
Minimizing Reachability Times on Temporal Graphs via Shifting Labels

Argyrios Deligkas1 , Eduard Eiben1 , George Skretas2
1Royal Holloway, University of London

2Hasso Plattner Institute, University of Potsdam
{argyrios.deligkas, eduard.eiben}@rhul.ac.uk, georgios.skretas@hpi.de

Abstract
We study how we can accelerate the spreading of
information in temporal graphs via shifting opera-
tions; a problem that captures real-world applica-
tions varying from information flows to distribu-
tion schedules. In a temporal graph there is a set
of fixed vertices and the available connections be-
tween them change over time in a predefined man-
ner. We observe that, in some cases, shifting some
connections, i.e., advancing or delaying them, can
decrease the time required to reach from some ver-
tex (source) to another vertex. We study how we
can minimize the maximum time a set of sources
needs to reach every vertex, when we are allowed
to shift some of the connections. If we restrict
the allowed number of changes, we prove that, al-
ready for a single source, the problem is NP-hard,
and W[2]-hard when parameterized by the number
of changes. Then we focus on unconstrained num-
ber of changes. We derive a polynomial-time al-
gorithm when there is one source. When there
are two sources, we show that the problem be-
comes NP-hard; on the other hand, we design an
FPT algorithm parameterized by the treewidth of
the graph plus the lifetime of the optimal solution,
that works for any number of sources. Finally,
we provide polynomial-time algorithms for several
graph classes.

1 Introduction
Every day million pieces of information need to be dissemi-
nated and most often it is desirable to minimize their delivery
time. In many cases, the diffusion of information depends
on schedules of physical and online meetings between en-
tities that form a dynamic network that changes over time,
depending on their availability. Usually, these schedules are
constrained due to physical limitations, laws, available infras-
tructure, and costs of extra resources and meetings. These
constraints are usually unavoidable since it is difficult, if
not impossible, to bypass them. On the other hand, careful
changes on the existing scheduling timetable can significantly
reduce the time a piece of information needs to reach every
recipient.

For an example motivated by real life, consider the scenario
where there are three employees A, B, and C in a university,
where each one of them has some information that needs to
reach every other person. The central timetabling team has
already arranged some meetings for them. Between employ-
ees A and B there is one meeting at 9am and one at 11am.
Between B and C there exists a meeting arranged at 8am
and another one at 4pm. Then observe that under the current
timetable, the information A has will reach C at 4pm – B will
receive the information from A at 9am and they will transmit
it to C at 4pm – while the information C has can reach A at
9am. However, if we delay the 8am meeting between B and
C to 10am, then the information of A can reach C at 10am,
and the information of C can still reach A at 11am. Figure 1
depicts this example.

9am,11am 8am,4pm 9am,11am 10am,4pm

Figure 1: Left: The original timetable. Right: The modified
timetable with the delayed meeting time.

The inherent temporal nature of timetabling, combined
with the existence of the underlying temporal network, al-
lows us to concisely formulate the scheduling scenario de-
scribed above as an optimization problem over a temporal
graph [Kempe et al., 2002]. At a high level, a temporal graph
consists of a fixed set of vertices and a timetable that defines
available connections, or temporal edges, at any point in time.
A temporal path is a sequence of temporal edges which, ad-
ditionally to the usual connectivity, respects the time con-
straints, i.e., temporal edges that are used later in the se-
quence, are available later in time than the ones that come be-
fore [Whitbeck et al., 2012]. As we have seen in the example
above, there exist cases where delaying some temporal edges
makes some temporal paths “faster”. In other words, both
advancing and delaying some edges can make the existing in-
frastructure more efficient in terms of reachability times.
Our contribution. The problem studied in this paper,
which we term REACHFAST, can be summarized as follows.

Given a temporal graph and a set of sources, shift
some temporal edges, i.e., advance or delay, such
that the maximum time any source needs to reach
all the vertices is minimized.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5333

First, we study REACHFAST with a single source in the graph.
We distinguish between two cases: either some constraint on
the advances/delays is imposed, or no such constraints exist.
We study two natural constrained versions that can appear in
real life scenarios:

• REACHFAST(k), where k bounds the number of edges
we can shift;

• REACHFASTTOTAL(k), where k bounds the sum of ab-
solute shifts over all edges.

In Theorem 2 we prove that both constrained versions are
W[2]-hard when parameterized by k and NP-hard otherwise.
We complement these negative results with an algorithm that
solves (unconstrained) REACHFAST in polynomial time.

