
On the Complexity of Grammar-Based
Compression over Fixed Alphabets
Katrin Casel∗1, Henning Fernau2, Serge Gaspers†3,
Benjamin Gras4, and Markus L. Schmid5

1 Trier University, Fachbereich IV – Abteilung Informatikwissenschaften, Trier,
Germany
Casel@uni-trier.de

2 Trier University, Fachbereich IV – Abteilung Informatikwissenschaften, Trier,
Germany
Fernau@uni-trier.de

3 UNSW Australia, Sydney, Australia, and
Data61 (formerly: NICTA), CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

4 École Normale Superieure de Lyon, Département Informatique, Lyon, France
benjamin.gras@ens-lyon.fr

5 Trier University, Fachbereich IV – Abteilung Informatikwissenschaften, Trier,
Germany
MSchmid@uni-trier.de

Abstract
It is shown that the shortest-grammar problem remains NP-complete if the alphabet is fixed and
has a size of at least 24 (which settles an open question). On the other hand, this problem can be
solved in polynomial-time, if the number of nonterminals is bounded, which is shown by encoding
the problem as a problem on graphs with interval structure. Furthermore, we present an O(3n)
exact exponential-time algorithm, based on dynamic programming. Similar results are also given
for 1-level grammars, i. e., grammars for which only the start rule contains nonterminals on the
right side (thus, investigating the impact of the “hierarchical depth” on the complexity of the
shortest-grammar problem).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, E.4 Coding
and Information Theory

Keywords and phrases Grammar-Based Compression, Straight-Line Programs, NP-Completeness,
Exact Exponential Time Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.122

1 Introduction

While in the early days of computer science, the most important requirements for compression
schemes were fast (i. e., linear or near linear time) compression and decompression, nowadays
their investigation regarding whether they are suitable for solving problems directly on

∗ Katrin Casel is supported by the Deutsche Forschungsgemeinschaft (FE 560/6-1).
† Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048)

and acknowledges support under the ARC’s Discovery Projects funding scheme (DP150101134). NICTA
is funded by the Australian Government through the Department of Communications and the ARC
through the ICT Centre of Excellence Program.

EA
T

C
S

© Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, and Markus L. Schmid;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 122; pp. 122:1–122:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.122
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

122:2 On the Complexity of Grammar-Based Compression over Fixed Alphabets

the compressed data without prior decompression forms a vibrant research area, usually
subsumed under the term algorithmics on compressed strings.

Compressing a word by a context-free grammar, so-called grammar-based compression,
is particularly well suited for this purpose.1 Nevill-Manning and Witten [17, 16], and
Kieffer et al. [10, 9, 23] are stated as the origins of this concept, but a closer look into
the older literature reveals that the external pointer macro (without overlapping and with
pointer size 1) defined by Storer and Szymanski [22, 21] is also equivalent to grammar-based
compression.

The success of grammars with respect to algorithmics on compressed strings is due to
the fact that they cover many compression schemes from practice (most notably, the family
of Lempel-Ziv encodings) and that they are mathematically easy to handle (see Lohrey [11]
for a survey on the role of grammar-based compression for algorithmics on compressed
strings). Many basic problems on strings, e. g., comparison, pattern matching, membership
in a regular language, retrieving subwords, etc. can all be solved in polynomial-time directly
on the grammars [11]. In addition, grammar-based compression has been successfully applied
in combinatorial group theory and to prove problems in computational topology to be
polynomial-time solvable [11]. Grammars as compressions have also been extended to more
complicated objects, e. g., trees (see [1, 12, 13, 14]) and two-dimensional words (see [3]).

On the other hand, work on the shortest-grammar problem, i. e., computing a minimal
grammar for a given word w, is somewhat scarce; its NP-completeness, the major downside
of grammar-based compression, has been used as a justification to focus on approximation
algorithms. In this regard, the best achieved approximation ratio is O(log(|w|m∗)) (see [18, 4]),
where m∗ is the size of a smallest grammar, and an approximation ratio better than
8569
8568 ≈ 1.0001 is not possible (see [4]), assuming P 6= NP (the research seems to have
stagnated at this gap between lower and upper bound). However, the existing hardness
reductions (also for the inapproximability result) have a serious deficiency: they assume the
terminal alphabet to be unbounded. In [2], it is claimed that the hardness for alphabets of
size 3 follows from [21], but a closer look into [21] does not confirm this. For string problems,
where we typically deal with not only constant, but also very small alphabets, e. g., of size 2
or 4, this is rather unsatisfying. Another neglected aspect is the parameterised point of view,
i. e., can minimal grammars be efficiently computed, if certain parameters (e. g., alphabet
size, levels of the derivation tree, number of rules) are bounded? Furthermore, the fact that
for grammar compressions basic problems can be solved without decompression motivates
scenarios, where an extensive running time is invested only once, in order to obtain an
optimal compression, which is then stored and worked with. This assumption naturally leads
to exact exponential-time algorithms, which are not yet considered in the literature.

We investigate these aspects of the shortest-grammar problem. First, we close the gap
with respect to fixed alphabets left open in the literature, by showing the NP-completeness for
alphabets of size 24 in Section 3, which provides a more solid foundation for approximations
(or heuristics), but leaves the cases of small alphabets open.2 After this negative result, in
Section 4, we show that minimal grammars can be computed in polynomial-time, provided
that the size of the nonterminal alphabet is bounded. This is achieved by a reduction to
a graph problem, which, since the graphs are structurally simple, can be efficiently solved
(note that especially for string problems successful applications of this common algorithmic
technique are rare). Additionally, we show that an FPT-algorithm with respect to this

1 Such context-free grammars are also called straight-line programs in the literature.
2 Note that this negative result also transfers to the shortest-grammar problem for trees.

K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid 122:3

parameter is unlikely (under complexity theoretical assumptions). Finally, we turn our
attention to exact exponential-time algorithms in Section 5 and first observe that brute-force
algorithms with running time O(c|w|), for a constant c, can be easily found, but we also
present an O(3|w|) dynamic programming algorithm.

