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Abstract

We consider the problem of multicommodity flows in planar graphs. Sey-
mour [11] showed that if the union of supply and demand graphs is planar, then
the cut condition is also sufficient for routing demands. Okamura-Seymour [9]
showed that if all demands are incident on one face, then again cut condition is
sufficient for routing demands. We consider a common generalization of these
settings where the end points of each demand are on the same face of the pla-
nar graph. We show that if the source sink pairs on each face of the graph are
such that sources and sinks appear contiguously on the cycle bounding the face,
then the flow cut gap is at most 3. We come up with a notion of approximating
demands on a face by convex combination of laminar demands to prove this
result.

1 Introduction

Given an undirected graph G with edge capacities and multiple source/sink pairs,
each with an associated demand, the multicommodity flow problem is to route all
demands simultaneously without violating edge capacities. The problem was first
formulated in the context of VLSI routing in the 70s and since then it has seen a
long and impressive line of work.

The demand graph, H is the graph obtained by including an edge (si, ti) for
a demand with source/sink si, ti. A necessary condition for the flow to be routed
is that demand across any cut does not exceed capacity. This condition is known
as the cut condition and is known to be sufficient when G is planar and all the
source/sink pairs are on one face [9] or when G+H is planar [11]. However, one can
construct small instances where the cut condition is not sufficient for routing flow
(see figure 1). When G is series-parallel, if every cut has capacity at least twice the
demand across it, then flow is routable [2, 5]. The flow-cut gap of a certain graph
class is the smallest α such that flow is routable when capacity of every cut is at
least α times the demand across it. Thus, for series-parallel graphs, the flow-cut
gap is 2. For general graphs, the flow-cut gap is θ(log k) [7], where k is the number
of demand pairs.

The flow-cut gap for planar graphs (G planar, H arbitrary) is O(
√

log n) [10]
and is conjectured to be O(1) [5]. Chekuri et al. [3] showed a flow cut gap of 2O(k)

for k-outerplanar graphs. [6] made progress towards this conjecture by showing
an O(log h) bound on the flow-cut gap, where h is the number of faces having
source/sink vertices. This was subsequently improved to O(

√
log h) by Filster [4].

Seymour [11] showed that if the union of supply and demand graphs is planar,
then the cut condition is also sufficient for routing demands. Okamura-Seymour
[9] showed that if all demands are incident on one face, then again cut condition is
sufficient for routing demands. In this paper, we consider instances where the source
and sink of every demand lie on the same face (called face instances) and show flow
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cut gap results for them. Note that this is a common generalization of the settings
considered in [9] and [11]. Also, the cut condition is not sufficient for such instances
(figure 1).

Figure 1: Gap Instance: cut condition is satisfied but no feasible flow. All supply
(blue) and demand (red) edges have value 1. Since the end points of every demand
edge is 2 units apart, a total of 4 × 2 = 8 supply edges are required for a feasible
routing but only 6 are available.

A common approach to establish bounds on the flow-cut gap is to bound the L1

distortion incurred in embedding an arbitrary metric on the graph G into a normed
space. This, for instance, has been the method used to establish flow-cut gaps for
general graphs [7], series parallel graphs [2, 5] and planar graphs [10]. Our approach
is very different. The central idea of our approach is to approximate an arbitrary
set of demands on a face by a non-crossing family of demands. The flow cut gap
then depends on the quality of this approximation. We formalize this notion in
Section 3. An instance is called separable face instance if the source sink pairs on
each face of the graph are such that sources and sinks appear contiguously on the
cycle bounding the face. Our main result is an upper bound of 3 for flow cut gap on
separable face instances using the notion of approximation mentioned above. To the
best of our knowledge, this is the first constant flow cut gap result for such instances.
We extend our techniques to the setting when sources and sinks on a face may not
be contiguous (called face instances); doing this incurs an additional O(log t) factor
for us and matches the best known upper bound on flow cut gap for face instances by
Naves et al. [8]. [8] concatenate the flow paths obtained after applying repeatedly a
theorem of [11], while we crucially use planarity to get better results for separable
face instances. Their approach can’t be used to prove a constant flow cut gap for
separable face instances. [8] also show that their approach cannot be used to prove a
constant flow cut gap for face instances while no such lower bound is known for our
approach and it is possible that our approach may lead to a constant flow cut gap
for face instances. Our proof also yields approximation algorithms to compute the
generalized sparsest cut for such graphs and all our algorithms are combinatorial.

