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—— Abstract

The problem of deciding whether a biconnected planar digraph G = (V, E) can be augmented to
become an st-planar graph by adding a set of oriented edges E’ C V x V is known to be NP-complete.
We show that the problem is fixed-parameter tractable when parameterized by the size of the set E’.
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1 Introduction

Edge modification problems have long been a subject of investigation in graph algorithms,
resulting in a vast body of literature dedicated to exploring their computational complexity
(refer, for instance, to Burzyn et al. [4] and to Natanzon et al. [16] for comprehensive surveys).
One specific category within this realm is the family of edge completion problems, which
can be succinctly described as follows: Given a graph G = (V, E) and a graph family G, the
objective is to determine whether it is possible to augment G with a set £/ C V x V of edges
such that G’ = (V, EUE’) € G. In such cases, we say that G becomes a member of G by adding
the edges in E’. Edge completion problems are frequently known to be NP-hard, thereby
inspiring numerous studies focusing on parameterized complexity. For a comprehensive
examination of parameterized algorithms addressing edge completion problems, we point the
reader to the exhaustive survey by Crespelle et al. [7].

This paper focuses on the investigation of an edge completion problem specifically applied
to directed graphs (digraphs for short). More precisely, let G = (V, E) be a digraph. A vertex
of G with no incoming edges is a source of G, while a vertex without outgoing edges is a sink
of G. A digraph G is an st-planar graph if it admits a planar embedding such that: (1) it
contains no directed cycle; (2) it contains a single source vertex s and a single sink vertex ¢;
(3) s and t both belong to the external face of the planar embedding.


mailto:lkhazaliya@ac.tuwien.ac.at
https://orcid.org/0009-0002-3012-7240
mailto:kindermann@uni-trier.de
https://orcid.org/0000-0001-5764-7719
mailto:giuseppe.liotta@unipg.it
https://orcid.org/0000-0002-2886-9694
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:kirill.simonov@hpi.de
https://orcid.org/0000-0001-9436-7310

The st-Planar Edge Completion Problem is Fixed-Parameter Tractable

(a) (b) (c)

Figure 1 (a) A digraph G with 2k + 1 = 7 sources and 1 sink; G has a unique planar embedding
up to the choice of the external face; (b) A completion of G to an st-planar graph obtained by
adding 2k = 6 edges; (c) An upward planar drawing of the completion of G.

Upward planarity is a rather natural and well-studied notion of planarity for directed
graphs (see, e.g., [5, 6, 8, 10, 13, 17]). In particular, a planar digraph is upward if it
admits a planar drawing where all edges are oriented upward. A well-known result in graph
drawing states that a digraph G is upward if and only if G is a subgraph of an st-planar
graph [8, 10]'. However, since testing for upward planarity is an NP-complete problem
already for biconnected graphs [13], determining whether a biconnected graph is a subgraph
of an st-planar graph is also computationally challenging. On the other hand, checking
whether a digraph is st-planar can be done efficiently in polynomial time. This observation
motivates for the investigation of the following problem.

st-PLANAR EDGE COMPLETION (st-PEC)

Input: A biconnected digraph G

Parameter: k € N

Question: Is it possible to add at most k£ edges to G such that the resulting graph is an
st-planar graph?

In this paper, we present a fixed-parameter tractable algorithm for the st-PLANAR EDGE
COMPLETION problem. To help understanding the combinatorial and algorithmic challenges
behind the problem, we make the observation that the parameter k provides an upper bound
on the number of sources and sinks in the input digraph G. Since an edge can remove the
presence of at most one source and one sink, if the total number of sources and sinks in
G exceeds 2k + 2, we can promptly reject the instance. Conversely, a positive answer to
st-PLANAR EDGE COMPLETION implies that G is upward planar. In this respect, it is worth
mentioning that Chaplick et al. [5] have previously demonstrated that testing a digraph
for upward planarity is fixed-parameter tractable when parameterized by the number of its
sources. However, for every k > 1, there are upward planar digraphs with at most 2k + 1
sources that cannot be augmented to an st-planar graph by adding k edges; refer to Figure 1
for an illustration. Furthermore, while an upward planarity test halts upon finding an upward
planar embedding, not all upward planar embeddings of the same digraph can lead to an
st-planar graph after the addition of k edges. Figure 2 demonstrates an upward planar

! From the proof in Lemma 4.1 of [10], one can in fact observe that a digraph is upward planar if and
only if it is a subgraph of an st-planar graph defined over the same set of vertices.
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Figure 2 (a) A biconnected digraph G with 4 sources and 4 sinks; (b) With the given embedding,
6 edges have to be added to complete G to an st-planar graph; (c) With a different embedding,
adding 3 edges is sufficient.

digraph along with two of its upward planar embeddings: the embedding in Figure 2a requires
6 edges to be augmented into an st-planar digraph, whereas the embedding in Figure 2c can
be augmented with 3 edges.