Moreover, these questions are also investigated for 1-level grammars, i. e., only the start
rule contains nonterminals; thus, measuring the impact of the “hierarchical depth” of the
grammars. Considering that the exploitation of hierarchical structure is one of the main
features of grammars (allowing exponential compression rates, in contrast to 1-level grammars,
where quadratic is the best), it is surprising that our results suggest that computing general
grammars is, if at all, only insignificantly more difficult than computing 1-level grammars.

Due to space restriction, we only give proof sketches for the main results.

2 Preliminaries

Let N = {1, 2, 3, . . .}. By |A|, we denote the cardinality of a set A. Let Σ be a finite alphabet
of symbols. A word or string (over Σ) is a sequence of symbols from Σ. For any word w over
Σ, |w| denotes the length of w and ε denotes the empty word, i. e., |ε| = 0. The symbol Σ+

denotes the set of all non-empty words over Σ and Σ∗ = Σ+ ∪ {ε}. For the concatenation
of two words w1, w2 we write w1 · w2 or simply w1w2. For every symbol a ∈ Σ, by |w|a we
denote the number of occurrences of symbol a in w. We say that a word v ∈ Σ∗ is a factor
of a word w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1vu2. If u1 = ε or u2 = ε, then v
is a prefix (or a suffix, respectively) of w. Furthermore, F(w) = {u : u is a factor of w} and
F≥2(w) = {u : u ∈ F(w), |u| ≥ 2}. For a position j, 1 ≤ j ≤ |w|, we refer to the symbol at
position j of w by the expression w[j] and w[j..j′] = w[j]w[j + 1] . . . w[j′], j ≤ j′ ≤ |w|. By
wR, we denote the reversal of w, i. e., wR = w[n]w[n− 1] . . . w[1], where |w| = n.

A factorisation of a word w is a tuple (u1, u2, . . . , uk) with ui 6= ε, 1 ≤ i ≤ k such
that w = u1u2 . . . uk. A factorisation p = (u1, u2, . . . , uk) is a refinement of a factorisation
q = (v1, v2, . . . , vm), denoted by p � q, if (uji−1+1, uji−1+2, . . . , uji

) is a factorisation of vi,
1 ≤ i ≤ m for some {ji}0≤i≤m, with 0 = j0 < j1 < . . . < jm = k.

Grammars: A context-free grammar is a tuple G = (N,Σ, R, S), where N is the set of
nonterminals, Σ is the terminal alphabet, S ∈ N is the start symbol and R ⊆ N × (N ∪ Σ)+

is the set of rules (as a convention, we write rules (A,w) ∈ R also in the form A → w).
A context-free grammar G = (N,Σ, R, S) is a singleton grammar if R is a total function
N → (N ∪ Σ)+ and the relation {(A,B) : (A,w) ∈ R, |α|B ≥ 1} is acyclic.

For a singleton grammar G = (N,Σ, R, S), let DG : (N ∪ Σ) → (N ∪ Σ)+ be defined
by DG(A) = R(A), A ∈ N , and DG(a) = a, a ∈ Σ. We extend DG to a morphism
(N ∪ Σ)+ → (N ∪ Σ)+ by setting DG(α1α2 . . . αn) = DG(α1) DG(α2) . . .DG(αn), for αi ∈
(N ∪ Σ), 1 ≤ i ≤ n. Furthermore, for every α ∈ (N ∪ Σ)+, we set D1

G(α) = DG(α),
Dk

G(α) = D(Dk−1
G (α)), for every k ≥ 2, and DG(α) = limk→∞Dk

G(α) is the derivative of α.
By definition, DG(α) exists for every α ∈ (N ∪ Σ)+ and is an element from Σ+. The size
of the singleton grammar G is defined by |G| =

∑
A∈N |DG(A)| and its number of levels is

min{k : Dk
G(S) = DG(S)}. In particular, a grammar with d levels is a d-level grammar.

From now on, we simply use the term grammar instead of singleton grammar and if the
grammar under consideration is clear from the context, we also drop the subscript G. We
set D(G) = D(S) and say that G is a grammar for D(G). In the tuple (N,Σ, R, S), we
sometimes replace S directly by D(S), which we then call the compressed string (of G) and
which we denote by cs.

ICALP 2016

122:4 On the Complexity of Grammar-Based Compression over Fixed Alphabets

Let G = (N,Σ, R, cs) be a 1-level grammar. The profit of a rule (A,α) ∈ R is defined by
p(A) = |cs|A(|α| − 1)− |α|. Intuitively speaking, if all occurrences of A in cs are replaced by
α and the rule A → α is deleted, then the size of the grammar increases by exactly p(A).
Consequently, |G| = |D(G)| −

∑
A∈N p(A).

A grammar G is minimal if |G| = min{|G′| : G′ is a grammar for D(G)} and the problem
of computing small grammars is defined as follows:
Shortest Grammar Problem (SGP)
Instance: A word w and a k ∈ N.
Question: Does there exist a grammar G with D(G) = w and |G| ≤ k?
The Shortest 1-Level Grammar Problem (1-SGP) is defined analogously, with the
only difference that we ask for a 1-level grammar of size at most k.

Examples: Even for small – say binary – alphabets and a fixed word with a simple structure,
finding minimal grammars can be surprisingly difficult. In order to substantiate this claim,
let w =

∏n
i=1 10i be a word over Σ = {0, 1}, where n = 2k, k ∈ N. One way of compressing

w that comes to mind is by the use of rules A1 → 10, Ai → Ai−10, 2 ≤ i ≤ n − 1, and a
compressed string A1A2 . . . An−1An−10, which leads to a grammar G1 of size 3n−1. However,
it is also possible to construct the factors 0i, 1 ≤ i ≤ n, “from the middle” by rules A1 → 010,
Ai → 0Ai−10, 2 ≤ i ≤ n

2 − 1, and a compressed string 1(A1)2(A2)2 By using these ideas,
we can construct a smaller grammar G2 of size 5n

2 + 2k− 3. Both of these grammars achieve
a compression rate of order O(

√
|w|), but, generally, grammars are capable of exponential

compression rates (see [4]). Aiming for such exponential compression, it seems worthwhile to
represent every unary factor 02` , 1 ≤ ` ≤ k, by a nonterminal B` (obviously, this requires
only k rules of size 2) and then represent all unary factors by sums of these powers (e. g., 074

is compressed by B1B3B6). However, this yields a grammar G3 of size k(n+3)
2 − 2, which, if

k is sufficiently large, is worse than the previous grammars.
A smaller grammar can be obtained by combining the idea of G2 with that of representing

factors 02` by nonterminals B`. More precisely, for every `, 1 ≤ i ≤ k − 2, we represent 02`

by an individual nonterminal B` and, in addition, we use rules A1 → 010, Ai → 0Ai−10,
2 ≤ i ≤ n

4 . Then the left and right half of w can be compressed in the way of G2, with the only
difference that in the right part, for every unary factor, we also need an occurrence of Bk−1,
i. e., the compressed string is 1(A1)2 . . . (An

4
)2Bk−2(A1Bk−1)2 . . . (An

4−1Bk−1)2An
4
(Bk−2)3.