2 Definitions and Preliminaries

Let G = (V,E) be a undirected graph with edge capacities c : E → Z≥0. We call this
the supply graph. Let H = (V,D) be a graph with demands on edges d : D → Z≥0.
We call this the demand graph. We create d(e) parallel copies of a demand edge
e ∈ F and assume that all demand edges have demand exactly 1. This assumption
simplifies the presentation but it blows up the input size. All our algorithms can be
modified to run in time polynomial in input size (see Section 6). The objective of the
multicommodity flow problem is to find an assignment of positive real numbers
to paths between the end points of demand edges in the supply graph such that the
following hold: for every demand edge (u, v) ∈ D, total value of paths between u
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and v in G is d(e) and for every supply edge e ∈ E, total value of paths using it is
at most c(e).

We say that an instance is feasible if paths satisfying the above two conditions
can be found. We call an instance integrally feasible if there exists an assignment of
non-negative integers to paths such that total number of paths inG for every demand
edge e ∈ D is d(e) and total number of paths using a supply edge e ∈ E is at most
c(e). If the capacity of every edge in G is 1, then the problem of finding integral flow
is equivalent to finding edge disjoint paths (EDP) between the terminals. In this
paper we will be concerned with fractional flows only. A cut S ⊆ V is a partition
of the vertex set (S, V \ S). The sum of capacity of edges of G going across the
cut S is denoted by δG(S). We abuse notation and use δG(S) to denote the set of
edges crossing the cut S as well. The meaning of notation used will be clear from
the context. Similarly, δH(S) denotes the total value of demand edges going from
S to V \ S. One necessary condition for routing the flow is as follows: for every
S ⊆ V, δG(S) ≥ δH(S). In other words, across every cut, total supply should be
at least the total demand. This condition is also known as the cut condition. In
general, cut condition is not sufficient for a feasible routing. We can ask for the
following relaxation: given an instance for which the cut condition is satisfied, what
is the maximum value of f , such that f fraction of every demand can be routed?
The number f−1 is known as the flow-cut gap of the instance. We will use an
equivalent definition of the flow-cut gap: given an instance (G,H) satisfying the
cut condition, the smallest number k ≥ 1, such that (kG,H) is feasible, where kG
denotes the graph with every edge capacity multiplied by k.

The following two classic results identify settings where the cut condition is also
sufficient for routing demands in planar graphs. We will be invoking these to prove
our results.

Theorem 1 ([11]) If G+H is planar, then cut-condition is necessary and sufficient
for (half-integral) routing of all demands. Also, such a routing can be found in
polynomial time.

Theorem 2 ([9]) If G is a planar graph and all the edges of H are restricted to a
face, then cut condition is necessary and sufficient for (half-integral) routing of all
demands. Also, such a routing can be found in polynomial time.

Instances considered in this paper (defined below) generalize the setting of above
results.

Definition 2.1 Face Instance: (G,H) is a face instance of multicommodity flow
problem if G is planar and for every demand edge uv, there exists a face F such
that {u, v} ∈ F .