In order to overcome the above technical challenges, our result is based on a structural
decomposition of the digraph into its triconnected components using SPQR-trees (similarly
as done in [5]), as well as on novel insights regarding the combinatorial properties of upward
planar digraphs. Since the proof is rather technical, after giving preliminaries and basic
notation in Section 2, we present an overview of the approach in Section 3. Next, the FPT
algorithm is described in full detail in Section 4. We conclude in Section 5.

2 Preliminaries

In this section, we provide basic definitions and tools that will be used throughout the paper.

Planar drawings and embeddings. A planar drawing of a graph G maps the vertices of G
to points of the plane and the edges of G to Jordan arcs such that no two arcs share a point
except at common end-vertices. A planar drawing partitions the plane into topologically
connected regions called faces, one of which is unbounded and called the external face, in
contrast with all other faces which are inner faces. For a digraph G, a planar drawing is called
upward if each edge oriented from a vertex u to a vertex v is represented by a Jordan arc
monotonically increasing from the point representing v to the point representing v. A graph
(digraph) is planar (upward planar) if it admits a planar drawing (upward planar drawing).
A planar embedding (upward planar embedding) £(G) of a planar graph (upward planar
digraph) G represents an equivalence class of planar drawings (upward planar drawings)
with the same inner faces and the same external face, up to a homeomorphism of the plane.
Graph G is plane if it comes with a fixed planar embedding £(G).

SPQR-trees. We recall the definition of SPQR-tree, introduced in [8], which represents
the decomposition of a biconnected graph G into its triconnected components [15]. Each
triconnected component corresponds to a non-leaf node v of T'; the triconnected component
itself is called the skeleton of v and is denoted as skel(v). Node v can be: (i) an R-node, if
skel(v) is a triconnected graph; (i) an S-node, if skel(v) is a simple cycle of length at least
three; (ii) a P-node, if skel(v) is a bundle of at least three parallel edges. A degree-1 node
of T is a )-node and represents a single edge of G. A real edge (resp. virtual edge) in skel(v)
corresponds to a Q-node (resp., to an S-; P-; or R-node) adjacent to v in T'. Neither two S-
nor two P-nodes are adjacent in 7. The SPQR-tree of a biconnected graph can be computed
in linear time [8, 14]. Let e be a designated edge of G, called the reference edge of G, let p
be the Q-node of T' corresponding to e, and let T" be rooted at p. For any P-, S-; or R-node
v of T, skel(v) has a virtual edge, called reference edge of v and denoted as e,,, associated
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with a virtual edge in the skeleton of its parent. The end-vertices of the reference edge of v
are called the poles of v. For every node v # p, the pertinent graph G, of v is the subgraph
of G whose edges correspond to the Q-nodes in the subtree of T" rooted at v. Without loss of
generality, we shall consider SQPR-trees where every S-node has exactly two children (see,
e.g., [5, 9, 12]); this lifts the condition that two S-nodes cannot be adjacent in 7T

Angles in upward drawings. Let G = (V, E) be a digraph. For each edge (u,v) € E, we
write uwv if (u,v) is oriented from u to v in G, and we write vu otherwise. A vertex v is a
switch of G, if it is either a source or a sink, and it is a non-switch otherwise. Recall that a
digraph is upward planar if and only if it is a subgraph of an st-planar graph [8]. Hence, being
upward planar is a necessary condition for YES-instances of st-PLANAR EDGE COMPLETION.
Consider now a biconnected plane digraph G. An angle is an incidence between a vertex
v and a face f of G. Let o be one such angle, and consider the two edges incident to v
that belong to the boundary of f. If such edges are one incoming and one outgoing, « is
a non-switch angle, while if the edges are both incoming or both outgoing, « is a switch
angle. Note that a switch angle in a face f can be made by two edges that are incident to
a non-switch vertex v: it is enough that the edges of f incident to v are both incoming or
both outgoing. In this case, v is a local switch for face f. An angle assignment is a labeling
A of the angles of G with labels {—1,0,+1} (see, e.g., [1, 2, 3, 11]). In particular, non-switch
angles can only receive the label 0, while switch angles can be labeled as either —1 or +1.
The planar embedding of G' can be realized as an upward drawing if and only if there is an
angle assignment such that: (i) each switch vertex has exactly one angle labeled +1; (ii) each
non-switch vertex has exactly two angles labeled as 0, while all the others are switch angles
labeled —1; (iii) the difference between the number of angles labeled +1 and the number of
angles labeled —1 along the boundary of each inner face is —2; (iv) the difference between
the number of angles labeled +1 and the number of angles labeled —1 along the boundary of
the external face is +2. Observe that property (ii) implies that each non-switch vertex forms
exactly two non-switch angles. An angle assignment satisfying the above properties is called
upward. The restriction of an upward angle assignment to the angles of a single face f is an
upward angle assignment for f.

