x


= O

(
t10

logy(4−x) f(n)

)
= o

(
1

log4 f(n)

)
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where we used
∑n
i=1 p

4+x
i 6 px1 ·

∑n
i=1 p

4
i and

∑n
i=1 p

4
i > p4

1 in the first line and t = Θ(log2 f(n))
with x 6 3 and y = 25 in the last line.

Finally, we took care of all the cases for j − l = 1 and showed

∑
snakes A, B :

|E(GFA∩FB )|=l, |V (GFA∩FB )|=l+1

Pr (XA ∧XB) = o

(
E [Xt ]

2

log4 f(n)

)

as desired. This implies ∑
B : B∼A

Pr (XA ∧XB) = o
(
E [Xt ]

2
)

and concludes the proof.

Lemma 4.6 and Lemma 3.1 now establish the existence of a sharp threshold at

m =
(∑n

i=1 p
2
i

)−1
.

Now we still have to consider the case p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = Θ
(∑n

i=2 p
2
i

)
. In the

following lemma, we give a lower bound on the probability to be unsatisfiable by showing the
existence of an unsatisfiable sub-formula consisting only of the two most-probable variables. The
lemma generally holds for k > 2, but it especially serves our purpose of considering the remaining
case.

Lemma 4.7. Consider a non-uniform random k-SAT formula Φ with qmax = o(1).Then Φ is
unsatisfiable with probability at least

(1− exp (−qmax ·m))
2k − q2

max · 22k ·m · (1 + exp (−qmax ·m))
2k
.

Proof. Let c be the clause with maximum probability. Since the signs of literals are chosen with
probability 1/2 independently at random, it holds that each clause with the same variables as
c has the same probability. Our lower bound is now just a lower bound on the probability of
having each of the 2k clauses with these variables, which constitute an unsatisfiable sub-formula.
Let us enumerate the different clauses c1, . . . , c2k with variables X1, . . . , Xk in an arbitrary order.

Now let Ēj denote the event that cj is not appearing in Φ and let Ē = ∪2k

i=1Ēj denote the event
that at least one of these clauses does not appear. Due to the principle of inclusion and exclusion
it holds that

Pr
(
Ē
)

=

2k∑
l=1

(−1)l+1
∑

J⊆[2k] : |J|=l
Pr

⋂
j∈I
Ēj

 =

2k∑
l=1

(−1)l+1

((
2k

l

)
· (1− l · qmax)

m

)
,

because the clauses c1, . . . , c2k have the same probability qmax of appearing and all clauses are
drawn independently at random.

It now holds that

Pr (Φ unsat) > 1−

 2k∑
l=1

(
2k

l

)
· (−1)l · (1− l · qmax)

m


=

2k∑
l=0

((
2k

l

)
· (−1)l · (1− l · qmax)

m

)
.

We can now estimate

− (1− qmax · l)m > − exp (−qmax · l ·m)

and, due to [37, Proposition B.3],

(1− qmax · l)m > exp (−qmax · l ·m) ·
(
1− q2

max · l2 ·m
)

> exp (−qmax · l ·m) ·
(
1− q2

max · 22k ·m
)
.
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In total, we get

Pr (Φ unsat)

>
2k∑
l=0

((
2k

l

)
· (−1)l · exp (−qmax · l ·m)−

(
2k

l

)
· q2

max · 22k ·m · exp (−qmax · l ·m)

)
= (1− exp (−qmax ·m))

2k − q2
max · 22k ·m · (1 + exp (−qmax ·m))

2k
.

The former lemma now yields the following corollary.

Corollary 4.1. Consider a non-uniform random k-SAT formula Φ with qmax = o(1). Then

1. Pr(Φ unsatisfiable) = Ω(1) for m = Θ
(
q−1
max

)
and

2. Pr(Φ unsatisfiable) = 1− o(1) for m = ω(q−1
max).

In the second case the result follows from Lemma 4.7 for m = ω(q−1
max) ∩ o(q−2

max) and by
monotonicity of the satisfiability probability in m. This corollary together with Lemma 3.2

establishes the existence of a coarse threshold at m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)

= Θ
(
q−1
max

)
for non-uniform random 2-SAT with p2

1 = Θ
(∑n

i=1 p
2
i

)
, p2

2 = Θ
(∑n

i=2 p
2
i

)
.

5 Constant Clause Probabilities

We assumed qmax = o(1) throughout the paper. For the sake of completeness we still have to take
care of the case qmax = Θ (1). It is easy to see that for Φ ∼ D (n, 2, (~px)x∈N,m) and a constant
m > 4 it holds that Pr (Φ unsatisfiable) > qmmax, since this is the probability of an unsatisfiable
instance, where the most probable clause appears with all four combinations of signs and then
one of these clauses appears an additional m− 4 times. Similarly, Pr (Φ satisfiable) > qmmax, as
this is the probability of a satisfiable instance, where the same most probable clause appears
m times with the same sign. Since 0 < qmax 6 1/4 is a constant, the probability is a constant
bounded away from zero and one. It remains to show that Φ is unsatisfiable with probability
1− o(1) for m = ω(1). The following lemma establishes this. Again, this lemma also holds for
k > 2 in general.

Lemma 5.1. Consider a non-uniform random k-SAT formula Φ. Then Φ is unsatisfiable with
probability at least

2− (1 + exp (−qmax ·m))
2k
.

Proof. As in Lemma 4.7, it holds that

Pr (Φ unsat) >
2k∑
l=0

((
2k

l

)
(−1)l (1− l · qmax)

m

)
.