In all our results, we assume a fixed planar embedding of the supply graph G.
Without loss of generality, one can assume that G is 2-vertex connected. If there is
a cut vertex v and ab is a demand separated by removal of v, then replacing ab by
av, vb maintains the cut condition. By doing this for every cut vertex and demand
separated by them, we get separate smaller instances for each 2-vertex connected
component. Note that a face instance remains one after the above operation. Hence,
every vertex is a part of cycle corresponding to some face. By our assumption, for
every demand edge there exists a face such that both its end points lie on that
face. Hence, we can associate every demand with a face. Let HF denote the set of
demands associated with a face F . We abuse notation and use F to also denote the
cycle associated with the face. Let S ⊆ F be a contiguous segment of F . δHF

(S)

3



will denote the total demand going from S to F/S in HF , ie. δHF
(S) = |{uv|uv ∈

HF , |{u, v}∩S| = 1}|. We say that demands on a face F are separable if there exists
a contiguous segment S ⊆ F such that for any demand edge uv ∈ HF , |S∩{u, v}| =
1. An instance is called a separable face instance if it is a face instance and
demands associated with all the faces are separable. A cut minimizing the ratio of
supply and demand across it is called the sparsest cut, ie. min

S⊆V
δG(S)/δH(S). We

call a subset A ⊆ V central if both G[A] and G[V −A] are connected. The following
is well-known but we give a proof for completeness.

Lemma 1 (G,H) satisfies the cut condition if and only if all central sets satisfy
the cut condition.

Proof. Clearly, if (G,H) satisfy the cut condition for all sets then it is satisfied for
the central sets. Suppose the cut condition is satisfied for all central sets but there is
some non-central set S′ such that δG(S′) < δH(S′). Choose S′ with minimal δG(S′)
among all such sets. We obtain a contradiction as follows. Let S1, S2, . . . , Sk be the
connected components in G \ δG(S′); since S′ is not central, k ≥ 3. Moreover each
δG(Si) is completely contained in δG(S′). If some j, Sj = S′, then

∑
i:i 6=j δH(Si) =

δH(S′) > δG(S′) =
∑

i:i 6=j δG(Si). Hence, there exists a Sj , different from S′ which
violates the cut condition, ie. δH(Sj) > δG(Sj). Moreover, by minimality in the
choice of S′, Sj is central, contradicting the assumption. If S′ 6= Sj for any j, then∑

i δH(Si) = 2δH(S′) > 2δG(S′) =
∑

i δG(Si). Hence, there exists a Sj , different
from S′ which violates the cut condition, ie. δH(Sj) > δG(Sj). Again, by minimality
in the choice of S′, Sj is central, contradicting the assumption.

The set of all faces of G will be denoted by F (G). The dual of a planar graph
G∗ = (V ∗, E∗) is defined as follows: V ∗ = F (G) and if fi, fj ∈ F (G) share an edge
in G, then (fi, fj) ∈ E∗. It is a well known fact that edges of a central cut in G
correspond to a simple circuit in G∗ and vice versa.

3 Dominating Demands by Laminar Families

Let F be a face of G. A demand instance HF on F is said to dominate demand
H ′F on F if for all S which are a contiguous segment of F , δHF

(S) ≥ δH′
F

(S). We
will denote this by HF ≥ H ′F .

We say that a pair of demand edges uv, xy ∈ HF cross if the terminals {u, v, x, y}
appear in order u, x, v, y on the cycle F . We say that the set of demands HF on
face F is laminar if no two demands in HF cross each other. The main idea is
to approximate HF by laminar instances. This is made formal in definition 3.1.
Given a set of demands H1, H2 on a face, H1 + H2 is defined as the disjoint union
of demands in H1 and H2. Recall that H1, H2 and H1 + H2 can contain parallel
edges and all edges have demand exactly 1. Given a positive integer α and a graph
G, αG denotes the graph with edge capacities of G multiplied by α.