Then, we depart from the single source case and study the
problem when there are more sources. In Theorem 5, we
prove that REACHFAST becomes NP-hard even if there are
just two sources and the temporal graph is rather restricted:
the graph has lifetime 1 and (static) diameter 6. This indicates
that tractability requires some constraints in the input tempo-
ral graph. We derive efficient algorithms for REACHFAST for
several graph classes of the underlying network. For trees,
we show that REACHFAST can be solved in polynomial time
for any number of sources. Then, we consider several paral-
lel paths with common endpoints. For this class, we design
a polynomial-time algorithm for REACHFAST when there are
only two sources and they are the endpoints of the paths. Our
last result considers graphs of bounded treewidth; this class
of graphs has received a lot of attention in the past. We show
that in this case REACHFAST can be encoded in Monadic Sec-
ond Order logic, where the size of the formula depends only
on the deadline by which we want to reach all the vertices
from every source. Then, using Courcelle’s Theorem, we get
a fixed parameter tractable algorithm for the problem, param-
eterized by the treewidth of the graph and the lifetime of the
optimal solution that works for any number of sources.
Related work. The modification of temporal graphs such
that an objective is optimized, has received significant at-
tention recently, mainly motivated by virus-spread minimiza-
tion [Braunstein and Ingrosso, 2016; Enright and Kao, 2018].
A line of work studies minimization of reachability sets for
a set of sources over a temporal graph using a variety of op-
erations: delaying operations were first studied in [Deligkas
and Potapov, 2020], alongside merging operations; edge-
deletion and temporal edge-deletions operations were stud-
ied in [Enright et al., 2021a; Enright and Meeks, 2018]; re-
ordering of the temporal edges was studied in [Enright et
al., 2021b]. Finally, [Molter et al., 2021] studies the rela-
tionship between the delaying and the edge-deletion opera-
tions under the reachability-minimization objective. All of
the above mentioned reachability problems heavily depend
on the computation of temporal paths, a problem that has re-
ceived a lot of attention [Wu et al., 2014; Wang et al., 2015;
Wu et al., 2016; Wu et al., 2012] and different definitions of
temporal paths have been proposed [Casteigts et al., 2021;
Thejaswi and Gionis, 2020]. In [Li et al., 2018] a similar
idea to ours was explored under a slightly different objec-
tive. There, every temporal edge had a traversal-time that de-
pends on the time it is used and the goal was to find temporal

paths that minimize the overall traversal-time. The authors
observed that, for their objective, it might be beneficial to
wait until they use an edge, since this might decrease the to-
tal traversal-time. Another recent work of interest [Klobas et
al., 2022] studies the problem of finding the minimum num-
ber of labels that have to be added so that a temporal graph G
is temporally connected. This problem seems really close to
ours, albeit they have some crucial differences. Namely, tem-
poral connectivity requires “both-ways” connections, while
we focus on “one-way” connections.

2 Preliminaries
For n ∈ N, we denote [n] := {1, 2, . . . , n}. A temporal
graph G := ⟨G, E⟩ is defined by an underlying graph G =
(V,E) and a sequence of edge-sets E = (E1, E2, . . . , Etmax).
It holds that E = E1 ∪ E2 ∪ · · · ∪ Etmax . Etmax ̸= ∅ and
the lifetime of G is tmax. An edge e ∈ E has label i, if it
is available at time step i, i.e., e ∈ Ei. The traversal time
of an edge e ∈ Ei at time step i is tr(i, e); i.e., staring from
one endpoint of the edge at time step i, we reach the the other
endpoint at the time step i+ tr(i, e).

A temporal path in ⟨G, E⟩ from vertex v1 to vertex vm is
a sequence of edges P = (vivi+1, ti)

m−1
i=1 such that for every

i ∈ [m] it holds that:

• vivi+1 ∈ Eti , i.e. vivi+1 is available at time step ti;

• ti + tr(ti, vivi+1) ≤ ti+1 for every i ∈ [m− 1].

The arrival time of P is tm = tm−1 + tr(tm−1, vm−1vm).
We call P a foremost temporal (v1, vm)-path if for every j ∈
[m−1] there is no temporal path P ′

j from v1 to vj+1 such that
the arrival time of P ′

j is strictly smaller that the arrival time
of Pj = (vivi+1, ti)

j
i=1.

A vertex v is reachable from vertex u by time t in a tem-
poral graph G if there exists a temporal path from u to v with
arrival time at most t. It is possible that u is reachable from
v, but v is not reachable from u. The reachability set of v, de-
noted reach(v,G), contains all the vertices reachable from
v. The reaching-time of v, denoted reachtime(v,G), is t if
there exists a temporal path from v to every vertex u ∈ V with
arrival time at most t. If there is a vertex u /∈ reach(v,G),
then we will say that v has infinite reaching-time.

The shifting of edge uv ∈ Ei by δ ∈ Z \ {0}, denoted
delay(uv, i) = δ, refers to replacing the label i of this edge
with the label i + δ. When δ has a positive value, we say
that the label is delayed, and when δ has a negative value, we
say that the label is advanced. Note that shifting an edge is
allowed only when i + δ ≥ 1, but we allow i + δ > tmax,
i.e. we are allowed to increase the lifetime of the graph by
delaying edges. Given a temporal graph G and a set of edges
X ⊆ E × [tmax] we denote G̃(X) a class of temporal graphs
where every edge in X is shifted. A temporal graph G′ ∈
G̃(X) has k edges shifted, if |X| = k; the total shift of G′
is k if

∑
i∈[tmax]

∑
uv∈Ei

|delay(uv, i)| = k. Observe that
shifting an edge can increase the reachability set of a vertex
v, or it can decrease the reaching-time between two vertices.
See Figure 2 for an example.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5334

A B C D E
2,11 2 1 12 1

A B C D E
2 13,11 22 1

Figure 2: Top: The original temporal graph of a network where we
assume that every label has traversal time equal to 1. Note that vertex
C reaches vertex A at time step 12 and vertex E is unreachable.
Bottom: The modified temporal graph by delaying edges AB and
DE. Note that now, vertex C reaches vertex A at time step 4 and
vertex E can now be reached at time step 3.