3 Overview of the Approach

Let G be a biconnected digraph. Since testing for planarity can be done in linear time, we
shall assume that G is planar. We begin by explaining two key ingredients for our algorithm,
namely, the use of SPQR-trees to encode all the planar embeddings of GG, and the use of
upward angle assignments to incrementally saturate G. The main crux of our algorithm
lies in blending these two ingredients together to design a dynamic program that solves the
problem in FPT time.

Let T be a rooted SPQR-tree of a planar graph G with reference edge e. The planar
embeddings of GG in which the edge e lies on the boundary of the external face can be obtained
as follows (see, e.g., [8]). For a P- or R-node v, denote by skel™ (v) the skeleton of v without
its reference edge. If v is a P-node, the embeddings of skel(v) are the different permutations
of the edges of skel™ (v). If v is an R-node, skel(v) has two possible embeddings, obtained by
flipping skel™ (v) at its poles. No operations are needed at S- and Q-nodes.

Consider now an upward planar drawing I' of G and hence assume that G is plane. Let A
be the upward angle assignment induced by I'. Precisely, the switch angles that are larger
(smaller) than 7 in T are labeled as +1 (—1), while the non-switch angles are labeled as 0.
Let v be a source (sink) of G and let f be the face of G in which v makes its +1 angle. Let
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Figure 3 The signatures of two paths II,, (brown background) and II,, (purple background).

u be a vertex of f different from v. We say that adding uv (vu) to G saturates v, and that
wv (vu) is a saturating edge. Namely, v becomes a non-switch vertex in G' = (V, E U {uv}).
Notably, f is the only face in which an edge saturating v can be added: one easily verifies
that choosing any other face would lead to a non-upward angle assignment.

Based on the previous reasoning, at high-level, the algorithm will exploit a bottom-up
traversal of the SPQR-tree T' to explore the planar embeddings of GG. For each visited node,
it will keep track of the information related to the minimum number of edges required to
saturate all switches that lie in the inner faces of the corresponding pertinent graph. The
interface of a candidate solution is encoded in terms of “signatures” which, informally, are
strings containing all switches along the boundary of the external face of the pertinent graph
that do not yet have any angle labeled as +1 and all vertices that must instead contribute
with a —1 angle along the boundary. A running time bounded by a function of the budget &
is obtained by several crucial insights about how a bounded number of switches in the graph
affects the possible signatures and limits the relevant embeddings to be considered.

4 An FPT Algorithm for st-Planar Edge Completion

In this section, we describe our FPT algorithm, which leads to the following theorem.

» Theorem 1. Let G be an n-vertex biconnected plane digraph. There is an algorithm that
solves st-PLANAR EDGE COMPLETION in 20%) . n2 time.

We begin by describing the records used by our dynamic program (Section 4.1), which
are used to encode the angles along the boundary of the external face of a pertinent graph.
Next, we describe the algorithm (Section 4.2), which constructs such records while traversing
bottom-up the SPQR-tree of the input graph.

4.1 Setting up the Records for Dynamic Programming

Signatures. We begin with some notation and definitions. Let G be a plane digraph. Let
I1,,, be a simple undirected path of G from a vertex u to a vertex v. The signature of Il
is a string X, computed as follows. Consider a walk along II,, from u to v. For each
encountered vertex w distinct from u and v, look at the two edges incident to w in IL,,. If the
two edges are one incoming and one outgoing, we do not append any symbol to 3. If the
two edges are both outgoing (incoming) and w is a switch of G, we append the symbol o (7).
If the two edges are both outgoing (incoming) and w is not a switch of G — hence, it is a
local switch for some face f —, we append the symbol oy (74). Observe that, if IT,, is a single
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edge connecting u to v, then X,, = 0. At high level, the idea is that when walking along
a piece of the boundary of some face f of G, non-switch angles are ignored as their only
possible value in an angle assignment is 0. On the other hand, the symbols o, and 7, will
encode switch-angles whose only possible value is —1 (else the corresponding vertex would
be a switch of G). Finally, the symbols ¢ and 7 will point to switch angles that may be
assigned either —1 or +1. Refer to Figure 3 for an illustration.

A signature is short if it contains at most 4k + 2 symbols. Let ¥* be the set of short
signatures; we observe the following.