Definition 3.1 Let F be a face and HF be the demands associated with it. A set
of demands L1, L2, . . . , Lk on F is said to be an (α1, α2, . . . , αk) -approximation to
H if the following is true:

1. Li ≤ αiHF for 1 ≤ i ≤ k.

2. L1, L2, . . . , Lk are laminar.

3. L1 + L2 + . . .+ Lk ≥ HF .
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For a particular face instance, suppose the demands on any face can be (α1, . . . , αk)
approximated by laminar demands. We show that the flow cut gap of such an in-
stance is at most

∑k
i=1 αi.

Lemma 2 Let (G,H) be a face instance of multicommodity flow. If for every face
F , HF can be (α1, α2, . . . , αk) -approximated by laminar instances, then the flow cut
gap of (G,H) is at most

∑k
i=1 αi.

Proof. Let us assume that the cut condition is satisfied for (G,H). We will show
how to route the flow in (

∑k
i=1 αi)G. We will do this in two phases. In phase 1,

we will construct k instances such that union of demand and supply graph is planar
and cut condition is satisfied. Using Theorem 1, we will be able to find feasible flow
paths for each of the k instances. In phase 2, we will use the paths constructed in
phase 1 to find a feasible routing of all the demands.

Phase 1: Let LFi , 1 ≤ i ≤ k denote the ith set of laminar demands for face F .
We construct k demand multicommodity flow instances as follows: (Gi, Hi) : Gi =
αiG,Hi =

⋃
F∈F (G) L

F
i for 1 ≤ i ≤ k. Note that by construction Gi ∪Hi is planar.

If we can show that the cut condition is satisfied for (Gi, Hi), then by Theorem
1, a feasible routing of demands will exist. Using Lemma 1, to show that the cut
condition is satisfied for (Gi, Hi), we need to check the cut condition for central cuts
only. Recall that a cut S is central if G[S] and G[V −S] are both connected. Recall
that any central cut in a plane graph corresponds to a simple cycle in its dual. Since
in any simple cycle, degree of a vertex is either two or zero and a vertex in the dual
corresponds to a face in the original graph, we can conclude that any central cut
contains either two or zero edges of a face F (ie. cycle corresponding to face F ).
Let S be a central cut and suppose it crosses face F1, F2, . . . , Fl, ie. |δG(S)∩Fj | = 2
for 1 ≤ j ≤ l. S splits each of face it crosses into two segments, say Sj , Fj/Sj . We

know that for any i, j, demand going from Sj to Fj/Sj in L
Fj

i is at most αiδHFj
(Sj).

Summing over all faces that S crosses, we get δHi(S) ≤ αiδH(S) ≤ αiδG(S) (the
second inequality is true because cut condition is satisfied for (G,H). Hence, the
cut condition is satisfied for (Gi, Hi), 1 ≤ i ≤ k and a feasible routing of demands
exists.

Phase 2: Consider a fixed routing of (Gi, Hi) in phase 1. Fix a face F . From
phase 1, we have flow paths PFi for each set of demands LFi , 1 ≤ i ≤ k. Let

PF =
⋃k
i=1 P

F
i . Now consider the multicommodity flow instance (GF , HF ) defined

as follows: the supply graph GF = PF and HF is the demands associated with
face F in the original instance. Since the union of LFi dominate HF (property 3 of
definition 3.1), across every (central) cut, the number of supply edges (ie. paths used
to route LFi ) is more than the number of demand edges in HF . Observe that this is
just the setting of Theorem 2, which states that if end points of all the demand lie
on one face, then the cut condition is necessary and sufficient for routing. Hence,
all demands associated with face F can be routed using PF . Doing this for all the
faces gives the desired routing.

4 Constructing Laminar Families

In this section, we show how to construct a family of laminar demands which ap-
proximate original demands well. We will crucially use a notion of uncrossing for
this construction. Consider a pair of crossing demands uv, xy ∈ HF . We uncross
these demands by replacing them with demands ux, vy. The following lemma shows
that uncrossing a pair of demands does not increase the total demand across any
cut.
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Lemma 3 Let F be a cycle with demand HF incident on it. Let uv, xy ∈ HF be
a crossing pair and H ′F be the set of demand created by replacing uv, xy by ux, vy.
Then for any contiguous segment S ⊆ F, δHF

(S) ≥ δH′
F

(S).