The size of this grammar G4 is only 9n
4 + 2k − 2.

3 NP-Hardness of Computing Minimal Grammars for Fixed
Alphabets

In [4], Charikar et al. prove the shortest-grammar problem to be NP-complete by a reduction
from the vertex cover problem (which is based on ideas used by Storer and Szymanski in
[22]). A simple modification of this reduction yields the following.

I Theorem 1. 1-SGP is NP-complete.

In these reductions, we encode the different vertices of a graph by single symbols and
also use individual separator symbols (i. e., symbols with only one occurrence in the word
to be compressed). This makes it particularly easy to devise suitable gadgets, but, on the
other hand, it assumes that we have an arbitrarily large alphabet at our disposal, which,
for practical situations, is not justified. In the remainder of this section, we shall extend
these hardness results to the more realistic case of fixed alphabets. The general structure of

K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid 122:5

our reductions is similar to the ones of [4, 21], but, due to the constraint of having a fixed
alphabet, they substantially differ on a more detailed level.

Since fixed alphabets make it impossible to use single symbols (or even words of constant
size) as separators or as representing vertices, we need to use special encodings for which we
are able to determine how a smallest grammar will compress them (in this regard, recall our
examples from page 4 demonstrating how difficult it can be to determine a smallest grammar
even for a single simply structured word). This constitutes a substantial technical challenge,
which complicates our reductions considerably.

3.1 The 1-Level Case
As a tool for proving the hardness of 1-SGP, but also as a result in its own right, we first
show that the compression of any 1-level grammar is at best quadratic (in contrast to general
grammars, which can achieve exponential compression (see [4]).3

I Lemma 2. Let G be a 1-level grammar. Then |G| ≥ 2
⌊√
|D(G)|

⌋
.

In order to prove the NP-hardness of 1-SGP for constant alphabets, we devise a reduction
from the vertex cover problem. To this end, let G = (V,E) be a graph with V = {v1, . . . , vn}
and E = {(vj2i−1 , vj2i) : 1 ≤ i ≤ m}. Without loss of generality, we assume n ≥ 40. We
define Σ = {a, b, �, ?,#} and [�] = �n3 . For each i, 1 ≤ i ≤ n, we encode vi by a word
vi ∈ {a, b}dlog(n)e such that vi 6= vj if and only if i 6= j (e. g., by taking vi to be the binary
representation of i over symbols a and b with dlog(n)e many digits). We now define the
following word over Σ:

w =
n∏

i=1
(#vi[�]vi#[�])2dlog(n)e+3

n∏
i=1

(#vi#[�])dlog(n)e+1
m∏

i=1
(#vj2i−1#vj2i

#[�])2 ? [�]n
3
.

I Theorem 3. 1-SGP is NP-hard, even for |Σ| = 5.

Proof Sketch. A smallest grammar for w produces the two parts to the left and right of ?
independently, since |w|? = 1. According to Lemma 2, the right side [�]n3 is best compressed
by n3 occurrences of a nonterminal D with derivative [�] and, by a slightly more involved
argument, it can be shown that also for the whole word w, it is still best to compress all
occurrences of [�] by D. Having established this basic property, it is then possible to show
that the remaining rules have derivative #vi, vi# or #vj#. The grammar is smallest, if
every edge #vj2i−1#vj2i

is compressed by using a rule of the last type; thus, those rules
translate into a vertex cover. Analogously, a vertex cover translates into a grammar. J

3.2 The Multi-Level Case
In the above reduction, the main difficulty is the use of unary factors as separators. However,
once those separators are in place, we know the factors of w that are produced by nonterminals
and, for a minimal 1-level grammar, this already fully determines the compressed string and,
thus, the grammar itself. For the multi-level case, the situation is much more complicated.
Even if we manage to force the compressed string to factorise w into parts that are either
separators or codewords of vertices, this only determines the top-most level of the grammar
and we do not necessarily know how these single factors are further hierarchically compressed

3 The bound of Lemma 2 is tight, e. g., consider an2
and a grammar with rules S → An and A→ an.

ICALP 2016

122:6 On the Complexity of Grammar-Based Compression over Fixed Alphabets

and, more importantly, the dependencies between these compressions (i. e., how they share
the same rules).

To deal with these issues, we rely on a larger alphabet Σ and we use palindromic codewords
u ? uR, where ? ∈ Σ and u is a word over an alphabet of size 7 representing a 7-ary number.
The purpose of the palindromic structure is twofold. Firstly, it implies that codewords always
start and end with the same symbol, which, in the construction of w, makes it easier to avoid
the situation that an overlapping between neighbouring codewords is repeated elsewhere
in w (see Lemma 4). Secondly, if all codewords are produced by individual nonterminals,
then we can show that they are produced best “from the middle”, similar as the rules of the
example grammar G2 from page 4. In addition to this, we also need a vertex colouring and
an edge colouring of certain variants of the graph to be encoded.