» Observation 2. The cardinality of ©* is 20(F),

Half-boundaries. Let G be a biconnected planar digraph, and let T" be the SPQR-tree
of GG rooted at a Q-node representing an arbitrary edge e of G. For each node v of T, we
recall that G, is the pertinent graph, and we denote by w,v the poles of v (omitting the
dependency on v for simplicity). Assuming that G,, comes with a fixed planar embedding, let
f be the external face of G,. The half-boundary By, of v is the path containing the vertices
of f encountered in a clockwise walk of the face from u to v. The half-boundary B, of v is
defined analogously walking from v to u. A vertex w on the boundary of f is bifacial if it
belongs to both B, and B,, (which implies that w is a cutvertex of G, and hence v is an
S-node). For each of the two half-boundaries we can define the two corresponding signatures
Yy and X,,,. We will assume that for each symbol of ¥, and ¥,, we have a pointer to
the corresponding vertex. Let B be one of the two half-boundaries of v and let X be its
signature. Let B’ be a path contained in B (possibly B = B’). The restriction of ¥ to B’,
denoted as X[B'], is the substring of ¥ containing the symbols whose corresponding vertices
belong to B’. The next lemma shows that working with short signatures is not restrictive.

» Lemma 3. Let G be a biconnected upward planar digraph with o fixed upward planar
embedding E(G). Let T be the SPQR-tree of G rooted at a Q-node representing an arbitrary
edge e of G. Let v be a node of T. For any fized k, if G can be augmented to an st-planar
graph by adding at most k saturating edges, then the signatures 3., and X, of the two
half-boundaries By, and B, of v are both short.

Proof. Let I' be an upward planar drawing of G whose corresponding upward planar
embedding is £(G), and consider the subdrawing I'V induced by G,. Let A be the upward
angle assignment induced by I, and let f be the external face of G,,. We know that f
contains at most 2k + 2 switches, otherwise k saturating edges would not suffice to turn G
into an st-planar graph. Hence, A can label +1 at most 2k + 2 angles along the boundary of
f. Also, since X obeys to property (iv) of an upward angle assignment, it labels —1 at most
2k angles. Therefore, 3, and X, can each contain at most 4k + 2 symbols. |

Internal assignments. An angle of G, is internal if it is defined in an inner face of G,,. An
internal assignment of G, is an angle assignment A that labels all the internal angles of G,
and that respects properties (i)—(iii) for upward angle assignments (but ignoring property
(iv)). A switch vertex of G is called active with respect to A if none if its internal angles (if
any) received value +1. The cost of an internal assignment A of G, is the minimum number
of saturating edges needed to saturate all switches of G, that are not active with respect to A.

Partial solutions. We are now ready to define the table used by our dynamic program.
A tuple (X1, X9, b1,b2), such that X, Y5 is a pair of short signatures and by, by is a pair of
flags, is called a candidate tuple in the following. Given a node v and a candidate tuple
(X1,39,b1,b2), the function X (v, 31, X9, by, b,) returns the minimum cost of an internal



L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, K. Simonov

assignment A of G, such that: (1) ¥; and ¥, are the signatures of its two half-boundaries
By and By, respectively, (2) the flag b, is true if and only if u is an active switch with
respect to A, (3) the flag b, is true if and only if v is an active switch with respect to A. The
set of partial solutions for v is given by the restriction of X to the single node v. Also, a pair
of signatures is empty if both its signatures are empty (i.e., they do not contain any symbol).

4.2 Description of the Algorithm

The function X is computed by traversing 17" bottom-up. For each node v of T, we initialize
X(v,31,%9,b1,b3) = 400 for each candidate tuple (X1,X9,b1,b2). We only ensure that
X (v, %1, %9,b1,by) is computed precisely if the value is at most k; for any value larger than k
we assume that X (v, 31, X9, b1,b2) = +00 is the correct setting, since we are only interested
in the solutions that add at most k edges.

If v is a leaf node, then it is a Q-node and G, is a single edge. In this case, either u is
the source and v is the sink of G, or vice-versa. Then we set X (v, 0, (), true, true) = 0.

The lemma below deals with the case in which v is an S-node. Since S-nodes have exactly
two children and are not used to describe the planar embeddings of GG, the routine of the
algorithm at S-nodes is relatively simple. Next, we will consider P-nodes and R-nodes, which
require more involved arguments.

» Lemma 4. Let v be an S-node of T. The set of partial solutions of v can computed in
20(K) time.

Proof. Let p1 and ps be the two children of v. In order to compute the partial solutions for
v, we check whether pairs of internal assignments of G,, and G, can be combined together.
Let (X11,%31,2,b1,1,b1,2) and (321, %2 2,b2.1,b22) be a pair of candidate tuples. Also, let
C = X(u1,%1,1,%81,2,b1,1,b1,2) + X (12, X2,1, X2,2,b2,1, b2,2).