Proof. Consider the segments [ux], [xv], [vy], [yu]. A cut is defined by two edges
e1, e2 ∈ F . Let e1 ∈ [uy], e2 ∈ [vx]. Replacing uv, xy by ux, vy reduces the demand
across this cut by 2. Let e1 ∈ [uy], e2 ∈ [ux]. Replacing uv, xy by ux, vy doesn’t
reduce the demand across this cut. For the remaining choices of e1, e2, it is easy to
check that the demand across the cut remains the same and the lemma follows.

Recall that demands on a face F are separable if there exists a contiguous seg-
ment S on F such that all demands go from S to F \ S. The following lemma
shows how to construct a good approximating laminar family in case of separable
demands.

Theorem 3 Given any face F , demands D on it and a contiguous set S ⊆ F such
that for any uv ∈ D, |{u, v} ∩ S| = 1, there exists instances of laminar demands
L1, L2 such that L1 ≤ D,L2 ≤ 2D and L1 +L2 ≥ D. Also, L1 and L2 can be found
in polynomial time.

Proof. We create L1, L2 in two phases, Phase 1 and Phase 2 respectively (see
Figure 2). Recall that all demand edges have demand exactly 1. By making multiple
copies of vertices, we also assume that at most one demand edge is incident on any
vertex. Now we describe the two phases. Let the endpoints of demands belonging
to S be called s1, s2, . . . , sk and the other end points be called t′is. After renaming,
{(s1, t1), (s2, t2), . . . , (sk, tk)} are the demand edges in D and s1, s2, . . . , sk appear
in that order on F . See Figure 2.

Phase 1: In this phase, we uncross the demands so as to maintain the following
property: exactly one end point of a demand is in S. Given any two crossing
demands siti and sjtj , we replace them by uncrossed demands sitj and sjti. We
keep on repeating this process while there are crossing demands. Note that whenever
we uncross a pair of crossing demands, total number of pair of crossing demands
decrease by exactly 2. This implies that the uncrossing procedure stops after a finite
number of steps. This forms the first laminar instance L1. Let the demands in L1

be sitσ(i) for 1 ≤ i ≤ k (see figure 2).
Phase 2: In this phase, we make sure while uncrossing that cuts crossing S have

sufficiently large value (by cuts crossing S we mean cuts S′ such that S ∩ S′ 6= φ).
To do this, we take a demand sitσ(j) and replace it by tσ(i)tσ(j). We do this for
all 1 ≤ i ≤ k. The new demand edges are of the form tσ(i)tσ(j) and may be
crossing. Note that exactly 2 demand edges are incident on ti’s and no demand
edge is incident on si’s. Remove self loops, if any. Call this demand instance L′2.
We further modify L′2 by uncrossing demands as follows: let tσ(i)tσ(j) and tσ(k)tσ(l)
be intersecting demands such that i < k < j < l. We replace such a demand pair by
tσ(i)tσ(l) and tσ(k)tσ(j). We keep on repeating this procedure until no such crossing
pair of demands remain. Let L2 be the uncrossed instance formed at the end of this
process (see figure 2).

The following claims complete the proof of the lemma by showing that L1, L2

are (1, 2) dominating.

Claim 1 Laminar instances L1, L2 formed by the procedure above satisfy L1 ≤ D,
L2 ≤ 2D.