In order to formally define the reduction, we first give some preparatory definitions. Let
Σ = {x1, . . . , x7, d1, . . . , d7, ?,#, ¢1, ¢2, $1, . . . , $6} be an alphabet of size 24. The function
M : N×N→ N is defined by M(q, k) := min{r > 0: ∃t ∈ N : q = tk + r}.4 Let the functions
f : N → {x1, . . . , x7}+ and g : N → {d1, . . . , d7}+ be defined by f(q) := xa0xa1 . . . xak

and
g(q) := da0da1 . . . dak

, for every q ∈ N, where k ∈ N ∪ {0} and ai ∈ {1, 2, . . . , 7}, 0 ≤ i ≤ k,
are such that q =

∑k
i=0 ai7i is satisfied.5 For every i ∈ N, let 〈i〉v := f(i) ? f(i)R and

〈i〉� := g(i) ? g(i)R. The factors 〈i〉v and 〈i〉� are called codewords; 〈i〉v represents a vertex
vi, while the 〈i〉� are used as separators. The functions f and g are bijections and they are
7-ary representations of the integers n > 0 (least significant digit first). Thus, for every
n, n′ ∈ N with M(n, 7) 6= M(n′, 7), the words 〈n〉v and 〈n′〉v do not share any prefixes or
suffixes (and the same holds for the words 〈n〉�).

Let G = (V,E) be a subcubic graph (i. e., a graph with maximum degree 3) with
V = {v1, . . . , vn} and E = {{vj2i−1 , vj2i

} : 1 ≤ i ≤ m} (note that the vertex cover prob-
lem remains NP-hard if restricted to subcubic graphs (see [7])). Let G′ = (V,E′) be the
multi-graph defined by E′ :=

{
{vj2i

, vj2i+1} : 1 ≤ i ≤ m− 1
}
. By [19], it is possible to

compute in polynomial-time a proper edge-colouring (meaning a colouring such that no
two edges which share one or two vertices have the same colour) for a multi-graph with
at most b 3

2mc colours, where m is the maximum degree of the multi-graph. Since G is
subcubic, the maximum degree of G′ is three and we can compute a proper edge-colouring
Ce : E′ → {1, 2, 3, 4} for G′ with colours {1,2,3,4}. Let G2 = (V,E′′) be the graph defined
by E′′ = {{u, v} : {u,w}, {w, v} ∈ E for some w ∈ V \{u, v}, u 6= v}. Since G is subcubic,
G2 has maximum degree at most six. Let Cv : {1, . . . , n} → {1, 2, 3, 4, 5, 6, 7} be a proper
vertex-colouring (defined over the vertex-indices of V = {v1, . . . , vn}) for G2 with colours
{1, 2, 3, 4, 5, 6, 7}. Such a colouring can be computed by an algorithmic version of Brook’s
theorem [20].

Let wG = uvw be the word representing G, where u, v, w ∈ Σ+ are defined as follows.6

u =
6∏

j=0

(14n∏
i=1

(〈i〉� 〈M(i+ j, 14n)〉v)
)

$1

v =
n∏

i=1
(# 〈7i+ Cv(i)〉v ¢1 〈7i− 1〉�) $2

n∏
i=1

(# 〈7i+ Cv(i)〉v ¢2 〈7i− 2〉�) $3

4 M is the positive modulo-function, i. e., M(q, k) = q%k, if q%k 6= 0 and M(q, k) = k, otherwise.
5 Since, for every q ∈ N, there are unique k ∈ N and ai ∈ {1, 2, . . . , 7}, 1 ≤ i ≤ k, such that q =

∑k

i≥0 ai7i,
the functions f and g are well-defined.

6 Note that m ≤ 3n
2 , so 7m < 14n in the word w.

K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid 122:7

n∏
i=1

(〈7i+ Cv(i)〉v # 〈7i− 2〉� ¢1) $4

n∏
i=1

(〈7i+ Cv(i)〉v # 〈7i− 1〉� ¢2) $5

n∏
i=1

(# 〈7i+ Cv(i)〉v # 〈7i〉�) $6

w =
m−1∏
i=1

(# 〈7j2i−1 + Cv(j2i−1)〉v # 〈7j2i + Cv(j2i)〉v # 〈7i+ Ce(vj2i , vj2i+1)〉�)

〈7j2m−1 + Cv(j2m−1)〉v # 〈7j2m + Cv(j2m)〉v

The next lemma states that any factor of wG is not repeated, if it spans over the ? of
some codeword 〈i〉v or 〈i〉� and also reaches over the boundaries of this codeword into
some other factor. This property, which can be proven by a straightforward, but rather
cumbersome analysis, is crucial for the correctness of the reduction and also responsible for
the complicated structure of wG . Here, we only wish to point out that it follows from the fact
that all occurrences of the same codeword are delimited by distinct symbols. This is ensured
by the symbols #, ¢1, ¢2, $1, . . . , $6, by the fact that codewords 〈i〉v and 〈i〉� start and end
with xM(i,7) and dM(i,7), respectively, and, for the part w, by the colourings Ce and Cv.

I Lemma 4. There is a minimal grammar G = (N,Σ, R, S) for wG such that, for every
A ∈ N , |D(A)|? ≥ 1 implies that D(A) is a factor of some # 〈7i+ Cv(i)〉v #, 1 ≤ i ≤ n, or
a factor of some 〈j〉�, 1 ≤ j ≤ 14n.

I Lemma 5. There is a minimal grammar G for wG such that, for every i, 1 ≤ i ≤ 14n,
there is a nonterminal with derivative 〈i〉� and a nonterminal with derivative 〈i〉v, and, for
every i, 1 ≤ i ≤ n, there is a nonterminal with derivative # 〈7i+ Cv(i)〉v and a nonterminal
with derivative 〈7i+ Cv(i)〉v#.

Proof Sketch. Let G be a minimal grammar. Since |u|? = 196n, Lemma 4 implies that
|β| ≥ 196n, where β is the prefix of the compressed string producing u. Also by Lemma 4,
every 〈i〉� or 〈i〉v that is not a derivative of some rule, is produced by at least two nonterminals
(we assume that there are k many such bad codewords). This implies that β contains at least
7dk

2 e additional nonterminals (each codeword has 7 occurrences in u and the nonterminal
not producing ? can be used in the production of at most 2 bad codewords). Hence,
|β| ≥ 196n+ 7dk

2 e. For every bad codeword x ∈ {〈i〉�, 〈i〉v}, we can add a new rule Ax → αx

with |αx| = 3 and D(Ax) = x (this can be done by right sides of the form djAdj , where A
derives another codeword). This increases the size of the grammar by 3k, but we can now
produce every codeword of u by one nonterminal, which shortens β by 7dk