We first verify that C' < k, and that by 2 V by;; = true. The first condition guarantees
that we have not exceeded our budget k of saturating edges, while the second condition
guarantees that the pole shared by p; and pe does not receive the value +1 twice in the
final internal assignment of GG,,. If both conditions are satisfied, then we proceed as detailed
below, otherwise, we discard the pair of candidate tuples.

Denote by u and w the poles of py, and by w and v the poles of puy. Observe that
B, corresponds to the union of By, and B, (vertex w is hence bifacial). Based on this
observation, we show how to compute ¥ for B,,, the computation of X5 can be performed
analogously. We initially set ¥; = X ;. Consider the two edges incident to w along B,,,. If
one edge is incoming and the other is outgoing, then we do not append any symbol. If both
edges are incoming or both outgoing, we check whether one of b; 5 and by ; is false. If so, we
append the symbol oy if w is a source of G, or the symbol 7; otherwise. If none of b; » and
ba,1 is false, we append the symbol o if w is a source of G, or the symbol 7 otherwise. Next,
we concatenate the signature 35 ;. Once both 3; and X3 have been computed, we verify
that each of them is short (a necessary condition by Lemma 3), otherwise we discard the
candidate tuples. Finally, we set X (v, X1,%2,b1,1,b22) = C.

By Observation 2, we have 2°(*) possible pairs of signatures to consider, and performing
the above operations takes O(k) time for each pair. <

The next tools will be useful for the remaining lemmas. The next result is based on the
fact that face boundaries containing long sequences of non-switch vertices are irrelevant for
the sake of computing the least number of saturating edges; see Figure 4 for an illustration.
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(a) (b)

Figure 4 Illustration for Lemma 5.

» Lemma 5. Let f be an inner face of G with ny vertices, and let Ay be an upward angle
assignment for f with h switch-angles. The minimum number of edges that saturate all switch
vertices of G forming an angle labeled +1 in f can be computed in O(20<h2) +ny) time.

Proof. Consider a sequence of non-switch angles in a walk along the boundary of f, and let
F be the corresponding set of vertices. Also, consider a set of saturating edges S drawn inside
f, such that each of them has one end-vertex that belongs to F'; see Figure 5a. Since in any
upward drawing of G the set F' is drawn as a monotonically increasing curve, it is immediate
to see that the set S can be replaced with a set of saturating edges S’ such that: S and S’
have the same size, S and S’ saturate the same set of switches, all edges of S’ are incident to
a single (arbitrarily chosen) vertex of F'; see Figure 5b. Consequently, we can work with a
simplified boundary of f in which maximal sequences of vertices forming non-switch angles
are replaced with a single vertex; see Figure 5c. Computing the simplified boundary takes
O(ny) time, and such a boundary has at most 2h + 1 vertices. Thus, the maximum number
of edges whose end-vertices belong to this boundary is (2h2+1), and in 2°"”) time we can
enumerate all candidate sets of saturating edges whose end-vertices belong to this boundary.
Finally, among these sets, we return the size of the smallest set that saturates all switches
labeled +1 and such that no two of its edges cross. (Whether two edges cross only depends
on the order of their end-vertices along the boundary of f.) <

» Lemma 6. Let v be a node of T and let p be a child of v. Suppose that G, is plane and a
half-boundary B of v contains a half-boundary B' of p (B and B’ may possibly coincide).
Given an internal assignment \ of G, and the signature of B, the restriction of the signature
of B to B’ can be computed in O(k) time.

Proof. Let ¥’ be the signature of B’, we compute the desired signature ¥ as follows. If X’
does not contain any symbol in {o, 7} whose corresponding vertex is bifacial, then ¥ = 3.
Otherwise we initialize ¥ = ¥’ and proceed as follows. For each o or 7 whose corresponding
vertex w is bifacial and incident to an inner face f of G, we verify whether A has labeled +1
the angle that w makes in f. If so, we replace the symbol o or 7 with o, or 7y, respectively.
By construction, ¥ is the restriction of the signature of B to B'. <

The next result will be used to bound the number of interesting children of a P-node.

» Lemma 7. Let v be a P-node of T with poles u,v. Suppose that G, is plane, and let u and
w' be two children of v none of which is a Q-node, and whose corresponding edges of skel(v)~
are consecutive in the permutation fized by the planar embedding of G,. Also, suppose that
for both p and p' it holds that the pair of signatures of its two half-boundaries is empty. Let
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(a) (b)

Figure 5 Illustration for Lemma 5.

G’ be the digraph obtained from G by removing all vertices of G+ except the poles u,v. Then
G is a YES-instance of st-PEC if and only if G’ is a YES-instance.