Proof. L1 is formed from the original instance D by uncrossing pairs of crossing
demand edges repeatedly. By Lemma 3, we know that this doesn’t increase the
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Figure 2: Creating Laminar Demands

total demand across any cut and hence L1 ≤ D. Consider the instance L1 + D.
Since L1 ≤ D,L1 +D ≤ 2D. Now, we will show that L′2 ≤ L1 +D. Demand edges
in L1 + D can be paired as follows: (siti, sitσ(i)) for all 1 ≤ i ≤ k. Observe that
replacing the ith edge pair by tσ(i)ti does not increase the total demand across any
cut. Note that L2’ is the set of demand edges formed by replacing (siti, sitσ(i)) by
tσ(i)ti for 1 ≤ i ≤ k. Hence L′2 ≤ L1 +D. Since, L2 is formed by uncrossing pairs of
demand in L′2, by Lemma 3, L2 ≤ L′2 ≤ L1 +D ≤ 2D and the claim follows.

Lemma 4 The union of L1 and L2 dominates the original demand D, ie. L1+L2 ≥
D.

Proof. F is the face (cycle) on which demands are incident. Recall that we are
only concerned with cuts that divide F into two contiguous segments. Such cuts
are described exactly by two edges e1, e2 ∈ F . Terminals s1, s2, . . . , sk, t1, t2, . . . tk
divide F into 2k segments. These segments define four kind of cuts:

1. e1 ∈ {[s1tσ(1)], [sktσ(k)]}, e2 ∈ F .

2. e1 ∈ [sisi+1], e2 ∈ [sjsj+1].

3. e1 ∈ [tσ(i)tσ(i+1)], e2 ∈ [tσ(j)tσ(j+1)].

4. e1 ∈ [sisi+1], e2 ∈ [tσ(j)tσ(j+1)].

Observe that in cases 1-3, one side of the cut formed contains terminals of either
only s or only t type. In original demand D, all the demands were of the form
sjtj , hence the number of demand edges going across any cut of type 1-3 in D is
equal to the number of terminals contained in this cut. In L1, we ensure that after
uncrossing, all the demands are still of type sjtσ(j) and hence the number of demand
edges going across such cuts is equal in D and L1.

Let C be a cut of type 4 (Figure 3). Recall that in phase 1, σ was defined such
that si is paired with tσ(i) in L1. There exists a traversal of F such that s1, s2, . . . , sk,
tσ(k), tσ(k−1), . . . , tσ(1) appear in order. Hence, without loss of generality, cut in this
case can be assumed to be C = {si, si+1, . . . , sk, tσ(k), tσ(k−1), . . . , tσ(j)}. Let i < j.
The other case is analogous.
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Figure 3: C is a cut of type 4. |{sl, tσ(2)} ∩ C| = 1 but |{tσ(2), tσ(l)} ∩ C| 6= 1.
|{sk−1, tσ(m)} ∩ C| = 1 and |{tσ(m), tσ(k−1)} ∩ C| = 1.

Claim 2 Let sltσ(m) ∈ D be a demand such that |{sl, tσ(m)}∩C| = 1 but |{tσ(l), tσ(m)}∩
C| 6= 1. Number of such demands is at most |i− j|.

Proof. If l < i, then sltσ(m) crosses C if m > j. In this case tσ(m)tσ(l) also crosses
C. If l ≥ j, then sltσ(m) crosses C if m < j. In this case tσ(m)tσ(l) also crosses C.
Hence, only demand edges for which |{sl, tσ(m)}∩C| = 1 and |{tσ(l), tσ(m)}∩C| 6= 1
is true have to satisfy i ≤ l < j and there can be at most |i− j| of them.

Recall that L′2 was formed by short cutting the demands of type sitσ(j), sitσ(i) to
tσ(i)tσ(j). From the argument above, it follows that δD(C)− δL′

2
(C) ≤ |i− j|. Also,

from phase 1 uncrossing, we have δL1(C) = |i − j| + 1 (see Figure 3). Hence,
δL′

2
(C) + δL1(C) ≥ δD(C).
Recall that in phase 2, L2 is created by uncrossing demands in L′2 as follows:

if there is a demand tσ(i)tσ(j), tσ(k)tσ(l) with i < k < j < l, then replace it by
tσ(i)tσ(l), tσ(k)tσ(j). Using an argument similar to Lemma 3, it can easily be verified
that such uncrossing preserves the number of demand edges going across C, which
implies δL2(C) = δL′

2
(C). Therefore, δL2(C)+δL1(C) ≥ δD(C) and the claim follows.