2 e > 3k.
We now add rules

←
Vi → #V7i+Cv(i),

→
Vi → V7i+Cv(i)#, where D(V7i+Cv(i)) = 〈7i+Cv(i)〉v,

and use them, in addition to the rules for the codewords 〈i〉�, to obtain a new compressed
string from wG (where also every factor #〈7i+ Cv(i)〉v# that has been produced before by
a single nonterminal is compressed by a rule

↔
Vi →

←
Vi#). Then, we erase all old rules with

derivatives #f(7i+Cv(i)) ? ri, ri ? f(7i+Cv(i))R#. The deletion of these rules and the size
of the new compressed string compensates the size increase of adding the new rules. J

I Lemma 6. There is a minimal grammar G for wG with the rules {r�,i, rv,i : 1 ≤ i ≤ 14n},
where r�,i = Di → di ? di and rv,i = Vi → xi ? xi, 1 ≤ i ≤ 7, r�,i = Di → g(i)[1]Dh(i)g(i)[1]
and rv,i = Vi → f(i)[1]Vh(i)f(i)[1], 8 ≤ i ≤ 14n with h(i) = 1

7 (i−M(i, 7)),
{
←
Vi → #V7i+Cv(i),

→
Vi → V7i+Cv(i)#: 1 ≤ i ≤ n}, {

↔
Vi → #

→
Vi : i ∈ I}, for an I ⊆ {1, . . . , n},

and with the compressed string

ICALP 2016

122:8 On the Complexity of Grammar-Based Compression over Fixed Alphabets

∏6
j=0

(∏14n
i=1 (Di VM(i+j,14n))

)∏n
i=1

(←
Vi ¢1 D7i−1

)∏n
i=1

(←
Vi ¢2 D7i−2

)∏n
i=1

(→
Vi D7i−2 ¢1

)
∏n

i=1

(→
Vi D7i−1 ¢2

)∏n
i=1 (yi D7i)

∏m−1
i=1 (ziD7i+Ce(vj2i

,vj2i+1))zm,

where for every i, 1 ≤ i ≤ n, yi =
↔
Vi, if i ∈ I and yi =

←
Vi#, otherwise, and, for every k, 1 ≤

k ≤ m, zk ∈ {
↔
V j2k−1

→
V j2k

,
←
V j2k−1

↔
V j2k
} if {j2k−1, j2k}∩I 6= ∅, zk =

←
V j2k−1

←
V j2k

#, otherwise.

Proof Sketch. Lemma 5 ensures nonterminals Vi → αi with D(αi) = 〈i〉v. We now replace
it by a rule Vi → xi ? xi or Vi → f(i)[1]Vh(i)f(i)[1], as described in the statement of the
lemma. If |αi| ≥ 3, this is fine, but if |αi| = 2, we have to argue more carefully: we remove
Vi → AB for which i is maximal and observe that this implies that either A or B cannot
occur on any right side of a rule; thus, can be removed. Repeating this argument turns all
rules with derivative 〈i〉v in the right form and a similar argument applies to the rules with
derivatives 〈i〉�. Now it only remains to prove that the compressed string can be assumed to
have the desired form. If we replace all 〈i〉v, 〈i〉�, #〈i〉v and 〈i〉v# in wG by the respective
nonterminals, then this produces a compressed string whose size may increase compared to
the original one, but only by the number of factors #〈i〉v# that have been compressed by a
single nonterminal and are now compressed by

←
Vi#. This can be repaired by simply adding

a rule
↔
Vi → #

→
Vi, resulting in the set I mentioned in the statement of the lemma. J

Lemma 6 allows us to argue similarly as for the reduction from [4]: Γ = {vi : i ∈ I} is a
vertex cover (if {vi, vj} ∈ E is not covered, then adding

↔
Vi → #

→
Vi does not increase the size

of the grammar) and |G| = f(m,n) + |Γ|, where f is a polynomial. Furthermore, a vertex
cover Γ translates into a grammar of size f(m,n) + |Γ|, by setting I = {i : vi ∈ Γ}. Thus, G
has a vertex cover Γ iff there is a grammar G for wG with |G| ≤ f(m,n) + |Γ|.

I Theorem 7. SGP is NP-complete, even for alphabets of size 24.

4 Minimal Grammars with a Bounded Number of Nonterminals

A natural follow-up question to the hardness for fixed alphabets is whether polynomial-time
solvability is possible if instead the cardinality of the nonterminal alphabet N is bounded.
In this section, we answer this question in the affirmative by representing words w ∈ Σ∗ as
graphs Φm(w) and Φ1(w), such that smallest independent dominating sets of these graphs
correspond to a smallest grammar and a smallest 1-level grammar, respectively, for w.

We first define Φ1(w) and then derive Φm(w) from Φ1(w). Let Φ1(w) = (V,E) be defined
by V = V1 ∪ V2 ∪ V3 and E = E1 ∪ E2 ∪ E3, where

V1 = {(i, j) : 1 ≤ i ≤ j ≤ |w|} , E1 = {{(i1, j1), (i2, j2)} : i1 ≤ i2 ≤ j1} ,
V2 = F≥2(w) , E2 = {{w[i..j], (i, j)} : 1 ≤ i < j ≤ |w|} ,
V3 = {(u, i) : u ∈ V2, 0 ≤ i ≤ |u|} , E3 = {{u, (u, i)} : u ∈ V2, 0 ≤ i ≤ |u|} .

Intuitively speaking, the vertices of V1 represent every factor by its start and end position,
whereas V2 contains exactly one vertex per factor of length at least 2. Every u ∈ V2 is
connected to (i, j), if and only if w[i..j] = u. Vertices (i, j), (i′, j′) are connected if they refer
to overlapping factors. For every u ∈ V2, there are |u|+ 1 special vertices in V3 that are only
connected with u. Consequently, Φ1(w) consists of |w| layers, where the ith layer contains
the vertices (j, j + (i− 1)) ∈ V1, 1 ≤ j ≤ |w| − (i− 1), the vertices {u ∈ V2 : |u| = i} and the
vertices {(u, j) ∈ V3 : |u| = i, 0 ≤ j ≤ |u|} (see Figure 1 for an illustration).

I Lemma 8. Let w ∈ Σ∗, k ≥ 1. There is an independent dominating set D of cardinality k
for Φ1(w) if and only if there is a 1-level grammar G for w with |G| = k − |F≥2(w)|.