We can now estimate

2k∑
l=0

((
2k

l

)
(−1)l (1− l · qmax)

m

)
> 1−

2k∑
l=1

((
2k

l

)
(1− l · qmax)

m

)

> 1−
2k∑
l=1

((
2k

l

)
exp

(
−m · l · qmax

1− l · qmax

)m)

> 1−
2k∑
l=1

((
2k

l

)
exp (−m · l · qmax)

)
= 2− (1 + exp (−m · qmax))

2k
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For qmax = Θ(1) and m = ω
(
q−1
max

)
this lemma implies Pr (Φ unsatisfiable) > 1− o(1). All

lemmas together now imply our main theorem.

Theorem 1.1. Let D (n, 2, (~px)x∈N,m) be the non-uniform random 2-SAT model with n vari-
ables, m clauses, and an ensemble of probability distributions (~px)x∈N. Let ~pn = (p1, p2, . . . , pn)
be the n-th distribution from the ensemble. W. l. o. g. let p1 > p2 > . . . > pn. If
p2

1 = o
(∑n

i=1 p
2
i

)
, then D (n, 2, (~px)x∈N,m) has a sharp satisfiability threshold at m =(∑n

i=1 p
2
i

)−1
. Otherwise, D (n, 2, (~px)x∈N,m) has a coarse satisfiability threshold at

m = Θ
((

1−
∑n
i=1 p

2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2))
.

6 Example Applications of our Theorem

We will now show on some examples how our main theorem can be applied.

6.1 Uniform Distribution

The simplest distribution we can apply our theorem to is the uniform distribution, i. e. ~pn =(
1
n ,

1
n , . . . ,

1
n

)
for all n ∈ N. It holds that p2

1 = 1
n2 and

∑n
i=1 p

2
i = 1

n . Thus, Theorem 1.1 implies
a sharp threshold at m∗(n) = n for all n ∈ N. This proves the satisfiability threshold conjecture
for k = 2.

6.2 Power Law Distribution

Another ensemble of distributions we can choose are power-law distributions, i.e. we consider
the power law random 2-SAT model introduced by Ansótegui et al. [3]. Thus, for a constant
β > 2 we choose ~pn = (p1, p2, . . . , pn) with

pi =
(n/i)

1
β−1(∑n

j=1 (n/j)
1

β−1

) .
It already holds that p1 > p2 > . . . > pn. Now it is an easy exercise to show that n∑

j=1

(n/j)
1

β−1

 = (1− o(1)) · β − 1

β − 2
.

Furthermore

p2
1 = (1± o(1)) ·

(
β − 1

β − 2

)2

· n−2 β−2
β−1 .

Finally, one can show that

n∑
i=1

p2
i =


(1± o(1)) · (β−2)2

(β−3)·(β−1) · n
−2 β−2

β−1 for β < 3

(1± o(1)) · 1
4 ·

lnn
n for β = 3

(1± o(1)) · (β−2)2

(β−3)·(β−1) · n
−1 for β > 3.

Thus, applying our theorem we can see that for β < 3 there is a coarse threshold at m =

Θ(n−2 β−2
β−1 ), since p2

1 = Θ(
∑n
i=1 p

2
i ) = Θ(n2 β−2

β−1 ) and C = 1 + o(1). For β = 3 there is a sharp

threshold at 4 · nlnn , since p2
1 = Θ(n−1) = o( lnn

n ). Also, there is a sharp threshold at (β−3)·(β−1)
(β−2)2 ·n

for β > 3, since p2
1 = Θ

(
n−2 β−2

β−1

)
= o(n). We already observed the behavior for the latter case

experimentally in previous works [21, 22]. Thus, an equivalent of the satisfiability threshold
conjecture holds for power-law random 2-SAT with power-law exponents β > 3.

6.3 Geometric Distribution

Ansótegui et al. [3] also considered an ensemble of geometric distributions with

pi =
b · (1− b−1/n)

b− 1
· b−(i−1)/n
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for i = 1, . . . , n and for some constant b > 1. Again, it already holds that p1 > p2 > . . . > pn. It
holds that

p2
1 =

b2 · (1− b−1/n)2

(b− 1)2

and
n∑
i=1

p2
i =

b+ 1

b− 1
· 1− b−1/n

1 + b−1/n
.

One can show that p2
1 = o(

∑n
i=1 p

2
i ). Theorem 1.1 now tells us that there is a sharp threshold at

b−1
b+1 ·

1+b−1/n

1−b−1/n . This function grows as fast as 2·(b−1)
(b+1)·ln b · n in the limit. Thus, an equivalent of the

satisfiability threshold conjecture also holds for geometric random 2-SAT with b > 1.

7 Discussion and Future Work

We showed a dichotomy of coarse and sharp thresholds for the non-uniform random 2-SAT
model depending on the variable probability distribution. In the case of a coarse threshold, the
coarseness either stems from two variables being present in too many clauses and forming an
unsatisfiable sub-formula of size 4 with constant probability or from a snake with three variables
which emerges with constant probability. Furthermore we determined the exact position of the
satisfiability threshold in the case of a sharp threshold. Hence, our result generalizes the seminal
works by Chvatal and Reed [11] and by Goerdt [24] to arbitrary variable probability distributions.
It allows us to prove or disprove an equivalent of the satisfiability threshold conjecture for
non-uniform random 2-SAT. For example for power-law random 2-SAT, an equivalent of the
conjecture holds for power law exponents β > 3 and the satisfiability threshold is at exactly
(β−3)·(β−1)

(β−2)2 · n for β > 3 and exactly at 4 · n
lnn for β = 3.

The grand goal of our works is to show similar results for higher values of k, where we already
made a first step by showing sharpness for certain variable probability distributions [20]. Another
direction we are interested in for k > 3 is proving bounds on the average computational hardness
of formulas around the threshold, for example by showing resolution lower bounds like Mull et
al. [38].
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