This completes the proof that L1, L2 are (1, 2) approximate laminar family for
D.

Theorem 4 Let (G,H) be a separable face instance of multicommodity flow . Then,
the flow-cut gap of (G,H) is at most 3.

Proof. Follows from Lemma 2 and Theorem 3.

4.1 Dominating Laminar Families for Arbitrary Demands

Lemma 5 Given any face with demands D and t source/sink terminals incident on
it, there exists instances of laminar demands D1, D2, . . . , Dk such that each of Di is
dominated by 2D, the union of Di dominate D and k = O(log2 t).
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Figure 4: Laminar set system S

Proof. Number the source/sink terminals from 1 to t, starting from an arbitrary
vertex and moving in clockwise direction. Assume that t is a power of 2, otherwise
add some dummy source/sink terminals. Define a laminar family of sets Si,j as
follows: S1,j := {j} for 1 ≤ j ≤ t and Si+1,j = Si,2j ∪ Si,2j−1 for 1 ≤ j ≤ t/2i−1, 1 ≤
i ≤ log2 t + 1. The sets Si,k, 1 ≤ k ≤ t/2i−1 are said to belong to level i (figure 4).
Let uv be a demand with u having a numbering smaller than v in the ordering. The
demand uv is said to belong to level i if u ∈ Si,2j−1 and v ∈ Si,2j for some j. Consider
the lowest level set that contains both end points of a demand, say Si,j (such a set
always exists). Then the demand must belong to level i − 1 as its endpoints must
be in Si−1,2j−1 and Si−1,2j . Also, every demand belongs to a unique level. Consider
the demands in level i, say Di. It is a disjoint union of separable instances, say
Dm
i , 1 ≤ m ≤ k. For each of these disjoint instances, we can get 2 laminar instances

with property guaranteed by Theorem 3, say Lmi (1), Lmi (2), 1 ≤ m ≤ k. Let Li(1) =⋃k
i=1 L

m
i (1), Li(2) =

⋃t
i=1 L

m
i (1). Then, Li(1) ≤ Di, Li(2) ≤ 2Di, Li(1) + Li(2) ≥

Di. Since, D =
∑log2 t

i=1 Di, we have
∑log2 t

i=1 Li(1) ≤ D,
∑log2 t

i=1 Li(2) ≤ 2D and∑log2 t
i=1 Li(1) + Li(2) ≥ D.

Theorem 5 Let (G,H) be a face instance of multicommodity flow. Then, the flow-
cut gap of (G,H) is O(log t), where t is the maximum number of terminals on any
face.

Proof. Follows from Lemma 2 and Lemma 5.

5 Sparsest Cut

Let (G,H) be an instance such that G+H is planar. Then, it is easy to check if there
exists a cut S such that δH(S) > δG(S) [11]. Consider the planar dual (G + H)∗

of G + H. For every edge e ∈ (G + H)∗, define w(e) as follows: If e corresponds
to a supply edge in G, then w(e) = c(e), else if e corresponds to a demand edge in
G, then w(e) = −d(e). Since every cut in G corresponds to a cycle in (G+H)∗, if
there is a cut S such that δH(S) > δG(S), then the corresponding cycle in the dual
will have negative weight and vice versa. Hence, finding a violated cut is equivalent
to finding a cycle of negative weight in a graph, which can be done efficiently [1].
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In the following, we show how to find O(log t) sparsest cut for face instances. Same
argument also gives a 3-approximate sparsest cut for separable face instances.