Proof. Let F be the set of vertices of G, distinct from u to v (i.e., those removed when
going from G to G’). Also, suppose that the half-boundaries forming an inner face of G, are
By, of pand By, of u/. Suppose first that G admits a solution, namely we can add a set E’
of k saturating edges to G and turn it into an st-planar graph. If none of these edges is such
that exactly one end-vertex belongs to F, then E’ is a solution also for G’. Otherwise, let
S € E’ be the set of edges having exactly one end-vertex in F. Observe that the end-vertices
in F all belong to the half-boundary B, of u/. Hence, since neither u nor y’ is a Q-node,
analogously as in the proof of Lemma 5, we can replace S with a set S of edges incident to
an arbitrary vertex of the half-boundary B,, of . This yields a new set E” of saturating
edges that corresponds to a solution for G'.

Suppose now that G’ admits a solution E’. If E’ does not contain any edge having exactly
one end-vertex in By, of u, then E’ is a solution for G. Otherwise, let S € E’ be the set of
edges having exactly one end-vertex in B,, of u. again, since neither p nor u' is a Q-node,
analogously as in the proof of Lemma 5, we can replace S with a set S of edges incident to
an arbitrary vertex of the half-boundary B, of /. This yields a new set E” of saturating
edges that corresponds to a solution for G. |

We are now ready to deal with P- and R-nodes.

» Lemma 8. Let v be a P-node of T. The set of partial solutions of v can be computed in
20(K*) 1y time.

Proof. Let u and v be the poles of v, and let pq, po, ..., pup be the h > 2 children of v. In
order to compute the partial solutions for v, similarly as for S-nodes, we check whether sets
of internal assignments of G\,,, G,, ..., G, can be combined together. For each child p;,
let <21,i7 2271', bl,i7 b271'> be a candidate tuple. Let C = Z?:l X(/L“ 2171‘, 2272', bl,ia bg,i).

We first verify that C' < k, and that at most one flag b, ; is true, as well as at most one
flag b ; is true. The first condition guarantees that we have not exceeded our budget k,
while the second condition guarantees that the poles u, v shared by the children of v do not
receive the value +1 twice in the final internal assignment. If both conditions are satisfied,
then we proceed as detailed below, otherwise we discard the set of candidate tuples.

Observe that i might be unbounded with respect to k, thus we cannot afford to enumerate
all possible permutations of the edges of skel” (v). To overcome this issue, we make the
following crucial observations. First, we know that G contains at most 2k + 2 switches,
otherwise we can safely reject the instance. Consequently, at most 2k + 2 children of v may
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(b) '

Figure 6 Illustration for the proof of (a) Lemma 8 and (b) Lemma 9.

contain switches different from u and v in their pertinent graphs. Second, consider now a
permutation of the edges of skel™ () and the corresponding planar embedding of G,. Up
to a relabeling of the children, we shall assume that the half-boundary B, of u; and the
half-boundary By, of p;11 form a face f; of G, for i =1,...,h — 1, and that the external
face fy of G, consists of By, of uy and By, of uy; see Figure 6a. Observe now that each
of u and v can contribute at most one angle labeled +1 and at most two angles labeled 0;
all other angles at v and v must be labeled —1. Hence, besides the at most six faces in
which u or v contribute an angle labeled +1 or 0, all other faces are such that they either
contain an angle labeled +1, or all their angles (except those formed by u and v) are labeled
0. Therefore, the number of faces whose half-boundaries have non-empty signatures is at
most t = 2(2k + 2) + 6 = 4k + 10 (a switch vertex may be bifacial and hence belong to two
half-boundaries). Putting all together, if there exist more than ¢ pairs that are not empty,
then we can safely discard the set of candidate tuples.

Based on the previous observations, we will now assume to have at least h — ¢ empty
pairs. Furthermore, if h > 2t + 2, at least two children are such that Lemma 7 holds for them.
Consequently, removing all empty pairs except ¢ + 1 preserves the existence of a solution (if
any). Therefore, we shall further assume that we have h € O(¢t) € O(k) pairs of signatures,
and we can now enumerate all possible permutations of such pairs, and hence all possible
putative planar embeddings described by skel™ (v).

Consider now a fixed permutation. Following the same notation as before, assume that
the half-boundary B,, of u; and the half-boundary B,, of p;+1 form a face f; of G,, for
i =1,...,h. We call such faces active. If all values b ; are true and u is a switch, we guess
whether u has an angle labeled 41 in some active face f; or not. In the former case, we set
flag by to false and also guess which active face the angle belongs to, in the latter case we set
b1 to true. We do the same for v and flag bs.

Next, consider a non-empty signature containing a symbol ¢ or 7. Let w be the vertex
corresponding to that symbol. If w is not bifacial, the active face in which it forms the +1
angle is unique, otherwise we must guess in which of the two active faces sharing w the +1
angle is assigned to. After doing this procedure for all such symbols, we have exhaustively
branched over the 29(%) angle assignments for the active faces. For each such angle assignment
we can check, in O(k) time, whether it is an upward assignment for each active face. If not,
we discard the angle assignment, otherwise we now have an internal assignment A of G,,.