The REACHFAST problem. An instance of REACHFAST
consists of a temporal graph G := ⟨G, E⟩ and a set of
sources S ⊆ V . The goal is to minimize the reaching-
time any source requires to reach all the vertices of V un-
der shifting operations. We say that a temporal graph G′ is
a solution to an instance ⟨G = ⟨G, E⟩, S⟩ of REACHFAST if
G′ ∈ G̃(X) for some X ⊆ E × [tmax] and for every v ∈ S
we have reach(v,G′) = V (G). The value of a solution G′
is maxv∈S reachtime(v,G′). We say that a solution G′ is
optimal if the value of G′ is minimized among all solutions.
In other words, our objective is

min
X⊆V,G′∈G̃(X)

max
v∈S

reachtime(v,G′).

In addition, we study two constrained versions of the prob-
lem. In REACHFAST(k) we require that |X| ≤ k, where k is
a part of the input; in REACHFASTTOTAL(k) we require that∑

i∈[tmax]

∑
uv∈Ei

|delay(uv, i)| ≤ k.

Observation 1. Given a temporal graph G := ⟨G, E⟩, where
the underlying graph G is connected and a set of sources
S ⊆ V . If every edge of G has at least |S| labels, then
REACHFAST on G has a solution.

The next observation shows that when we can shift any
number of edges, REACHFAST under shifting reduces to
REACHFAST under delaying operations only.
Observation 2. Let G := ⟨G, E⟩ be a temporal graph,
S ⊆ V (G) a set of sources and let G′ := ⟨G, E ′⟩ be the
temporal graph constructed from G by advancing the labels
of each edge e to the first ke time steps, where ke is the num-
ber of labels of e. Then, any solution for REACHFAST under
S in graph G′ that only delays edges, is also a solution for
REACHFAST under S in G.
Parameterized complexity. We refer to the standard books
for a basic overview of parameterized complexity theory [Cy-
gan et al., 2015; Downey and Fellows, 2013], and assume
that readers are aware of the graph parameter treewidth and
the complexity classes FPT, XP, W[1], and W[2].
Monadic Second Order Logic. We consider Monadic Sec-
ond Order (MSO) logic on labeled graphs in terms of their in-
cidence structure whose universe contains vertices and edges;
the incidence between vertices and edges is represented by
a binary relation. Let Φ(X1, X2, . . . , Xk) be an MSO for-
mula with a free set variables X1, . . . , Xk. For a labeled
graph G = (V,E) and sets S1, . . . , Sk ⊆ E we write
G |= Φ(S1, . . . , Sk) if the formula Φ holds true on G when-
ever Xi is instantiated with Si for all i ∈ [k].

3

x1 x2 x3

y1 y2 y3

x4

y4

u0

z1 zm

yn

xn

z2

1 1 1 1 1

11
11

1

3 3 3 3

3 3 3 3 3

S1 = {1, 3, 4} S2 = {3, 4} Sm = {4, n}

Figure 3: The construction used at Theorem 2. The sub-
sets of the HITTING SET problem are S1 = {1, 3, 4}, S2,=
{3, 4}, . . . , Sm = {4, n}.

Fact 1 ([Arnborg et al., 1991]). Let Φ(X1, . . . , Xk) be an
MSO formula with free sets variables X1, . . . , Xk and w a
constant. Then there is a linear-time algorithm that, given
a labeled graph G = (V,E) of treewidth at most w, de-
cides whether there exists k sets S1, . . . , Sk,⊆ E(G) such
that G |= Φ(S1, . . . , Sk). Moreover, if such solution exists,
the algorithm constructs one such solution.

We note that [Arnborg et al., 1991] does not explicitly con-
struct the solution, however, for each formula, they construct
a tree automaton that works along the decomposition and
stores f(w, |Φ(X1, . . . , Xk)|)-many records (for some com-
putable function f) for the optimal solutions. To make it con-
structive, for each record we only need to remember a viable
representative.

3 One Source
In this section we study the most basic case of REACHFAST
problem, where there is only one source. To begin with, we
show that both constrained versions of the problem are W[2]-
hard when parameterized by k.

Theorem 2. Problems REACHFASTTOTAL(k) and
REACHFAST(k) are W[2]-hard when parameterized by k.

Proof sketch. We will prove the theorem via a reduction from
HITTINGSET. An instance of HITTINGSET consists of a col-
lection of subsets S1, S2, . . . , Sm over [n] and a positive in-
teger k, and we need to decide if there is a set T ⊂ [n] of size
k, such that Sj ∩ T ̸= ∅ for every j ∈ [m]. HITTINGSET
is known to be W[2]-hard when parameterized by k (see, e.g.,
[Cygan et al., 2015]).

Given an instance of HITTINGSET with m sets over [n],
known to be W[2]-hard when parameterized by the solution
size k, we construct a temporal graph G with 2n + m + 1
vertices as follows (see Figure 3).