K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid 122:9

(1, 3) (2, 4) (3, 5) (4, 6) (5, 7) (6, 8) (7, 9)

abb bba bab aba

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 1 The third layer of Φ1(abbababab) (edges E1 omitted).

Proof Sketch. For an independent dominating set D of Φ1(w), V1∩D induces a factorisation
of w. For every (i, j) ∈ D, w[i..j] /∈ D, which implies that all |w[i..j]|+1 many V3-neighbours
of w[i..j] are in D. Now a 1-level grammar can be obtained by constructing rules for all
V2 \D. Analogously, a 1-level grammar translates into an independent dominating set. J

In order to extend this idea to the multi-level case, what comes to mind is to somehow
represent the vertices u ∈ V2 again by graph structures of the type Φ1(u) and repeating this
step, which considerably increases the size of the graph. Fortunately, it turns out that a
surprisingly simple modification of Φ1(w) is sufficient. For a word w ∈ Σ∗, let Φm(w) = (V,E)
be defined as follows. Let V = V1 ∪ V2 ∪ V3 ∪ V4, where V1 and V2 are defined as for Φ1(w),
V3 = {(u, 0) : u ∈ V2} and V4 =

⋃
u∈V2

V4,u with V4,u = {(u, i, j) : 1 ≤ i ≤ j ≤ |u|, u[i..j] 6= u}
for every u ∈ V2. Moreover, E = E1 ∪E2 ∪E3 ∪E4 ∪E5, where E1 and E2 are defined as for
Φ1(w), E3 = {{u, (u, 0)} : u ∈ V2} ∪ {{u, (u, i, j)} : u ∈ V2, (u, i, j) ∈ V4,u}, E4 =

⋃
u∈V2

E4,u,
where, for every u ∈ V2, E4,u = {{(u, i1, j1), (u, i2, j2)} ⊆ V4,u : i1 ≤ i2 ≤ j1} and E5 =
{{u, (v, i, j)} : u, v ∈ V2, v[i..j] = u, u 6= v}.

Intuitively speaking, Φm(w) differs from Φ1(w) in the following way. We add to every
vertex u ∈ V2 a subgraph (V4,u, E4,u), which is completely connected to u and which
represents u in the same way as the subgraph (V1, E1) of Φ1(w) represents w, i. e., factors
u[i..j] are represented by (u, i, j) and edges represent overlappings. Moreover, if a u ∈ V2 is
a factor of some v ∈ V2, then there is an edge from u to all the vertices (v, i, j) ∈ V4,v that
satisfy v[i..j] = u. Finally, every u ∈ V2 is also connected with an otherwise isolated vertex
(u, 0) ∈ V3. See Figure 2 for a partial illustration of a Φm(w).

I Lemma 9. Let w ∈ Σ∗, k ≥ 1. There is an independent dominating set D of cardinality k
for Φm(w) if and only if there is a grammar G for w with |G| = k − |F≥2(w)|.

Proof Sketch. The correspondence of independent dominating sets D for Φm(w) and gram-
mars for w is similar as in the 1-level case. Again, D ∩ V1 induces a factorisation of w, and,
in the same way, for every u ∈ V2 \D (i. e., the factors for which rules will be constructed),
D ∩ V4,u induces a factorisation of u. Each (v, i, j) ∈ D ∩ V4,u with |v| ≥ 2 is connected to
v ∈ V2, which implies that v /∈ D; thus, v will also be represented by a rule and so on. J

The proofs of Lemmas 8 and 9 also show how an independent dominating set D of
Φ(w) ∈ {Φ1(w),Φm(w)} translates into a grammar for w, which, in the following, we will
denote by G(D). Consequently, we can solve the smallest grammar problem by computing
minimal independent dominating sets. Unfortunately, this is a hard problem, even for quite
restricted graph classes [15, Theorem 13]. However, Φ(w) may have structural features that
could be exploited in this regard, e. g., it is a 2-interval graph (see [8]).

Our algorithmic application is based on the following observation. If we are looking for a
grammar G = (N,Σ, R, cs) with {D(A) : A ∈ N} = F , for some set F ⊆ F≥2(w), then we
need an independent dominating set D with (F≥2(w) \ F) ⊆ D and F ∩D = ∅. Obviously,

ICALP 2016

122:10 On the Complexity of Grammar-Based Compression over Fixed Alphabets

abbaaa (ab,0)(ba,0)(aa,0)

(ab,1,1) (ab,2,2)(ba,1,1) (ba,2,2)(aa,1,1) (aa,2,2)

ababaaaab (aba, 0)(baa, 0)(aab, 0)

(aba, 1,1) (aba, 2,2) (aba, 3,3)(baa, 1,1) (baa, 2,2) (baa, 3,3)(aab, 1,1) (aab, 2,2) (aab, 3,3)

(aba, 1,2) (aba, 2,3)(baa, 1,2) (baa, 2,3)(aab, 1,2) (aab, 2,3)

Figure 2 Second and third layer of Φm(abaabaa) (vertices V1 and edges E1 ∪ E2 omitted).

D is the disjoint union of (F≥2(w) \ F) and an independent dominating set D′ for the graph
H = Φ(w) \ (N [F≥2(w) \ F] ∪ F),7 which is necessarily an interval graph; thus, a smallest
independent dominating set for it can be efficiently computed (see [6]). For a word w and
a set F ⊆ F≥2(w), we define MinIDS(w,F) = DH ∪ (F≥2(w)\F), where DH is a smallest
independent dominating set for H = Φm(w) \ (N [F≥2(w) \ F] ∪ F), and 1L-MinIDS(w,F) is
defined analogously by using Φ1(w) instead of Φm(w). In this way, for any set F ⊆ F≥2, we
can compute a grammar that is minimal among all grammars that have rules for exactly the
factors in F (this is also an interesting problem in its own right, e. g., if a compressed word
is extended by a new part that should be compressed by already existing rules).

I Lemma 10. Let w ∈ Σ+ and F ⊆ F≥2(w). MinIDS(w,F) and 1L-MinIDS(w,F) can be
computed in time O(|w|6) and O(|w|4), respectively. Furthermore, G(MinIDS(w,F)) is a
minimal grammar for w and G(1L-MinIDS(w,F)) is a minimal 1-level grammar for w.