Lemma 6 Let (G,H) be an instance of face multicommodity flow. Then, in poly-
nomial time one can either find a cut S such that δH(S) > δG(S) or route all the
demands in O(log t)G, where t is the maximum number of terminals on any face.

Proof. As stated in Lemma 2 and Lemma 5, we create instances (Gi, Hi), 1 ≤ i ≤ k,
where k = O(log t). If all the instances are feasible, then using Lemma 2, we can
route all the demands in kG. If any of the instances Gi is infeasible, we get a violated
cut in the corresponding instance. From the above discussion, all our procedures
can be made to run in polynomial time.

Theorem 6 Let (G,H) be an instance of face multicommodity flow. Then, in poly-
nomial (in input size) time one can find a O(log t)-approximate sparsest cut, where
t is the maximum number of terminals on any face.

Proof. Find the largest value λ (by using binary search), such that (Gi, λHi), 1 ≤
i ≤ k are feasible. By Lemma 2, (kG, λH) is feasible. Since, λ is the largest such
value, there exists a cut S such that λδH(S) ≥ δG(S). Let S∗ be the optimal sparsest
cut. Since (kG, λH) is feasible, kδG(S∗) ≥ λδH(S∗). Hence, kδG(S∗)/δH(S∗) ≥ λ ≥
δG(S)/δH(S). Hence, S is a k = O(log t)-approximate sparsest cut.

6 Uncrossing Demands in Polynomial Time

We give an implementation of the uncrossing in polynomial time. Given a face F
with t vertices and a set of arbitrary demands incident on it, we wish to bound
the number of iterations required to uncross the demands. Let u1, u2, . . . , ut be the
vertices on the cycle of face F in that order. Let de be the demand between vertices
ui and uj , where e = (ui, uj). If there is no demand edge between ui, uj in the
original instance, we introduce a demand edge (ui, uj) with d(ui,uj) = 0 and assume
that there is a demand edge between every pair of vertices. Number of demand edges
is at most t2. Let dmax be the maximum demand. Let D =

∑
i,j:ei,ejcross

deidej .
We now describe the uncrossing procedure. Let ei, ej be such that deidej ≥

D/t2. Note that such a demand always exists as D is a sum of at most t2 such
terms. Suppose dei ≥ dej . There are two possible ways to uncross a pair of crossing
demands, we describe both of them. We replace ei = (ua, uc), ej = (ub, ud), a < b <
c < d by 3 edges:
Possibility 1: (ua, ub) with demand value dej , (uc, ud) with demand value dej and
(ua, uc) with demand value dei − dej .
Possibility 2: (ub, uc) with demand value dej , (ua, ud) with demand value dej and
(ua, uc) with demand value dei − dej .

We replace any parallel edges created due to above procedure by a single edge
with demand as the sum of demand values of all the parallel edges. We repeat
the above uncrossing procedure until no crossing pair remain. It is easy to ver-
ify that after one iteration of uncrossing, the value of D decreases by at least
deidej . Since, deidej ≥ D/t2, D decreases by a multiplicative factor of at least
(1 − 1/t2) after every iteration. After t2 lnD iterations, its value is at most D(1 −
1/t2)t

2 lnD < De− lnD = 1 and the uncrossing procedure terminates after at most
t2 lnD = O(t2 ln t+ t2 ln dmax) iterations.
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7 Conclusions and Open Problems

We showed how to construct (α1, α2, . . . , αk) laminar dominating family such that∑k
i=1 αi = O(log t). We believe that our methods can be extended to get a family

with
∑k

i=1 αi = O(1). The best known lower bound on the flow-cut gap for face
instances is 4/3 (Figure 1) and it is an interesting open question to improve it.
There is a tight relationship between the flow-cut gap and L1 embedding of the
shortest path metric of supply graph into normed space. Is it possible to prove (and
improve) our results by metric embedding techniques?

Acknowledgement: I would like to thank Naveen Garg for useful discussions.
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