First we let u0 be the source. Then, we construct the ver-
tices x1, x2, . . . , xn, and the vertices y1, y2, . . . , yn. For ev-
ery i ∈ [n] we have three edges: u0xi with label 1; xiyi with
label 1; u0yi with label 3. Finally, we construct the vertices
z1, z2, . . . , zm, where vertex zj corresponds to subset Sj . If
i ∈ Sj , then we create the edge yizj with label 3.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5335

Algorithm 1: One Source Reach Fast Algorithm

Require: A temporal graph G := ⟨G, E⟩ and a source v.
Ensure: An optimal solution G′.

1: S ← v; St ← ∅; r = 0;
2: while |S| ̸= |V | do
3: for every vertex u ∈ S do
4: for every neighbor w /∈ S of u do
5: for i = 1, 2, . . . , r do
6: if uw ∈ Ei then
7: min = i+ tr(i, uw)
8: for j == i, j ++,min < j do
9: if min < tr(j, wu) then

10: min = tr(j, wu)
11: delay(uw, i) = j − i
12: St ← St ∪ {w}
13: S ← S ∪ St; St ← ∅; r ++;

We claim that there exists a solution to REACHFAST(k)
and REACHFASTTOTAL(k), such that u0 reaches all the ver-
tices at time step 3 that in the temporal graph we constructed
above, if and only if there is a solution to the original HIT-
TINGSET instance with |T | = k. Note that the above reduc-
tion still holds when the traversal time of each edge is larger
than 1.

The proof of Theorem 2 immediately implies the following
corollary. Therefore, if we want to prove any positive result,
then we need to either restrict the underlying graph structure,
or study the unconstrained version of REACHFAST.
Corollary 3. REACHFAST(k) and REACHFASTTOTAL(k)
are NP-hard when k is part of the input.

On the positive side, we can design a polynomial-time al-
gorithm, termed Algorithm 1, for REACHFAST, when there
is a single source. We will utilize Observation 2 and wlog
we will assume that all the labels appear at the first time step;
thus we have to consider only delaying operations.

Algorithm 1 uses a greedy approach. In every round r, it
checks every vertex u that has been reached by the source by
time tr, and delays every incident unused temporal edge uw
to the time step with the minimum arrival time to w, if vertex
w has not yet been reached by source vertex v.
Theorem 4. Algorithm 1 solves the unconstrained version of
the REACHFAST with one source in polynomial time.

4 Two Sources
In this section we study the case where we have more than one
sources. Since we know from Theorem 2 that the constrained
versions of REACHFAST are NP-hard even when there is a
unique source, we will only consider the unconstrained case.
As we will show below, REACHFAST becomes hard even if
there are just two sources. In fact, the underlying graph that
results from our reduction always admits an optimal solution
of a constant value. Note that this also means that the problem
is even APX-hard; i.e., unless P = NP, there is no polynomial-
time c-approximation for some c > 1. We highlight that the
constructed temporal graph has lifetime 1 and every label has

Figure 4: The construction used in Theorem 5. The first clause of
the MONLINNAE3SAT instance is c1 = (x1 ∨ x2 ∨ x3).

traversal time 1 as well. This means that, essentially, there
are no temporal constraints in the edges.
Theorem 5. It is NP-complete to decide whether REACH-
FAST with two sources admits a solution of value 6, even on
temporal graphs of lifetime 1.

We will prove the theorem via a reduction from a special
version of NAE3SAT, termed MONLINNAE3SAT [Dar-
mann and Döcker, 2020]. We are given a CNF formula ϕ that
involves n variables and m clauses that satisfy the following
constraints: every clause is made up of exactly three distinct
literals; each variable appears exactly four times; there are no
negations in the formula; each pair of clauses shares at most
one variable. The goal is to decide whether there exists a truth
assignment, such that for each clause at least one literal is set
to true and at least one literal is set to false.
Construction. Given an instance ϕ of MONLIN-
NAE3SAT, we will create a temporal graph G with
3n + 4m + 12 variables. Since the graph has lifetime 1,
we do not have to specify the labels of the edges. The two
sources are the vertices s and s′. For every clause cj we cre-
ate two clause-vertices aj , a

′
j , two auxiliary vertices zj , z

′
j ,

and the edges saj , s
′a′j and ajzj , a

′
jz

′
j . For every variable

xi, we create the vertices bi, b′i and wi. If variable xi appears
in clause cj , then we add the edges aibj and a′ib

′
j . In addition

if variables xi and xj belong to the same clause we add the
edges bibj , b

′
ib

′
j and wiwj . Finally, we create a “ladder”

between s and s′ using the vertices pi, qi where i ∈ [5].
The “ladder” is created by the edges sp1, sq1, s

′p5, s
′q5

and the edges piqi for every i ∈ [5]. Figure 4 depicts ours
construction. Theorem 5 follows immediately from the
following two lemmas.
Lemma 6. If the instance of MONLINNAE3SAT is satisfi-
able, then for the constructed temporal graph G we have that
minX⊆V,G′∈G̃(X) maxv∈S reachtime(v,G′) = 6.

Proof sketch. We create the labelling for G whose pattern is
depicted in Figure 5. The proof is completed by observing

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5336

Figure 5: The labelling of G̃(X) for a given satisfying assignment
of MONLINNAE3SAT, where in clause cj = (xi1 ∨ xi2 ∨ xi3) we
have xi1 = True and xi3 = False; the assignment of xi2 does not
affect the reachability. The coloured directed paths, are the temporal
paths from the corresponding source. The edges with two colors and
two arrows are used at the same time step by both colours.

that under this labelling scheme s and s′ reach every vertex
by time step 6.