If instead of a set F of factors, we are only given an upper bound k on |N |, then we can
compute a minimal grammar by enumerating all F ⊆ F≥2(w) with |F | ≤ k and computing
G(MinIDS(w,F)). This shows that minimal grammars can be computed in polynomial time
if the number of nonterminals is bounded.

I Theorem 11. Let w ∈ Σ∗ and k ∈ N. A grammar (1-level grammar, resp.) for w with at
most k rules that is minimal among all grammars (1-level grammars, resp.) for w with at
most k rules can be computed in time O(|w|2k+6) (O(|w|2k+4), resp.).

The next question is whether these problems are also fixed-parameter tractable with
respect to the number of nonterminals.8 Unfortunately, this seems unlikely, since, as stated
by the next result, these parameterisations of 1-SGP and SGP are W[1]-hard.

I Theorem 12. 1-SGP and SGP parameterised by |N | are W[1]-hard.

7 N [v] is the closed neighbourhood of vertex v and for C ⊆ V , N [C] =
⋃

v∈C
N [v].

8 For unexplained concepts of parameterised complexity, we refer to Downey and Fellows [5].

K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid 122:11

This can be proven by reducing from independent set, i. e., a graph G = ({v1, v2, . . . , vn}, E)
and k ∈ N is transformed into the word w =

∏
{vi,vj}∈E(#vi#vj#�)

∏n
i=1(#vi#�)n−|N(vi)|,

where N(vi) is the neighbourhood of vi and every occurrence of � stands for a distinct symbol.
To see the the correctness of this reduction, it is sufficient to observe that the vertices vi of
an independent set for G correspond to the rules of a grammar of form Ai → #vi#.

5 Exact Exponential Time Algorithms

Computing G(MinIDS(w,F)), for all F ⊆ F≥2(w), yields a simple brute-force algorithm with
a running time in O(2|w|2). Another obvious approach is to enumerate all ordered trees
with |w| leaves (for each such tree T , an optimal grammar whose derivation tree has the
structure T can be easily computed), which can be done in time O(8|w|).9 In the following,
we shall give more sophisticated exact exponential-time algorithms with running times in
O∗(1.8392|w|), for the 1-level case, and O∗(3|w|), for the multi-level case.

Let G = (N,Σ, R, cs) be a grammar for w and let α = A1 . . . Ak, Ai ∈ (Σ∪N), 1 ≤ i ≤ k.
The factorisation of D(α) induced by α is the tuple (DG(A1), . . . ,DG(Ak)). Furthermore,
the factorisation of w induced by cs is called the factorisation of w induced by G.

5.1 The 1-Level Case
Let q = (u1, u2, . . . , uk) be a factorisation for a word w and let Γq = {ui : 1 ≤ i ≤ k, |ui| ≥ 2}
and let the 1-level grammar Gq = (Nq,Σ, Rq, csq) be defined by Rq = {(Au, u) : u ∈ Γq},
Nq = {Au : u ∈ Γq} and csq = B1 . . . Bk with Bj = Auj , if uj ∈ Γq and Bj = uj , otherwise.

I Lemma 13. For any factorisation q = (u1, u2, . . . , uk) for w, Gq is minimal among all
1-level grammars for w that induce the factorisation q.

Choosing the smallest among all grammars {Gq : q is a factorisation of w} yields an
O∗(2n) algorithm for 1-SGP. However, it is not necessary to enumerate factorisations that
contain at least two consecutive factors of length 1, which improves this result as follows.

I Theorem 14. 1-SGP can be solved exactly in polynomial space and in time O∗(1.8392|w|).

5.2 The Multi-Level Case
The obvious idea for a dynamic programming algorithm is to extend a smallest i-level grammar
by a new level in order to obtain a smallest (i+ 1)-level grammar. However, this approach
does not seem to work if we take the levels of a grammar to be cs,D(cs),D(D(cs)), . . . , w
(note that these are also the levels of the derivation tree). Intuitively speaking, the problem
is that if we try to either add a new level on top (i. e., a new compressed string) of the
grammar or at the bottom (by further compressing the terminal right sides of the last rules
applied), then this decision is not local, since it is possible that rules to be added are already
used somewhere else in the grammar. So we need to define levels in such a way that all
occurrences of a nonterminal are on the same level.

For a d-level grammar G = (N,Σ, R, cs), let N1, . . . , Nd be the partition of N into
Ni = {A ∈ N : (Di

G(A) ∈ Σ+) ∧ (Di−1
G (A) /∈ Σ+)} and let Li : (N ∪ Σ)∗ → (N ∪ Σ)∗,

1 ≤ i ≤ d, be component-wise defined by Li(x) = D(x), if x ∈ Ni and Li(x) = x, otherwise.

9 There are C|w|−1 ≤ 4|w|−1 ordered binary trees with |w| leaves, where C|w|−1 is the (|w| − 1)th Catalan
number, and every ordered tree can be obtained from a binary one by contracting some of its edges.

ICALP 2016

122:12 On the Complexity of Grammar-Based Compression over Fixed Alphabets

Taking the strings (Li+1 ◦ Li+2 ◦ · · · ◦ Ld)(cs), which contain all occurrences of nonterminals
Ni, as the levels of the grammar, we are able to define a dynamic programming algorithm.10

I Theorem 15. SGP can be solved exactly in time and space O∗(3|w|).