Next, for each active face f;, we can apply Lemma 5 to compute the minimum number ¢;
of saturating edges needed to saturate all switches in f;. Let C + Z?Zl ¢; be the cost of the
internal assignment A. If it is larger than k, the angle assignment is discarded.
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We are now ready to construct the signatures 3; and X of the half-boundaries By,
and B,, of v. Since the half-boundary B,, of v coincides with B,, of p; (as fixed by

the permutation at hand), we can invoke Lemma 6 by using A and ¥;; as arguments.
Similarly, the signature X, is computed invoking Lemma 6 with arguments A and s p.

Observe that both ; and X5 are short, because ¥; ; and X3} are short. Then we set
X(31,%92,b1,b2) = min{X(X1,%3,b1,b2),C + 2?21 ¢i}; taking the minimum is needed
because different permutations, as well as different angle assignments of the same permutation,
may yield the same pair of signatures and flags but different costs.

Putting all together, it suffices to first branch over sets of candidate tuples of size h € O(k),
for each set we branch over k) permutations, and for each permutation we further branch
over the 20(%) possible angle assignments of the active faces. Computing the cost of an
internal assignment takes 20(K*) .y time by using Lemma 5. <

» Lemma 9. Let v be an R-node of T. The set of partial solutions of v can be computed in
20(K*) 1y time.

Proof. Let v and v be the poles of v, and let p1, ps, .. ., up be the h > 2 children of v. For each

child i, let <21,i7 22’1', bl,i7 bQ’»L'> be a candidate tuple. Let C' = Z;—L:l X(‘LLZ, 2171‘, 2271‘, blﬂ', b2,i)~

We first verify that C' < k, in order to avoid exceeding the budget. Next, we check the

consistency of the flags. Recall that the vertices of skel(v) are the poles of the children of v.

Namely, for each vertex w of skel(v), we verify that at most one flag corresponding to it is
false. If these conditions are met we proceed as detailed below, otherwise we discard the set
of candidate tuples.

We now make important observations concerning the number of interesting children of v.

As in the proof of Lemma 8, we can observe that at most 2k + 2 children of v may contain
switches different from u and v in their pertinent graphs. Now consider a child g of v that
does not contain switches in its pertinent graph G, and let u, and v, be its poles. If G
admits a solution, one immediately verifies that G, is st-planar and its two switches are u,,

and v,,. Consequently, in any solution, the two signatures ¥, ,,, and 3, ,, must be empty.

Based on this property, it suffices to consider sets of pairs of signatures in which at most
2k + 2 pairs are not empty.

Next, following the lines of the proof of Lemma 8, consider a non-empty signature
containing a symbol ¢ or 7. Let w be the vertex corresponding to that symbol. If w is
not bifacial, the face in which it forms the +1 angle is unique, otherwise we must guess in
which of the two faces sharing w the +1 angle is assigned to. This is however not enough
for R-nodes. Namely, observe that each face f* of skel(r)~ corresponds to a face f of G,
whose boundary is formed by one half-boundary for each child of v represented by an edge
of f* (which can be a real edge or a virtual edge); see Figure 6b. We call such faces active
in the following. Moreover, the only angles that are not yet defined are those made by the
vertices of skel(v) that are switches and whose corresponding flags are all true. For these
vertices we shall guess in which active face they make their +1 angle. Clearly, any such a
vertex w belongs to multiple active faces (possibly including the external face). On the other
hand, for an active face to be able to absorb a +1 angle, it must contain at least three angles
labeled —1. Since we have at most 2k + 2 non-empty pairs, there are at most 4k + 4 active
faces formed by non-empty signatures. For the other active faces, the only source of —1
angles are the vertices of skel(v). Consequently, if w is incident to more than 4k + 5 active
faces in which the number of angles labeled —1 is larger than 2, we can safely discard the
set of candidate tuples. Putting all together, for each vertex w we can branch over its O(k)
interesting active faces to decide in which of them it will make its +1 angle. This procedure

11
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leads to 29(F) angle assignments for the active faces. For each such angle assignment we can
check, in O(k) time, whether it is an upward assignment for each of the active faces. If not,
we discard the angle assignment, otherwise we now have an internal assignment A of G,,.

Next, for each active face f;, we can apply Lemma 5 to compute the minimum number ¢;
of saturating edges needed to saturate all switches in f;. Let C + 2?21 ¢; be the cost of the
internal assignment. If it is larger than k, the angle assignment is discarded.