Lemma 7. If the constructed temporal graph G admits a so-
lution of value at most 6, then there is a satisfying assignment
for the instance of MONLINNAE3SAT.

5 Tractable Cases
In this section, we give algorithms for REACHFAST for three
special classes of underlying graphs: trees, parallel paths, and
graphs of bounded treewidth. Due to Observation 2, we focus
only on delaying operations, and assume that all the labels of
an edge form an interval starting at time step one.

5.1 Trees
First, we focus on temporal graphs with many sources where
the underlying graph is a tree. To devise a polynomial-
time algorithm, we want to limit the number of solutions we
have to check in order to find an optimal one. To achieve
this, we show that a lot of prospective delays are unneces-
sary, i.e., they do not contribute to minimizing the maximum
reachtime objective. We first formally define unnecessary
labels and then show that they can be removed from a solution
L without impacting the solution value negatively.

Definition 8. Consider a tree G, a set of sources S and a
solution G′ to the REACHFAST problem, where we apply a
delay d on an edge xy that leads to the label ℓ on xy in G′.
Assume that in G′ exists

• a source r ∈ S and a leaf vertex u, where
the foremost temporal path from r to u, Pr,u =
(r, u1, . . . , x, y, . . . , uk, u), does not use label ℓ, but
uses another label ℓ′ > ℓ, and

• a source r′ ∈ S and a leaf u′, where the
foremost temporal path from r′ to u′, Pr′,u′ =

1,2

1,2

r b

g

pu

1,2

v

w
1,2 1,2 1,2 1,2

x

Figure 6: A tree graph with four sources: r,b,g,p

(r, u′
1, . . . , y, x, . . . , u

′
k, u

′), does not use label ℓ, but
uses another label ℓ′′ > ℓ.

We call such a delay d unnecessary. We call all other delays
necessary.

Lemma 9. Given a tree graph G, a set of sources S, a
solution G′ to the REACHFAST problem, removing an un-
necessary delay d from G′, creates a solution G′′ such that
maxv∈S reachtime(v,G′′) ≤ maxv∈S reachtime(v,G′).

Proof. Let us first give an intuitive explanation. Consider
Figure 6, where we have 4 sources. Assume that we have
a solution G′, where the first label ℓ on edge ru is delayed to
time step 2, the second one ℓ′ to time step 4, and the fore-
most temporal path from p to u uses ℓ′. Even if r uses label ℓ
to reach vertex u, it can also use ℓ′ since p uses that label to
reach vertex u. This is what makes the delay on label ℓ unnec-
essary and we can remove it without impacting the solution
value. Let us move to the formal proof.

Based on Definition 8, let us assume that there ex-
ist two sources r, r′ ∈ S, where the foremost tem-
poral paths from r, r′ to leaf vertices u, u′, respec-
tively, Pr,u = (r, u1, . . . , x, y, . . . , uk) and P ′

r,u =
(r′, u′

1, . . . , y, x, . . . , u
′
k) do not use label ℓ, but uses another

label ℓ′ > ℓ, ℓ′′ > ℓ, respectively. We will show that after
removing the delay d, for every b ∈ S and every vertex v, the
arrival time of a foremost path from b to v does not exceed
maxr∈S reachtime(r,G′).

Consider any source b whose foremost temporal path Pb,v

from b to v uses the label ℓ in G′ to traverse from x to y. Re-
moving the delay d, makes this temporal path invalid. How-
ever, recall that the foremost path Pr,u traverses from x to y
using label ℓ′ > ℓ . Since, Pr,u is the foremost path, it is not
possible to reach the vertex y from r earlier than by arrival
time achieved by using label ℓ′. In particular, the foremost
path Pr,v also uses the label ℓ′ on the edge xy (note that since
G is a tree Pr,v has to traverse the edge xy from x to y).
Therefore, to reach the vertex v from b after we remove the
delay d we can take the prefix of Pb,v to reach the vertex x
and the suffix of Pr,v to reach from x to v at the same time as
the foremost path from r arrives to v. We can follow an anal-
ogous argument in the case when the path from b to v uses the
label ℓ to traverse from y to x but using the existence of P ′

r,u

instead of Pr,u. Therefore, maxv∈S reachtime(v,G′′) ≤
maxv∈S reachtime(v,G′).

Lemma 9 shows us that every solution with unnecessary

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5337

delays can be mapped to an equal or better solution by re-
moving all unnecessary delays. This leads to the following
observation and lemmas that limit the search space for an op-
timal solution.

Observation 3. Given a tree graph G, and a set of sources S,
there exists an optimal solution to the REACHFAST problem
that contains no unnecessary delays.

Lemma 10. In every solution G′ obtained by only necessary
delays, there exists either a vertex u or an edge vw where (i)
the position of u (vw) in the graph is between at least two
sources and (ii) there is a time step t such that every source
r ∈ S \ {u} reaches u for the first time at t or, respectively,
a path with arrival time at most maxr∈S reachtime(r,G′)
from every source traverses the edge uv with label t. We call
such a vertex u, bottleneck vertex, and such an edge vw, bot-
tleneck edge.