Proof Sketch. With the help of the mappings Li, we can define the term profit for rules from
a d-level grammar G = (N,Σ, R, cs) as follows. The profit for a rule A→ α with A ∈ Nd can
be defined like in the 1-level case, i. e., p(A) = |cs|A(|α| − 1)− |α|, considering that removing
this rule and replacing each occurrence of A in cs by α increases the size of the grammar by
|cs|A(|α| − 1)− |α|. Inductive use of this argument allows us to define the profit of any rule
A→ α with A ∈ Ni by p(A) := |(Li+1 ◦ Li+2 ◦ · · · ◦ Ld)(cs)|A(|α| − 1)− |α|. This allows us
to compute the size of a G by |w| −

∑
A∈N p(A). The dynamic programming algorithm runs

trough steps i = 1, 2, . . . , w
2 and in step i, it considers all possibilities for two factorisations

qi−1 and qi of w induced by (Li ◦ Li+1 ◦ · · · ◦ Ld(cs) and (Li+1 ◦ · · · ◦ Ld)(cs), respectively
(note that this implies qi−1 � qi). The differences between qi−1 and qi implicitly define Ni.
Let qi = (v1, v2, . . . , vk) and let qi−1 = (u1, u2, . . . , u`), i. e., for some ji, 0 ≤ i ≤ k, with
1 = j0 < j1 < . . . < jk = `+ 1, (uji−1 , uji−1+1, . . . , uji−1) is a factorisation of vi, 1 ≤ i ≤ k.
If js − js−1 > 1 for some 1 ≤ s ≤ k, Ni contains a nonterminal A with |D(A)| = js − js−1
and D(A) = vs. The term | Li ◦ Li+1 ◦ · · · ◦ Ld)(cs)|A is also implicitly given by counting how
often the sequence of factors (ujs−1+1, . . . , ujs) independently occurs in qi−1 and is combined
into one single factor in qi, i.e.: |{t : (ujt−1+1, . . . , ujt

) = (ujs−1+1, . . . , ujs
)}|. This allows

to calculate the profit of the rule for A without knowing the exact structure of the rules
for nonterminals in Nj with j 6= i. By Lemma 13, this choice of nonterminals for Ni is
optimal for the fixed induced factorisations, which means that a search among all choices
for qi−1 and qi yields a minimal i-level grammar for w. The running time of this algorithm
is dominated by enumerating all pairs qi−1 and qi of factorisations of w. However, due to
qi−1 � qi, these pairs can be compressed as vectors {0, 1, 2}|w|−1 (the entries denote whether
the corresponding position in w is factorised by both, only one or none of the factorisations).
Hence, enumerating these pairs of vectors can be done in time O(3|w|). J

6 Conclusions

We conclude this work by deriving some parameterised complexity results.11 The shortest-
grammar problem (1-level and multi-level) is Para-NP-hard with respect to |Σ|, it is in XP
with respect to |N |, but also W[1]-hard, so most likely not in FPT. Furthermore, the hardness
of 1-SGP shows that bounding or parameterising by the number of levels does not help
either. However, if we parameterise by both |Σ| and ` = max{|D(A)| : A ∈ N}, then it is
sufficient to compute G(MinIDS(w,F)) for every set F ⊆ {u : u ∈ Σ+, |u| ≤ `}, which, since
the number of such sets is bounded by the parameters, yields an fpt-algorithm. A probably
more interesting combination of parameters, for which the existence of an fpt-algorithm is
still open, would be |Σ| and |N |.

The most interesting question (also from a practical point of view) left open is whether it is
possible to compute minimal grammars for small (especially binary) alphabets in polynomial-
time. The substantial effort that was necessary to prove Theorem 7 suggests that answering
this question in the negative might be difficult. On the other hand, it is not apparent
how a small alphabet could help in order to efficiently compute smallest grammars and, if

10The composition (f ◦ g) of mapping f : A→ A, g : A→ A is defined by (f ◦ g)(a) = f(g(a)).
11For unexplained concepts of parameterised complexity, we refer to Downey and Fellows [5].

K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid 122:13

this is possible, it seems that deeper combinatorial insights with respect to grammar-based
compression are necessary.

References
1 T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees. Inform-

ation Processing Letters, 110(18-19):815–820, 2010.
2 J. Arpe and R. Reischuk. On the complexity of optimal grammar-based compression. In

2006 Data Compression Conference (DCC), pages 173–182. IEEE Computer Society, 2006.
3 P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, andW. Rytter. On the complexity

of pattern matching for highly compressed two-dimensional texts. Journal of Computer and
System Sciences, 65(2):332–350, 2002.

4 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–
2576, 2005.

5 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013.

6 M. Farber. Independent domination in chordal graphs. Operations Research Letters,
1(4):134–138, 1982.

7 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237–267, 1976.

8 M. Jiang and Y. Zhang. Parameterized complexity in multiple-interval graphs: Domination,
partition, separation, irredundancy. Theoretical Computer Science, 461:27–44, 2012.

9 J. C. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000.

10 J. C. Kieffer, E.-H. Yang, G. J. Nelson, and P. C. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Transactions on Information Theory, 46(4):1227–
1245, 2000.

11 M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups, Complexity,
Cryptology, 4:241–299, 2012.

12 M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees. Theoretical Computer Science, 363(2):196–210, 2006.

13 M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Information Systems, 38(8):1150–1167, 2013.

14 M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata evalu-
ation for grammar-compressed trees. Journal of Computer and System Sciences, 78(5):1651–
1669, 2012.

15 D. F. Manlove. On the algorithmic complexity of twelve covering and independence para-
meters of graphs. Discrete Applied Mathematics, 91:155–175, 1999.

16 C. G. Nevill-Manning. Inferring Sequential Structure. PhD thesis, University of Waikato,
NZ, 1996.

17 C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997.

18 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theoretical Computer Science, 302:211–222, 2003.

19 C. E. Shannon. A theorem on coloring the lines of a network. J. Math. Physics, 28:148–151,
1949.

20 S. Skulrattanakulchai. ∆-list vertex coloring in linear time. Information Processing Letters,
98(3):101–106, 2006.

ICALP 2016

122:14 On the Complexity of Grammar-Based Compression over Fixed Alphabets

21 J. A. Storer. NP-completeness results concerning data compression. Technical Report 234,
Dept. Electrical Engineering and Computer Science, Princeton University, USA, November
1977.

22 J. A. Storer and T. G. Szymanski. Data compression via textural substitution. Journal of
the ACM, 29(4):928–951, 1982.

23 E.-H. Yang and J. C. Kieffer. Efficient universal lossless data compression algorithms based
on a greedy sequential grammar transform - part one: Without context models. IEEE
Transactions on Information Theory, 46(3):755–777, 2000.

	Introduction
	Preliminaries
	NP-Hardness of Computing Minimal Grammars for Fixed Alphabets
	The 1-Level Case
	The Multi-Level Case

	Minimal Grammars with a Bounded Number of Nonterminals
	Exact Exponential Time Algorithms
	The 1-Level Case
	The Multi-Level Case

	Conclusions