We are now ready to construct the signatures ¥; and X5 of the half-boundaries B,, and
By of v. Observe that the embedding of skel(v) if fixed up to a flipping operation, which
corresponds to inverting the two signatures. Therefore, we construct ; and Yo as follows.
Let X/, for i = 1,...,r be the r > 1 signatures of the half-boundaries of the children of v
that form the half-boundary B, of v, in the order they are encountered from u to v. Also
let w;, i =1,...,7 — 1 be the vertices of skel(v) that belong to B,,. We initialize ¥; with
the signature obtained by invoking Lemma 6 with arguments A and . For vertex wy, we
distinguish whether it is a switch of G or not. In the former case, we concatenate the symbol
o (7) if none of its angles in G, is labeled as +1, otherwise we concatenate oy (7¢). In the
latter case, consider the two edges incident to w; along B,,. If one edge is incoming and the
other is outgoing, then we do not append any symbol. If both edges are outgoing (incoming),
we append oy (77). We then repeat the procedure for the remaining signatures and vertices.
The signature ¥, is computed analogously. Once both 3; and 5 have been computed,
we verify that each of them is short (a necessary condition by Lemma 3), otherwise we
reject the set of candidate tuples. Concerning the flags, b; (b2) is true if and only if all
flags corresponding to u (v) are true and none of its angles in the active faces is labeled +1
according to A. Finally we set X (X1, X5,b1,b2) = min{X (31, X9,b1,02),C + Z?:l ci}, as
well as X (S, 21, by, b1) = min{ X (g, By, bg, b1), C + S0, ¢}

Putting all together, it suffices to first branch over sets of candidate tuples of size
h € O(k), for each set we branch over the 20(*) possible angle assignments of the active faces.
Computing the cost of an internal assignment takes 20(K*) . time by using Lemma 5. <«

It remains to deal with the root p of T'. Recall that G, = G, and that p is a Q-node.

» Lemma 10. Let G be an n-vertex biconnected digraph, let e be an edge of G, and let k € N.
There exists an algorithm that decides, in 0(20(k2) -n) time, whether G can be augmented to
an st-planar graph with e on its external face by adding at most k edges.

Proof. By using Lemmas 4, 8, and 9 we can traverse T bottom up until reaching the root p.
Let u, v be the end-vertices of e, and therefore the poles of both p and of its child £. Consider
each pair of signatures ¥/, ¥4 and of flags b1, by such that C = X (&, %, 55, b1,b2) < k. Let
fo and fi be the two faces of G, = G that share edge e, with fy being the external face.
Without loss of generality, assume that the boundary of fj is formed by edge e and by the
half-boundary B, of &, while the boundary of f; is formed by e and the half-boundary B,,, of
&. Each symbol ¢ or 7 in ¥; whose corresponding vertex is not bifacial must contribute with
an angle labeled 4+1 in f;. On the other hand, a symbol ¢ or 7 in 3} whose corresponding
vertex is bifacial must contribute with an angle labeled +1 in one of f; or fy. For such vertices
we guess in which of the two faces they contribute the +1 angle. We proceed analogously
for ¥4. The same reasoning applies to u (v) if by (b2) is true. This leads to an 2°*) angle
assignments for fp and fi. For each angle assignment we can test, in O(k) time, whether it
is upward for the two faces fo and f;.

An angle assignment of fy and f; that is upward for them, together with the internal
assignment represented by X (&, X/, 35, b1,b2), implies the existence of an upward angle
assignment of G. Also, by Lemma 5 we can compute in 20(k*) . time the cost of saturating
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f1. For face fy we need to saturate all switches except one source and one sink, hence
its cost ¢y can be computed by a simple adjustment of the procedure of Lemma 5. If
C* =C+ ¢y + 1 <k, then we have constructed an upward angle assignment of GG, and, in
particular, all switches of G can be saturated with at most k saturating edges, except for a
single source and a single sink on the external face. Then we can conclude that G is a YES
instance and the algorithm reports a positive answer.

After considering all pairs X7, ¥4 and all pairs by, by, as well as all angle assignments for
the corresponding faces fy and fi, if no positive answer was returned, then the algorithm
halts and rejects the instance. <

The proof of Theorem 1 follows by applying Lemma 10 for each of the O(n) edges of G.

5 Discussion and Open Problems

We showed that st-PEC can be solved in 20*°) . n2 time for biconnected digraphs. It is
worth remarking that, while in principle the st-PEC problem needs not to be restricted to
biconnected digraphs (for which it is already NP-hard), considering simply connected graphs
would make the proof of our result more technical but not more interesting. In fact, one can
simply decompose the graph into its biconnected components through a block-cutvertex tree
and work with similar boundary conditions as those we already considered. More interestingly,
we ask whether st-PEC belongs to the FPL (fixed parameter linear) class. On a similar
note, improving the exponential function (or proving that it is asymptotically optimal under
standard assumptions) would also be interesting. Lastly, it remains open whether st-PEC
admits a kernel of polynomial size.
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