Lemma 11. Consider a solution G′ for temporal graph
G with only necessary delays that has bottleneck vertex
u/edge vw. Then there exists a solution G′′ with only
necessary delays such that maxr∈S reachtime(r,G′′) ≤
maxr∈S reachtime(r,G′) and the maximum time any
source requires to reach u/vw is the minimum such time
among all the solutions.

Lemmas 10,11 give us a nice property of an optimal solu-
tion that we can algorithmically exploit. There exists an op-
timal solution that uses only necessary delays and minimizes
the time to reach some bottleneck/edge. Note that the number
of possibilities for the bottleneck is bounded by the size of the
graph and we can go over all the possibilities and compute a
solution as if the given possibility is a bottleneck. Given a
bottleneck b we are left with two problems: (1) finding mini-
mum time tb needed to reach the bottleneck and (2) reaching
every vertex in G when starting at b at time tb after using some
of the labels. Problem (2) can be straightforwardly reduced
to REACHFAST with one source and we can use Algorithm 1
to solve it.The following lemma resolves problem (1).

Lemma 12. There is a polynomial-time algorithm, that given
a tree and a vertex u, delays only necessary labels such that
the maximum time any source requires to reach u is mini-
mized.

Proof. In order to only use necessary delays, for every source
vertex r that has vertex w ∈ Pr,u, every such source r must
reach w before we delay label ℓ on edge wx (where x is the
vertex on path w ∈ Pr,u that has not been reached by source
r. The algorithm works as follows. We keep a counter t that
tracks the current time step and C that tracks the vertices that
we still need to check. Initially, t = 1 and C = V . In each
iteration of the algorithm, we check each vertex w ∈ C to
see whether there exists a source r that has not reached w.
If there exists at least one such source, we move to the next
vertex in C and increase t by 1. If every source r has reached
w, we delay the first label on edge wx to time step t. Then,
we move to the next vertex in C and increase t by 1. This
generates our solution G′.

Theorem 13. REACHFAST on trees can be solved in polyno-
mial time.

Proof sketch. The algorithm iteratively considers every edge
and every vertex of the tree as if this was a bottleneck
edge/vertex in an optimal solution and it outputs the solu-
tion that achieves the minimum time. For every bottleneck
edge/vertex, it works in two phases. In phase 1, it uses
Lemma 12 to find the minimum time needed in order all
sources to reach this vertex (or the two vertices of the bottle-
neck edge we consider). Then, in phase 2 it uses Algorithm 1
to reach all vertices treating the bottleneck vertex as a source;
if we have a bottleneck edge, then it considers them a single
source.

5.2 Parallel Paths
In this section we study parallel paths P1, P2, . . . with com-
mon endpoints and two sources. where the endpoints are the
sources, denoted A and B. Our algorithm for this case relies
on guessing the time that sources reach each other in an opti-
mal solution. In what follows, for a clearer and more intuitive
presentation, we will consider every source to be represented
by a distinct color. Thus, the goal is to design algorithms
that minimize the time every vertex is reached by all colors.
For each combination of guesses for the two sources, the al-
gorithm also guesses which paths between A and B achieve
the time of the optimal solution. Again, for each guessed
path, the algorithm guesses how each source/color optimally
reaches every vertex in the rest of the paths.

Theorem 14. There is a polynomial time algorithm for the
REACHFAST problem on graphs that consist of several par-
allel paths with two common endpoints, where the two end-
points are the sources.

Proof sketch. The algorithm goes through every possible pair
of reaching-times (r1, r2) that sources A and B can have to
reach one another. This process requires O(tmax + n − 1)2

repetitions. Note that this process runs through every possible
solution of the REACHFAST problem since by time step tmax

every label on the graph is available to be delayed and the
static distance between the sources cannot be more than n−1.
Since every label is available, if every edge has two labels and
there are two sources on the graph, there is no reason for a
color to delay using an edge, since there is always a second
label available for the other color. If there is only one label on
an edge of a path Px, there are only two valid choices: either
(i) both colors traverse the one label edge together (possibly
in the opposite direction), or (ii) only one color uses path Px.
Thus the algorithm runs through every possible scenario that
might yield a solution to the REACHFAST problem.

In Step 1, the algorithm checks every possible combination
of paths that can achieve the reaching-time imposed by each
for-loop. This can be achieved in polynomial time, since ev-
ery loop checks a combination of two paths, and any graph
can have at most n parallel paths between the two sources.

In Step 2, for every path combination of Px, Py that can
achieve the desired reaching-time, the algorithm uses the
multiple source tree algorithm as a subroutine to transmit the
color to the rest of the edges on the paths. Specifically, for
each path Pw we need to distinguish between several cases
depending on whether the sources A and B reach all the ver-
tices of Pw directly on the path Pw or, for example, the source

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5338

A uses Px to reach B before reaching some vertices of the
path Pw. Unfortunately in the latter case we cannot use The-
orem 13 directly, as the vertex B becomes available for the
”color” of source A only at time step r1, but a minor modifi-
cation makes the algorithm to work.

5.3 Bounded-Treewidth Graphs
In this subsection, we show that REACHFAST admits an FPT
algorithm parameterized by treewidth plus the value of the
sought solution D; i.e., when looking for a solution G′ such
that for all v ∈ S it holds that reachtime(v,G′) ≤ D. Here
D can be viewed as a deadline by which we have to reach
all vertices of the graph from all sources. As in the previous
sections, we again assume that we are only allowed to delay
the edges, which we can assume without loss of generality
due to Observation 2.

Theorem 15. Given a temporal graph G := ⟨G, E⟩ such that
G has treewidth bounded by a constant, a set of sources S ⊆
V (G), and a constant D, there is a linear-time algorithm that
either computes a solution G′ of value at most D or decides
that the value of an optimal solution is at least D + 1.

Proof Sketch. To prove the theorem we construct a la-
beled graph H such that treewidth of H is at most
treewidth of G and an MSO formulation Φ(X) such that
the size of formula Φ(X) depends only on D and X =
(X1

1 , X
2
1 , . . . X

D
1 , X1

2 , X
2
2 , . . . X

D
D). Observe that if for some

edge e ∈ E(G) and some time step i, we have tr(i, e) > D,
then we will never delay the edge e to the time step i and
we can assume that whenever tr(i, e) > D, then tr(i, e) =
D + 1. For sets S1, . . . , SD of edges, let G[S1, . . . , SD] de-
note the temporal graph obtained from G by delaying, for
each i ∈ [D], every edge in Si to Ei. Moreover, for ev-
ery i ∈ [D] let {S1

i , . . . , S
D
i } be the partition of Si such

that edge e ∈ Si belongs to Sj
i if and only if tr(i, e) = j.

We will show that H |= Φ(S1
1 , . . . , S

D
D) if and only if in

the temporal graph G[S1, . . . , SD] it holds for all v ∈ S that
reachtime(v,G[S1, . . . , SD]) ≤ D. The result then follows
by Fact 1. To construct H we let

1. V (H) = V (G),

2. E(H) =
⋃

i∈[D] Ei (note that E(H) ⊆ E(G)),

3. the edge e ∈ E(H) has label (I, T), where I ⊂ [D]
and T = (t1, . . . , tD) ∈ [D + 1]D such that (1) for all
i ∈ [D] we have i ∈ I if and only if e ∈ Ei, and (2) for
all j ∈ [D], we have tr(j, e) = tj ,

4. every vertex in S has label S.

It is easy to see that H is a subgraph of G and hence the
treewidth of H is bounded by the treewidth of G. The MSO
formulation Φ(X) is a conjunction of four building blocks
(subformulas) that can each be easily expressed as an MSO
formulation of the size depending only on D. The first block
check that each of the sets Xj

i is an edge set. The second
block checks that every edge in Xj

i has a label (I, T) with
ti = j. The third block checks that if some edge is precisely
at the time steps in I ⊆ [D] after the delaying, that is the
edge appears in some Xj

i for every i ∈ I and no other Xj
i ,

then we can delay this edge to these time steps. This is simply
a big conjuction of small subformulas stating that if an edge
is precisely in some given Xj

i ’s then the edge has one of the
labels that allow for these Xj

i ’s. Finally, the fourth block
verifies that for every source vertex s and every other vertex
t in the graph, there is an s-t path using only edges in some
Xj

i ’s. Note that each such path has to have length at most
D and each edge on the path should belong to one of Xj

i .
Moreover, such temporal path is valid exactly when for two
consecutive edges e1 ∈ Xj1

i1
, e2 ∈ Xj2

i2
, we have i1+j1 ≤ i2.

Hence the fourth block is a disjunction over all less than D3

many valid possibilities of an s-t path that reaches the target
by time D and checking that there exists an s-t path with
edges in the prescribed sets Xj

i .

6 Conclusion
We view our paper as part of a greater agenda whose goal is to
make existing infrastructures more efficient, by making min-
imal changes to the currently-adopted solutions. We intro-
duced and studied the complexity of REACHFAST problem,
where the goal was to minimize the maximum reaching-time
of a set of sources towards every vertex of the graph using
shifting operations.

Since we study optimization problems that are NP-hard, in-
stead of focusing on restricted classes of instances, one can
ask to relax the optimality condition and ask for some ap-
proximate solutions. Here we would like to point out that
Theorem 5 implies the problem is APX-hard even for two
sources, however existence of a constant approximation for
some constant c > 7/6 is an interesting open question.
In both, REACHFAST (k) and REACHFASTTOTAL (k) there
are two criteria one might wish to optimize: the maximum
reaching-time, i.e., a deadline D, and k. Our reduction from
HITTING SET is approximation-preserving for k and hence
a (1 − o(1)) log(|V (G)|)-approximation algorithm for value
k is unlikely, unless P = NP. Similarly, for fixed k, the re-
duced instance we obtain either admits a solution with D = 3
or does not admit a solution, and polynomial time algorithm
that approximates D for fixed k is again highly unlikely.

Our work also creates several interesting directions for fu-
ture research that can be studied under the shifting operations.
Instead of minimizing the maximum reaching-time of any
source, we could try to minimize the average time a source
needs to reach all the vertices of the graph. Another objec-
tive is to minimize the maximum, or average, time a vertex is
reached by any of the sources; this would be desirable, for ex-
ample, in the case where a company has several warehouses
over a country. The dual version of the problem is intrigu-
ing as well. Here, instead of sources, we have a set of sinks,
i.e., every vertex wants to reach them as fast as possible. This
model can capture for example the scenario where the sinks
correspond to hospitals. While some of our results should
work for some cases of this setting, we expect that novel al-
gorithmic techniques are required in order to tackle them.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5339

References
[Arnborg et al., 1991] Stefan Arnborg, Jens Lagergren, and

Detlef Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308–340, 1991.

[Braunstein and Ingrosso, 2016] Alfredo Braunstein and
Alessandro Ingrosso. Inference of causality in epidemics
on temporal contact networks. Scientific reports, 6:27538,
2016.

[Casteigts et al., 2021] Arnaud Casteigts, Anne-Sophie
Himmel, Hendrik Molter, and Philipp Zschoche. Find-
ing temporal paths under waiting time constraints.
Algorithmica, pages 1–49, 2021.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Darmann and Döcker, 2020] Andreas Darmann and
Janosch Döcker. On a simple hard variant of not-all-equal
3-sat. Theoretical Computer Science, 815:147–152, 2020.

[Deligkas and Potapov, 2020] Argyrios Deligkas and Igor
Potapov. Optimizing reachability sets in temporal graphs
by delaying. In Proc. of AAAI, pages 9810–9817, 2020.

[Downey and Fellows, 2013] Rodney G. Downey and
Michael R. Fellows. Fundamentals of parameterized
complexity. Texts in Computer Science. Springer, 2013.

[Enright and Kao, 2018] Jessica Enright and Rowland Ray-
mond Kao. Epidemics on dynamic networks. Epidemics,
24:88 – 97, 2018.

[Enright and Meeks, 2018] Jessica Enright and Kitty Meeks.
Deleting edges to restrict the size of an epidemic: a new
application for treewidth. Algorithmica, 80(6):1857–1889,
2018.

[Enright et al., 2021a] Jessica A. Enright, Kitty Meeks,
George B. Mertzios, and Viktor Zamaraev. Deleting edges
to restrict the size of an epidemic in temporal networks. J.
Comput. Syst. Sci., 119:60–77, 2021.

[Enright et al., 2021b] Jessica A. Enright, Kitty Meeks, and
Fiona Skerman. Assigning times to minimise reachability
in temporal graphs. J. Comput. Syst. Sci., 115:169–186,
2021.

[Kempe et al., 2002] David Kempe, Jon Kleinberg, and
Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sci-
ences, 64(4):820–842, 2002.

[Klobas et al., 2022] Nina Klobas, George B Mertzios, Hen-
drik Molter, and Paul G Spirakis. The complexity of com-
puting optimum labelings for temporal connectivity. In
47th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2022), volume 241,
page 62, 2022.

[Li et al., 2018] Lei Li, Kai Zheng, Sibo Wang, Wen Hua,
and Xiaofang Zhou. Go slow to go fast: minimal on-road
time route scheduling with parking facilities using histori-
cal trajectory. The VLDB Journal, 27(3):321–345, 2018.

[Molter et al., 2021] Hendrik Molter, Malte Renken, and
Philipp Zschoche. Temporal reachability minimization:
Delaying vs. deleting. In Filippo Bonchi and Simon J.
Puglisi, editors, 46th International Symposium on Math-
ematical Foundations of Computer Science, MFCS 2021,
August 23-27, 2021, Tallinn, Estonia, volume 202 of
LIPIcs, pages 76:1–76:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[Thejaswi and Gionis, 2020] Suhas Thejaswi and Aristides
Gionis. Restless reachability in temporal graphs. arXiv
preprint arXiv:2010.08423, 2020.

[Wang et al., 2015] Sibo Wang, Wenqing Lin, Yi Yang, Xi-
aokui Xiao, and Shuigeng Zhou. Efficient route planning
on public transportation networks: A labelling approach.
In Proc. of SIGMOD, pages 967–982. ACM, 2015.

[Whitbeck et al., 2012] John Whitbeck, Marcelo Dias de
Amorim, Vania Conan, and Jean-Loup Guillaume. Tem-
poral reachability graphs. In Mobicom, pages 377–388,
2012.

[Wu et al., 2012] Lingkun Wu, Xiaokui Xiao, Dingxiong
Deng, Gao Cong, Andy Diwen Zhu, and Shuigeng
Zhou. Shortest path and distance queries on road net-
works: An experimental evaluation. Proc. VLDB Endow.,
5(5):406–417, 2012.

[Wu et al., 2014] Huanhuan Wu, James Cheng, Silu Huang,
Yiping Ke, Yi Lu, and Yanyan Xu. Path problems in tem-
poral graphs. Proc. of VLDB Endowment, 7(9):721–732,
2014.

[Wu et al., 2016] Huanhuan Wu, Yuzhen Huang, James
Cheng, Jinfeng Li, and Yiping Ke. Reachability and time-
based path queries in temporal graphs. In Proc. of ICDE,
pages 145–156. IEEE, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5340

	Introduction
	Preliminaries
	One Source
	Two Sources
	Tractable Cases
	Trees
	Parallel Paths
	Bounded-Treewidth Graphs

	Conclusion

